### Development studies based on Kampo theories for new

### treatment strategies and drug discoveries

(漢方薬の理論に立脚した新しい治療戦略と薬開発に関する研究)

### 2022 年度

富山大学

生体情報システム科学専攻

趙 慶峰

| Introduction                                                                          |
|---------------------------------------------------------------------------------------|
| Chapter #1                                                                            |
| 1.1 Introduction                                                                      |
| 1.2 Materials and Methods 11                                                          |
| 1.2.1 Crude hot water extract of herbal medicine                                      |
| 1.2.2 3D-HPLC                                                                         |
| 1.2.3 Cell culture and morphological observations                                     |
| 1.2.4 RNA isolation and cDNA construction                                             |
| 1.2.5 Real-time PCR                                                                   |
| 1.3 Results                                                                           |
| 1.4 Discussion                                                                        |
| Chapter #2                                                                            |
| 2.1 Introduction                                                                      |
| 2.2 Materials and Methods                                                             |
| 2.2.1 Extraction of galenicals                                                        |
| 2.2.2 Three-dimensional high-performance liquid chromato                              |
| graphy analysis of extracts (3D-HPLC)                                                 |
| 2.2.3 Cell culture and morphological observations                                     |
| 2.2.4 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, yellow tetrazole |
| (MTT) assay                                                                           |
| 2.3 Results                                                                           |
| 2.4 Discussion41                                                                      |
| Chapter #3                                                                            |
| 3.1 Introduction                                                                      |
| 3.2 Materials and Methods                                                             |
| 3.2.1 Extraction of Kampo prescriptions and galenicals                                |
| 3.2.2 Three-dimensional high-performance liquid chromatography (3D-HPLC) analysis of  |
| extracts                                                                              |
| 3.2.3 Synthesis of 5-HT2CR mRNA and injection into Xenopus oocytes                    |
| 3.2.4 Electrophysiological recording                                                  |
| 3.2.5 LC-MS analyses                                                                  |
| 3.3 Results                                                                           |
| 3.4 Discussion                                                                        |
| Chapter #4                                                                            |
| 4.1 Introduction                                                                      |

#### Content

| 4.2 Methods and Materials                                                             |
|---------------------------------------------------------------------------------------|
| 4.2.1 Preparation of the SFD extract                                                  |
| 4.2.2 Cell culture and treatment                                                      |
| 4.2.3 RNA extraction61                                                                |
| 4.2.4 Microarray data                                                                 |
| 4.2.5 Identification of differentially expressed genes (DEG)                          |
| 4.2.6 Protein-protein interaction (PPI) network construction and a module analysis    |
| 4.2.7 Enrichment analyses of candidate genes                                          |
| 4.2.8 Co-expression analysis                                                          |
| 4.3 Results and discussion                                                            |
| 4.3.1 Identification of DEG                                                           |
| 4.3.2 Prediction analysis of pharmacological mechanisms based on network pharmacology |
| and module identification                                                             |
| 4.3.3 Enrichment analyses of hub genes                                                |
| 4.3.4 GeneMANIA analysis                                                              |
| Conclusion                                                                            |
| References                                                                            |
| SUPPORTING INFORMATION                                                                |

#### Introduction

In traditional medicine, both Chinese traditional medicine and Japanese Kampo medicine share the same basic ideas. " Huangdi Neijing (皇帝内経)" describes the health cure lesson, the "Shanghan Lun (傷寒論): SL" discusses medical treatments for extrinsic pathogenesis (viruses and bacteria; the possibility of adaptation for COVID-19), and the "Jingui Yaolüe (金匱要略): JY" shows medical treatment for intrinsic pathogenesis. What both Chinese medicine and Kampo medicine have in common is that they all use "herbal medicines" obtained from the natural world and combine herbal medicines to bring therapeutic effects. There are many classical writings on crude drugs starting with "Shin-nou Honzou Kyo; Shennong Ben Cao Jing (神農本 草経)" is the basis of these medicines. Furthermore, it is also common that the diagnosis is based on individual medical conditions.

Through research-based modern medical analysis methods, many active compounds from herbal medicine have been discovered and used as clinical drugs. It can be said that traditional medicine has made great contributions in this regard. However, in these results, the efficacy of various prescriptions is sought in the effective compound in crude drugs, but it has deviated from the concept of traditional medicine. In addition, unlike modern medicine which takes medicines for the treatment of "diseases", in these traditional medicines, the individualities of physiological conditions and the healing power are first diagnosed, and then an appropriate prescription is made. In other words, although the current research has achieved results, it lacks the viewpoints of traditional medicine's "effects-based on a combination of crude drugs" and "effects-based on biological reactions". Research based on these unique views of traditional medicine may produce new discoveries and developments in the future. Therefore, we conducted various experiments based on the "unique perspective of traditional medicine"

Chapter 1: Acquisition of basic data on 120 kinds of crude drugs in the Kampo medicine, construction of a library for studying on neuronal/glial cell function and expressed genes, and study on changes expression levels of a depression-related factor<sup>1,2)</sup>.

All the component profiles of 120 kinds of crude drug extracts, which were supplied from the Institute of Natural Medicine, University of Toyama, were obtained by 3D-HPLC. After that, cells of the nervous system (N18TG2) and glial system (C6Bu-1) were treated at two concentrations, and a total of 480 morphological photographs were obtained. In addition, RNA was extracted from each treated cell and converted to cDNA to create a library. Using the library, I investigated the expression level of BNIP-3 mRNA, which was previously reported by our laboratory as an antidepressant-related factor, by PCR. As a result, many of the herbal medicines that make up "Hochuekkito (補中益気湯:HET)" show an increase the expression, while the herbal medicines that make up "Sanou-shashin-to ( $\Xi$  黄 瀉 心 湯 :SST)" and "Orengedokuto (黄連解毒湯:OGT)" that calm the mind show downregulation.

Chapter 2: Inhibitory effect of each cytotoxicity caused by the combined extraction of Coptidis Rhizoma and Rhei Rhizoma: An example of "herb pair" theory<sup>3</sup>).

During the research related to SST and OGT, both have an inhibiting the abnormal rise of Qi as described above, it was found that the co-existence of Coptidis Rhizoma (CR) and Rhei Rhizoma (RR), which include in OGT, inhibited each other's cytotoxicity. Since the color of the solution when CR and RR were extracted together was lighter than that when each was extracted, components were analyzed by 3D-HPLC. At least, the amount of CR-derived berberine in co-extraction was

dramatically educed than in CR alone extract. When the CR and CC extracts were combined in vitro, a new precipitate was formed. However, when cytotoxicity was determined by the MTT assay, elimination of toxicity was only observed in co-extraction, not in vitro mixing. The details of the mechanism are still under consideration, but this result will be noted as embodying the idea of "herb pair" in Chinese medicine theory.

Chapter 3: Stepwise detection of trace agonistic components in HET by electrophysiological techniques<sup>4</sup>)

Most antidepressants are inhibitors of the serotonin 2C receptor (5-HT2CR), but HET shows a stimulant of 5-HT2CR. In this study, the analysis of active compounds was carried out by electrophysiological methods, without skipping any intermediate steps of separation. It was found that the molecule with 283.14 has strong physiological activity, but the structure itself has not been determined because it may be an ultra-trace component. These results are conceivable that a trace amount of a component having high activity is likely to be involved in the action of Chinese herbal medicine. And because of the trace amount, it may have many components that are still not yet known.

Chapter 4: Attempt to develop a new Kampo prescription aiming at "prevention of heart disease caused by drug side effects" based on the theory and its molecular action mechanism<sup>5</sup>

Based on the Kampo medicine theory, it is possible to develop a new prescription. In fact, numerous prescriptions have been reported and are actually used in China to prevent the aggravation of COVID-19. From that point of view, we started basic research aiming at the development of prescriptions to prevent heart failure caused by side effects of anticancer drugs. As the basic prescription, I focused on Shenfu Decoction (人参附子湯: SFD) and searched for genes involved in its action and analyzed its association. Myoblast cell line H9C2 cells, which were differentiated to cadiac type by decreasing the serum and retinoic acid supplementation, were treated in doxorubicin and SFD. The gene chip analysis method was firstly used followed by network pharmacology and protein-protein network/module analysis. The results indicated that SFD can significantly affect the expression of ubiquitination-related genes to play an important role in treating heart failure. Also, the findings of hub genes' information could help us to understand molecular mechanisms and to make further effective novel Kampo prescriptions.

The above research results gave us 1) the <u>basic knowledge</u> of the crude drugs that make up Chinese herbal medicine in Chapter 1, 2) the knowledge of the <u>"herbal pair"</u> effect in Chapter 2, 3) the knowledge of the effect of a <u>ultra-trace agonistic component</u> that induces the physiological action in Chapter 3, and 4) the findings on the attempt to develop <u>new Kampo prescriptions</u> by new combinations and on depending the molecular mechanisms in Chapter 4. Conducting research based on the basic idea of classical Chinese medicine may lead to discover of new concepts and therapeutic drugs. The results of this study describe examples of this possibility.

# Chapter #1

Profiling of 120 types of herbal extracts and their effects on morphology in cultured neuronal or glial cell lines, followed by RNA extraction for a cDNA library: Effects of BNIP-3 mRNA expression, a virtually considered for anti-depression

#### **1.1** Introduction

Experimental methods for the direct addition of crude drugs or "Kampo" prescriptions to cultured cells often produce unexpectedly useful information, which may be applied in research. We previously reported the significant up-regulation of BNIP-3 mRNA expression when Hochuekkito (Bu Zhong Yi Qi Tang)<sup>1</sup>, as well as many antidepressant<sup>2</sup>, was added to a culture medium of NG108-15 cells, which is a hybrid cell of neuroblastoma N18TG-2 and glioma cell C6-Bu-1. Starting from that results, we also found that the BNIP-3 mRNA expression was also detected in brain regions with highly active nerves<sup>3</sup>, suggesting the functional significance of BNIP-3 in the brain. As in the case of BNIP-3 described above, studying the effects of crude drugs and Kampo prescriptions on cultured cell lines makes it possible to obtain new findings triggered by them.

Hochuekkito is composed of 10 kinds of crude drugs. The experiment about the effects of each crude drug would be planed. As samples to be used for that purpose, the total 120 kinds of herbal extracts were supplied by the Institute of Natural Medicine (INM), University of Toyama, to facilitate joint research as part of a national project. Therefore, not only hochuekkito, but all 120 kinds of crude drug extracts were examined in order to obtain information that will be the basis for studying the effects of many Kampo and Wakan-yaku prescriptions in the future. After obtaining these extracts and conducting original profiling using three-dimensional high-performance liquid chromatography (3D-HPLC), they were added to cultured cells, and their effects on cell morphology were assessed. RNA was extracted from each sample and a cDNA library applicable to real-time PCR was prepared. Further research using this cDNA library is expected. As a result, although the experimental number for individual crude drugs is

reduced due to the large number of samples, that may be limited to rudimentary knowledge, it obtained the interesting data that could be used for future crude drug and Kampo prescription research. Then we decided to open all in this article.

When considering the effects in the brain, it seems to be important to consider the effects on neuron and glia separately. In that case, it may be best to use primary cultured cells. Differences in isolation technique, however, may carry problems and the questioned stabilities of the results. In that respect, established cell lines are not so seriously concerned. Based on these points, in this study, neuroblastoma cell line N18TG2 and glioma cell line C6Bu-1 were treated by each of 120 basic crude drugs that make up Kampo-prescriptions and Wakan-yaku. Firstly, their proliferative properties and morphological changes were examined. After the observation, RNA was extracted to prepare cDNA libraries. Using the library, as an example of gene expression change analysis, the effect of BNIP-3 mRNA expression by each crude drug treatment was examined.

A Kampo prescription, Hochuekkito (HET), along with Juzentaihoto (JTT) and Hangekoubokuto, have been clinically applied to compensate for feelings of depression. From this point, these prescriptions are expected to have a function as an antidepressant. The authors show that HET has an antidepressant effect in behavioral pharmacology<sup>4</sup>, and that HET and some antidepressants increases BNIP-3 mRNA expression in neuronal cultured cells<sup>1</sup> and in stressed mice<sup>2</sup>. Based on these facts, BNIP-3 is considered to be a candidate for a factor in the brain related to antidepressant effect. Studies have been conducted by us on changes in the expression at the stage of neuronal growth<sup>5</sup> and on analysis of the site of expression in the brain<sup>3</sup>.

BNIP-3 was firstly found and established as a factor associated with mitophagy<sup>6,7</sup>.

Mitophagy is a function that maintains the stability of the whole cell by removing dysfunctional mitochondria<sup>8</sup>. In that respect, BNIP-3 has been a certain type of programmed death function. Recently, it has been reported that ginsenoside Rb1, a main ingredient in Panacis Ginseng Radix, has been shown to suppress H<sub>2</sub>O<sub>2</sub>-induced cell death in cultured endothelial cells, and BNIP-3 is involved in its mechanism through a small RNA miR210 concerning its RNA expression<sup>9</sup>. However, in addition to our report on the contribution to the antidepressant effect, it has also been shown to be involved in synaptic activity<sup>10</sup>.

Based on these points, in this study, neuroblastoma cell line N18TG2 and glioma cell line C6Bu-1 were treated by each of 120 basic crude drugs that make up Kampo-prescriptions and Wakan-yaku. Firstly, their proliferative properties and morphological changes were examined. After the observation, RNA was extracted to prepare cDNA libraries. Using the library, as an example of gene expression change analysis, the effect of BNIP-3 mRNA expression by each crude drug treatment was examined. Based on the results of the primary screening, we selected 24 kinds of herbal medicines, including 10 kinds of herbal medicines forming HET, and further examined BNIP-3 mRNA expression.

### 1.2 Materials and Methods

### **1.2.1 Crude hot water extract of herbal medicine**

The crude drug extracts used in the present study were supplied by INM (http://www.inm.u-toyama.ac.jp/jp/collabo/). All extracts were made in 2015 at a concentration of 10 mg/ml. Since yield information was not provided, all experiments

were performed at a final extract concentration of 10 or 100  $\mu$ g/ml. All extracts were filtered through a sterile filter with a pore size of 0.22  $\mu$ m.

#### **1.2.2 3D-HPLC**

Each extract solution (1 mg/ml) was centrifuged to remove insoluble substances followed by filtering through a membrane filter (0.22  $\mu$ m) and then used for HPLC (20  $\mu$ l). The HPLC apparatus (Hitachi Ltd., Japan) consisted of a pump (L-2130) with analysis system software (Elite LaChrom); it was equipped with a photodiode array detector (UV 230-400 nm, L-2455), system controller, auto-injector (L-2200), and column oven (L-2300). HPLC conditions were as follows: column, LaChrom Ultra C18 (5  $\mu$ m, Lot No. 21D5-011; Hitachi Ltd., Japan) with 150 × 4.6 mm I.D.; eluant, (A) H<sub>2</sub>O containing 0.1% formic acid and (B) CH<sub>3</sub>CN containing 0.1% formic acid (a linear gradient was used from '95% A and 5% B' to '30% A and 70% B' for 90 min); temperature, 20 °C; and flow rate, 0.2 ml/min.

### 1.2.3 Cell culture and morphological observations

N18 and C6 cells were both continuously cultured using our previously described methods with slight modifications<sup>10</sup>. Briefly, cells were cultured in DMEM supplemented with 10% FBS. All cultures were maintained at  $37 \,^{\circ}$ C under 10% CO<sub>2</sub>. Thirty microliters of the filtrated crude drug solution were added to 3 ml of medium in a 35-mm dish to prepare sample-treated cells at 100 µg/ml. In the case of the 10 µg/ml treatment, the above sterilized crude drug extract was used after diluting it 10 times with sterile water. All drug treatments were performed at the same time as the start of cultivation. Forty-eight hours later, the drug treatment was also performed after exchanging the culture solution. The same treatment was conducted again after another

48 hours. Morphological observations with photography were conducted approximately 24 hours after the final drug treatment and followed by RNA extraction.

#### **1.2.4 RNA isolation and cDNA construction**

The acidic phenol method was used to extract RNA according to the manufacturer's instructions (Trisure: Bioline, Germany). RNA concentrations and the certification of its quality were spectrophotometrically assessed at  $230 \sim 320$  nm. Each RNA concentration was calculated from the value obtained at 260 nm. Total RNA (1 µg) was isolated and incubated with 5 µM of a random 6 mer primer and 0.5 µl of PrimeScript RT Enzyme Mix I (Takara, Japan) in 20 µl of solution at 37°C for 15 min to make single-stranded complementary DNA (cDNA). The cDNAs obtained were kept at -80°C as a cDNA library.

#### 1.2.5 Real-time PCR

After the 10-fold dilution of each cDNA solution by EASY dilution solution (Takara No. 9160, Otsu, Japan), 1 µl was used as a real-time PCR template. Specific for **BNIP-3** primers (Accession No.NM 053420), i.e. TTAAACACCCGAAGCGCACA (forward) and CAGGAACACCGCATTTACAG (backward), were used to produce a 318-bp product. The PCR mixture contained cDNA solution (1 µl) and 0.5 µM of each primer in the reaction solution, with a premix of Taq DNA polymerase and SYBR Green (Cat. No. RR307A, Takara). PCR was performed using a real-time PCR machine (Takara Thermal Cycler Dice TP600, Takara, Otsu, Japan), with the following conditions: (1) 95 °C for 30 s; (2) 50 cycles at 95 °C for 5 s, 55 °C for 10 s, and 72 °C for 20 s. A linear calibration standard line was obtained using cDNA from non-treated cells at 4 concentrations.

#### 1.3 Results

Table 1 shows the 120 crude extracts used in the present study. Individual results are shown in "All data on profiling of 120 herbal extracts". Crude extracts were numbered according to Japanese alphabetical order. Therefore, the list in "All data on profiling of 120 herbal extracts" is in this order to avoid confusion due to deviations from basic information in INM. In Table 1, the order is rearranged alphabetically by Latin names and displayed as L1 to L120. The number in the adjacent column is notation according to the Japanese order, and corresponds to the number in "All data on profiling of 120 herbal extracts". For example, Glycyrrhizae Radix, L62 in the Table, is displayed as No. 18 in "All data on profiling of 120 herbal extracts". Table 1 shows the relationship between two types of numbers. A, B, and C in the third column in Table 1 indicate the ranking of herbal medicines in "Shennong Ben Cao Jing", an important classical book on Chinese medicine. In this book, crude drugs were divided into three categories: Johon (high quality material; 120) = nourishes life, Chuhon (middle quality material; 120) = nourishes physicality, and Gehon (lower quality material; 125) = therapeutic drug, which are highly toxic. In the Table, A = Johon, B = Chuhon, and C = vulnerable. Columns 4 and 5 show cytotoxicity in C6 and N18 cells. Please refer to the photographic results shown in "All data on profiling of 120 herbal extracts". ▲: moderate toxicity and X: strong toxicity (cell deah)

Individual results in "All data on profiling of 120 herbal extracts" are explained in Fig. 1 using L62 (No. 18), *Glycyrrhizae Radix*, as an example. Fig. 1A shows 3D-HPLC results. Changes in color indicate the height of the signal at that wavelength and outflow time. Fig. 1B indicates the concentration of extracted RNA. Fig. 1C shows cell morphology after a treatment with an extract of RNA.

As shown in Fig. 2, individual data represent the results obtained at various wavelengths (Fig. 2B) as well as the absorption spectrum at each outflow time (Fig. 2C). The absorption spectrum in Fig. 2 shows glycyrrhizin (Fig. 2C), which is generally eluted last in the HPLC detection of "Kampo" prescriptions under these conditions.

Table 2 shows the top 30 species extracted from all the information shown in "All data on profiling of 120 herbal extracts" in order of increasing or decreasing BNIP-3 mRNA expression. In the table, the top shows the results from C6 and the bottom shows the results from N18. The circle mark on the left side of Latin No. shows the crude drug that was subjected to the secondary assay described later. The crude drugs subjected to secondary assay were selected, in principle, in which the frequency of use is high (No. of use is 10 or more) is based on the first results. In addition, if a herbal medicine can make up a Kampo prescription, that herbal extract was also added to the list of the secondary assay. As a result, secondary assayed extracts contain herbal medicines that makeup HET, JJT, Sanoushashinto (SST), and Ourengedokuto (OGT).

Fig. 3 shows the results of the crude drugs that make up HET, SST, and OGT. The open column shows the results for N18, and the Shadow column shows the results for C6.

| Latin | Jpn | Shop   | toxic |     | No. | ЦЕТ   | BNIP-3 |     | L otin nomo                 | Japanses Nome   |  |
|-------|-----|--------|-------|-----|-----|-------|--------|-----|-----------------------------|-----------------|--|
| No.   | No. | Sileii | C6    | N18 | use | TIL I | C6     | N18 |                             | suparises runne |  |
| L1    | 35  | А      |       |     | 3   |       | 49     | 43  | Achyranthis Radix           | Goshitu (牛膝)    |  |
| L2    | 105 | С      |       |     | -   |       | 129    | 99  | Aconiti Tuber Radix         | Houbushi(炮附子)   |  |
| L3    | 31  | В      | ×     |     | -   |       | 50     | 35  | Albizziae Cortex            | Goukanhi (合歓皮)  |  |
| L4    | 73  | А      |       |     | 14  |       | 93     | 117 | Alismatis Rhizoma           | Takusha (沢瀉)    |  |
| L5    | 114 |        |       |     | -   |       | 64     | 66  | Alpiniae Fructus            | Yakuchi (益智)    |  |
| L6    | 118 |        |       |     | 1   |       | 46     | 20  | Alpiniae Officinari Rhizoma | Ryoukyou (良姜)   |  |
| L7    | 58  |        |       | ×   | 1   |       | 63     | 86  | Amomi Semen                 | Shukusha (縮砂)   |  |
| L8    | 77  | В      |       |     | 6   |       | 64     | 224 | Anemarrhenae Rhizoma        | Chimo (知母)      |  |
| L9    | 97  | В      |       |     | 5   |       | 242    | 100 | Angelicae Dahuricae Rhizoma | Byakushi (白芷)   |  |
| L10   | 85  | В      |       |     | 37  | #     | 93     | 66  | Angelicae Radix             | Touki (当帰)      |  |
| L11   | 88  | А      |       |     | 1   |       | 75     | 82  | Araliae Cordatae Rhizoma    | Dokkatu (独活)    |  |
| L12   | 37  |        |       |     | 2   |       | 36     | 48  | Arctii Fructus              | Goboushi (牛蒡子)  |  |
| L13   | 100 | В      | ×     | ×   | 1   |       | 24     | 65  | Arecae Semen                | Binrouji (檳榔子)  |  |
| L14   | 23  | С      |       |     | 9   |       | 132    | 138 | Armeniacae Semen            | Kyounin (杏仁)    |  |
| L15   | 2   | А      |       | ×   | 2   |       | 121    | 139 | Artemisiae Capillari Flos   | Inchinkou(茵陳蒿)  |  |
| L16   | 12  |        |       | ×   | 1   |       | 79     | 76  | Artemisiae Folium           | Gaiyou (艾葉)     |  |
| L17   | 41  | A      |       |     | 5   |       | 96     | 110 | Asiasari Radix              | Saishin (細辛)    |  |
| L18   | 83  | A      |       |     | 2   |       | 80     | 93  | Asparagi Radix              | Tenmondou (天門冬) |  |
| L19   | 6   | В      |       |     | 14  | #     | 171    | 123 | Astragali Radix             | Ougi (黄耆)       |  |

Table 1 List of 120 herbal extracts (10 µg/ml) used in the present study

| L20 | 66  | А |   |   | 34 | # | 80  | 36  | Atractylodis Lanceae         | Soujutu (蒼朮)    |
|-----|-----|---|---|---|----|---|-----|-----|------------------------------|-----------------|
| L21 | 98  | А |   |   | 8  |   | 77  | 114 | Atractylodis Rhizoma         | Byakujutu (白朮)  |
| L22 | 21  | В |   |   | 14 |   | 78  | 71  | Aurantii Fructus Immaturus   | Kijitu (枳実)     |
| L23 | 81  | А |   |   | 24 | # | 25  | 78  | Aurantii Nobilis Pericarpium | Chinpi (陳皮)     |
| L24 | 75  |   |   |   | 2  |   | 83  | 24  | Bambusae Caulis              | Chikujo(竹茹)     |
| L25 | 84  |   |   |   | 1  |   | 99  | 57  | Benincasae Semen             | Tougashi (冬瓜子)  |
| L26 | 40  | А |   |   | 22 | # | 147 | 72  | Bupleuri Radix               | Saiko(柴胡)       |
| L27 | 110 | А |   |   | 3  |   | 34  | 178 | Cannabis Fructus             | Mashinin (麻子仁)  |
| L28 | 30  |   |   |   | 2  |   | 79  | 61  | Carthami Flos                | Kouka (紅花)      |
| L29 | 78  |   | × | × | 2  |   | 42  | 270 | Caryophylli Flos             | Chouji (丁子)     |
| L30 | 20  | А |   |   | 1  |   | 84  | 162 | Chrysanthemi Flos            | Kikuka (菊花)     |
| L31 | 60  | А |   | × | 5  | # | 134 | 135 | Cimicifugae Rhizoma          | Shouma (升麻)     |
| L32 | 28  | А |   | × | 39 |   | 84  | 84  | Cinnamomi Cortex             | Keihi (桂皮)      |
| L33 | 90  | А |   |   | -  |   | 26  | 98  | Cistanchis Herba             | Nikujuyou (肉蓯蓉) |
| L34 | 1   |   |   |   | 2  |   | 131 | 76  | Clematidis Radix             | Ireisen (威霊仙)   |
| L35 | 64  | В |   |   | 25 |   | 167 | 36  | Cnidii Rhizoma               | Senkyu (川芎)     |
| L36 | 86  |   |   |   | -  |   | 91  | 84  | Codonopsitis Radix           | Toujin (党参)     |
| L37 | 116 | А |   |   | 3  |   | 53  | 48  | Coicis Semen                 | Yokuinin (薏苡仁)  |
| L38 | 10  | В |   | × | 11 |   | 69  | 62  | Coptidis Rhizoma             | Ooren (黄連)      |
| L39 | 46  | В |   | × | 3  |   | 46  | 77  | Corni Fructus                | Sanshuyu (山茱萸)  |
| L40 | 5   |   |   |   | 1  |   | 137 | 59  | Corydalis Tuber              | Engosaku (延胡索)  |
| L41 | 42  |   |   |   | -  |   | 49  | 125 | Crocus                       | Safuran         |

| L42 | 3   |   |   |   | -  |   | 174 | 146 | Curcumae Rhizoma                 | Ukon (鬱金)       |
|-----|-----|---|---|---|----|---|-----|-----|----------------------------------|-----------------|
| L43 | 14  |   |   |   | -  |   | 161 | 82  | Curcumae Rhizoma                 | Gajutu (莪朮)     |
| L44 | 33  |   |   |   | -  |   | 83  | 78  | Cyperi Rhizoma                   | Koubushi (香附子)  |
| L45 | 93  | В |   |   | -  |   | 268 | 135 | Dictamni Radicis Cortex          | Hakusenpi (白鮮皮) |
| L46 | 49  | А |   |   | 4  |   | 88  | 152 | Dioscoreae Rhizoma               | Sanyaku (山薬)    |
| L47 | 69  | В |   |   | -  |   | 120 | 94  | Dipsaci Radix                    | Zokudan (続断)    |
| L48 | 52  | А |   |   | -  |   | 91  | 86  | Eleutherococci Senticosi Rhizoma | Shigoka (刺五加)   |
| L49 | 109 | В | × | × | 13 |   | 28  | 80  | Ephedrae Herba                   | Maou (麻黄)       |
| L50 | 99  |   |   |   | 1  |   | 122 | 89  | Eriobotryae Folium               | Biwayou (枇杷葉)   |
| L51 | 89  | А |   |   | 1  |   | 82  | 38  | Eucommiae Cortex                 | Tochu (杜仲)      |
| L52 | 36  | В |   | × | 3  |   | 146 | 47  | Euodiae Fructus                  | Goshuyu (呉茱萸)   |
| L53 | 120 | С |   | × | 5  |   | 51  | 24  | Forsythiae Fructus               | Rengyou (連翹)    |
| L54 | 92  | В |   |   | 2  |   | 235 | 143 | Fritillariae Bulbus              | Baimo (貝母)      |
| L55 | 119 |   |   |   | -  |   | 51  | 35  | Ganoderma                        | Reishi (霊芝)     |
| L56 | 44  | В |   |   | 13 |   | 55  | 107 | Gardeniae Fructus                | Sanshishi (山梔子) |
| L57 | 82  | А |   |   | 1  |   | 23  | 31  | Gastrodiae Rhizoma               | Tenma (天麻)      |
| L58 | 62  |   |   |   | -  |   | 112 | 239 | Gentianae Macrophyllae Radix     | Shingyou (秦艽)   |
| L59 | 117 | А |   |   | 3  |   | 79  | 87  | Gentianae Scabrae Radix          | Ryutan (竜胆)     |
| L60 | 65  | А |   |   | -  |   | 244 | 9   | Ginseng Radix                    | Ninjin (生干人参)   |
| L61 | 32  | А |   |   | -  |   | 71  | 86  | Ginseng Radix Rubra              | Koujin (紅参)     |
| L62 | 18  | А |   |   | 93 | # | 121 | 147 | Glycyrrhizae Radix               | Kanzou (甘草)     |
| L63 | 103 | В |   |   | -  |   | 147 | 184 | Imperatae Rhizoma                | Boukon (茅根)     |

| L64 | 115 | А |    |   | -  |   | 81  | 84  | Leonuri Herba            | Yakumosou (益母草)         |
|-----|-----|---|----|---|----|---|-----|-----|--------------------------|-------------------------|
| L65 | 4   |   |    |   | -  |   | 127 | 104 | Linderae Radix           | Uyaku (烏薬)              |
| L66 | 53  |   | ×  | × | 2  |   | 204 | 102 | Lycii Cortex             | Jikoppi (地骨皮)           |
| L67 | 34  | В | ×× | × | 12 |   | 65  | 1   | Magnoliae Cortex         | Kouboku (厚朴)            |
| L68 | 61  | А |    |   | 2  |   | 123 | 7   | Magnoliae Flos           | Shini (辛夷)              |
| L69 | 95  |   |    |   | 7  |   | 144 | 96  | Menthae Herba            | Hakka (薄荷)              |
| L70 | 67  | В |    |   | 2  |   | 76  | 183 | Mori Cortex              | Souhakuhi (桑白皮)         |
| L71 | 68  |   |    |   | -  |   | 103 | 42  | Mori Folium              | Soyou (桑葉)              |
| L72 | 108 | В | ×  | × | 8  |   | 46  | 69  | Moutan Cortex            | Botanpi (牡丹皮)           |
| L73 | 113 |   |    |   | -  |   | 66  | 92  | Myrrha                   | Motuyaku (没薬)           |
| L74 | 22  |   |    |   | 3  |   | 204 | 101 | Notopterygii Rhizoma     | Gyoukatu (羌活)           |
| L75 | 94  | А |    |   | 11 |   | 134 | 111 | Ophiopogonis Tuber       | Bakumontou (麦門冬)        |
| L76 | 55  | В |    | × | 44 |   | 114 | 327 | Paeoniae Radix           | Shakuyaku (芍薬)          |
| L77 | 63  |   | ×  | × | -  |   | 153 | 103 | Paeoniae Radix Rubra     | Sekishaku (赤芍)          |
| L78 | 91  | А |    |   | 37 | # | 141 | 176 | Panacis Ginseng Radix    | Ninnjinn(人参、湯通し)        |
| L79 | 76  |   |    |   | -  |   | 77  | 241 | Panacis Japonici Rhizoma | Chikusetu-ninjin (竹節人参) |
| L80 | 45  | А |    |   | -  |   | 52  | 55  | Panax Pseudoginseng      | Sanshichi-ninjin (三七人参) |
| L81 | 70  |   |    |   | 6  |   | 88  | 160 | Perillae Herba           | Soyou (蘇葉)              |
| L82 | 87  | С |    |   | 6  |   | 75  | 62  | Persicae Semen           | Tounin (桃仁)             |
| L83 | 8   | В |    | × | 8  |   | 64  | 34  | Phellodendri Cortex      | Oubaku (黄柏)             |
| L84 | 96  | С |    |   | 27 |   | 145 | 111 | Pinelliae Tuber          | Hange (半夏)              |
| L85 | 56  | С |    |   | 4  |   | 75  | 81  | Plantaginis Semen        | Shazenshi (車前子)         |

| L86  | 19  | В |   |   | 12 | 82  | 151 | Platycodi Radix            | Kikyou (桔梗)    |
|------|-----|---|---|---|----|-----|-----|----------------------------|----------------|
| L87  | 11  | А |   |   | 3  | 106 | 106 | Polygalae Radix            | Onji (遠志)      |
| L88  | 13  |   |   | × | 1  | 84  | 76  | Polygoni Multiflori Radix  | Kashu (何首烏)    |
| L89  | 80  | В |   |   | 6  | 133 | 129 | Polyporus                  | Chorei (猪苓)    |
| L90  | 101 | А |   |   | 46 | 109 | 134 | Poria                      | Bukuryou (茯苓)  |
| L91  | 9   |   |   | × | -  | 104 | 190 | Pruni Cortex               | Ouhi (桜皮)      |
| L92  | 107 |   | × | × | -  | 97  | 178 | Psoraleae Semen            | Hokosshi (補骨脂) |
| L93  | 15  | В |   |   | 4  | 143 | 82  | Puerariae Radix            | Kakkon (葛根)    |
| L94  | 106 |   | × | × | 2  | 25  | 68  | Quercus Cortex             | Bokusoku (樸樕)  |
| L95  | 51  | В |   |   | 22 | 69  | 171 | Rehmanniae Radix           | Jiou (地黄)      |
| L96  | 57  | А |   |   | -  | 73  | 179 | Rehmanniae Radix           | Jukujiou (熟地黄) |
| L97  | 71  | С | × | × | 16 | 158 | 101 | Rhei Rhizoma               | Daiou (大黄)     |
| L98  | 74  | В |   | × | -  | 76  | 91  | Salviae Miltiorhizae Radix | Tanjin (丹参)    |
| L99  | 104 | В |   |   | 11 | 87  | 111 | Saposhnikoviae Radix       | Boufu (防風)     |
| L100 | 25  |   |   |   | -  | 113 | 60  | Sasa Folium                | Kumazasa (隈笹)  |
| L101 | 112 | А |   |   | 3  | 111 | 81  | Saussureae Radix           | Mokkou (木香)    |
| L102 | 39  | В |   |   | 5  | 68  | 57  | Schisandrae Fructus        | Gomishi (五味子)  |
| L103 | 26  | В |   | × | 8  | 60  | 76  | Schizonepetae Spica        | Keigai (荊芥)    |
| L104 | 29  | В |   |   | -  | 98  | 69  | Scrophulariae Radix        | Genijin (玄参)   |
| L105 | 7   | В |   |   | 27 | 96  | 31  | Scutellariae Radix         | Ougon (黄芩)     |
| L106 | 38  | А | × | × | 1  | 64  | 138 | Sesami Semen               | Goma (胡麻)      |
| L107 | 102 | C |   |   | 3  | 125 | 146 | Sinomeni Caulis et Rhizoma | Boui (防已)      |

| L108 | 43  |   |   |   | -  |   | 49  | 101 | Smilacis Rhizoma            | Sankirai (山帰来)   |
|------|-----|---|---|---|----|---|-----|-----|-----------------------------|------------------|
| L109 | 24  | В |   |   | 2  |   | 129 | 99  | Sophorae Radix              | Kujin (苦参)       |
| L110 | 50  |   |   |   | -  |   | 96  | 94  | Sparganii Rhizoma           | Sanryou (三稜)     |
| L111 | 27  |   | × | × | -  |   | 21  | 16  | Spatholobi Caulis           | Keikettou (鶏血藤)  |
| L112 | 54  | А |   |   | 1  |   | 154 | 103 | Tribuli Fructus             | Shiturishi (蒺藜子) |
| L113 | 16  | В |   |   | 4  |   | 146 | 165 | Trichosanthis Radix         | Karokon (栝楼根)    |
| L114 | 79  |   |   |   | 4  |   | 119 | 52  | Uncariae Uncis Cum Ramulus  | Choutoukou (釣藤鈎) |
| L115 | 111 | А |   | × | -  |   | 104 | 76  | Viticis Fructus             | Mankeishi (蔓荊子)  |
| L116 | 47  | В |   | × | 2  |   | 44  | 72  | Zanthoxyli Fructus          | Sanshou (山椒)     |
| L117 | 59  |   |   |   | 51 | # | 70  | 121 | Zingiberis Rhizoma          | Shoukyou (生姜)    |
| L118 | 17  | В |   |   | 12 |   | 140 | 213 | Zingiberis Siccatum Rhizoma | Kankyou (乾姜)     |
| L119 | 72  | А |   |   | 39 | # | 197 | 145 | Zizyphi Fructus             | Taisou (大棗)      |
| L120 | 48  | А |   |   | 3  |   | 71  | 109 | Zizyphi Spinosi Semen       | Sansounin (酸棗仁)  |

Detailed results are provided in "All data on profiling of 120 herbal extracts". Briefly, each column has the following contents in order from the left: numbered alphabetically by Latin names, numbered according to the Japanese order that corresponds to the number in Supplementary Materials, ranking of herbal medicines in "Shennong Ben Cao Jing", cell toxicity in C6 and N18 cells, Latin names, and Japanese names. "Shennong Ben Cao Jing" is a classical book on Chinese medicine that was written around AC200. In the book, crude drugs were divided into three categories: A) Johon (high quality material; 120) = nourishes life, B) Chuhon (middle quality material; 120) = nourishes physicality, and C) Gehon (lower quality material; 125) = therapeutic drug, but with high toxicity. Regarding cytotoxicity, the state was subjectively judged from observations of cell morphology; the mark "X" indicates that cells were dead or dying, and " $\blacktriangle$ " indicates that either some cells remain viable or cells are undergoing transformation or differentiation. The information is shown in the "No. of use" indicates the number of the corresponding crude drug used in 138 kinds of Kampo prescriptions that are sold by Japan's largest Kampo medicine company (Tsumura). For example, Glycyrrhizae Radix (L62: Jpn No. 18) is the most frequently used crude drug in 93 of 138 Kampo prescriptions (67.4%). The mark "#" in the fourth column indicates that crude drugs are members of HET. The fifth and sixth columns show the results of these experiments, showing the BNIP-3 mRNA expression level in C6 and N18 cells as a percentage of that in vehicle-treated cells cultured at the same time.





A: 3D-HPLC chart, B: RNA concentration as percentage of vehicle-treated sample, and C: morphological photographs.



### Fig. 2 Example of data for 3D-HPLC

Regarding the results for *Glycyrrhizae Radix* shown in this figure, the 250 and 275 nm charts indicated in Fig 2B are the optimum wavelengths for quantifying glycyrrhizin and liquiritin, respectively. C shows the absorption spectrum of glycyrrhizin from 3D-HPLC. G = glycyrrhizin, L = Liquiritin.

#### Table 2 The top 30 crude drug about the BNIP-3 expression in order of increasing or decreasing BNIP-3 mRNA expression.

|   | C6 (30 | ) from              | the low  | west e     | expres | sion level)                  |     | C6 (30 | ) fro |
|---|--------|---------------------|----------|------------|--------|------------------------------|-----|--------|-------|
|   | Latin  | Jpn                 | No.      | BNIP       | 3(%)   |                              |     | Latin  | Jpr   |
|   | No.    | 81 24 65 Spatholobi |          | Latin name |        | No.                          | No  |        |       |
|   | L111   | 27                  | -        | 21         | 16     | Spatholobi Caulis            | 0   | L21    | 98    |
|   | L57    | 82                  | 1        | 23         | 31     | Gastrodiae Rhizoma           |     | L45    | 93    |
|   | L13    | 100                 | 1        | 24         | 65     | Arecae Semen                 |     | L60    | 65    |
| 0 | L23    | 81                  | 24       | 25         | 78     | Aurantii Nobilis Pericarpium |     | L9     | 97    |
| - | L94    | 106                 | 2        | 25         | 68     | Quercus Cortex               |     | L54    | 92    |
|   | L33    | 90                  | -        | 26         | 98     | Cistanchis Herba             | ð   | L66    | 53    |
| 0 | L49    | 109                 | 13       | 28         | 80     | Ephedrae Herba               | 3   | L74    | 22    |
|   | L27    | 110                 | 3        | 34         | 178    | Cannabis Fructus             | 0   | L119   | 72    |
|   | L12    | 37                  | 2        | 36         | 48     | Arctii Fructus               | -   | L42    | 3     |
|   | L29    | 78                  | 2        | 42         | 270    | Caryophylli Flos             | 0   | L19    | 6     |
|   | L116   | 47                  | 2        | 44         | 72     | Zanthoxyli Fructus           | 0   | L35    | 64    |
|   | L6     | 118                 | 1        | 46         | 20     | Alpiniae Officinari Rhizoma  | -   | L43    | 14    |
|   | L39    | 46                  | 3        | 46         | 77     | Corni Fructus                | 0   | L97    | 71    |
| 0 | L72    | 108                 | 8        | 46         | 69     | Moutan Cortex                | -   | L112   | 54    |
| - | L1     | 35                  | 3        | 49         | 43     | Achyranthis Radix            |     | L77    | 63    |
|   | L41    | 42                  | -        | 49         | 125    | Crocus                       | 0   | L26    | 40    |
|   | L108   | 43                  | -        | 49         | 101    | Smilacis Rhizoma             | -   | L63    | 103   |
|   | L3     | 31                  | -        | 50         | 35     | Albizziae Cortex             |     | L52    | 36    |
|   | L53    | 120                 | 5        | 51         | 24     | Forsythiae Fructus           |     | L113   | 16    |
|   | L55    | 119                 |          | 51         | 35     | Ganoderma                    |     | L84    | 96    |
|   | L80    | 45                  | -        | 52         | 55     | Panax Pseudoginseng          |     | L69    | 95    |
|   | L37    | 116                 | 3        | 53         | 48     | Coicis Semen                 |     | L93    | 15    |
| 0 | L56    | 44                  | 13       | 55         | 107    | Gardeniae Fructus            | 0   | L78    | 91    |
|   | L103   | 26                  | 8        | 60         | 76     | Schizonepetae Spica          | 0   | L118   | 17    |
|   | L7     | 58                  | 1        | 63         | 86     | Amomi Semen                  |     | L40    | 5     |
|   | L5     | 114                 |          | 64         | 66     | Alpiniae Fructus             |     | L31    | 60    |
|   | L8     | 77                  | 6        | 64         | 224    | Anemarrhenae Rhizoma         |     | L75    | 94    |
| 0 | L83    | 8                   | 8        | 64         | 34     | Phellodendri Cortex          | 2   | L89    | 80    |
|   | L106   | 38                  | 1        | 64         | 138    | Sesami Semen                 |     | L14    | 23    |
|   | L67    | 34                  | 12       | 65         | 1      | Magnoliae Cortex             |     | L34    | 1     |
|   | N18 (  | 30 fron             | n the la | owest      | expre  | ession level)                | 200 | N18 (3 | 30 fr |
|   | Latin  |                     | No       | BNIE       | 3(%)   |                              |     | Latin  | lor   |
|   | No     | No                  | LISP     | C6         | N18    | Latin name                   |     | No     | No    |
|   | 167    | 34                  | 12       | 65         | 1      | Magnoliae Cortex             |     | 147    | 69    |
|   | 168    | 61                  | 2        | 123        | 7      | Magnoliae Flos               | 0   | 176    | 55    |
|   | L60    | 65                  | -        | 244        | 9      | Ginseng Radix                |     | 129    | 78    |
| - | L111   | 27                  | -        | 21         | 16     | Spatholobi Caulis            |     | L79    | 76    |
| - | L6     | 118                 | 1        | 46         | 20     | Alpiniae Officinari Rhizoma  | -   | L58    | 62    |
|   | 1.53   | 120                 | 5        | 51         | 24     | Forsythiae Fructus           | 53  | 18     | 77    |
| - | L24    | 75                  | 2        | 83         | 24     | Bambusae Caulis              | 0   | L118   | 17    |
|   | L57    | 82                  | 1        | 23         | 31     | Gastrodiae Rhizoma           |     | L91    | 9     |
| 0 | L105   | 7                   | 27       | 96         | 31     | Scutellariae Radix           |     | L63    | 10    |
| 0 | L83    | 8                   | 8        | 64         | 34     | Phellodendri Cortex          | -   | L70    | 67    |
|   | L3     | 31                  |          | 50         | 35     | Albizziae Cortex             |     | L96    | 57    |
|   | L55    | 119                 | -        | 51         | 35     | Ganoderma                    | 1   | L27    | 110   |
|   | L20    | 66                  | 34       | 80         | 36     | Atractylodis Lanceae         |     | L92    | 10    |
| 0 | L35    | 64                  | 25       | 167        | 36     | Cnidii Rhizoma               | 0   | L78    | 91    |
|   | L51    | 89                  | 1        | 82         | 38     | Eucommiae Cortex             | 0   | L95    | 51    |
|   | L71    | 68                  | 1.71     | 103        | 42     | Mori Folium                  |     | L113   | 16    |

L1

1.52

L12

L37

L114

L102

L25

L100

L28

L82

L13

L80

L38 om the highest expression level) BNIP3(%) n No. Latin name use C6 N18 359 114 Atractylodis Rhizoma 268 135 Dictamni Radicis Cortex 9 Ginseng Radix 100 Angelicae Dahuricae Rhizoma 143 Fritillariae Bulbus 102 Lycii Cortex 101 Notopterygii Rhizoma 145 Zizyphi Fructus 146 Curcumae Rhizoma -123 Astragali Radix 36 Cnidii Rhizoma 82 Curcumae Rhizoma 101 Rhei Rhizoma 103 Tribuli Fructus 103 Paeoniae Radix Rubra 72 Bupleuri Radix 184 Imperatae Rhizoma 47 Euodiae Fructus 165 Trichosanthis Radix 111 Pinelliae Tuber 96 Menthae Herba 82 Puerariae Radix 176 Panacis Ginseng Radix 213 Zingiberis Siccatum Rhizoma 59 Corydalis Tuber 135 Cimicifugae Rhizoma 134 111 Ophiopogonis Tuber 129 Polyporus 132 138 Armeniacae Semen 131 76 Clematidis Radix

| owest | expre | ssion level)                | •13 23 |     | N18 (3 | 30 fron | n the h | ighest | t expr | ession level)                |
|-------|-------|-----------------------------|--------|-----|--------|---------|---------|--------|--------|------------------------------|
| BNIP  | 3(%)  | Latin name                  | 1      |     | Latin  | Jpn     | No.     | BNIP   | 3(%)   | Latin name                   |
| C6    | N18   | Laun name                   |        |     | No.    | No.     | use     | C6     | N18    | Lauri name                   |
| 65    | 1     | Magnoliae Cortex            | 1      | 3 X | L47    | 69      | -       | 120    | 2250   | Dipsaci Radix                |
| 123   | 7     | Magnoliae Flos              | 1      | 0   | L76    | 55      | 44      | 114    | 327    | Paeoniae Radix               |
| 244   | 9     | Ginseng Radix               | 1      |     | L29    | 78      | 2       | 42     | 270    | Caryophylli Flos             |
| 21    | 16    | Spatholobi Caulis           | 1      |     | L79    | 76      | 0.70    | 77     | 241    | Panacis Japonici Rhizoma     |
| 46    | 20    | Alpiniae Officinari Rhizoma | 1      |     | L58    | 62      | -       | 112    | 239    | Gentianae Macrophyllae Radix |
| 51    | 24    | Forsythiae Fructus          | 1      |     | L8     | 77      | 6       | 64     | 224    | Anemarrhenae Rhizoma         |
| 83    | 24    | Bambusae Caulis             | 1      | 0   | L118   | 17      | 12      | 140    | 213    | Zingiberis Siccatum Rhizoma  |
| 23    | 31    | Gastrodiae Rhizoma          | 1      |     | L91    | 9       | -       | 104    | 190    | Pruni Cortex                 |
| 96    | 31    | Scutellariae Radix          | 1      |     | L63    | 103     | -       | 147    | 184    | Imperatae Rhizoma            |
| 64    | 34    | Phellodendri Cortex         | 1      |     | L70    | 67      | 2       | 76     | 183    | Mori Cortex                  |
| 50    | 35    | Albizziae Cortex            | 1      |     | L96    | 57      | 1.71    | 73     | 179    | Rehmanniae Radix             |
| 51    | 35    | Ganoderma                   | 1      | 3 X | L27    | 110     | 3       | 34     | 178    | Cannabis Fructus             |
| 80    | 36    | Atractylodis Lanceae        | 1      |     | L92    | 107     |         | 97     | 178    | Psoraleae Semen              |
| 167   | 36    | Cnidii Rhizoma              | 1      | 0   | L78    | 91      | 37      | 141    | 176    | Panacis Ginseng Radix        |
| 82    | 38    | Eucommiae Cortex            | 1      | 0   | L95    | 51      | 22      | 69     | 171    | Rehmanniae Radix             |
| 103   | 42    | Mori Folium                 | 1      |     | L113   | 16      | 4       | 146    | 165    | Trichosanthis Radix          |
| 49    | 43    | Achyranthis Radix           | 1      |     | L30    | 20      | 1       | 84     | 162    | Chrysanthemi Flos            |
| 146   | 47    | Euodiae Fructus             | 1      | 2   | L81    | 70      | 6       | 88     | 160    | Perillae Herba               |
| 36    | 48    | Arctii Fructus              | 1      |     | L46    | 49      | 4       | 88     | 152    | Dioscoreae Rhizoma           |
| 53    | 48    | Coicis Semen                | 1      |     | L86    | 19      | 12      | 82     | 151    | Platycodi Radix              |
| 119   | 52    | Uncariae Uncis Cum Ramulus  | 1      | 0   | L62    | 18      | 93      | 121    | 147    | Glycyrrhizae Radix           |
| 52    | 55    | Panax Pseudoginseng         | 1      |     | L42    | 3       | ~       | 174    | 146    | Curcumae Rhizoma             |
| 68    | 57    | Schisandrae Fructus         | 1      | 3 X | L107   | 102     | 3       | 125    | 146    | Sinomeni Caulis et Rhizoma   |
| 99    | 57    | Benincasae Semen            | 1      | 0   | L119   | 72      | 39      | 197    | 145    | Zizyphi Fructus              |
| 137   | 59    | Corydalis Tuber             | 1      |     | L54    | 92      | 2       | 235    | 143    | Fritillariae Bulbus          |
| 113   | 60    | Sasa Folium                 | 1      |     | L15    | 2       | 2       | 121    | 139    | Artemisiae Capillari Flos    |
| 79    | 61    | Carthami Flos               | 1      |     | L14    | 23      | 9       | 132    | 138    | Armeniacae Semen             |
| 69    | 62    | Coptidis Rhizoma            | 1      |     | L106   | 38      | 1       | 64     | 138    | Sesami Semen                 |
| 75    | 62    | Persicae Semen              | 1      | 0   | L31    | 60      | 5       | 134    | 135    | Cimicifugae Rhizoma          |
| 24    | 65    | Arecae Semen                |        |     | L45    | 93      | -       | 268    | 135    | Dictamni Radicis Cortex      |

The top shows the results from C6 and the bottom from N18. The circle mark on the left side of Latin No. shows the crude drug that was subjected to the secondary assay.



Fig. 3 Effects of the herbal extracts contained in HET, OGT and SST on BNIP-3 mRNA expression

Values show mean ± SEM (n=3) compared with vehicle-treated cells. The top figure shows the effects of crude drugs contained in HET. The results are arranged in the order of large values in N18TG-2 cells. The open column shows the results for N18, and the Shadow column shows the results for C6. 1) Glycyrrhizae Radix, 2) Astragali Radix, 3) Zizyphi Fructus, 4) Cimicifugae Rhizoma, 5) Panacis Ginseng Radix, 6) Atractylodis Rhizoma, 7) Angelicae Radix, 8) Bupleuri Radix, 9) Zingiberis Rhizoma, 10) Aurantii Nobilis Pericarpium. Bottom results were obtained from the crude drugs treated cells contained in OGT (left) and SST (right). GF: Gardeniae Fructus, SR: Scutellariae Radix, CR: Coptidis Rhizoma, PC: Phellodendri Cortex, RR: Rhei Rhizoma

#### **1.4 Discussion**

Each of the 120 crude drug extracts provided by INM was added to a culture medium with N18 or C6 cells at a concentration of 10 or 100  $\mu$ g/ml. Morphological changes were observed followed by RNA isolation to construct cDNA libraries using random primers. All data obtained were added to "All data on profiling of 120 herbal extracts". Morphological data with the amount of RNA obtained from treated cells provide a number of research options.

Several crude extracts exhibited strong toxicity in N18 and C6 cells (Table 1). Toxic effects were more frequently observed in N18 cells than in C6 cells, indicating differences in toxicities between these cell lines, which may be due to differences in the sensitivities of neuronal and glial cells to drugs. Proliferative activity was greater in glial cells. On the other hand, neuronal cells possess the potential to act with functional activity after differentiation; however, the N18 cells used in the present study were in the undifferentiated stage. Therefore, the same factors involved in the activity and/or expression of biological factors with proliferation, for example, BDNF<sup>11</sup>, the STAT-3 pathway<sup>12</sup>, caspase-3<sup>13</sup>, and small RNA 124/Smad4<sup>14</sup>, may function in crude extract treatments to inhibit the proliferation of C6 and N18 cells. Neuronal differentiation factors and/or drivers, such as BDNF<sup>15</sup>, Plag1<sup>16</sup>, and small RNA miR-200<sup>17</sup>, may also be present in crude extracts that more strongly inhibited the proliferation of N18 cells than C6 cells. This result may have been predicted solely from morphological images. For example, L103 (26) appeared to only exert effects on N18 cells. In N18 cells, even if L103 causes the same proliferative inhibition, it can be observed to be in the direction of neural differentiation or only in proliferative inhibition. Low concentrations of L26 (40) and L52 (36) were previously suggested to be responsible for axonal growth and neuronal differentiation, whereas only the inhibition of proliferation or dendritic growth was observed with low concentrations of L28 (30). Further studies using antibodies may provide more detailed insights. As discussed above, simple observations of the morphological effects of crude herbal extracts with RNA quantification can give us insight into effective compounds based on their physiological mechanisms on cell proliferation/death, neuronal differentiation, and other processes. Much information can be obtained from very simple photos: ① Cells were rounded and dead, ② adhesion was maintained and only proliferation was suppressed, and ③ the proliferation of neuronal cells was stopped by differentiation and neurite outgrowth. Based on such morphological information, I plan to conduct various studies in the future. For example, crude drugs A and B both exhibited toxicity when used alone, but inhibited the toxicity of the other when administered together. Many prescriptions combine crude drugs A and B. Furthermore, differentiation-inducing factors may function well under conditions.

The relationship between the classes of herbal medicine in "Shennong Ben Cao Jing" and cytotoxicity was examined. Among the 120 herbal medicines used in the present study, there were 38 Johon types, 35 Chuhon types, and 8 Gehon types. Five out of the 38 Johon types (13%) and 13 (37%) out of the 35 Chuhon types exhibited strong toxicity. Therefore, Johon-type medicines appear to be less toxic than Chuhon-type medicines, as described in the classical reference book. However, from the viewpoint of long-term toxicity, such as the inclusion of mercury, which is listed as Johon in the "Shennong Ben Cao Jing", the classical reference cannot be completely accepted without scientific evidence.

In the present study, filter-sterilized crude drug extracts were directly applied to cells at 10 and 100  $\mu$ g/ml. The direct application of crude extracts to cultured cells is not always accepted by some researchers. Oral administration is considered the most suitable approach for research on "Kampo" medicine and crude drugs. However, direct application to living cells may provide molecular and pharmacological assay-like information on crude drugs. This approach, in combination with other techniques, such as electrophysiology, may be useful for obtaining information on active ingredients that are only available in small amounts. Many active unknown compounds present at very small amounts in crude galenical drugs have been suggested to exert agonistic effects<sup>18</sup>, similar to the secretome of a conditioned medium in differentiated PC12 cells, which induced neuronal differentiation in human

stem cells<sup>19</sup>. For example, ephedrine in *Ephedra Herba* acts as an agonist in the noradrenergic system.

Crude drugs may vary due to different lots and the duration for which they are stored. Therefore, 3D-HPLC data needs to be acquired immediately before an experiment is conducted when possible. Even if bioactivities from the same crude drugs with different backgrounds differ, comparisons of differences in components by HPLC may identify useful active ingredient candidates. 3D-HPLC data shown in "All data on profiling of 120 herbal extracts" are in Table S1; however, original data are unchanged and may be reanalyzed at any wavelength, time point, or using other factors. If the reader is interested in any data, I can provide more detailed information and/or analysis and compare these with the reader's own extracts.

"Kampo" medicine is generally prescribed in combination with crude herbal drugs. There are cases where the combination is simply unrelated, or opposing effects may be obtained depending on the combination, as in the case of *Ephedrae Herba* described above. In the "Kampo" theory, prescriptions are often based on a combination of two types of herbal medicines called "paired drugs". In the present study, combinations were not examined. However, we focused on the potential for a reversal phenomenon in both cell morphology and RNA levels (L1(35), L26(40), and L110(50)) according to the concentrations applied. When the concentration is low, component(s) may exhibit high efficacy, whereas when the concentration is high, the efficacy may be reduced.

To date, research on "Kampo" medicine has focused on the main compounds in herbal medicines, that is, a large number of ingredients. However, a more detailed analysis of compounds at low amounts that produce high efficacy is needed. By using herbal medicine with "paired drugs" to search for active compounds, trace amounts of active components with physiological effects may be discovered. Molecular pharmacological research methods using cell cultures will be indispensable in research on trace components. Even if the reaction *in vivo* does not directly show crude drug effects, future developmental potential cannot be excluded.

As an example of the use of this library, we examined changes in the expression

levels of BNIP-3 mRNA. As described in the Introduction, we previously demonstrated that HET, as well as an antidepressant treatment, increased the expression levels of BNIP-3 in NG108-15 cells.<sup>1, 2)</sup> Previous studies also examined the function of BNIP-3<sup>20</sup>.

The findings obtained are shown in Table 2, and 10 crude drugs comprising HET are shown with "#" in the HET column. Five out of the 10 types of crude drugs increased expression levels in the N18 and C6 cell lines and three types in one of the cell lines, while two types decreased expression levels in both cell lines. From the results, we selected 20 extracts from the top of each standard, and in addition to adding 2 kinds of herbal medicines to make up HET. Totally 24 kinds of herbal extracts were tested as a secondary assay. Among these 24 species, herbal medicines comprising SST and OGT were also included.

As shown in Fig. 3, many herbal extracts which are included in HET had an increasing effect on BNIP-3 mRNA expression. OGT showed the opposite effect. In SST, there was a difference between the results with N18 and C6. In clinical use of Kampo medicine, HET is used to treat feeling depression, while OGT and SST are used when feeling upset or feeling uncomfortable. In other words, HET and OGT/SST are clinically applied with the expectation of the opposite effect on mood. Regarding HET, the increase of BNIP-3 mRNA reportedly shows by our previous studies using NG108-15 cells. Although OGT and SST are both used for almost the same therapeutic purpose, Jin Gui Yao Lue (Kinkiyouryaku), a classical important reference book of Kampo medicine, shows that SST use a taking medicine with short extraction time in some case. The difference in the direction of BNIP-3 mRNA action between N18 and C6 of SST, and the difference from OGT in that point, may indirectly reflect the above-mentioned differences in clinical objectives. Moreover, the difference might be controlled by Rehmanniae Radix. It is also possible that differences in responsiveness due to differences in receptors and reaction mechanisms between C6 and N18 cells.

As mentioned in the introduction, BNIP-3 has been considered a kind of apoptotic factor. BNIP-3 is known to be involved in the bi-directional association between

mTOR and NF-kB by forming a dimer to be activated by oxidative stress<sup>21</sup>. The activity is suppressed by small RNA miR-210 which binds to the 3'-non coding region<sup>22</sup>. It has also been shown that ginsenoside Rb1, the main component of Panacis Ginseng Radix, suppresses the peroxidative stress-induced cell damage through the increase of miR-210 and subsequent suppression of BNIP-3 expression. Of the herbal medicines examined this time it may be possible to include ingredients with similar actions. The authors are particularly interested in Astragali Radix.

In the future, we will also examine the changes in effectiveness in the process from a combination of herbal medicines to prescription, from one of the classical Kampo theories of "herb pairs". The effects and the mechanisms of herbal medicines and the active ingredients, and the supplementary effects by other combined herbal drugs from the viewpoint of "herb pairs" are necessary for further experiments in the future.

# Chapter #2

Examination of the molecular mechanism of the mutual inhibitory effect of each cytotoxicity caused by the combined extraction of *Coptidis Rhizoma* and *Rhei Rhizoma*: An example of providing evidence to "herb pair" theory

#### 2.1 Introduction

Traditional Japanese medicine, "Kampo medicine," has been systematized in the 18th century by Tohdou Yoshimatsu as the ancestor, based on Traditional Chinese medicine. After a period of decline, its usefulness has been reviewed today and its position as complementary medicine has been established. However, the scientific evidence for its effectiveness is not yet sufficient.

Evidence studies on the efficacy of Kampo herbs have been achieved through the isolation and proof of their active compounds and the elucidation of the physiological mechanism of efficacy. However, these "element reductionism"-like analysis methods have a gap in proving the original action of Kampo herbs. In that regard, one of the authors has written a review in this journal<sup>23</sup>. In modern science, research on crude drugs that are effective is being studied in the direction of analyzing their components, but from the perspective of integrated pharmacology in Traditional Chinese medicines and Kampo medicines, it is possible to combine crude drugs that further emphasize their effectiveness or to suppress the side effects. This is called

"herbal pair", and in the basic phenomenon, it has the same foundation as modern pharmacology.

"Orengedoku-to (OGT)" and "Sanoshashin-to (SST)" are known as typical Kampo prescriptions that suppress the state of excitement. It is also used for mental anxiety and insomnia, but it cannot be shown that the distinction between the two is clear. OGT consists of four herbal medicines, *Coptidis Rhizoma* (CR), *Scutellariae Radix* (SR), *Phellodendron Cortex* (PC), and *Gardeniae Fructus* (GF). Of these, CR contains a large amount of berberine. Berberine is also used in clinical treatment as an antidiarrheal and intestinal regulator. SST is composed of three herbal medicines, *Rhei Rhizoma* (RR), CR and SR. CR and SR are common with OGT, but RR, which has a strong action as a laxative, is added to it.

The original action of RR is heat regulation and the laxative action is an unfavorable action in this case. If OGT and SST are used properly in anticipation with the opposite action on the digestive system, it is doubtful that CR and RR, which have the opposite effect, are mixed in SST. Furthermore, the prescription consists of only three crude drugs. It will be a point to be clarified.

The authors have created a cDNA library for the purpose of examining the gene expression effect of 120 kinds of crude drugs alone<sup>24</sup>, and are proceeding with various experiments on the components, cytotoxicity, function, and gene expression. In the process, we observed a mysterious phenomenon related to CR and RR. When both were extracted with hot water, it was observed that the color of the extract was lighter than that of each of them alone. It was also observed that simple mixing of each crude drug extracted individually causes precipitation. With this as a starting point, the purpose of this study was to consider the significance of Kampo medicine prescription, especially from the viewpoint of "herbal pair"

#### 2.2 Materials and Methods

#### 2.2.1 Extraction of galenicals

Approximately 20 g of each prescription or galenical was added to 500 ml of boiling water for 60 min. Galenicals were removed while the solution was still hot, and the extract was frozen using liquid nitrogen. The frozen extract obtained was freeze-dried.CR and RR were purchased from Tochimoto Tenkai-do (Osaka, Japan).

## 2.2.2 Three-dimensional high-performance liquid chromatography analysis of extracts (3D-HPLC)

Each extract solution (1 mg/ml) was centrifuged to remove insoluble substances followed by filtering through a membrane filter (0.22  $\mu$ m) and then used for HPLC analysis (20  $\mu$ l). The HPLC apparatus (Hitachi Ltd., Japan) consisted of a pump (L-2130) with analysis system software (Elite LaChrom); it was equipped with a photodiode array detector (UV 230-400 nm, L-2455), a system controller, an auto-injector (L-2200), and a column oven (L-2300). The HPLC conditions were as follows: column, LaChrom Ultra C18 (5  $\mu$ m, Lot No. 21D5-011; Hitachi Ltd., Japan) with 150 × 4.6 mm I.D.; eluant, (A) H<sub>2</sub>O containing 0.1% formic acid and (B)

CH3CN containing 0.1% formic acid (a linear gradient was used from '95% A and 5% B' to '30% A and 70% B' for 90 min); temperature, 20 °C; and flow rate, 0.2 ml/min.

#### 2.2.3 Cell culture and morphological observations

N18TG-2 cells were continuously cultured using our previously described methods<sup>25</sup> with slight modifications. Briefly, the cells were cultured in DMEM supplemented with 10% FBS. All cultures were maintained at 37°C under 10% CO<sub>2</sub>. The filtrated crude drug solution was added to a 3 ml medium in a 35 mm dish at 30  $\mu$ l to prepare a sample treated cells. Drug treatments were performed at the same time as the start of cultivation. The morphological observation to take photos was done by Nikon.

# 2.2.4 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, yellow tetrazole (MTT) assay

The MTT assay for quantifying cell viability was performed according to common methods. The cells were cultured in a 24-well plate. Drug treatment was performed at the same time of starting culture and at after 48 hrs. The assay was performed when non-treated control cells reached near confluent, usually 4 days after. In the assay, after the culture medium was removed, 300  $\mu$ l of 0.5 mg/ml MTT in HBS solution was added, and the cells were further cultured for 3 to 4 h. Then, after removing the MTT solution, adding 300  $\mu$ l DMSO, and leaving it for 10 min or more, a part (50  $\mu$ l) of each solution was transferred to a 96-well plate, and the absorbance at 570 nm was measured by a microplate reader. The results were displayed as a percentage compared with the control cell value after subtracting the values for DMSO only from all the values.

#### 2.3 Results

Figure 4 shows the color of the 10 mg/ml hot water extracted solution. The concentration of the solution was calculated by the recovery rate of the crude drug(s).

Tube 1) is CR, 2) is RR, and 3) is the solution when both are extracted together. All solutions were removed from the impurities by centrifugation followed by filtration (0.22  $\mu$ m). Tube 4) is a mixture of equal amounts with 20 mg/ml solution of CR and RR after centrifugally filtered. The recovery rates were 1) 30%, 2) 20%, and 3) 20%. It was shown that the color of the solution was clearly lighter when mixed extraction at the crude drug stage, as compared with the color of the solution when CR and RR were extracted individually. It was also found that when the separately extracted solutions were mixed *in vitro*, a large amount of precipitate was generated and the color of the solution faded.

The 3D-HPLC spectrum of the solution is shown in Fig. 5. On the right side, the spectra isolated at 280 nm are shown with the same intensity for each solution for comparison. The strong peak seen at about 25 min in the CR is berberine. This peak disappeared almost completely when co-extracted with RR (Fig.5 (3)). In the case of post-mixing, the peak was significantly attenuated, although it remained slightly. Some of the peaks seen in RR alone (Fig. 5 (2)) also disappeared by mixed extraction. However, some peaks that disappeared by mixed extraction were not affected by post-mixing. Since the precipitate formed by the post-mixing could not be dissolved by various solvents, HPLC data could not be obtained.

Fig. 6 shows the morphological changes in N18-TG2 cells treated with each extract at three concentrations. Each extract was treated at the same time as the start of culture. Although it is a little bit difficult to know the real morphological change by the photograph, it was observed that CR and RR cause growth suppression or cell death depending on the concentration. The effect was not observed when both were extracted at the same time, but rather the simultaneous extracted solution treatment seemed to promote proliferation. The results of treating the supernatant and the precipitate obtained by mixing the CR and RR after extraction are shown in 4) and 5), respectively. In morphological observation, a morphology similar to RR alone was observed in the supernatant treatment, while when the precipitate was suspended and added (not dissolved), an effect similar to that of CR treatment alone was observed.

The MTT assay was performed for the purpose of quantifying the findings

obtained from morphological observation. A concentration of 10  $\mu$ g/ml was used for the assay. Fig. 7 shows the results of evaluation when the drug was treated at the same time as the starting cultivation. The results observed in the morphological observation were supported by these data. Interestingly, it was found that cell proliferation was slightly promoted in the extract obtained by extracting CR and RR at the same time. On the other hand, when both were extracted separately and then remixed, data showing cytotoxicity or proliferation inhibition similar to that in the case of the single treatment of CR or RR was obtained. Thus, it was considered that some kind of chemical modification might have occurred only by simultaneous extraction.


#### Fig. 4 Colors of hot water extracts of crude drugs

Each crude drug was extracted by hot water for 60 min and freeze-dried. They are dissolved at 10 mg/ml (estimated galenical) and sterilized with a 0.22 µm sterile filter after centrifugation (1-3). 1) *Coptidis Rhizoma* (CR), 2) *Rhei Rhizoma* (RR), 3) CR and RR co-extraction, 4) 20 mg/ml sterilized solution of CR and RR was prepared in the same manner as above, and then the equal amounts were mixed.



Fig.5 The 3D-HPLC charts of each extract

After diluting each solution shown in Fig. 1 to 1 mg / ml, the 3D-HPLC spectrum was obtained. 1) *Coptidis Rhizoma* (CR), 2) *Rhei Rhizoma* (RR), 3) CR and RR co-extraction, 4) the supernatant of post-mixed CR and RR.



## Fig. 6 Survival and proliferative changes by each extract treatment in N18TG2 cells (morphological photograph)

Each crude drug extract was treated at a concentration of 3 10, 30  $\mu$ g/ml at the same time as the starting the culture. 1) *Coptidis Rhizoma* (CR), 2) *Rhei Rhizoma* (RR), 3) CR and RR co-extraction, 4) re-suspension of the precipitate of post-mixed CR and RR, and 5) the supernatant of post-mixed CR and RR. Control pictures showed both the dense and sparse areas (since it is difficult to ensure objectivity in morphological photographs, the results shown in Fig. 4 below quantified information on cell proliferation and survival by MTT assay).



Fig. 7 Survival and proliferative changes by each extract treatment in N18TG2 cells (MTT assay)

Each herbal extract was treated at a concentration of 10 mg/ml at the same time as the start of cell culture. 1) *Coptidis Rhizoma* (CR), 2) *Rhei Rhizoma* (RR), 3) CR and RR co-extraction, 4) re-suspension of the precipitate of post-mixed CR and RR, 5) the supernatant of post-mixed CR and RR, and 6) the re-mixed of the supernatant and the precipitate which were obtained by post-mixing.

#### **2.4 Discussion**

These findings indicate the following possibilities.

1) Simultaneous extraction of RR and CR suppresses the cytotoxicity of each individual, and the resulting changes in the components of the mixture extract are involved in the background.

2) When the extracts of RR and CR are mixed after extraction, a precipitate is produced probably due to a physicochemical reaction. It is presumed that the precipitate contains berberine of CR, but it could not be confirmed because it could not be dissolved.

3) When the precipitate was resuspended and added to the culture medium, CR-like cell death was observed. On the other hand, in the supernatant after removal of the precipitate of the post-mixing, RR-like cell death was continuously observed, unlike the extract of simultaneous extraction. These results were also supported by the results of the MTT assay, although the experimental conditions were slightly different.

4) From the above results, it is considered that the composition of the components in the co-extract (A) is different from that of the supernatant obtained by mixing after individual extraction (B). There are two kinds of possibilities; one is a new component that suppresses the toxic factor of both may be synthesized in A during the reaction, and another is that the toxic component in B may have been removed in A during the not extraction. It will be an issue for future study to consider which one.

When studying the mechanism of action and evidence of Traditional Kampo Medicine/Wakan-Yaku (TKM) consisting of a combination of multiple herbal medicines, usually the prescription itself is regarded as one drug and research is conducted in model animals, etc., or an effective herbal medicine in an effective herbal prescription is used. Many studies have been also conducted so far by searching for the active compound in herbal medicine or by biochemically assaying the action of the main compound. However, in the search study of active compound, it is often the case that the effectiveness sometimes becomes invisible during the sorting. In the classical theory of TKM, there is the idea of "herbal pair". The idea is that the combination of two crude drugs is the minimum unit of action. For example, the idea is that the combination strengthens or suppresses each other's actions, but there is still little evidence of research on that theory. The phenomenon caused by the combination of RR and CR reported here could be an example of experimentally proving the "herbal pair" theory.

It has been well known that RR alone has laxative and a kind of sedative effects (*Seinetsu* in Japanese). As for the active ingredient as a laxative, it has long been known that sennosides are decomposed into rhein by intestinal bacteria<sup>26</sup>. The difference in the intestinal bacterial flora of each individual person affects the RR action. Sennosides are also used as laxative medicines. Regarding the sedative effect, although it is known in animal experiments as the effect of the extract in Japanese references, the active components are not always clear. On the other hand, as for the action of CR, it is determined that berberine is contained in 4.2% or more as its main component according to the regulations of the Japanese Pharmacopoeia. And berberine itself is commercially available as an intestinal regulator. From the results of the HPLC in this article, the peak of berberine has almost completely disappeared due to the mixture of RR. It is highly possible that the effect of berberine is weakened when RR is present in the formulation.

As a TKM prescription in which RR and CR coexist, there is SST which consists of 3 crude drugs, these 2 and SR. SST is effective against bleeding (nosebleeds, hematemesis, etc.), and is also used for headaches, tinnitus, and increased blood pressure. OGT is also known to have the same effect. It is composed of 4 crude drugs, CR, SR, PC, and GF. RR is not contained. Since the classical references are different between these two (SST is in Kinki-Youryaku (Jin Gui Yao Lue) and OGT is in Gedai-Hiyou (Wai tai mi yao)), it can be interpreted that the prescriptions with almost the same treatment purpose were made by different classical authors and/or doctors. But, since OGT contains GF which has an effect on the digestive system, it can also be considered that the emphasis is on the action on the system. On the other hand, although SST contains RR, which is recognized as a laxative, the expected effect is limited to the upper part of the body (in the Kampo concept, "JouShou"). It may be possible to think that CR is added to isolate it, and by forming a precipitate, the side effects of each other are reduced.

Regarding the effect of RR on cell molecular physiology, the effect of promoting BDNF gene expression has been reported<sup>27</sup>. Those findings, like this one on the base, are shown as the result of series of experiments on the effects of many herbal medicines using a cell system. The primary cultured neuronal cells from the brain of the transgenic mouse having the gene in which luciferase sequence is inserted downstream of the BDNF expression control sequence are used.

The report of the official paper shows that *Ginseng Radix* (GR) promotes BDNF expression<sup>27</sup>, but the well-known ingredients of GR, many ginsenosides, did no effect, suggesting that the active ingredient is an unknown compound. Similarly, the action of RR and the additive/synergistic effect when combined with crude drugs also have been reported. Whereas this paper examines the possibility of component changes in the disappearance of RR/CR cytotoxicity when combined with, Fukuchi's report focuses on the fact that RR activates nerve cells through BDNF expression. In this study as well, the extract after simultaneous extraction of RR/CR tends to promote cell proliferation. It is also interested in the direction of activity and changes in the active compounds by mixing the two, including on changes in BDNF expression.

In present, this study includes multiple complex possibilities as summarized in the first part of the discussion, and in order to clarify them, further studies such as gene expression changes, related to cell death should be conducted. It is also necessary to clarify the difference between the physicochemical phenomena that occur between crude drug extracts and the biochemical reactions as an evaluation system. Anyway, this report may at least show that studies based on "herbal pair" in Kampo theory may bring interesting results that have never been seen before.

### Chapter #3

Use of an electrophysiological technique for Stepwise detection of trace agonistic components of Hochuekkito in *Xenopus* oocytes injected with serotonin 2C receptor mRNA

#### **3.1 Introduction**

Kampo medicine is a Japanese variant of Chinese traditional medicine that involves the extensive use of herbs. Many prescriptions effect "mood", and since they are prescribed according to the symptoms of a patient and individual body condition differences, they are considered to be a pioneer in "tailor-made medicine". Studies on the mechanisms of action of each Kampo prescription will contribute to the discovery of novel concepts related to depression and the development of new and efficient antidepressants.

Kampo medicine has its systematic theory<sup>28</sup>. To date, studies on new drug development based on Kampo medicine have been based on analytical methods of modern science, achieved significant advances, and provided extensive evidence for the effectiveness of each Kampo prescription. However, the effectiveness of herbal medicine is markedly reduced by the process of fractionation, or the main components of active herbal medicine are replaced by research targets.

In the present study, based on the theories of Kampo and Wakan-Yaku, experiments were conducted using modern scientific techniques. The results obtained may provide novel hypotheses for in vivo anti-depressive mechanisms; however, further detailed studies are needed. Several Kampo prescriptions may exert anti-depressive effects, with each being prescribed based on unique theories. Typical prescriptions of Kampo medicine that may exert anti-depressive effects are "Huchuekki-to (HET): Bu Zhong Yi Qi Tang" and "Juzentaiho-to (JTT): Shi Quan Da Bu Tang". We previously demonstrated that HET exerted anti-depressive effects in mice using a behavioral pharmacological method<sup>29</sup>. HET and JTT are composed of 10 herbal crude medicines, 5 of which are common to both. The 5 shared herbal medicines (abbreviated as Com5) do not have prescription names and are also included in "Kihito: Gui Pi Tang". Kihito is known to exert effects on the brain and has the potential as an anti-dementia drug<sup>30</sup>. In the present study, we investigated the mechanisms underlying the stimulatory effects of HET on 5-HT2CR using electrophysiological techniques. We previously reported that HET exerted 5-HT2CR stimulatory effects<sup>31</sup>. Many antidepressants function as inhibitors of 5-HT2CR<sup>32</sup>. In contrast, HET exerts agonistic effects on 5-HT2CR<sup>31</sup>. We previously proposed that the desensitization of 5-HT2CR is involved in the effects of HET on the serotonergic system to induce anti-depressive effects<sup>33</sup>. However, the present results suggest that this hypothesis is incorrect. The 5HT2CR stimulatory effects of HET were detected in extracts of the five herbal medicines that are present in HET only (Hoc5). Instead of following the hypothesis, we analyzed the contribution of each effective crude drug and its components by performing bioassays to assess electrophysiological activity. Although other trace active components may exist that were not examined in the present study, we identified a particular "trace component" that exerted stimulatory effects. Based on the present results and the mechanism of action of HET, we also considered this relationship according to the theory of Kampo medicine.

#### **3.2 Materials and Methods**

#### **3.2.1 Extraction of Kampo prescriptions and galenicals**

Approximately 50 g of each prescription or galenical was added to 900 ml of boiling water for 60 min. Galenicals were removed while the solution was still hot, and the extract was frozen using liquid nitrogen. The frozen extract obtained was freeze-dried.

All galenicals were purchased from Tochimoto Tenkai-do (Osaka, Japan). The contents of extracted prescriptions and galenicals as well as the Lot No. of each galenical and extracted yields are shown in Table 3. The weight values of each galenical, which constituted prescriptions, are listed on the left side of Table 3.

| g                       | g     | Name                          | Lot.No    | yiels(%) | Producted Area |           |
|-------------------------|-------|-------------------------------|-----------|----------|----------------|-----------|
| 2                       | 10000 | Citrus unshiu Markovich (CM)* | 007807004 | 34.5     | Japan          | Shikoku   |
| 2                       |       | Zizyphi Fructus (ZF)          | 007108004 | 56.0     | China          |           |
| 2                       |       | Zingiberis Rhizoma (ZR)       | 005808001 | 10.5     |                |           |
| 2                       |       | Bupleuri Radix (BR)           | 004208001 | 12.8     | Japan          | Nara      |
| 1                       |       | Cimicifugae Rhizoma (CR)      | 006007001 | 26.1     |                |           |
|                         |       | (all 5 of above (Hoc5))       |           | 25.2     |                |           |
| 4                       | 3     | Ginseng Radix                 | 008607037 | 20.0     | Korea          |           |
| 4                       | 3     | Atractylodes Rhizoma          | 009307015 | 37.8     | China          |           |
| 3                       | 3     | Astragali Radix               | 001007006 | 22.8     | Japan          |           |
| 3                       | 3     | Angelicae Radix               | 008007016 | 41.3     | Japan          | Yamato    |
| 1.5                     | 1.5   | Glycyrrhiza Radix             | 002007034 | 28.6     | China          | Northwest |
|                         |       | (all 5 of above (Com5))       |           | 33.3     |                |           |
|                         | 3     | Poria                         | 009508003 | *        | Korea          |           |
|                         | 3     | Rehmanniae Radix              | 005007023 | *        |                |           |
|                         | 3     | Cnidii Rhizoma                | 006207005 | *        | -              |           |
|                         | 3     | Paeoniae Radix                | 005308002 | *        | Japan          |           |
|                         | 3     | Cinnamomi Cortex              | 002807017 | *        | Vietnam        |           |
|                         |       | (all 5 of above)              |           | -        |                |           |
| Hochuekkito (HET) 27.9  |       |                               |           |          |                |           |
| Juzentaohoto (JTT) 25.2 |       |                               |           |          |                |           |

 Table 3 Galenical list that make up the Kampo prescription used in this study

Lot number at the place of production and source, and the recovery rate is shown in this table. In this article, all extract concentrations are shown in herbal equivalents based on these recover rate. Individual extraction was not performed for the five herbal medicines specific to JTT. Citrus unshiu Markovich (CM) is actually the mixture of Citrus unshiu Markovich and Citrus reticulate Bianoco. This table will also help readers to understand the abbreviations in the text.

HET and JTT are combinations of 10 galenicals, with five out of the 10 galenicals being common to both (Com5). Com5 and the other 5 galenicals in HET (Hoc5) were extracted and freeze-dried. The gross galenical weights of the extracts for HET, JTT, Com5, and Hoc5 were 49, 57, 46.5, and 45 g, respectively. The weight of Com5 was assessed based on the ratio that constitutes HET.

Before the extract was applied to the oocytes that expressed 5-HT2CR on the cell surface, the freeze-dried extract was resolved using the buffer for the electrophysiological experiment and then centrifuged to remove insoluble matter.

# 3.2.2 Three-dimensional high-performance liquid chromatography (3D-HPLC) analysis of extracts.

Each extract solution (10 mg/ml) of the supernatant obtained by centrifugation followed by filtration through a 0.22- $\mu$ m membrane filter was subjected to a 3D-HPLC analysis (20  $\mu$ l). The HPLC apparatus (Hitachi Ltd., Japan) consisted of a pump (L-2130) with analysis system software (Elite LaChrom), a photodiode array detector (UV 230-400 nm, L-2455), system controller, auto-injector (L-2200), and column oven (L-2300). HPLC conditions were as follows: column, LaChrom Ultra C18 (5  $\mu$ m, Lot No. 21D5-011; Hitachi Ltd., Japan) with 150 × 4.6 mm I.D.; eluant, (A) H<sub>2</sub>O containing 0.1% formic acid and (B) CH<sub>3</sub>CN containing 0.1% formic acid. A linear gradient was used from '95% A and 5% B' to '30% A and 70% B' for 90 min. The temperature of the column was controlled at 20°C. The flow rate was 0.2 ml/min.

# **3.2.3 Synthesis of 5-HT2CR mRNA and injection into Xenopus oocytes.**

pBluescript II KS(-) vectors (approximately 3.0 kbp) with a rat 5-HT2CR cDNA insert (approximately 3.0 kb) were used as a template to make in vitro synthesized mRNA. The vector was transformed into DH5 Escherichia coli to enhance the amount of mRNA by the estimated method. The vector obtained with 5-HT2CR cDNA was linearized with XhoI at 37°C for 60 min. The linearized vector (250 ng) was incubated with T7 RNA polymerase and the mCAP analog in the reaction buffer of the transcription kit (Stratagene) to make 5-HT2CR mRNA in vitro. Products were extracted with phenol/chloroform and precipitated in ethanol and sodium acetate.

Synthesized 5-HT2CR mRNA (100 ng) was injected into Xenopus oocytes isolated from female Xenopus laevis. X. laevis were anesthetized in ice water, and a lobe of the ovary was dissected and placed in sterile modified Barth's solution (MBS: 88 mM NaCl, 1 mM KCl, 0.41 mM CaCl<sub>2</sub>, 0.33 mM Ca(NO<sub>3</sub>)<sub>2</sub>, 0.82 mM MgSO<sub>4</sub>, 2.4 mM NaHCO<sub>3</sub>, and 7.5 mM HEPES-NaOH, pH 7.6). Oocytes were then isolated manually and defolliculated by incubation in 1.5 mg/ml collagenase (type IA; Sigma,

St. Louis, MO, USA) at 20°C in a calcium-free MBS solution. Synthetic mRNA was injected into oocytes using a microinjector (Drummond, Broomall, PA, USA), which were then incubated in MBS containing 2.5 units/ml penicillin and 2.5  $\mu$ g/ml streptomycin at 18°C.

It has long been confirmed that Xenopus oocytes do not naturally express 5-HT2CR, ion channels, or many receptors<sup>8</sup>. Muscarinic receptors are only expressed in the follicular cells and if the follicle cannot be removed, oocytes react to acetylcholine<sup>35</sup>. In addition, Xenopus oocytes are classically used for cloning and functional analysis of ion channels and receptors because it efficiently translates injected mRNA<sup>36</sup>. In the case of 5-HT2CR expression, responsiveness to 5-HT appears about 18 hours later from injected mRNA, and the responsiveness usually continues until 3 to 4 days<sup>34</sup>.

Since Xenopus is a poikilotherm, it becomes completely anesthetized by soaking it in ice water. After confirming the reflex reaction has disappeared, open the base of the foot about 1-2 cm and remove the oocytes. Xenopus then sews the open area with a suture and uses surgical adhesive to waterproof the wound. Xenopus awakens when it is placed in ice-free water overnight during the water temperature gradually returns to room temperature. After confirming that Xenopus behaves perfectly, return it to the aquarium. One Xenopus can use several times. From the above, the burden of Xenopus surgery is extremely light, and normal behavior is restored immediately after surgery. In light of the Code of Ethics for Animals, it can be evaluated as a very minor burden, however, Xenopus is equivalent to fish and is not subject to the "Animal Experiment Code of Ethics"

#### 3.2.4 Electrophysiological recording

Responses to 5-HT were recorded using a two-electrode voltage-clamp amplifier at a holding potential of -60 mV. Oocytes were positioned in a 50-µl chamber and continuously perfused with MBS solution at approximately 1 ml/min at room temperature (less than 25°C). Drugs were applied by changing the perfusing solution to the drug-containing buffer in the case of extracts of the Kampo prescription or galenicals. When an isolated compound was applied, one drop of the MBS solution (approximately 20  $\mu$ l) was directly dropped from the micropipette into the chamber. Data were recorded and digitized for analyses (MacLab, AD Instruments, Castle Hill, NSW, Australia).

#### **3.2.5 LC-MS analyses**

LC-MS analyses were performed with a Shimadzu LC-IT-TOF mass spectrometer equipped with an ESI interface. The following ESI parameters were used: source voltage 3.5 kV (negative mode), capillary temperature 200°C, and nebulizer gas 1.5 l/min. The mass spectrometer was operated in the negative ion mode scanning from m/z 100 to 2000. A Waters Atlantis dC18 column (2.0 mm i.d. × 150 mm) was used and the column temperature was maintained at 40°C. The mobile phase was a binary eluent of (A) 5 mM ammonium acetate solution and (B) CH<sub>3</sub>CN under the following gradient conditions: 0-30 min linear gradient from 10 to 100% B, 30-40 min isocratic gradient at 100% B. The flow rate was 0.2 ml/min.

#### 3.3 Results

We previously reported that many types of antidepressants inhibit 5-HT2CR, and based on these findings, Kampo medicine that exerts anti-depressive effects is anticipated to exhibit similar inhibitory activity. Contrary to expectations, HET, the anti-depressive effects of which were experimentally demonstrated in a depressive model animal, exerted significant stimulatory, not inhibitory effects. Similarly, in this experiment, HET at 3 mg/ml generated a strong activation signal in *Xenopus* oocytes expressing 5-HT2CR (Fig. 8). HET is composed of 10 types of herbal medicines, 5 of which are common to JTT and Kihito. The five types specific to HET (Hoc5) exerted strong 5-HT2CR stimulatory effects, whereas Com5 and JTT did not (Fig. 8). The stimulatory effects of Hoc5 were dependent on its concentration (Fig. 8 inset).



# Fig. 8 Effects of HET, JTT, and component crude drugs, Com5 and Hoc5, on 5-HT2CR-induced current responses in *Xenopus* oocytes injected with synthetic 5-HT2CR mRNA.

Xenopus oocytes were injected with 5-HT2CR mRNA and the voltage was clamped at -60 mV. Each extract was added to perfusing solution. The concentration of each extract was 3 mg/ml (estimated galenical weight). The inset shows the concentration dependency of the Hoc5 application relative to the current intensity induced by 10 nM 5-HT. Refer to Table 1 for each abbreviation.

Since Hoc5 exerted strong 5-HT2CR stimulatory effects, the activities of each of the five herbal medicines were examined. Fig. 9 shows the current responses of each herbal medicine at 3 mg/ml. Cimicifuga Rhizoma (CR) exerted strong stimulatory effects with an EC50 value of 0.9 mg/ml and a confidence interval (CI) value of 0.48–1.65 mg/mL. Stimulatory effects were also observed with Citrus unshiu Markovich (CM) but were weaker with an EC50 value of 4.0 mg/ml and CI value of 1.73–9.29 mg/mL. Significant activation was not observed for the three other crude extracts.

Since CR activated 5-HT2CR, its components were separated by 3D-HPLC, and activity was examined by direct application to oocytes. The 3D-HPLC chart of CR is shown in Fig. 10A, and that extracted at 274 nm in Fig. 10B. The fraction showing large peaks under these HPLC conditions was purified. After the HPLC solvent was removed by evaporation, CR was newly dissolved in a small amount of HBS buffer and applied to cells. Therefore, it was not possible to quantify its exact concentration. Strong activation was observed in fraction No. 12. There was no activity in the large peak after an elution time of 20 min (data not shown).

The molecular weight of the substance of peak No. 12 was assessed by LC/MS. The LC results on CR at 280 nm are shown in Fig. 11A. The absorption wavelength of peak P2 in Fig. 11A is shown in Fig. 11B and was similar to the spectrum in Fig. 10. The molecular weight of the substance was estimated to be 283.1393 (Fig. 11C); however, it was not possible to estimate the material from that value. Although identification by NMR was attempted, it was not successful because the required amount with sufficient purity was not obtained.



Fig. 9 Effects of each extract of Hoc5 component crude drugs on 5-HT current responses in Xenopus oocytes injected with synthetic 5-HT2CR mRNA.

Xenopus oocytes were injected with 5-HT2CR mRNA and the voltage was clamped at -60 mV. Each extract was added to perfusing solution. The concentration of each extract was 3 mg/ml (estimated galenical weight) in the current response figure. The lower figure shows the concentration dependency of CR and CM relative to the current intensity induced by 10 nM 5-HT. The EC50 values of CR and CM were 0.9 and 4.0 mg/ml, respectively. Refer to Table 1 for each abbreviation.



## Fig. 10 Component analysis and fractionation of the CR extract by 3D-HPLC and 5-HT2CR current responses by each fraction

A) 3D-HPLC chart using the *Elite LaChrom* system (Hitachi, Japan); a color change indicates the height of the signal at that wavelength and outflow time. B) An isolated chart at 274 nm from 3D-HPLC and C) electrophysiological experiments for each isolated fraction using the same system described in Figs. 8 & 9.



Fig. 11 LC-MS analyses of peak No. 12 in Fig. 3

A: The chromatogram at 280 of CR; the UV spectrum of peak P2 in Fig. 11A was equivalent to peak No. 12 in Fig. 10. B: The UV spectrum of peak P2. C: A MS analysis of the molecular weight of peak P2.

#### **3.4 Discussion**

The active component responsible for the 5-HT2CR stimulatory effects of HET was examined, and a trace amount of a component with a molecular weight of 283.1393 was obtained. Since the amount of the component was very small, the structure was not elucidated by NMR.

The effectiveness of herbal extracts has been successfully assessed to date by considering the main components as active and contributing factors. However, we demonstrated that similar to aromatic components, some agonistic components may exert an effect even when only a small amount is present. While limited evidence is currently available to support this, some studies indicated that the aroma emitted during the extraction of Kampo is also effective as a treatment. An assessment of electrophysiological activity is a highly sensitive method that may be used in the future to identify active and stimulatory trace components from novel perspectives. Although the electrophysiology method itself can detect both agonistic and antagonistic effects, when electrophysiology is used as a method for evaluating the active ingredient, the agonist is effective as an evaluation method because it shows a response even in a small amount, but in many cases, it seems that a large amount is needed to consider an antagonistic effect. We believe that the electrophysiological method, which has well sensitivity and is characterized by a dynamic reaction, is suitable for bioassay-like-purification and detection of agonists, and it is thought that the detection and analysis of agonist components will proceed by using this method.

The primary aims of the present study were to identify the active components of HET that exert anti-depressive effects and to elucidate the mechanisms underlying these effects. Although we were unable to directly attribute anti-depressive effects to the "trace component", we successfully identified the active component that exhibited a strong response even when it was present at a small amount.

The active component appears to directly affect the function of the digestive system, not the brain and is related to another effect of HET, its enhancement of digestive function. The trace molecule identified may stimulate neurons that transmit activity to the brain. In terms of Kampo medicine, HET is an effective treatment for mild depression, and JTT is more effective than HET when the mood is further depressed. JTT, which is considered to exert stronger anti-depressive effects, did not affect 5-HT2CR in this experimental system. Com5 may contain some components that are active in the brain and reach their target site through absorption and metabolism. This may explain the effects of Kihito in the brain because it also contains Com5<sup>4</sup>. While we are unable to fully elucidate the underlying mechanisms, we previously reported that the expression levels of BNIP-3 mRNA were increased by HET in another experimental system using cultured neuronal cells<sup>37-39</sup>. This is currently being more intensively examined by our group, including the site of expression in the brains of small animals using MRI<sup>40</sup>.

The mechanism of action of ghrelin has been attracting increasing attention as the underlying molecular mechanism of Rikkunshito (RKT): Hsiang Sha Lu Chun Tzu Tong, a type of Kampo medicine<sup>41,42</sup>. Ghrelin is a factor involved in appetite and is also associated with the function of 5-HT2CR43-45. HET and RKT have similar herbal medicine compositions and exert similar effects on the digestive system. While RKT acts on the symptoms of an upset stomach by activating the stomach and improving digestion, HET functions by resolving malfunctions in the digestive system, such as diarrhea. Neither CR nor Bupleuri Radix (BR) is a component of RKT; however, they are known as a "herb pair" in Kampo medicine and are considered to play a critical role in the effects of HET. CR and BR both constitute Hoc5 and act on the digestive system. They also exert positive systematic effects according to the concept of Kampo medicine. Therefore, they may contribute to the unique effects of HET on qi by acting on the digestive system and subsequently stimulating the nervous system. Although BR alone does not affect 5-HT2CR, it may exert an effect in the presence of CR. In future studies, we will investigate differences in the effects of BR with and without CR, as well as its functions in the digestive system and brain, i.e., by gene expression or magnetic resonance imaging.

In the present study, we used an electrophysiological bioassay method to identify the components responsible for the 5-HT2CR stimulatory effects of HET, and, as a result, discovered an unknown component with a molecular weight of 283.1393. Although it is unlikely that this component alone is solely responsible for the activation of 5-HT2CR by HET because CM also acts on 5-HT2CR, these results indicate that ultra-trace components, not the main component, are involved in the responses of Kampo medicine. The present study showed that ultra-trace components also have high "biofunctional effects" in Kampo medicine and play a role in the specificity of prescriptions. In the future, the discovery of these "ultra-trace active ingredients" will promote research on Kampo and Wakan-Yaku medicines.

## Chapter #4

Clarifying the pharmacological mechanisms of action of Shenfu Decoction on cardiovascular diseases using a network pharmacology approach

#### **4.1 Introduction**

Cardiovascular diseases (CVD) are the leading cause of death worldwide<sup>46</sup>. The application of Traditional Chinese Medicine (TCM) to the treatment of COVID-19 has been examined and it is now used in clinical settings in China; however, there is currently insufficient evidence for its global expansion<sup>47</sup>. The use Chinese herbs to prevent various diseases, including CVD, has been investigated<sup>48</sup>. Bioinformatics has become an important tool in the medical field because it effectively reveals relevant knowledge hidden in big data, thereby promoting the discovery of integrated information<sup>49</sup>. The core concepts of TCM and network pharmacology are similar<sup>50</sup>, with multicomponent therapy and network targets as the basis for TCM<sup>51</sup> and a molecular network for network pharmacology<sup>52</sup>. Although many methods may be applied in investigations of the mechanisms of action of TCM in the treatment of CVD, network pharmacology is widely accepted and used because it provides a broad perspective<sup>53</sup>.

The cardioprotective effects of Shenfu Decoction (SFD) have been demonstrated. It has been shown to inhibit myocardial cell apoptosis in rats with heart failure<sup>54</sup> and protect against myocardial ischemia-reperfusion injury<sup>55</sup>. Metabonomics<sup>56</sup> and proteomics also revealed its protective effects against heart failure. Moreover, the chemome<sup>57</sup> and serum pharmacochemistry<sup>58</sup> of SFD have been characterized.

The rapid development of network pharmacology has contributed to a more detailed understanding of and insights into the mechanisms by which TCM exerts its effects on complex diseases<sup>59</sup>. Therefore, in the present study, network pharmacology was used to elucidate the complex molecular mechanisms of action of SFD in the treatment of CVD. We initially treated cells with the corresponding drugs and then subjected samples to a gene chip analysis. Potential targets were mapped to the corresponding database for a bioinformatic analysis, which provides a bridge for clarifying the mechanisms by which SFD exerts its cardiovascular protective effects.

#### 4.2 Methods and Materials

#### 4.2.1 Preparation of the SFD extract

Two Chinese herbal medicines, ginseng and aconite, were selected at a ratio of 2:1 to prepare SFD. Forty-five grams of Chinese herbal medicine was added to 900 ml of water to prepare SFD. The hot water extract obtained was then freeze-dried. Tochimoto Tenkai-do (Osaka, Japan) provided Panax ginseng CA Meyer (Lot No. 008607037) and Aconitum carmichaeli Debeaux (Lot No. 032017001) for the present study.

#### **4.2.2 Cell culture and treatment**

The rat cardiac myoblast cell line H9C2 was purchased from the European Collection of Authenticated Cell Cultures (ECACC: Salisbury, England). According to the information provided in the instructions, the medium selected was complete DMEM containing 10% fetal bovine serum and culture conditions were  $37^{\circ}$ C in a 10% CO<sub>2</sub> humidification box. Three groups were included in the present study: 1) Control group; 2) Model group; 3) SFD treatment group. Doxorubicin (DXR: Sandoz, Yamagata, Japan: Lot No. HY8542)-mediated H9C2 cytotoxicity was induced as previously described<sup>60</sup>. Following a treatment with SFD or vehicle for 24 hours, cells were incubated with or without DXR (2  $\mu$ M) for another 24 h to induce cardiotoxicity.

#### 4.2.3 RNA extraction

Total RNA was extracted from H9C2 cells using TRIsure (Bioline, Luckenwale, Germany), and genomic DNA was removed by DNase I (TaKaRa, Ohtsu, Japan), according to the manufacturers' instructions. The quantity and quality of RNA were assessed using a 2100 biological analyzer (Agilent, CA, USA). High-quality RNA samples (OD260/280 = 1.8-2.0 RIN  $\geq 7$ ) were used to construct sequencing libraries.

#### 4.2.4 Microarray data

Three samples each from the Control, Model, and SFD treatment groups were hybridized with an SurePrint G3 Mouse Gene Expression v2  $8 \times 60$ K Microarray at  $65^{\circ}$ C for 14 h to analyze expression levels using microarray methods.

#### 4.2.5 Identification of differentially expressed genes (DEG)

DEG among Control, Model, and SFD treatment group samples were screened using Venn diagrams.  $|log2FC| \ge 1$  was considered to be significant.

## 4.2.6 Protein-protein interaction (PPI) network construction

#### and a module analysis

As a classic PPI network construction tool, the STRING database<sup>61</sup> was employed in the present study, and the standard for significance was a combined score >0.4. In the module analysis after network construction, Cytoscape's plug-in Molecular Complex Detection (MCODE) was selected<sup>62</sup>. The selection of key hub genes relied on the following three characteristics: "degree", "intermediateness", and "intimacy". The criterion selected in the present study was that these three characteristics were higher than the corresponding median values.

#### 4.2.7 Enrichment analyses of candidate genes

WebGestalt is a functional enrichment analysis web tool<sup>63</sup>. The WebGestalt online database, as a popular biological analysis database, facilitates analyses of the functions of DEG. The standard for statistical selection is P<0.05. WebGestalt's over-representation enrichment analysis method is used to identify and analyze potential targets. As a gene annotation tool, a gene ontology analysis involves a functional analysis that includes molecular function, biological pathway, and cell component analyses<sup>64</sup>. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a well-known path analysis tool<sup>65</sup>.

#### 4.2.8 Co-expression analysis

GeneMANIA is a user friendly and flexible web server that is used to generate hypotheses about gene functions, analyze gene lists, and assess gene priority for a functional analysis<sup>66</sup>. The database comprises many functions, such as a physical interaction analysis, co-expression predictions, co-localization, and a genetic interaction analysis. These functions were used in the present study to construct the SFD gene network.

#### 4.3 Results and discussion

#### 4.3.1 Identification of DEG

Gene expression datasets were obtained [SET01: Control group vs Model group, SET02: Model group vs SFD treatment group]. After standardizing microarray results, DEG were identified. The overlap between the two data sets contained 1,134 genes, as shown in the Venn diagram (Fig. 12). Forty-six genes were upregulated in the model group compared with the blank group and were further upregulated after drug treatment. Sixty genes were down-regulated in the model group compared with the blank group, but were upregulated after drug treatment. Twenty-eight genes were down-regulated in the model group compared with the blank group, and further down-regulated after drug treatment. A total of 1000 genes were up-regulated in the model group compared with the blank group, but were down-regulated after drug treatment.



## Fig. 12. Venn diagram of the number of genes showing treatment-induced changes in expression.

Differentially expressed genes with a fold change  $\geq 2$  in microarray data were selected among mRNA expression profiling set-1 (control vs DXR) and set-2 (DXR vs SFD + DXR). The two data sets show the overlap of 1134 genes.

# 4.3.2 Prediction analysis of pharmacological mechanisms based on network pharmacology and module identification

Based on the STRING database, a PPI network was constructed with a combined score >0.4 (Fig. 13A), with 908 nodes and 1822 edges together forming a large biological network (Table S2). The network module (cluster or community) is the sub-network that is generally defined. The characteristic of the sub-network is that connections between its nodes are more reliable and firmer than the loose connections in the remainder of the network. In other words, a module is a collection of many nodes with a high degree of correlation. Module identification is important because the amount of crucial information extracted from the network is limited, and it facilitates the discovery of vital information by researchers that may be hidden in the network. Network modules have been utilized in network pharmacology-based TCM studies to reveal the combination rule of TCM herbal formulae<sup>67</sup>, chemical modules with similar structures<sup>68</sup>, and proteins with equivalent functions<sup>69</sup>. Multi-component and multi-objective analyses have always been a difficult and hot issue in TCM research. Network modularity is based on the "Law of Similarity Attraction" analysis method, which is a precise and powerful method to describe the complexity of TCM. Figure 13B shows the PPI network of the 293 nodes and 1083 edges obtained with a degree of between 5 and 42 inclusive. Although the scope of Figure 13B is smaller than that of Figure 13A, it is also difficult to identify target molecules. Therefore, as shown in Figure 13C, we established a novel network to identify target molecules more accurately. In Figure 13D, the heat map illustrating the differentially expressed genes in three groups.

Through the plug-in MCODE, the most significant module was obtained from the PPI network with 9 nodes -36 edges. The names, abbreviations, and functions of these hub genes are shown in Table S3. We then calculated three topological features ("degree", "intermediateness", and "compactness") of the candidate molecules. According to the screening criteria described above, three candidate molecules were identified ("degree" > 9, "betweenness" > 0.000111031, and "closeness" >

0.27027027), as shown in Table S4. All 9 genes were associated with the functions of the ubiquitin-proteasome system (UPS), which is important in the etiology of CVD.

UPS plays an essential role in the many mechanisms involved in mediating the degradation of intracellular proteins<sup>70</sup>. Ubiquitination and proteasome-mediated degradation are the two main steps of UPS-mediated proteolysis. In other words, ubiquitination is a series of enzymatic reactions in cells<sup>71</sup>. Dysfunctional UPS has been implicated in the development of many CVD (such as atherosclerosis, myocardial ischemia, hypertrophy, and heart failure)<sup>72</sup>.

One of the main factors restricting the use of anthracycline antibiotics (such as DXR) in clinical settings is cardiotoxicity<sup>73</sup>. DXR-induced cardiotoxicity may increase the activity of UPS<sup>74</sup>. Sishi et al. also demonstrated that chymotrypsin-like activity in the heart was inhibited by DXR, while the ubiquitination of proteins was simultaneously increased<sup>75</sup>. Dysfunctions in the ubiquitin-proteasome pathway (UPP) have also been shown to play an important role in CVD<sup>76</sup>. The overactivation of UPP has been identified as a contributing factor to the development of acute cardiotoxicity as an adverse event of the administration of anthracyclines.



#### Fig. 13. PPI network structure and module identification

(A) PPI network of differentially expressed genes (DEG). (B) The PPI network of DEG was constructed using Cytoscape. (C) The most significant module with 9 nodes and 36 edges was obtained from the PPI network. (D)The heat map illustrating the differentially expressed genes in three groups.

#### 4.3.3 Enrichment analyses of hub genes

The biological process, cellular composition, molecular function, and pathway of the target protein were analyzed by the WebGestalt database. The results obtained (Fig. 14A) indicated that hub genes were significantly involved in a number of biological processes, including metabolic processes, biological regulation, cellular component organization, multicellular organismal processes, developmental processes, localization, cell communication, responses to stimuli, cell proliferation, and multi-organism processes. According to the classification of cellular components, the protein was located in a protein-containing complex, the nucleus, and endomembrane system. The molecular function of the target protein involved transferase activity and protein binding. To further confirm that the biological processes involved in the treatment of myocardial injury by SFD play a role in the corresponding pathological events in the course of disease progression, we used the KEGG database for a pathway enrichment analysis. Seven important signal pathways were obtained (p < 0.05). These results (Fig. 14B) indicated that the protective effects of SFD against myocardial injury involve seven signaling pathways. Previous studies demonstrated that SFD exerted cardiotonic effects by regulating the TNF signaling pathway<sup>77</sup>, apoptosis<sup>78</sup>, the PI3K-Akt signaling pathway<sup>79</sup>, TGF-β/Smads signaling pathway<sup>80</sup>, and Akt/eNOS signaling pathway<sup>81</sup>. Ubiquitination<sup>82</sup> and neddylation<sup>83</sup> were also shown to play a role in myocardial injury; however, the relationships between SFD and these pathways need to be confirmed in further studies. Therefore, SFD appears to exert protective effects against myocardial injury by regulating 7 pathways and 10 biological processes. In addition, previous studies demonstrated that SFD may cure heart failure by regulating the TGF- $\beta$ /Smads signaling pathway, apoptosis, and the PI3K-Akt, Akt/eNOS, and TNF signaling pathways. In summary, regarding myocardial injury, a number of proteins and pathways in the biological network may be regulated by SFD, which ultimately controls the occurrence and development of CVD.



#### Fig. 14. Enrichment analyses of nine hub genes

(A) An enrichment analysis through the WebGestalt database. (B) A KEGG pathway analysis of nine hub genes.

#### 4.3.4 GeneMANIA analysis

The GeneMANIA database was selected to further analyze the interaction network among hub genes (Fig. 15). The 9 central nodes representing hub genes were surrounded by 20 nodes representing genes that strongly correlated with the hub genes in terms of physical interactions (85.09%), shared protein domains (12.85%), pathways (1.8%), and genetic interactions (0.26%). The top five genes displaying the strongest correlations with hub genes included S-phase kinase-associated protein 1 (SKP1), ETS variant 1 (ETV1), F-box and leucine rich repeat protein 15 (FBXL15), ETV5, and ATPase Na<sup>+</sup>/K<sup>+</sup> transporting subunit alpha 2 (ATP1A2), among which SKP1 correlated with cullin 1 (CUL1), ubiquitin-conjugating enzyme E2D 1 (UBE2D1), F-box protein 17 (FBXO17), and FBXO44 in terms of physical interactions. ETV1 correlated with de-etiolated homolog 1 (DET1) in terms of physical interactions and with LIM domain only protein 7 (LMO7) and HECT with C2 and WW domain containing E3 ubiquitin protein ligase 2 (HECW2) in terms of genetic interactions. FBXL15 correlated with CUL1 and HECW2 in terms of physical interactions and with FBXO44 and FBXO17 in terms of shared protein domains. ETV5 correlated with DET1 in terms of physical interactions and with zinc and ring finger 2 (ZNRF2) and UBE2D1 in terms of genetic interactions. In addition, ATP1A2 correlated with ZNRF2 in terms of physical interactions. Further functional analyses revealed that these proteins showed the strongest correlation with ubiquitin-protein ligase activity (FDR = 4.45E-09). Additionally, these proteins correlated with small conjugating protein ligase activity, acid-amino acid ligase activity, ligase activity, the formation of carbon-nitrogen bonds, the Skp, Cullin, F-box containing complex (SCF) ubiquitin ligase complex, ubiquitin ligase complex, and cullin-RING ubiquitin ligase complex.



#### Fig. 15. Gene-gene interaction network among hub genes.

A gene is represented by a node. The strength of the interaction is expressed by the size of the node. Inter-node connection lines represent the types of gene-gene interactions, while the line color shows the types of interactions. The possible function of each gene is represented by the color of the node.

To simultaneously identify the target genes of SFD for protection against heart failure in the present study, the bioinformatic analysis method, including the identification of DEG, and a functional enrichment analysis were extensively used. A total of 1134 DEG were identified using the STRING website. A module analysis showed that nine hub genes exhibited ubiquitin-protein ligase activity. In summary, the hub genes and related pathways discovered in the present study will provide a more detailed understanding of the mechanisms by which SFD protects the myocardium, which will lead to novel research concepts for SFD. Since the safety of drug treatments and the importance of communication with patients are increasing<sup>84</sup>, the preventative and therapeutic effects of SFD on heart failure increase the safety of anticancer drug treatments and will also lead to peace of mind for patients.
# Conclusion

Until now, analytical methods based mainly on Western element reductionism have been used as research methods for applying the effectiveness of Traditional Chinese Medicine (TCM) to modern medicine. In other words, we have provided evidence of its effectiveness by determining the active ingredient and analyzing its effects on individual factors related to the disease. However, the method is far from elucidating the essence of the treatment concept of TCM, which treats by acting systemically by combining crude drugs. Therefore, in this doctoral dissertation, we conducted four chapters of research with the aim of opening the door to essential research that makes the most of the individuality of TCM. As a result, he obtained the following findings.

In Chapter 1, we first obtained fingerprints of component analysis by 3D-HPLC, which is the information base, for 120 kinds of crude drugs that are the basis of prescription. This information can be freely post-hoc analyzed as needed in the future. Furthermore, for all of the 120 crude drug extracts, two cells, the neurological system and the glial system, were treated at two concentrations to obtain information on morphological changes, RNA was extracted from them, and subsequent genes were extracted. A cDNA library was created for use in expression analysis. Furthermore, as an example of its use, changes in mRNA expression of BNIP-3, which has been suggested to be related to antidepressant effects, were primarily analyzed by real-time PCR for all 120 crude drugs, and based on the results, effective crude drugs were obtained. A secondary analysis was performed by selecting. In this way, the information data and gene library of 120 kinds of crude drug extracts can be easily used for various analyzes starting from here, and the basic information for examining the effect of the combination of crude drugs. It also became an important asset with great potential (detailed below).

In Chapter 2, we proved an example of the idea that the basis of TCM is not a single-flavored herbal medicine, but a combination of two-flavored herbal medicines. This underlying finding is information on cell morphological changes associated with

individual herbal medicines in Chapter 1. It was found that Coptis chinensis and Rhubarb each show strong cytotoxicity alone, but the effect is significantly diminished when both are extracted together. When the two individual extracts were combined in vitro, a large amount of precipitate was formed, but there was no strong association between the formation of this precipitate and the disappearance of toxicity. Although the details of the mechanism need to be further investigated in the future, the value of this result is high as an example of the significant change in action due to extraction together, that is, pairing as a drug. The combination of Coptis chinensis and Rhubarb can be seen in Sanko Shashinto (三黄写心湯). Sankoshashinto (三黄写心湯) is a prescription that suppresses abnormal rise in qi, but on the other hand, both Coptis chinensis and Rhubarb have an effect on the digestive system, which can be a side effect. It is thought that it contributes to increasing the number of side effects. As shown here, a lot of knowledge about TCM is vaguely known about anti-drugs, but since the starting point in previous studies is a simple crude drug, what has been scientifically elucidated is The reality is that there is almost no information on the drug, and on the contrary, the information on the drug itself is not organized. This research is important as an example showing the importance of the concept of antidrugs, and will also stimulate future research development.

In Chapter 3, we conducted an experiment showing an example based on the hypothesis that the essential main reaction of TCM is caused by the active components contained. Many pure drugs currently on the market are inhibitors. In most cases, even drugs that seem to be promoters are promoted by suppressing the inhibitory mechanism. The pharmacological effect of the pure drug is basically based on the law of metric pharmacology, and the difference in efficacy in the dose-response curve with side effects is defined as safety, and therefore safety is ensured by increasing the dose. It's difficult. In order to obtain high drug efficacy (suppressive effect), the amount of drug tends to be excessive. On the other hand, the dose of TCM may be very small because it stimulates a biological reaction so that the living body reacts naturally when the living body notices it. For example, it is easy to

understand if you think that the smell corresponds to it. If you notice the odor, the living body will have pleasure feelings and will take actions that detect danger. On the other hand, in order to prevent the odor, it is necessary to completely block the odor, and there is a risk of suffocation. In Chapter 3, it was shown that a very small amount of components in the hemp in Hochuekkito has a strong serotonin receptor stimulating effect. The actual situation has not been clarified yet, and other herbal medicines that control it have not been clarified. Future research is essential. However, here, the action of TCM does not necessarily follow the general law of lightweight pharmacology, and even a very small amount of TCM only needs to be noticed and reacted by the living body, while whether or not the living body itself has reactivity. In other words, it seems to show that the idea of "iE" is important. So to speak, it is important to think in line with the principles of TCM, but modern science does not have that perspective, so the promotion of research from this perspective has produced epoch-making results that overturned conventional wisdom. It is full of possibilities.

In Chapter 4, the starting point of the idea is that TCM acts systemically, and the partner acting from various related in vivo factors and its action network are analyzed based on the array analysis result of gene expression change. The experimental results that tried to elucidate by the method are shown. Originally, we think that the action of TCM can suppress the heart disease that occurs as a side effect, and develop a new prescription from the viewpoint of systemic action aiming at safe treatment of anticancer drugs through it. This is a study aimed at. At this time, the systemic effect has not been clearly shown, but the drug effect on heart disease-related target factors is ambiguous to both the target and the drug, rather than being targeted and studied from the beginning of the study. The idea is to start research while leaving the gap, discover and evaluate potential factors that utilize the action of TCM, and develop new prescriptions that act on them. There are still many possible related factors, including the one discovered this time. For example, ion channels, water channels, and effects on the kidney may be future targets. Natural medicine, which has the purpose of preventing heart disease through systemic control, is often found in some

folk medicines in Japan, but it provides a scientific basis based on the idea of TCM, and detailed reports based on it. By advancing the analysis, it will be possible to discover more effective and safe preventive and therapeutic agents according to the medical condition, etc. from the viewpoint of systemic action one after another.

As mentioned above, in this thesis, the first chapter is the information related to the individual crude drug information that constitutes the basis of Chinese medicine, the second chapter is based on the research on the concept of medicine, the third chapter is about the research on the trace ingredients, and the fourth chapter is Research on network pharmacology of Chinese medicine.

As described above, by considering the theory of TCM first and using modern analysis methods, it is possible to discover new microagonists and therapeutic concepts that could not be obtained until now. Thought. We hope that this research will be the starting point for the widespread use of this idea.

# References

- Tohda, M., Hayashi, H., Sukma, M. & Tanaka, K. BNIP-3: a novel candidate for an intrinsic depression-related factor found in NG108-15 cells treated with Hochu-ekki-to, a traditional oriental medicine, or typical antidepressants. *Neurosci Res* 62, 1–8 (2008).
- Tohda, M., Mingmalairak, S., Murakami, Y. & Matsumoto, K. Enhanced expression of BCL2/adenovirus EIB 19-kDa-interacting protein 3 mRNA, a candidate for intrinsic depression-related factor, and effects of imipramine in the frontal cortex of stressed mice. *Biol Pharm Bull* 33, 53–57 (2010).
- 3. Tohda, M. MRI detection of the activated region in the rat brain by Hochuekki-to, a traditional oriental medicine, and the related expression of BNIP-3 mRNA, a candidate of depression-related factor. *J Med Therap* **2**, (2018).
- Tohda, M. & Mingmalairak, S. Evidence of Antidepressive Effects of a Wakan-yaku, Hochuekkito, in Depression Model Mice with Learned-Helplessness Behavior. *Evid Based Complement Alternat Med* 2013, 319073 (2013).
- 5. Tohda, M. Changes in the expression of BNIP-3 and other neuronal factors during the cultivation period of primary cultured rat cerebral cortical neurons and an assessment of each factor's functions. *Cell signalling and Trafficking* **2**, 1 (2014).
- Dodson, M., Darley-Usmar, V. & Zhang, J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. *Free Radic Biol Med* 63, 207–221 (2013).
- Bellot, G. *et al.* Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. *Mol Cell Biol* 29, 2570–2581 (2009).
- 8. Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. *Cell Death Differ* **16**, 939–946 (2009).
- Jia, F., Mou, L. & Ge, H. Protective effects of ginsenoside Rb1 on H2O2-induced oxidative injury in human endothelial cell line (EA.hy926) via miR-210. *Int J Immunopathol Pharmacol* 33, 2058738419866021 (2019).
- Tohda, M., Imaizumi, R., Sekiya, A., Itoh, N. & Nomura, Y. Studies on the activation mechanisms of guanylyl cyclase by serotonin, probably through a novel subtype of serotonin receptor (5-HTGC). *Biol Pharm Bull* 18, 1072–1075 (1995).
- Yang, B., Qin, J., Nie, Y., Li, Y. & Chen, Q. Brain-derived neurotrophic factor propeptide inhibits proliferation and induces apoptosis in C6 glioma cells. *Neuroreport* 28, 726–730 (2017).
- 12. Chen, Y.-D. et al. Hyperthermia with different temperatures inhibits proliferation

and promotes apoptosis through the EGFR/STAT3 pathway in C6 rat glioma cells. *Mol Med Rep* **16**, 9401–9408 (2017).

- Yin, B., Sheng, H., Lin, J., Zhou, H. & Zhang, N. The cell death of C6 astrocytoma cells induced by oridonin and its mechanism. *Int J Clin Exp Pathol* 5, 562–568 (2012).
- 14. Zhang, Z. *et al.* MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4. *Int J Mol Med* **40**, 1226–1234 (2017).
- 15. Bawari, S. *et al.* Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. *Pharmacological Research* **148**, 104458 (2019).
- Sakai, H. *et al.* Plag1 regulates neuronal gene expression and neuronal differentiation of neocortical neural progenitor cells. *Genes Cells* 24, 650–666 (2019).
- 17. Pandey, A. *et al.* Critical role of the miR-200 family in regulating differentiation and proliferation of neurons. *Journal of Neurochemistry* **133**, 640–652 (2015).
- Tohda, M. & Watanabe, H. The Wakan-yaku Universe: A Useful Authorized Traditional Concept for Developing Novel Therapeutic Categories and Medicinal Drugs. *Biological and Pharmaceutical Bulletin* 41, 1627–1631 (2018).
- Srivastava, A. *et al.* Secretome of Differentiated PC12 Cells Enhances Neuronal Differentiation in Human Mesenchymal Stem Cells Via NGF-Like Mechanism. *Mol Neurobiol* 55, 8293–8305 (2018).
- Protective effects of ginsenoside Rb1 on H2O2-induced oxidative injury in human endothelial cell line (EA.hy926) via miR-210 - Fubao Jia, Lei Mou, Hanming Ge, 2019. https://journals.sagepub.com/doi/10.1177/2058738419866021.
- Kubli, D. A., Quinsay, M. N., Huang, C., Lee, Y. & Gustafsson, A. B. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. *Am J Physiol Heart Circ Physiol* 295, H2025-2031 (2008).
- 22. Dhingra, R. *et al.* Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. *Circ Heart Fail* **6**, 335–343 (2013).
- Tohda, M. & Watanabe, H. The Wakan-yaku Universe: A Useful Authorized Traditional Concept for Developing Novel Therapeutic Categories and Medicinal Drugs. Biological and Pharmaceutical Bulletin 41, 1627–1631 (2018).
- 24. Profiling of 120 types of herbal extracts and their effects on morphology in cultured neuronal or glial cell lines, followed by RNA extraction for a cDNA library: Consideration for use in studies based on Kampo theories Tohda 2021 Traditional & amp; Kampo Medicine Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1002/tkm2.1274.

- 25. Tohda, M., Imaizumi, R., Sekiya, A., Itoh, N. & Nomura, Y. Studies on the activation mechanisms of guanylyl cyclase by serotonin, probably through a novel subtype of serotonin receptor (5-HTGC). Biol Pharm Bull 18, 1072–1075 (1995).
- 26. Kobashi, K., Nishimura, T., Kusaka, M., Hattori, M. & Namba, T. Metabolism of sennosides by human intestinal bacteria. Planta Med 40, 225–236 (1980).
- Fukuchi, M. et al. Screening inducers of neuronal BDNF gene transcription using primary cortical cell cultures from BDNF-luciferase transgenic mice. Sci Rep 9, 11833 (2019).
- Tohda, M. & Watanabe, H. The Wakan-yaku Universe: A Useful Authorized Traditional Concept for Developing Novel Therapeutic Categories and Medicinal Drugs. Biological and Pharmaceutical Bulletin 41, 1627–1631 (2018).
- Tohda, M. & Mingmalairak, S. Evidence of Antidepressive Effects of a Wakan-yaku, Hochuekkito, in Depression Model Mice with Learned-Helplessness Behavior. Evid Based Complement Alternat Med 2013, 319073 (2013).
- Watari, H., Shimada, Y., Matsui, M. & Tohda, C. Kihito, a Traditional Japanese Kampo Medicine, Improves Cognitive Function in Alzheimer's Disease Patients. Evid Based Complement Alternat Med 2019, 4086749 (2019).
- M, T., M, A.-F. a.-F., S, N. & H, W. Effects of Hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang), a Kampo medicine, on serotonin 2C subtype receptor-evoked current response and the receptor mRNA expression. Journal of Traditional Medicines 17, 34–40 (2000).
- Tohda, M., Takasu, T. & Nomura, Y. Effects of antidepressants on serotonin-evoked current in Xenopus oocytes injected with rat brain mRNA. Eur J Pharmacol 166, 57–63 (1989).
- Tohda, M. & Watanabe, H. Imipramine-induced increase in 5-HT2C receptor mRNA level in the rat brain. Neurosci Res 24, 189–193 (1996).
- 34. Nomura, Y., Kaneko, S., Kato, K., Yamagishi, S. & Sugiyama, H. Inositol phosphate formation and chloride current responses induced by acetylcholine and serotonin through GTP-binding proteins in Xenopus oocyte after injection of rat brain messenger RNA. Brain Res 388, 113–123 (1987).
- Arellano, R. O., Garay, E. & Miledi, R. Muscarinic receptor heterogeneity in follicle-enclosed Xenopus oocytes. J Physiol 521 Pt 2, 409–419 (1999).
- Lübbert, H. et al. cDNA cloning of a serotonin 5-HT1C receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc Natl Acad Sci U S A 84, 4332–4336 (1987).
- 37. Tohda, M., Hayashi, H., Sukma, M. & Tanaka, K. BNIP-3: a novel candidate for an intrinsic depression-related factor found in NG108-15 cells treated with Hochu-ekki-to, a traditional oriental medicine, or typical antidepressants. Neurosci

Res 62, 1-8 (2008).

- 38. Tohda, M., Mingmalairak, S., Murakami, Y. & Matsumoto, K. Enhanced expression of BCL2/adenovirus EIB 19-kDa-interacting protein 3 mRNA, a candidate for intrinsic depression-related factor, and effects of imipramine in the frontal cortex of stressed mice. Biol Pharm Bull 33, 53–57 (2010).
- 39. Tohda, M. Changes in the expression of BNIP-3 and other neuronal factors during the cultivation period of primary cultured rat cerebral cortical neurons and an assessment of each factor's functions. Cell signalling and Trafficking 2, 1 (2014).
- 40. Tohda, M. MRI detection of the activated region in the rat brain by Hochuekki-to, a traditional oriental medicine, and the related expression of BNIP-3 mRNA, a candidate of depression-related factor. J Med Therap 2, (2018).
- 41. Yoshiya, T. et al. Prospective, randomized, cross-over pilot study of the effects of Rikkunshito, a Japanese traditional herbal medicine, on anorexia and plasma-acylated ghrelin levels in lung cancer patients undergoing cisplatin-based chemotherapy. Invest New Drugs 38, 485–492 (2020).
- 42. Matsumoto, C. et al. Psychological stress in aged female mice causes acute hypophagia independent of central serotonin 2C receptor activation. PLoS One 12, e0187937 (2017).
- 43. Schellekens, H. et al. Ghrelin's Orexigenic Effect Is Modulated via a Serotonin 2C Receptor Interaction. ACS Chem Neurosci 6, 1186–1197 (2015).
- Howell, E. et al. Glucagon-Like Peptide-1 (GLP-1) and 5-Hydroxytryptamine 2c (5-HT2c) Receptor Agonists in the Ventral Tegmental Area (VTA) Inhibit Ghrelin-Stimulated Appetitive Reward. Int J Mol Sci 20, E889 (2019).
- 45. Wang, S. et al. Compatibility art of traditional Chinese medicine: from the perspective of herb pairs. J Ethnopharmacol 143, 412–423 (2012).
- 46. Lloyd-Jones DM, Leip EP, Larson MG, d'Agostino RB, Beiser A, Wilson PW, Wolf PA, Levy D. Prediction of lifetime risk for cardiovascular disease by risk factor burden at 50 years of age. Circulation. 2006; 113:791-798.
- 47. Wang J, Qi F. Traditional Chinese medicine to treat COVID-19: the importance of evidence-based research. Drug Discov Ther. 2020; 14:149-150.
- 48. Kitazawa T, Park CH, Hiratani K, Choi JS, Yokozawa T. Efficacy of Chinese prescription Kangen-karyu for patient with metabolic syndrome. Drug Discov Ther. 2020; 14:54-57.
- 49. Gu P, Chen H. Modern bioinformatics meets traditional Chinese medicine. Brief Bioinform. 2014; 15:984-1003.
- 50. Zhao J, Yang J, Tian S, Zhang W. A survey of web resources and tools for the study of TCM network pharmacology. Quantitative Biology. 2019; 7:17-29.
- 51. Fang J, Wang L, Wu T, Yang C, Gao L, Cai H, Liu J, Fang S, Chen Y, Tan W,

Wang Q. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J Ethnopharmacol. 2017; 196:281-292.

- 52. Zhao J, Jiang P, Zhang W. Molecular networks for the study of TCM pharmacology. Brief Bioinform. 2010; 11:417-430.
- 53. Li B, Xu X, Wang X, Yu H, Li X, Tao W, Wang Y, Yang L. A systems biology approach to understanding the mechanisms of action of chinese herbs for treatment of cardiovascular disease. Int J Mol Sci. 2012; 13:13501-13520.
- 54. Yan X, Wu H, Ren J, Liu Y, Wang S, Yang J, Qin S, Wu D. Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs. J Ethnopharmacol. 2018; 227:105-112.
- 55. Zheng SY, Sun J, Zhao X, Xu JG. Protective effect of shen-fu on myocardial ischemia-reperfusion injury in rats. Am J Chin Med. 2004; 32:209-220.
- 56. Yang D, Wang X, Wu Y, Lu B, Yuan A, Leon C, Guo N. Urinary Metabolomic Profiling Reveals the Effect of Shenfu Decoction on Chronic Heart Failure in Rats. Molecules. 2015; 20:11915-11929.
- 57. Chen Y, Yu R, Jiang L, Zhang Q, Li B, Liu H, Xu G. A Comprehensive and Rapid Quality Evaluation Method of Traditional Chinese Medicine Decoction by Integrating UPLC-QTOF-MS and UFLC-QQQ-MS and its Application. Molecules. 2019; 24.
- 58. He JL, Zhao JW, Ma ZC, Wang YG, Liang QD, Tan HL, Xiao CR, Tang XL, Gao Y. Serum Pharmacochemistry Analysis Using UPLC-Q-TOF/MS after Oral Administration to Rats of Shenfu Decoction. Evid Based Complement Alternat
- 59. Berger SI, Iyengar R. Network analyses in systems pharmacology. Bioinformatics. 2009; 25:2466-2472.
- 60. Zhou F, Hao G, Zhang J, Zheng Y, Wu X, Hao K, Niu F, Luo D, Sun Y, Wu L, Ye W, Wang G. Protective effect of 23-hydroxybetulinic acid on doxorubicin-induced cardiotoxicity: a correlation with the inhibition of carbonyl reductase-mediated metabolism. Br J Pharmacol. 2015; 172:5690-5703.
- 61. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017; 45:D362-D368.
- 62. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003; 4:2.
- 63. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019; 47:W199-W205.
- 64. The Gene Ontology C. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017; 45:D331-D338.

- 65. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017; 45:D353-D361.
- 66. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010; 38:W214-220.
- 67. Li S, Zhang B, Jiang D, Wei Y, Zhang N. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics. 2010; 11 Suppl 11:S6.
- 68. Ding F, Zhang Q, Ung CO, Wang Y, Han Y, Hu Y, Qi J. An analysis of chemical ingredients network of Chinese herbal formulae for the treatment of coronary heart disease. PLoS One. 2015; 10:e0116441.
- 69. Guimera R, Nunes Amaral LA. Functional cartography of complex metabolic networks. Nature. 2005; 433:895-900.
- 70. Wang X, Robbins J. Proteasomal and lysosomal protein degradation and heart disease. J Mol Cell Cardiol. 2014; 71:16-24.
- Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin-proteasome system and cardiovascular disease. Prog Mol Biol Transl Sci. 2012; 109:295-346.
- 72. Li YF, Wang X. The role of the proteasome in heart disease. Biochim Biophys Acta. 2011; 1809:141-149.
- 73. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004; 56:185-229.
- 74. Ranek MJ, Wang X. Activation of the ubiquitin-proteasome system in doxorubicin cardiomyopathy. Curr Hypertens Rep. 2009; 11:389-395.
- Sishi BJ, Loos B, van Rooyen J, Engelbrecht AM. Doxorubicin induces protein ubiquitination and inhibits proteasome activity during cardiotoxicity. Toxicology. 2013; 309:23-29.
- Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, Szweda LI. Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem. 2001; 276:30057-30063.
- 77. Yu M, Ye L, Bian J, Ma L, Zheng C, Guo H. Effect of Jiawei Shenfu decoction on tumor necrosis factor-alpha and nuclear factor-kappa B in patients who have chronic heart failure with syndromes of deficiency of heart Yang. J Tradit Chin Med. 2019; 39:418-424.
- 78. Chen RJ, Rui QL, Wang Q, Tian F, Wu J, Kong XQ. Shenfu injection attenuates lipopolysaccharide-induced myocardial inflammation and apoptosis in rats. Chin J

Nat Med. 2020; 18:226-233.

- 79. Zhu J, Song W, Xu S, Ma Y, Wei B, Wang H, Hua S. Shenfu Injection Promotes Vasodilation by Enhancing eNOS Activity Through the PI3K/Akt Signaling Pathway In Vitro. Front Pharmacol. 2020; 11:121.
- 80. Ni J, Shi Y, Li L, Chen J, Li L, Li M, Zhu J, Zhu Y, Fan G. Cardioprotection against Heart Failure by Shenfu Injection via TGF-beta/Smads Signaling Pathway. Evid Based Complement Alternat Med. 2017; 2017:7083016.
- Wang YY, Li YY, Li L, Yang DL, Zhou K, Li YH. Protective Effects of Shenfu Injection against Myocardial Ischemia-Reperfusion Injury via Activation of eNOS in Rats. Biol Pharm Bull. 2018; 41:1406-1413.
- 82. Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res. 2010; 106:463-478.
- 83. Zou J, Ma W, Li J, Littlejohn R, Zhou H, Kim IM, Fulton DJR, Chen W, Weintraub NL, Zhou J, Su H. Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proc Natl Acad Sci U S A. 2018; 115:E4101-E4110.
- 84. Yaguchi-Saito A, Yamamoto K, Sengoku T, Suka M, Sato T, Hinata M, Nakamura T, Nakayama T, Yamamoto M. Evaluation of rapid drug safety communication materials for patients in Japan. Drug Discov Ther. 2021; 15:101-107.

# **SUPPORTING INFORMATION**

Table S1 3D-HPLC data shown in "All data on profiling of 120 herbal extracts"

Table S2 Interactions between differentially expressed genes

Table S3 Hub genes and their functions

Table S4 Major hubs in the netwo

# Table S1 3D-HPLC data shown in "All data on profiling of 120 herbal extracts"

Profiling of 120 types of herbal extracts by 3D-HPLC, their effects on the morphology of cultured neuronal or glial cell lines, and RNA extraction. (Top) 3D-HPLC chart, (Middle) RNA concentration as percentage of vehicle-treated sample, (Bottom) morphological images. RNA was extracted from 35-mm dishes using the acidic phenol method. Control values (100% value) of RNA concentrations in each sample are show





#### 004 Linderae Radix ウヤク(烏薬)



## 003 Curcumae Rhizoma ウコン(鬱金)



86





007 Scutellariae Radix オウゴン(黄芩)



008 Phellodendri Cortex オウバク(黄柏)





# 011 Polygalae Radix オンジ(遠志)



#### 012 Artemisiae Folium ガイヨウ(艾葉)



 No.012
 conc (mg/ml) % of cont.

 C6
 10 µg/ml
 4.42
 80.27

 100 µg/ml
 1.26
 22.83

 N18
 10 µg/ml
 0.89
 27.22

 100 µg/ml
 ND
 ND

100 µg/ml

10 µg/ml



013 Polygoni Multiflori Radix カシュウ(何首烏)





#### 015 Puerariae Radix カッコン(葛根)



#### 016 Trichosanthis Radix カロコン(栝楼根)



017 Zingiberis Siccatum Rhizoma カンキョウ(乾姜)





# 019 Platycodi Radix キキョウ(桔梗)



# 020 Chrysanthemi Flos キクカ(菊花)







024 Sophorae Radix クジン(苦参)



023 Armeniacae Semen キョウニン(杏仁)







# 027 Spatholobi Caulis ケイケットウ(鶏血藤)



#### 028 Cinnamomi Cortex ケイヒ(桂皮)





030 Carthami Flos コウカ(紅花) RNA concentration conc (mg/m)) % of cont \*3.90 94.43 5.18 94.07 3.13 95.72 69.53 RNA con No.030 C6 10 μg/m 100 μg/m N18 10 µg/n 100 µg/ml 10 µg/ml C6 N18

031 Albizziae Cortex ゴウカンヒ(合歓皮)





















063 Paeoniae Radix Rubra セキシャク(赤芍)



10 µg/ml



064 Cnidii Rhizoma センキュウ(川芎)



101





068 Perilla Herba ソウヨウ(桑葉)



**067 Mori Cortex** ソウハクヒ(桑白皮)









072 Zizyphi Fructus タイソウ(大棗)



071 Rhei Rhizoma ダイオウ(大黄)







076 Panacis Japonici Rhizoma チクセツニンジン(竹節人参)



075 Bambusae Caulis チクジョ(竹茹)



OT7 Anemarhenae Rhizomafe (fight)fe (fight)fightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfightfight<



#### 079 Uncariae Uncis Cum Ramulus チョウトウコウ(釣藤鈎)



# 080 Polyporus チョレイ(猪苓)







#### 084 Benincasae Semen トウガシ(冬瓜子)



083 Asparagi Radix テンモンドウ(天門冬)

12



N18







## 087 Persicae Semen トウニン(桃仁)



088 Araliae Cordatae Rhizoma ドクカツ(独活)



089 Eucommiae Cortex トチュウ(杜仲)





092 Pulsatilla chinensis バイモ(貝母)



091 Panacis Ginseng Radix ニンジン(人参)


093 Dictamni Radicis Cortex ハクセンピ(白鮮皮





096 Pinelliae Tuber ハンゲ(半夏)



095 Menthae Herba







099 Eriobotryae Folium ビワヨウ(枇杷葉)



100 Arecae Semen ビンロウジ(檳榔子)



 C6
 10 μg/ml

 100 μg/ml
 100 μg/ml

 100 μg/ml
 100 μg/ml

 100 μg/ml
 100 μg/ml

10 μg/ml







### 103 Imperatae Rhizoma ボウコン(茅根)



104 Glehniae Radix cum Rhizoma ボウフウ(防風)



105 Aconiti Tuber Radix ホウブシ(炮附子)



# rkbryb(kkk) fiburger fiburger

**106 Quercus Cortex** 

### 107 Psoraleae Semen ホコツシ(補骨脂)





108 Paeoniae Moutan Cortex ボタンピ(牡丹皮)



N18





## 111 Viticis Fructus マンケイシ(蔓荊子)



# 112 Saussureae Radix モッコウ(木香)



<section-header>

114 Alpiniae Fructus ヤクチ(益智)



### 116 Coicis Semen ヨクイニン(薏苡仁)



# 115 Leonuri Herba ヤクモソウ(益母草)





118 Alpiniae Officinari Rhizoma



119 Ganoderma レイシ(霊芝



120 Forsythiae Fructus レンギョウ(連翹)



# Table S2 Interactions between differentially expressed genes

Nodes represent proteins. Combined score indicates the support of the data

| Table S2 Interactions between differentially expressed genes |         |                |         |
|--------------------------------------------------------------|---------|----------------|---------|
| Node1                                                        | Node2   | Combined score | Node    |
| Birc3                                                        | Map3k7  | 0.999          | Birc3   |
| Snap25                                                       | Syt1    | 0.999          | Snap25  |
| Ap2b1                                                        | Ldlrap1 | 0.997          | Ap2b1   |
| Gabrb2                                                       | Gabrg2  | 0.997          | Gabrb2  |
| Gemin2                                                       | Gemin6  | 0.997          | Gemin2  |
| Ppih                                                         | Prpf31  | 0.997          | Ppih    |
| Arnt                                                         | Hifla   | 0.994          | Arnt    |
| Mdm2                                                         | Mdm4    | 0.994          | Mdm2    |
| Scn3a                                                        | Scn9a   | 0.994          | Scn3a   |
| Aqr                                                          | Cdc40   | 0.993          | Aqr     |
| Mrvi1                                                        | Prkg1   | 0.993          | Mrvi1   |
| Brcc3                                                        | Fam175a | 0.992          | Brcc3   |
| Ldlr                                                         | Ldlrap1 | 0.992          | Ldlr    |
| Phc2                                                         | Ring1   | 0.992          | Phc2    |
| Phc2                                                         | Rnf2    | 0.992          | Phc2    |
| Cops4                                                        | Cul1    | 0.99           | Cops4   |
| Birc3                                                        | Traf1   | 0.989          | Birc3   |
| Nsf                                                          | Scfd1   | 0.987          | Nsf     |
| Birc3                                                        | Casp3   | 0.986          | Birc3   |
| Gabra5                                                       | Gabrg2  | 0.984          | Gabra5  |
| Ppih                                                         | Snrnp40 | 0.984          | Ppih    |
| Prpf31                                                       | Snrnp40 | 0.984          | Prpf31  |
| Mrvi1                                                        | Prkg2   | 0.983          | Mrvi1   |
| Scfd1                                                        | Sec22a  | 0.983          | Scfd1   |
| Cdc40                                                        | Snrnp40 | 0.982          | Cdc40   |
| Nsf                                                          | Snap25  | 0.981          | Nsf     |
| I19                                                          | Il9r    | 0.98           | I19     |
| Dmd                                                          | Dtna    | 0.979          | Dmd     |
| Fgf2                                                         | Fgfbp1  | 0.979          | Fgf2    |
| Aqr                                                          | Snrnp40 | 0.978          | Aqr     |
| Gabra5                                                       | Gabrb2  | 0.978          | Gabra5  |
| Cdc40                                                        | Srrm2   | 0.977          | Cdc40   |
| Exosc9                                                       | Utp6    | 0.977          | Exosc9  |
| H2-K1                                                        | Pirb    | 0.977          | H2-K1   |
| Birc3                                                        | Ube2d1  | 0.975          | Birc3   |
| Myog                                                         | Tcf4    | 0.975          | Myog    |
| Snap25                                                       | Syn2    | 0.974          | Snap25  |
| Fam175a                                                      | Mdc1    | 0.972          | Fam175a |
| Itga4                                                        | Itgb6   | 0.972          | Itga4   |

| Cops4     | Fbxo17    | 0.971 | Cops4     |
|-----------|-----------|-------|-----------|
| Aqr       | Srrm2     | 0.969 | Aqr       |
| Cul1      | Ube2d1    | 0.968 | Cul1      |
| Snrnp40   | Srrm2     | 0.965 | Snrnp40   |
| Defb26    | Defb30    | 0.963 | Defb26    |
| Rad51ap1  | Rfc4      | 0.961 | Rad51ap1  |
| Inpp4b    | Inpp5j    | 0.96  | Inpp4b    |
| Rad51     | Rad51ap1  | 0.96  | Rad51     |
| Ap2b1     | Slc2a8    | 0.959 | Ap2b1     |
| Ly6h      | Lypd4     | 0.959 | Ly6h      |
| Ccl28     | Ccr10     | 0.958 | Ccl28     |
| Rgs7bp    | Rgs9      | 0.958 | Rgs7bp    |
| Syt1      | Syt11     | 0.958 | Syt1      |
| Aqr       | Ppih      | 0.954 | Aqr       |
| Cd80      | Cd86      | 0.953 | Cd80      |
| Ctss      | Mpeg1     | 0.953 | Ctss      |
| Ap5m1     | Ap5s1     | 0.95  | Ap5m1     |
| Ring1     | Rnf2      | 0.95  | Ring1     |
| Afp       | Serpina1a | 0.949 | Afp       |
| Ccl25     | Ccl28     | 0.949 | Ccl25     |
| Kifla     | Kif1b     | 0.949 | Kifla     |
| Nsf       | Sec22a    | 0.949 | Nsf       |
| Cul1      | Det1      | 0.947 | Cul1      |
| Pex12     | Ube2d1    | 0.946 | Pex12     |
| Ube2d1    | Znrf2     | 0.946 | Ube2d1    |
| Agrn      | Gpc5      | 0.945 | Agrn      |
| Tcf7      | Tle4      | 0.945 | Tcf7      |
| Gnpat     | Pex12     | 0.944 | Gnpat     |
| Afp       | Trf       | 0.943 | Afp       |
| Cul1      | Fbxo17    | 0.943 | Cul1      |
| Cul1      | Fbxo44    | 0.943 | Cul1      |
| Ddx39b    | Nudt21    | 0.943 | Ddx39b    |
| Ddx39b    | Upf3b     | 0.943 | Ddx39b    |
| Ctss      | Mmp9      | 0.942 | Ctss      |
| Dao       | Gnpat     | 0.942 | Dao       |
| Dnm3      | Syt1      | 0.941 | Dnm3      |
| Gabrb2    | Gabrg3    | 0.941 | Gabrb2    |
| Serpinala | Trf       | 0.94  | Serpina1a |
| Ap2b1     | Dnm3      | 0.939 | Ap2b1     |
| Cdc40     | Prpf31    | 0.939 | Cdc40     |
| Irak2     | Map3k7    | 0.939 | Irak2     |
| Ccl25     | Ccr10     | 0.938 | Ccl25     |
| Crkl      | Kidins220 | 0.938 | Crkl      |

| Ppfibp2 | Ptprd   | 0.938 | Ppfibp2 |
|---------|---------|-------|---------|
| Dnm3    | Syt11   | 0.937 | Dnm3    |
| Tgoln1  | Trf     | 0.937 | Tgoln1  |
| Cdc40   | Ppih    | 0.936 | Cdc40   |
| Lrrk2   | Rab29   | 0.936 | Lrrk2   |
| Polr3e  | Snapc3  | 0.936 | Polr3e  |
| Acss2   | Aldh1b1 | 0.935 | Acss2   |
| Det1    | Ube2d1  | 0.935 | Det1    |
| Tfap2c  | Wwox    | 0.935 | Tfap2c  |
| Acot4   | Gnpat   | 0.934 | Acot4   |
| Арс     | Tcf7    | 0.933 | Apc     |
| Lama3   | Ntn4    | 0.933 | Lama3   |
| Adra1d  | Oxt     | 0.932 | Adra1d  |
| Aqr     | Upf3b   | 0.932 | Aqr     |
| Cops4   | Fbxo44  | 0.932 | Cops4   |
| Hecw2   | Ube2d1  | 0.932 | Hecw2   |
| Nudt21  | Ppih    | 0.932 | Nudt21  |
| Rgs6    | Rgs7bp  | 0.932 | Rgs6    |
| Snrnp40 | Upf3b   | 0.93  | Snrnp40 |
| Арс     | Casp3   | 0.929 | Apc     |
| Cntn4   | Opcml   | 0.929 | Cntn4   |
| Lox     | Loxl2   | 0.929 | Lox     |
| Oxt     | Trhr    | 0.929 | Oxt     |
| Syt1    | Tgoln1  | 0.928 | Syt1    |
| Cdc40   | Ddx39b  | 0.927 | Cdc40   |
| Acot1   | Gnpat   | 0.926 | Acot1   |
| Det1    | Znrf2   | 0.926 | Det1    |
| Itga1   | Itgb6   | 0.926 | Itga1   |
| Nudt21  | Ybx1    | 0.926 | Nudt21  |
| Defb30  | Defb47  | 0.925 | Defb30  |
| Rfc4    | Rrm1    | 0.925 | Rfc4    |
| Aqr     | Prpf31  | 0.924 | Aqr     |
| Dmd     | Tmod1   | 0.924 | Dmd     |
| Mdm2    | Sgk1    | 0.924 | Mdm2    |
| Ppih    | Srrm2   | 0.924 | Ppih    |
| Dnmt3b  | Mat2b   | 0.923 | Dnmt3b  |
| Akap9   | Tubgcp4 | 0.922 | Akap9   |
| Hrh1    | Ptafr   | 0.922 | Hrh1    |
| Ldlrap1 | Trf     | 0.922 | Ldlrap1 |
| Nsf     | Tgoln1  | 0.922 | Nsf     |
| Ttc21b  | Ttc30b  | 0.922 | Ttc21b  |
| Acsf3   | Aldh9a1 | 0.921 | Acsf3   |
| Bub1b   | Diap2   | 0.921 | Bub1b   |

| Nudt21  | Snrnp40   | 0.921 | Nudt21  |
|---------|-----------|-------|---------|
| Asb14   | Lmo7      | 0.92  | Asb14   |
| Cdc40   | Upf3b     | 0.92  | Cdc40   |
| Cdh18   | Cdh6      | 0.92  | Cdh18   |
| Hifla   | Lrrk2     | 0.92  | Hifla   |
| Map3k7  | Mapk12    | 0.92  | Map3k7  |
| Clu     | Serpina1a | 0.919 | Clu     |
| Ldlr    | Trf       | 0.919 | Ldlr    |
| Pex12   | Pex51     | 0.919 | Pex12   |
| Ppih    | Ybx1      | 0.919 | Ppih    |
| Cntn4   | Ntng2     | 0.918 | Cntn4   |
| Ly6h    | Opcml     | 0.918 | Ly6h    |
| Myl6b   | Mylpf     | 0.918 | Myl6b   |
| Srrm2   | Ybx1      | 0.918 | Srrm2   |
| Tk1     | Tk2       | 0.918 | Tk1     |
| Btk     | Itk       | 0.917 | Btk     |
| Bub1b   | Ube2d1    | 0.917 | Bub1b   |
| Kif16b  | Kifla     | 0.917 | Kif16b  |
| Pde6b   | Rgs9      | 0.917 | Pde6b   |
| Rgs6    | Rgs9      | 0.917 | Rgs6    |
| Acot1   | Acot4     | 0.916 | Acot1   |
| Ap2b1   | Tgoln1    | 0.916 | Ap2b1   |
| Asb14   | Cul1      | 0.916 | Asb14   |
| Defb26  | Defb47    | 0.916 | Defb26  |
| St3gal1 | St8sia1   | 0.916 | St3gal1 |
| Acsf3   | Aldh1b1   | 0.915 | Acsf3   |
| Adamts2 | Adamts6   | 0.915 | Adamts2 |
| Adra2a  | Sstr3     | 0.915 | Adra2a  |
| Gabra5  | Gabrg3    | 0.915 | Gabra5  |
| Ldlr    | Tgoln1    | 0.915 | Ldlr    |
| Prpf31  | Srrm2     | 0.915 | Prpf31  |
| Aldh1b1 | Gatm      | 0.914 | Aldh1b1 |
| Dhfr    | Th        | 0.914 | Dhfr    |
| Kif12   | Kifla     | 0.914 | Kif12   |
| Ap2b1   | Syt1      | 0.913 | Ap2b1   |
| Ap2b1   | Syt11     | 0.913 | Ap2b1   |
| Asb14   | Ube2d1    | 0.913 | Asb14   |
| Dao     | Ddo       | 0.913 | Dao     |
| Ddo     | Gnpat     | 0.913 | Ddo     |
| Grm2    | Sstr3     | 0.913 | Grm2    |
| Inpp4b  | Pik3r6    | 0.913 | Inpp4b  |
| Acot4   | Ddo       | 0.912 | Acot4   |
| Adamts2 | Col11a2   | 0.912 | Adamts2 |

| Akap9   | Cc2d2a   | 0.912 | Akap9   |
|---------|----------|-------|---------|
| Dhfr    | Tph1     | 0.912 | Dhfr    |
| Dsc1    | Dsc3     | 0.912 | Dsc1    |
| Hifla   | Ube2d1   | 0.912 | Hifla   |
| Hrh1    | Oxt      | 0.912 | Hrh1    |
| Kif16b  | Kiflb    | 0.912 | Kif16b  |
| Mapk12  | Myog     | 0.912 | Mapk12  |
| Nudt21  | Prpf31   | 0.912 | Nudt21  |
| Adra1d  | Hrh1     | 0.911 | Adra1d  |
| Арс     | Tle4     | 0.911 | Apc     |
| Asb14   | Cops4    | 0.911 | Asb14   |
| Fgf2    | Fgf6     | 0.911 | Fgf2    |
| Gm28040 | Hcrtr2   | 0.911 | Gm28040 |
| Hecw2   | Znrf2    | 0.911 | Hecw2   |
| Pirb    | Ptafr    | 0.911 | Pirb    |
| Adam8   | Clec5a   | 0.91  | Adam8   |
| B3galt4 | St3gal1  | 0.91  | B3galt4 |
| Dnm3    | Slc2a8   | 0.91  | Dnm3    |
| Dnm3    | Ldlrap1  | 0.91  | Dnm3    |
| Fbxo17  | Fbxo44   | 0.91  | Fbxo17  |
| Hertr2  | Oxt      | 0.91  | Hcrtr2  |
| Hcrtr2  | Trhr     | 0.91  | Hcrtr2  |
| Hrh1    | Trhr     | 0.91  | Hrh1    |
| Aldh1b1 | Gadl1    | 0.909 | Aldh1b1 |
| Aldh9a1 | Gadl1    | 0.909 | Aldh9a1 |
| Арс     | Cul1     | 0.909 | Apc     |
| Clec5a  | Ptafr    | 0.909 | Clec5a  |
| Cul1    | Hecw2    | 0.909 | Cul1    |
| Adra2a  | Grm2     | 0.908 | Adra2a  |
| Aldh9a1 | Gatm     | 0.908 | Aldh9a1 |
| Aldoc   | Mmp9     | 0.908 | Aldoc   |
| Cntn4   | Ly6h     | 0.908 | Cntn4   |
| Cul1    | Lmo7     | 0.908 | Cul1    |
| Cul1    | Znrf2    | 0.908 | Cul1    |
| Dnm3    | Ldlr     | 0.908 | Dnm3    |
| Gm5150  | Pirb     | 0.908 | Gm5150  |
| Grik2   | Ncald    | 0.908 | Grik2   |
| Adam8   | Ptafr    | 0.907 | Adam8   |
| Akap9   | Cep78    | 0.907 | Akap9   |
| Ap2b1   | Trf      | 0.907 | Ap2b1   |
| Asns    | Aspa     | 0.907 | Asns    |
| Ccl28   | Tas2r106 | 0.907 | Ccl28   |
| Cdc73   | Tcf7     | 0.907 | Cdc73   |

| Cyp2a12   | Cyp2j6    | 0.907 | Cyp2a12   |
|-----------|-----------|-------|-----------|
| Dao       | Pex12     | 0.907 | Dao       |
| Hertr2    | Hrh1      | 0.907 | Hcrtr2    |
| Hecw2     | Lmo7      | 0.907 | Hecw2     |
| Kif12     | Kiflb     | 0.907 | Kif12     |
| Ldlr      | Slc2a8    | 0.907 | Ldlr      |
| Ldlr      | Syt1      | 0.907 | Ldlr      |
| Lrrtm4    | Vwc21     | 0.907 | Lrrtm4    |
| Prdx6     | Serpina3j | 0.907 | Prdx6     |
| Prkcb     | Prkcg     | 0.907 | Prkcb     |
| Ap2b1     | Ldlr      | 0.906 | Ap2b1     |
| Ccl28     | Sstr3     | 0.906 | Ccl28     |
| Cdc73     | Tle4      | 0.906 | Cdc73     |
| Det1      | Hecw2     | 0.906 | Det1      |
| Inpp4b    | Pik3ip1   | 0.906 | Inpp4b    |
| Kif12     | Kif16b    | 0.906 | Kif12     |
| Kril      | Utp6      | 0.906 | Kri1      |
| Oxt       | Ptafr     | 0.906 | Oxt       |
| P2ry10    | Ptafr     | 0.906 | P2ry10    |
| Ptafr     | Trhr      | 0.906 | Ptafr     |
| Acot4     | Dao       | 0.905 | Acot4     |
| Aqr       | Nudt21    | 0.905 | Aqr       |
| Cdc40     | Nudt21    | 0.905 | Cdc40     |
| Dnm3      | Trf       | 0.905 | Dnm3      |
| Fbn2      | Itgb6     | 0.905 | Fbn2      |
| Ntng2     | Opcml     | 0.905 | Ntng2     |
| Serpina1a | Serpina3j | 0.905 | Serpina1a |
| Srrm2     | Upf3b     | 0.905 | Srrm2     |
| Syt11     | Tgoln1    | 0.905 | Syt11     |
| Acsf3     | Aox4      | 0.904 | Acsf3     |
| Akap9     | Rasgrf2   | 0.904 | Akap9     |
| Aldoc     | Ctss      | 0.904 | Aldoc     |
| Asb14     | Hecw2     | 0.904 | Asb14     |
| Clec5a    | Gm5150    | 0.904 | Clec5a    |
| Cul1      | Prlr      | 0.904 | Cul1      |
| Fbxo17    | Ube2d1    | 0.904 | Fbxo17    |
| Gm5150    | Ptafr     | 0.904 | Gm5150    |
| H2-K1     | Ptafr     | 0.904 | H2-K1     |
| Mapk12    | Tcf4      | 0.904 | Mapk12    |
| Snrnp40   | Ybx1      | 0.904 | Snrnp40   |
| Upf3b     | Ybx1      | 0.904 | Upf3b     |
| Acot1     | Ddo       | 0.903 | Acot1     |
| Acot1     | Dao       | 0.903 | Acot1     |

| Adra1d   | P2ry10    | 0.903 | Adra1d   |
|----------|-----------|-------|----------|
| Adra2a   | Ccl28     | 0.903 | Adra2a   |
| Asb14    | Znrf2     | 0.903 | Asb14    |
| BC018507 | Snapc3    | 0.903 | BC018507 |
| Cc2d2a   | Cep78     | 0.903 | Cc2d2a   |
| Clec5a   | Snap25    | 0.903 | Clec5a   |
| Срт      | Ulbp1     | 0.903 | Cpm      |
| Dao      | Ube2d1    | 0.903 | Dao      |
| Ddo      | Ube2d1    | 0.903 | Ddo      |
| Gm28040  | Ptafr     | 0.903 | Gm28040  |
| Gnpat    | Ube2d1    | 0.903 | Gnpat    |
| Lmo7     | Ube2d1    | 0.903 | Lmo7     |
| Mecom    | Rnf2      | 0.903 | Mecom    |
| Prpf31   | Ybx1      | 0.903 | Prpf31   |
| Syt1     | Trf       | 0.903 | Syt1     |
| Syt11    | Trf       | 0.903 | Syt11    |
| Acot1    | Ube2d1    | 0.902 | Acot1    |
| Acot4    | Ube2d1    | 0.902 | Acot4    |
| Adam8    | Tmc6      | 0.902 | Adam8    |
| Adam8    | Gm5150    | 0.902 | Adam8    |
| Adamts2  | Sema5a    | 0.902 | Adamts2  |
| Adra1d   | Arhgef1   | 0.902 | Adra1d   |
| Akap9    | Fgfr1op   | 0.902 | Akap9    |
| Aqr      | Rfc4      | 0.902 | Aqr      |
| Cdc40    | Ybx1      | 0.902 | Cdc40    |
| Cep78    | Tubgcp4   | 0.902 | Cep78    |
| Dao      | Gatm      | 0.902 | Dao      |
| Det1     | Fbxo44    | 0.902 | Det1     |
| Det1     | Lmo7      | 0.902 | Det1     |
| Dnm3     | Tgoln1    | 0.902 | Dnm3     |
| Itgal    | Myl6b     | 0.902 | Itgal    |
| Itgal    | Mylpf     | 0.902 | Itgal    |
| Ldlr     | Syt11     | 0.902 | Ldlr     |
| Ly6h     | Ntng2     | 0.902 | Ly6h     |
| Nudt21   | Upf3b     | 0.902 | Nudt21   |
| Nudt21   | Srrm2     | 0.902 | Nudt21   |
| Sec22a   | Serpinala | 0.902 | Sec22a   |
| Snrnp48  | Ybx1      | 0.902 | Snrnp48  |
| Adra1d   | Hcrtr2    | 0.901 | Adra1d   |
| Adra2a   | Ccl25     | 0.901 | Adra2a   |
| Afp      | Tgoln1    | 0.901 | Afp      |
| Asb14    | Fbxo17    | 0.901 | Asb14    |
| Asb14    | Det1      | 0.901 | Asb14    |

| Asb14    | Fbxo44   | 0.901 | Asb14    |
|----------|----------|-------|----------|
| BC018507 | Vwa9     | 0.901 | BC018507 |
| Bcl2111  | Casp3    | 0.901 | Bcl2l11  |
| Cel25    | Sstr3    | 0.901 | Ccl25    |
| Cd68     | Lpcat1   | 0.901 | Cd68     |
| Cep78    | Fgfr1op  | 0.901 | Cep78    |
| Cntn4    | Cpm      | 0.901 | Cntn4    |
| Cntn4    | Lypd4    | 0.901 | Cntn4    |
| Срт      | Ly6h     | 0.901 | Срт      |
| Ddo      | Pex12    | 0.901 | Ddo      |
| Fbxo44   | Ube2d1   | 0.901 | Fbxo44   |
| Gm28040  | Hrh1     | 0.901 | Gm28040  |
| Gm5150   | H2-K1    | 0.901 | Gm5150   |
| Hertr2   | Ptafr    | 0.901 | Hcrtr2   |
| Hrh1     | P2ry10   | 0.901 | Hrh1     |
| Mecom    | Phc2     | 0.901 | Mecom    |
| Prelp    | St3gal4  | 0.901 | Prelp    |
| Prelp    | St3gal1  | 0.901 | Prelp    |
| Slc2a8   | Syt11    | 0.901 | Slc2a8   |
| Snapc3   | Vwa9     | 0.901 | Snapc3   |
| Snrnp40  | Snrnp48  | 0.901 | Snrnp40  |
| Acot1    | Pex12    | 0.9   | Acot1    |
| Acot4    | Pex12    | 0.9   | Acot4    |
| Adam8    | Snap25   | 0.9   | Adam8    |
| Adamts6  | Sema5a   | 0.9   | Adamts6  |
| Adra1d   | Trhr     | 0.9   | Adra1d   |
| Adra1d   | Ptafr    | 0.9   | Adra1d   |
| Adra1d   | Gm28040  | 0.9   | Adra1d   |
| Adra2a   | Tas2r106 | 0.9   | Adra2a   |
| Adra2a   | Ccr10    | 0.9   | Adra2a   |
| Ap2b1    | Prkcb    | 0.9   | Ap2b1    |
| Ap2b1    | Prkcg    | 0.9   | Ap2b1    |
| Aqr      | Ybx1     | 0.9   | Aqr      |
| Art3     | Cpm      | 0.9   | Art3     |
| Art3     | Tectb    | 0.9   | Art3     |
| Art3     | Ntng2    | 0.9   | Art3     |
| Art3     | Lypd4    | 0.9   | Art3     |
| Art3     | Cntn4    | 0.9   | Art3     |
| Art3     | Plet1    | 0.9   | Art3     |
| Art3     | Opcml    | 0.9   | Art3     |
| Art3     | Ulbp1    | 0.9   | Art3     |
| Art3     | Ly6h     | 0.9   | Art3     |
| Cc2d2a   | Fgfr1op  | 0.9   | Cc2d2a   |

| Cel25   | Grm2      | 0.9 | Ccl25   |
|---------|-----------|-----|---------|
| Ccl25   | Tas2r106  | 0.9 | Ccl25   |
| Ccl28   | Grm2      | 0.9 | Ccl28   |
| Ccr10   | Grm2      | 0.9 | Ccr10   |
| Ccr10   | Sstr3     | 0.9 | Ccr10   |
| Ccr10   | Tas2r106  | 0.9 | Ccr10   |
| Cdc73   | Eaf2      | 0.9 | Cdc73   |
| Clec5a  | Tmc6      | 0.9 | Clec5a  |
| Clu     | Serpina3j | 0.9 | Clu     |
| Cntn4   | Tectb     | 0.9 | Cntn4   |
| Cntn4   | Plet1     | 0.9 | Cntn4   |
| Cntn4   | Ulbp1     | 0.9 | Cntn4   |
| Cops4   | Lmo7      | 0.9 | Cops4   |
| Срт     | Lypd4     | 0.9 | Срт     |
| Срт     | Plet1     | 0.9 | Срт     |
| Cpm     | Ntng2     | 0.9 | Cpm     |
| Cpm     | Tectb     | 0.9 | Cpm     |
| Cpm     | Opeml     | 0.9 | Cpm     |
| Det1    | Fbxo17    | 0.9 | Det1    |
| Fbxo17  | Znrf2     | 0.9 | Fbxo17  |
| Fbxo17  | Hecw2     | 0.9 | Fbxo17  |
| Fbxo17  | Lmo7      | 0.9 | Fbxo17  |
| Fbxo44  | Znrf2     | 0.9 | Fbxo44  |
| Fbxo44  | Hecw2     | 0.9 | Fbxo44  |
| Fbxo44  | Lmo7      | 0.9 | Fbxo44  |
| Fgfr1op | Tubgcp4   | 0.9 | Fgfr1op |
| Gm10081 | Reep5     | 0.9 | Gm10081 |
| Gm28040 | Oxt       | 0.9 | Gm28040 |
| Gm28040 | Trhr      | 0.9 | Gm28040 |
| Gm28040 | P2ry10    | 0.9 | Gm28040 |
| Gm5150  | Tmc6      | 0.9 | Gm5150  |
| Gm5150  | Snap25    | 0.9 | Gm5150  |
| Grm2    | Tas2r106  | 0.9 | Grm2    |
| Hcrtr2  | P2ry10    | 0.9 | Hcrtr2  |
| Ldlrap1 | Slc2a8    | 0.9 | Ldlrap1 |
| Ldlrap1 | Tgoln1    | 0.9 | Ldlrap1 |
| Ldlrap1 | Syt1      | 0.9 | Ldlrap1 |
| Ldlrap1 | Syt11     | 0.9 | Ldlrap1 |
| Lmo7    | Znrf2     | 0.9 | Lmo7    |
| Ly6h    | Tectb     | 0.9 | Ly6h    |
| Ly6h    | Plet1     | 0.9 | Ly6h    |
| Ly6h    | Ulbp1     | 0.9 | Ly6h    |
| Lypd4   | Tectb     | 0.9 | Lypd4   |

| Lypd4     | Ntng2     | 0.9 | Lypd4     |
|-----------|-----------|-----|-----------|
| Lypd4     | Plet1     | 0.9 | Lypd4     |
| Lypd4     | Opcml     | 0.9 | Lypd4     |
| Lypd4     | Ulbp1     | 0.9 | Lypd4     |
| Mecom     | Ring1     | 0.9 | Mecom     |
| Nsf       | Serpina1a | 0.9 | Nsf       |
| Ntng2     | Tectb     | 0.9 | Ntng2     |
| Ntng2     | Plet1     | 0.9 | Ntng2     |
| Ntng2     | Ulbp1     | 0.9 | Ntng2     |
| Olfr1080  | Reep5     | 0.9 | Olfr1080  |
| Olfr1097  | Reep5     | 0.9 | Olfr1097  |
| Olfr1152  | Reep5     | 0.9 | Olfr1152  |
| Olfr1164  | Reep5     | 0.9 | Olfr1164  |
| Olfr1195  | Reep5     | 0.9 | Olfr1195  |
| Olfr228   | Reep5     | 0.9 | Olfr228   |
| Olfr314   | Reep5     | 0.9 | Olfr314   |
| Olfr384   | Reep5     | 0.9 | Olfr384   |
| Olfr487   | Reep5     | 0.9 | Olfr487   |
| Olfr512   | Reep5     | 0.9 | Olfr512   |
| Olfr583   | Reep5     | 0.9 | Olfr583   |
| Olfr584   | Reep5     | 0.9 | Olfr584   |
| Olfr688   | Reep5     | 0.9 | Olfr688   |
| Olfr869   | Reep5     | 0.9 | Olfr869   |
| Olfr945   | Reep5     | 0.9 | Olfr945   |
| Olfr981   | Reep5     | 0.9 | Olfr981   |
| Opcml     | Tectb     | 0.9 | Opcml     |
| Opcml     | Plet1     | 0.9 | Opcml     |
| Opcml     | Ulbp1     | 0.9 | Opcml     |
| Oxt       | P2ry10    | 0.9 | Oxt       |
| P2ry10    | Trhr      | 0.9 | P2ry10    |
| Plet1     | Tectb     | 0.9 | Plet1     |
| Plet1     | Ulbp1     | 0.9 | Plet1     |
| Prdx6     | Sdcbp     | 0.9 | Prdx6     |
| Ptafr     | Tmc6      | 0.9 | Ptafr     |
| Ptafr     | Snap25    | 0.9 | Ptafr     |
| Scfd1     | Serpina1a | 0.9 | Scfd1     |
| Sdcbp     | Serpina3j | 0.9 | Sdcbp     |
| Serpinala | Tgoln1    | 0.9 | Serpina1a |
| Slc2a8    | Trf       | 0.9 | Slc2a8    |
| Slc2a8    | Tgoln1    | 0.9 | Slc2a8    |
| Slc2a8    | Syt1      | 0.9 | Slc2a8    |
| Snap25    | Tmc6      | 0.9 | Snap25    |
| Sstr3     | Tas2r106  | 0.9 | Sstr3     |

| Tectb   | Ulbp1     | 0.9   | Tectb   |
|---------|-----------|-------|---------|
| Enpp2   | Gdpd1     | 0.899 | Enpp2   |
| Clu     | Pon1      | 0.897 | Clu     |
| Mdm2    | Ube2d1    | 0.894 | Mdm2    |
| Sv2b    | Syt1      | 0.893 | Sv2b    |
| Atp13a2 | Lrrk2     | 0.891 | Atp13a2 |
| Lpcat1  | Pla2g7    | 0.891 | Lpcat1  |
| Cps1    | Sirt5     | 0.888 | Cps1    |
| Polr1b  | Utp6      | 0.886 | Polr1b  |
| Dao     | Srr       | 0.884 | Dao     |
| Map3k7  | Mapk10    | 0.882 | Map3k7  |
| Ap2b1   | Ap5m1     | 0.881 | Ap2b1   |
| Cbfa2t3 | Tcf4      | 0.879 | Cbfa2t3 |
| Pla2g7  | Pon1      | 0.879 | Pla2g7  |
| Invs    | Rpgr      | 0.876 | Invs    |
| Pif1    | Rad51     | 0.874 | Pif1    |
| Chat    | Th        | 0.864 | Chat    |
| Cln3    | Ppt1      | 0.862 | Cln3    |
| Gid8    | Ranbp10   | 0.862 | Gid8    |
| Dhfr    | Mthfr     | 0.861 | Dhfr    |
| Tk1     | mCG_22911 | 0.861 | Tk1     |
| Cdh1    | Fer       | 0.856 | Cdh1    |
| Usp9y   | Uty       | 0.855 | Usp9y   |
| Casp3   | Prkcg     | 0.85  | Casp3   |
| Crkl    | Mapk10    | 0.85  | Crkl    |
| Casp3   | Prkcb     | 0.849 | Casp3   |
| Plcd4   | Prkcb     | 0.847 | Plcd4   |
| Fgf2    | Mmp9      | 0.846 | Fgf2    |
| Aars    | Asns      | 0.843 | Aars    |
| Prpf31  | Rpp38     | 0.843 | Prpf31  |
| Cd80    | Itga4     | 0.838 | Cd80    |
| Msh3    | Xrcc4     | 0.838 | Msh3    |
| Casp3   | Mdm2      | 0.836 | Casp3   |
| Mdc1    | Rad51     | 0.836 | Mdc1    |
| Арс     | Cdh1      | 0.835 | Арс     |
| Arhgef1 | Arhgef6   | 0.832 | Arhgefl |
| Ncf2    | Prkcb     | 0.831 | Ncf2    |
| Pparg   | Scd1      | 0.831 | Pparg   |
| Bub1b   | Rrm1      | 0.83  | Bub1b   |
| Cdh1    | Mmp9      | 0.83  | Cdh1    |
| Reep5   | Rtn1      | 0.83  | Reep5   |
| Syn2    | Syt1      | 0.829 | Syn2    |
| Aldh1b1 | Aldh9a1   | 0.827 | Aldh1b1 |

| Snap25  | Stxbp51   | 0.827 | Snap25  |
|---------|-----------|-------|---------|
| Aars    | Nars2     | 0.826 | Aars    |
| Mapk12  | Prkg1     | 0.824 | Mapk12  |
| Mapk12  | Prkg2     | 0.824 | Mapk12  |
| Bub1b   | Rad51ap1  | 0.823 | Bub1b   |
| Hdac9   | Phf12     | 0.821 | Hdac9   |
| Plcd4   | Prkcg     | 0.821 | Plcd4   |
| Bub1b   | Rfc4      | 0.819 | Bub1b   |
| Pla2g7  | Ptafr     | 0.819 | Pla2g7  |
| Plcz1   | Prkcb     | 0.819 | Plcz1   |
| Plcz1   | Prkcg     | 0.819 | Plcz1   |
| Cngb3   | Pde6b     | 0.818 | Cngb3   |
| Dhfr    | Tk1       | 0.818 | Dhfr    |
| 113     | I19       | 0.818 | I13     |
| Cd80    | H2-K1     | 0.816 | Cd80    |
| Ctsl    | Ctss      | 0.816 | Ctsl    |
| Aldh1b1 | Aox4      | 0.813 | Aldh1b1 |
| Aldh9a1 | Aox4      | 0.813 | Aldh9a1 |
| Asns    | Gadl1     | 0.813 | Asns    |
| Dmd     | Krt19     | 0.813 | Dmd     |
| Aldob   | Tktl2     | 0.812 | Aldob   |
| Camk4   | Prm2      | 0.812 | Camk4   |
| Itgb6   | Lama3     | 0.812 | Itgb6   |
| Ica     | Trf       | 0.811 | Ica     |
| Mak16   | Utp6      | 0.811 | Mak16   |
| Atp2b4  | Prkg2     | 0.81  | Atp2b4  |
| Mak16   | Polr1b    | 0.81  | Mak16   |
| Rnf165  | Ube2d1    | 0.81  | Rnf165  |
| Atp2b4  | Prkg1     | 0.809 | Atp2b4  |
| Prkg1   | Prkg2     | 0.807 | Prkg1   |
| Acss2   | Aox4      | 0.806 | Acss2   |
| Cdh1    | Fgf2      | 0.805 | Cdh1    |
| Kri1    | Mak16     | 0.805 | Kri1    |
| Mak16   | Nol12     | 0.805 | Mak16   |
| Mdm4    | Ube2d1    | 0.804 | Mdm4    |
| Aldoc   | Tktl2     | 0.803 | Aldoc   |
| Aspa    | Gadl1     | 0.803 | Aspa    |
| Brcc3   | Rnf2      | 0.803 | Brcc3   |
| Mapk10  | Mecom     | 0.803 | Mapk10  |
| Tk2     | mCG_22911 | 0.803 | Tk2     |
| Mak16   | Wdr18     | 0.802 | Mak16   |
| Cd86    | H2-K1     | 0.8   | Cd86    |
| Polr1b  | Wdr18     | 0.8   | Polr1b  |

| Cyp2a12  | Cyp4a14   | 0.799 | Cyp2a12  |
|----------|-----------|-------|----------|
| Kri1     | Polr1b    | 0.797 | Kri1     |
| Itgal    | Itga4     | 0.794 | Itgal    |
| Ppih     | Rpp38     | 0.794 | Ppih     |
| Utp6     | Wdr18     | 0.794 | Utp6     |
| Tcf4     | Tle4      | 0.791 | Tcf4     |
| Rpp38    | Utp6      | 0.788 | Rpp38    |
| Ncf2     | Pirb      | 0.786 | Ncf2     |
| Nsf      | Syt1      | 0.785 | Nsf      |
| Grik2    | Scn3a     | 0.784 | Grik2    |
| Junb     | Mapk10    | 0.784 | Junb     |
| Afp      | Krt19     | 0.783 | Afp      |
| Dmd      | Myog      | 0.783 | Dmd      |
| Fgf2     | Prom1     | 0.783 | Fgf2     |
| Grik2    | Scn9a     | 0.783 | Grik2    |
| Aldob    | Ldhc      | 0.781 | Aldob    |
| Dnah17   | Dnal1     | 0.779 | Dnah17   |
| Sec22a   | Snap25    | 0.778 | Sec22a   |
| Itga4    | Lama3     | 0.777 | Itga4    |
| Clu      | Pla2g7    | 0.776 | Clu      |
| Acss2    | Aldh9a1   | 0.774 | Acss2    |
| Bub1b    | Kif14     | 0.774 | Bub1b    |
| Srek1ip1 | mCG_22911 | 0.773 | Srek1ip1 |
| Batf3    | Junb      | 0.772 | Batf3    |
| Casp3    | Cdh1      | 0.77  | Casp3    |
| Casp3    | Mapk10    | 0.77  | Casp3    |
| Lama3    | Sv2b      | 0.77  | Lama3    |
| Snap25   | Syt11     | 0.77  | Snap25   |
| Ak4      | Pde4d     | 0.769 | Ak4      |
| Brcc3    | Ring1     | 0.768 | Brcc3    |
| Cngb3    | Rgs7bp    | 0.768 | Cngb3    |
| Apobec3  | Trim5     | 0.767 | Apobec3  |
| Sycp21   | Tmem150b  | 0.766 | Sycp21   |
| Aplf     | Xrcc4     | 0.761 | Aplf     |
| Polr1b   | Polr3e    | 0.761 | Polr1b   |
| Ddx39b   | Gm4312    | 0.76  | Ddx39b   |
| Prpf31   | Utp6      | 0.759 | Prpf31   |
| Hdac9    | Nrip1     | 0.758 | Hdac9    |
| Ccdc33   | Gramd2    | 0.756 | Ccdc33   |
| Ferd31   | Snx13     | 0.756 | Ferd31   |
| Atp5d    | Uty       | 0.755 | Atp5d    |
| Cd80     | Itga1     | 0.754 | Cd80     |
| G3bp1    | Ybx1      | 0.752 | G3bp1    |

| Grik2        | Lrrtm4                 | 0.751 | Grik2      |
|--------------|------------------------|-------|------------|
| Bub1b        | Rad51                  | 0.75  | Bub1b      |
| Itga1        | Lama3                  | 0.75  | Itga1      |
| Cops4        | Det1                   | 0.749 | Cops4      |
| Kirrel3      | Xpr1                   | 0.749 | Kirrel3    |
| Aldoc        | Ldhc                   | 0.748 | Aldoc      |
| Cyp2j6       | Cyp4a14                | 0.747 | Cyp2j6     |
| Dhfr         | Rrm1                   | 0.747 | Dhfr       |
| Mmp9         | Ncf2                   | 0.747 | Mmp9       |
| Odf1         | Prm2                   | 0.747 | Odf1       |
| Ldlr         | Pon1                   | 0.746 | Ldlr       |
| Fads2        | Scd1                   | 0.745 | Fads2      |
| Aplf         | Etaa1                  | 0.744 | Aplf       |
| Cd86         | Serpinb9f              | 0.743 | Cd86       |
| Grik2        | Vwc21                  | 0.743 | Grik2      |
| Clu          | Ldlr                   | 0.742 | Clu        |
| Rpp38        | Snrnp40                | 0.741 | Rpp38      |
| Cd80         | Itgb6                  | 0.74  | Cd80       |
| Lrrk2        | Th                     | 0.739 | Lrrk2      |
| Gabrg2       | Nsf                    | 0.738 | Gabrg2     |
| Prps113      | Tktl2                  | 0.738 | Prps113    |
| Cdc40        | Luc7l                  | 0.737 | Cdc40      |
| Dgkg         | Gnpat                  | 0.737 | Dgkg       |
| ENSMUSG00000 | V.m. 1. 1. 5 9         | 0.727 | ENSMUSG000 |
| 029620       | VIIII1138              | 0.737 | 00029620   |
| Apobec3      | Fv1                    | 0.736 | Apobec3    |
| Rrm1         | Tk1                    | 0.736 | Rrm1       |
| Agrn         | Dmd                    | 0.734 | Agrn       |
| Cdh1         | Prom1                  | 0.734 | Cdh1       |
| Reep5        | Rtn2                   | 0.734 | Reep5      |
| Als2         | ENSMUSG000<br>00028300 | 0.732 | Als2       |
| Trpm1        | Trpv3                  | 0.732 | Trpm1      |
| Cdh1         | Krt19                  | 0.731 | Cdh1       |
| Amot         | Wwc1                   | 0.73  | Amot       |
| Casp3        | Mmp9                   | 0.729 | Casp3      |
| Strc         | Tectb                  | 0.729 | Strc       |
| Dhx34        | Upf3b                  | 0.728 | Dhx34      |
| Btaf1        | Taf2                   | 0.727 | Btafl      |
| Brcc3        | Phc2                   | 0.726 | Brcc3      |
| Prpf31       | Rnf2                   | 0.726 | Prpf31     |
| Gnl1         | Utp6                   | 0.724 | Gnl1       |
| Kidins220    | Xpr1                   | 0.724 | Kidins220  |

| Msh3     | Rad51     | 0.724 | Msh3     |
|----------|-----------|-------|----------|
| Brcc3    | Mdc1      | 0.723 | Brcc3    |
| Crp      | Mmp9      | 0.723 | Crp      |
| Dgkg     | Plcd4     | 0.723 | Dgkg     |
| Rad51    | Rfc4      | 0.723 | Rad51    |
| Atf7     | Junb      | 0.722 | Atf7     |
| Bub1b    | Fignl1    | 0.722 | Bub1b    |
| Cd80     | Serpinb9f | 0.721 | Cd80     |
| Ap2b1    | Ap5s1     | 0.72  | Ap2b1    |
| Dtna     | Krt19     | 0.72  | Dtna     |
| Nrip1    | Phf12     | 0.72  | Nrip1    |
| Pde4d    | Tex40     | 0.72  | Pde4d    |
| Dgkg     | Plcz1     | 0.719 | Dgkg     |
| Gabra5   | Opcml     | 0.719 | Gabra5   |
| Amot     | Mpdz      | 0.718 | Amot     |
| Baz2b    | Setdb2    | 0.718 | Baz2b    |
| Fignl1   | Rad51     | 0.718 | Fignl1   |
| Fv1      | Trim5     | 0.718 | Fv1      |
| Fgf2     | Hifla     | 0.717 | Fgf2     |
| Itgb1bp2 | Smpx      | 0.716 | Itgb1bp2 |
| Cenpw    | Rad51ap1  | 0.714 | Cenpw    |
| H2-K1    | Serpinb9f | 0.714 | H2-K1    |
| Mylpf    | Myot      | 0.714 | Mylpf    |
| Ccdc171  | Snapc3    | 0.712 | Ccdc171  |
| Gnl1     | Mak16     | 0.712 | Gnl1     |
| Cd80     | Tnfsf9    | 0.71  | Cd80     |
| Clu      | Mmp9      | 0.71  | Clu      |
| Cd68     | Ctss      | 0.708 | Cd68     |
| Ldhc     | Prm2      | 0.708 | Ldhc     |
| Mfsd11   | Sv2b      | 0.707 | Mfsd11   |
| Cdkn2b   | Mdm2      | 0.706 | Cdkn2b   |
| Atad2    | Btaf1     | 0.705 | Atad2    |
| Cd86     | Ly6c1     | 0.705 | Cd86     |
| Snap25   | Zdhhc3    | 0.705 | Snap25   |
| Brcc3    | Def6      | 0.704 | Brcc3    |
| Ddo      | Srr       | 0.704 | Ddo      |
| Krt19    | Prom1     | 0.704 | Krt19    |
| Ak4      | Rrm1      | 0.703 | Ak4      |
| Ak7      | Rrm1      | 0.703 | Ak7      |
| Ldhc     | Tktl2     | 0.703 | Ldhc     |
| Otp      | Oxt       | 0.703 | Otp      |
| Ric3     | St5       | 0.703 | Ric3     |
| Kiaa1211 | Polr1b    | 0.702 | Kiaa1211 |

| Ctnnd2         ENSMUSG000<br>00056004         0.698         Ctnnd2           Gnl1         Polr1b         0.698         Gnl1           Otol1         Tectb         0.698         Otol1           Snap25         Syt12         0.695         Snap25           Casp3         Fgf2         0.693         Casp3           Fam189a1         Tmem130         0.693         Ferd31           Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j                                                                                                | Bcl2l11      | Mapk10     | 0.698 | Bcl2l11    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------|------------|
| Cumd2         00056004         0.698         Cumd2           Gnl1         Polr1b         0.698         Gnl1           Otol1         Tectb         0.698         Otol1           Snap25         Syt12         0.695         Snap25           Casp3         Fgf2         0.693         Casp3           Fam189a1         Tmem130         0.693         Fam189a1           Ferd31         Tcf4         0.692         Inpp5j           Nrip1         Pparg         0.692         Nrip1           Ccr10         Grk6         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.699         Inpp5j           Ncf2         Xdh         0.689         Ncf2 | G. 10        | ENSMUSG000 | 0.00  | c. 10      |
| Gnl1         Polr1b         0.698         Gnl1           Otol1         Tectb         0.698         Otol1           Snap25         Syt12         0.695         Snap25           Casp3         Fgf2         0.693         Casp3           Fam189a1         Tmem130         0.693         Fam189a1           Ferd31         Tcf4         0.693         Ferd31           Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                            | Ctnnd2       | 00056004   | 0.698 | Ctnnd2     |
| Otol1         Tectb         0.698         Otol1           Snap25         Syt12         0.695         Snap25           Casp3         Fgf2         0.693         Casp3           Fam189a1         Tmem130         0.693         Fam189a1           Ferd31         Tcf4         0.693         Ferd31           Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                     | Gnl1         | Polr1b     | 0.698 | Gnl1       |
| Snap25         Syt12         0.695         Snap25           Casp3         Fgf2         0.693         Casp3           Fam189a1         Tmem130         0.693         Fam189a1           Ferd31         Tcf4         0.693         Ferd31           Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.691         Cer10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j                                                                                                                                                                           | Otol1        | Tectb      | 0.698 | Otol1      |
| Casp3         Fgf2         0.693         Casp3           Fam189a1         Tmem130         0.693         Fam189a1           Ferd31         Tcf4         0.693         Ferd31           Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                           | Snap25       | Syt12      | 0.695 | Snap25     |
| Fam189a1         Tmem130         0.693         Fam189a1           Ferd31         Tcf4         0.693         Ferd31           Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.691         Ccr10           Ccr10         Grk6         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                 | Casp3        | Fgf2       | 0.693 | Casp3      |
| Ferd31         Tcf4         0.693         Ferd31           Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.692         Nrip1           Ccr10         Grk6         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                   | Fam189a1     | Tmem130    | 0.693 | Fam189a1   |
| Inpp5j         Plcd4         0.692         Inpp5j           Nrip1         Pparg         0.692         Nrip1           Ccr10         Grk6         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                                                                              | Ferd31       | Tcf4       | 0.693 | Ferd31     |
| Nrip1         Pparg         0.692         Nrip1           Ccr10         Grk6         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                                                                                                                                          | Inpp5j       | Plcd4      | 0.692 | Inpp5j     |
| Ccr10         Grk6         0.691         Ccr10           Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nrip1        | Pparg      | 0.692 | Nrip1      |
| Cd68         Cd86         0.691         Cd68           Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ccr10        | Grk6       | 0.691 | Ccr10      |
| Atp5d         Ppa1         0.69         Atp5d           Dgke         Gnpat         0.69         Dgke           Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cd68         | Cd86       | 0.691 | Cd68       |
| DgkeGnpat0.69DgkeInpp5jPlcz10.689Inpp5jNcf2Xdh0.689Ncf2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Atp5d        | Ppa1       | 0.69  | Atp5d      |
| Inpp5j         Plcz1         0.689         Inpp5j           Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dgke         | Gnpat      | 0.69  | Dgke       |
| Ncf2         Xdh         0.689         Ncf2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inpp5j       | Plcz1      | 0.689 | Inpp5j     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ncf2         | Xdh        | 0.689 | Ncf2       |
| Adra1d Lrrtm4 0.686 Adra1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adra1d       | Lrrtm4     | 0.686 | Adra1d     |
| BC018507 Smim23 0.686 BC018507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BC018507     | Smim23     | 0.686 | BC018507   |
| Cd80 Ly6c1 0.686 Cd80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cd80         | Ly6c1      | 0.686 | Cd80       |
| Kri1 Prpf31 0.685 Kri1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kri1         | Prpf31     | 0.685 | Kri1       |
| Pifl Rrm1 0.684 Pifl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pifl         | Rrm1       | 0.684 | Pifl       |
| Dgke Plcd4 0.683 Dgke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dgke         | Plcd4      | 0.683 | Dgke       |
| Cd86 Tnfsf9 0.682 Cd86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cd86         | Tnfsf9     | 0.682 | Cd86       |
| Il22ra1 Il9 0.682 Il22ra1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Il22ra1      | I19        | 0.682 | Il22ra1    |
| Gabrb2 Nsf 0.681 Gabrb2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gabrb2       | Nsf        | 0.681 | Gabrb2     |
| II3 II9r 0.681 II3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I13          | Il9r       | 0.681 | I13        |
| Aldh1b1 Cyp4a14 0.68 Aldh1b1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aldh1b1      | Cyp4a14    | 0.68  | Aldh1b1    |
| ENSMUSG00000 ENSMUSG000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ENSMUSG00000 |            |       | ENSMUSG000 |
| 029620 Ttc30b 0.68 00029620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 029620       | Ttc30b     | 0.68  | 00029620   |
| Lrrk2 Nsf 0.68 Lrrk2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lrrk2        | Nsf        | 0.68  | Lrrk2      |
| Snap25 Sv2b 0.679 Snap25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Snap25       | Sv2b       | 0.679 | Snap25     |
| Aldh9a1 Cyp4a14 0.678 Aldh9a1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Aldh9a1      | Cyp4a14    | 0.678 | Aldh9a1    |
| Bub1b Tk1 0.676 Bub1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bub1b        | Tk1        | 0.676 | Bub1b      |
| Cdh1 Lox12 0.675 Cdh1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cdh1         | Lox12      | 0.675 | Cdh1       |
| Cdh1 Clmp 0.675 Cdh1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cdh1         | Clmp       | 0.675 | Cdh1       |
| Ak7 mCG 22911 0.674 Ak7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ak7          | mCG 22911  | 0.674 | Ak7        |
| Cc2d2a Ttc21b 0.674 Cc2d2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cc2d2a       | Ttc21b     | 0.674 | Cc2d2a     |
| Junb Mapk12 0.673 Junb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Junb         | Mapk12     | 0.673 | Junb       |
| Cd68 Mmp9 0.672 Cd68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cd68         | Mmp9       | 0.672 | Cd68       |
| Cytip Traf3ip3 0.672 Cytip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cytip        | Traf3ip3   | 0.672 | Cytip      |
| Plcd4 Plcz1 0.672 Plcd4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plcd4        | Plcz1      | 0.672 | Plcd4      |
| Brinp2 Zfp37 0.671 Brinp2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Brinp2       | Zfp37      | 0.671 | Brinp2     |

| I13      | Prlr      | 0.67  | I13      |
|----------|-----------|-------|----------|
| Ak4      | mCG_22911 | 0.668 | Ak4      |
| Dao      | Tnik      | 0.668 | Dao      |
| Fgf2     | Sox1      | 0.667 | Fgf2     |
| Mapk12   | Ncf2      | 0.667 | Mapk12   |
| Ak7      | Pde4d     | 0.666 | Ak7      |
| Dgke     | Plcz1     | 0.666 | Dgke     |
| Gabra5   | Nsf       | 0.666 | Gabra5   |
| Gap43    | Snap25    | 0.666 | Gap43    |
| Ldlr     | Scd1      | 0.666 | Ldlr     |
| Fads2    | Plb1      | 0.665 | Fads2    |
| Arhgap31 | Dock6     | 0.664 | Arhgap31 |
| Btk      | Lcp1      | 0.664 | Btk      |
| Dmd      | Iqsec3    | 0.664 | Dmd      |
| Gnl1     | Wdr18     | 0.664 | Gnl1     |
| Inpp4b   | Mtmr1     | 0.664 | Inpp4b   |
| Mtmr1    | Tmem55a   | 0.664 | Mtmr1    |
| Peak1    | Scaper    | 0.664 | Peak1    |
| Aox4     | Cyp4a14   | 0.663 | Aox4     |
| Dnmt3b   | Lin28a    | 0.663 | Dnmt3b   |
| Eif4e1b  | Patl2     | 0.663 | Eif4e1b  |
| Rad51    | Rrm1      | 0.663 | Rad51    |
| Asns     | Nars2     | 0.662 | Asns     |
| Dlgap1   | Epb4.113  | 0.662 | Dlgap1   |
| Mecom    | Prdm11    | 0.662 | Mecom    |
| Nacc1    | Ranbp10   | 0.662 | Nacc1    |
| Ube2d1   | Usp9y     | 0.662 | Ube2d1   |
| Rps6ka2  | Ybx1      | 0.661 | Rps6ka2  |
| Atad2    | Rad51ap1  | 0.66  | Atad2    |
| Gdpd1    | Plb1      | 0.66  | Gdpd1    |
| Peak1    | Tk2       | 0.66  | Peak1    |
| Pla2g7   | Plb1      | 0.66  | Pla2g7   |
| Cspp1    | Ttc21b    | 0.659 | Cspp1    |
| Enpp2    | Plb1      | 0.659 | Enpp2    |
| Crkl     | Itgb6     | 0.658 | Crkl     |
| Erlin1   | Rnf170    | 0.658 | Erlin1   |
| Timm10b  | Tmem208   | 0.658 | Timm10b  |
| Mtmr1    | Plcd4     | 0.657 | Mtmr1    |
| Adamts2  | Phykpl    | 0.656 | Adamts2  |
| Pex51    | Scp2d1    | 0.655 | Pex51    |
| Birc3    | Ctss      | 0.653 | Birc3    |
| Aox4     | Cyp2a12   | 0.652 | Aox4     |
| Camk4    | Pparg     | 0.652 | Camk4    |

| Fgf2    | Lin28a    | 0.652 | Fgf2    |
|---------|-----------|-------|---------|
| Lpcat1  | Plb1      | 0.652 | Lpcat1  |
| Afp     | Sox1      | 0.651 | Afp     |
| Cps1    | Gm28040   | 0.651 | Cps1    |
| Fgf13   | Scn9a     | 0.651 | Fgf13   |
| Ttc30b  | Vmn1r58   | 0.651 | Ttc30b  |
| Cyp2j6  | Plb1      | 0.65  | Сур2ј6  |
| Cyp4a14 | Plb1      | 0.65  | Cyp4a14 |
| Mtmr1   | Plcz1     | 0.65  | Mtmr1   |
| Pde4d   | mCG_22911 | 0.65  | Pde4d   |
| Pde6b   | mCG_22911 | 0.65  | Pde6b   |
| Adam8   | Mmp9      | 0.649 | Adam8   |
| Арс     | Bub1b     | 0.649 | Apc     |
| Phactr1 | Taz       | 0.647 | Phactr1 |
| Samsn1  | Scfd1     | 0.647 | Samsn1  |
| Aldob   | Tmod1     | 0.646 | Aldob   |
| Ipo9    | Тпро3     | 0.646 | Ipo9    |
| Mdc1    | Xrcc4     | 0.646 | Mdc1    |
| Crkl    | Eif4e1b   | 0.644 | Crkl    |
| Scly    | Slc36a1   | 0.644 | Scly    |
| B3galt4 | St8sia1   | 0.643 | B3galt4 |
| Btk     | Cd81      | 0.643 | Btk     |
| Scube2  | St5       | 0.643 | Scube2  |
| Casp3   | Hspb3     | 0.642 | Casp3   |
| Myot    | Smpx      | 0.641 | Myot    |
| Brcc3   | Ube2d1    | 0.64  | Brcc3   |
| Cd68    | Ly6c1     | 0.64  | Cd68    |
| Rad51   | Xrcc4     | 0.64  | Rad51   |
| Camk4   | Pde4d     | 0.639 | Camk4   |
| Mpdz    | Sstr3     | 0.639 | Mpdz    |
| Afp     | Fgf2      | 0.638 | Afp     |
| Cdk14   | Znrf2     | 0.638 | Cdk14   |
| Cngb3   | Rpgr      | 0.637 | Cngb3   |
| Rad51   | Tk1       | 0.637 | Rad51   |
| Pon1    | Pparg     | 0.636 | Pon1    |
| Fgf2    | Mmp17     | 0.635 | Fgf2    |
| Gc      | Serpina1a | 0.635 | Gc      |
| Ispd    | Large     | 0.635 | Ispd    |
| Mapk10  | Mapk12    | 0.635 | Mapk10  |
| Susd2   | Tmem72    | 0.635 | Susd2   |
| Mrvi1   | Scly      | 0.634 | Mrvi1   |
| Aldh9a1 | St5       | 0.633 | Aldh9a1 |
| Crkl    | Itga4     | 0.633 | Crkl    |

| Pkd212       | Trpm1    | 0.633 | Pkd212     |
|--------------|----------|-------|------------|
| Atp13a2      | Syt11    | 0.632 | Atp13a2    |
| Rfc4         | Tk1      | 0.631 | Rfc4       |
| Ano5         | Mmd2     | 0.63  | Ano5       |
| Fignl1       | Rad51ap1 | 0.63  | Fignl1     |
| Fsd2         | Hspb3    | 0.63  | Fsd2       |
| H2-K1        | Ulbp1    | 0.63  | H2-K1      |
| Lingo2       | Unc13c   | 0.63  | Lingo2     |
| Arl15        | Vwc21    | 0.629 | Arl15      |
| Atp13a2      | Prrt3    | 0.629 | Atp13a2    |
| Birc3        | Ctsl     | 0.629 | Birc3      |
| Casp3        | Th       | 0.629 | Casp3      |
| Crp          | Pon1     | 0.629 | Crp        |
| Depdc1b      | Rad51ap1 | 0.629 | Depdc1b    |
| Gabrg3       | Nsf      | 0.629 | Gabrg3     |
| Mdm2         | Rgs7bp   | 0.629 | Mdm2       |
| Phf12        | Spag16   | 0.629 | Phf12      |
| Adam7        | Cped1    | 0.628 | Adam7      |
| Dlgap1       | Sv2b     | 0.628 | Dlgap1     |
| Btaf1        | Mms19    | 0.627 | Btafl      |
| Cd81         | Sdcbp    | 0.627 | Cd81       |
| Ica          | Ulbp1    | 0.627 | Ica        |
| Ldhc         | Odf1     | 0.627 | Ldhc       |
| Mmp16        | Spock3   | 0.627 | Mmp16      |
| Brcc3        | Rad51    | 0.626 | Brcc3      |
| ENSMUSG00000 | Det 1    | 0.625 | ENSMUSG000 |
| 024209       | rpu      | 0.023 | 00024209   |
| Gm10530      | Tor1aip1 | 0.625 | Gm10530    |
| Afp          | Prom1    | 0.624 | Afp        |
| Dennd4a      | Vwa9     | 0.624 | Dennd4a    |
| Patl2        | Vmn1r58  | 0.624 | Patl2      |
| Cntfr        | I13      | 0.623 | Cntfr      |
| Klhl30       | Smpx     | 0.622 | Klhl30     |
| Lca5         | Rpgr     | 0.622 | Lca5       |
| Cc2d2a       | Rpgr     | 0.62  | Cc2d2a     |
| Crkl         | Itgal    | 0.62  | Crkl       |
| Ppt1         | Zdhhc3   | 0.62  | Ppt1       |
| Adam8        | Lcp1     | 0.619 | Adam8      |
| Fgf2         | Myog     | 0.619 | Fgf2       |
| Lox          | Matn2    | 0.619 | Lox        |
| Brd8         | Phip     | 0.618 | Brd8       |
| Ctss         | Ly9      | 0.617 | Ctss       |
| Ddx39b       | Prpf31   | 0.617 | Ddx39b     |

| Mapk10       | Nfat5   | 0.617 | Mapk10     |
|--------------|---------|-------|------------|
| Srp54b       | Xrcc4   | 0.615 | Srp54b     |
| Aldob        | Aldoc   | 0.614 | Aldob      |
| Casp3        | Cd68    | 0.614 | Casp3      |
| Cd68         | Lcp1    | 0.614 | Cd68       |
| Gabrg2       | Syt1    | 0.613 | Gabrg2     |
| Grip2        | Tubgcp4 | 0.613 | Grip2      |
| Ifit1        | Ifit3b  | 0.613 | Ifit1      |
| Kril         | Nol12   | 0.613 | Kril       |
| Acot4        | Fads2   | 0.612 | Acot4      |
| Acot4        | Cyp4a14 | 0.612 | Acot4      |
| H2-K1        | Mr1     | 0.612 | H2-K1      |
| Itk          | Rasgrp1 | 0.612 | Itk        |
| Apobec3      | Atp5d   | 0.611 | Apobec3    |
| Cd86         | I13     | 0.611 | Cd86       |
| Cdh1         | Mdm2    | 0.611 | Cdh1       |
| Gabrg2       | Scn9a   | 0.611 | Gabrg2     |
| Raly         | Vps13d  | 0.611 | Raly       |
| St6gal2      | Wdr64   | 0.611 | St6gal2    |
| Brinp2       | Gpc5    | 0.609 | Brinp2     |
| Bub1b        | Cenpw   | 0.609 | Bub1b      |
| Ctnnd2       | Pdzd2   | 0.609 | Ctnnd2     |
| Snx13        | Ube2d1  | 0.609 | Snx13      |
| Atp1b4       | Prkg1   | 0.608 | Atp1b4     |
| Atp1b4       | Prkg2   | 0.608 | Atp1b4     |
| ENSMUSG00000 | Lincol  | 0.608 | ENSMUSG000 |
| 028300       | Lingoz  | 0.008 | 00028300   |
| Kirrel2      | Xpr1    | 0.608 | Kirrel2    |
| Ldlr         | Pla2g7  | 0.608 | Ldlr       |
| Nsf          | Syn2    | 0.606 | Nsf        |
| Cd81         | Ldlr    | 0.605 | Cd81       |
| Lox          | Mmp9    | 0.605 | Lox        |
| Oxt          | Th      | 0.605 | Oxt        |
| Sdcbp        | St5     | 0.605 | Sdcbp      |
| Ferd31       | Ube2d1  | 0.604 | Ferd31     |
| Avil         | Scn9a   | 0.603 | Avil       |
| Cngb3        | Mdm2    | 0.603 | Cngb3      |
| Dmd          | Myot    | 0.603 | Dmd        |
| Lingo2       | Ubr3    | 0.603 | Lingo2     |
| Fam214a      | Lzts1   | 0.602 | Fam214a    |
| Fgf2         | Th      | 0.602 | Fgf2       |
| Fsd2         | Perm1   | 0.602 | Fsd2       |
| I19          | Prlr    | 0.602 | I19        |

| Itgb6   | Prkcb    | 0.602 | Itgb6   |
|---------|----------|-------|---------|
| Itgb6   | Prkcg    | 0.602 | Itgb6   |
| Mmp9    | Pparg    | 0.602 | Mmp9    |
| Foxd1   | Wnt9b    | 0.601 | Foxd1   |
| Cntfr   | I19      | 0.6   | Cntfr   |
| Il22ra1 | I13      | 0.6   | Il22ra1 |
| Acss2   | Scd1     | 0.599 | Acss2   |
| Crct1   | Gm7664   | 0.599 | Crct1   |
| Cytip   | Itk      | 0.599 | Cytip   |
| Fignl1  | Rfc4     | 0.599 | Fignl1  |
| Hormad1 | Meil     | 0.599 | Hormad1 |
| Cylc2   | Odf1     | 0.598 | Cylc2   |
| Gabrg2  | Gabrg3   | 0.598 | Gabrg2  |
| Snap25  | Taf2     | 0.598 | Snap25  |
| Syt1    | Unc13c   | 0.598 | Syt1    |
| Afp     | Cdh1     | 0.596 | Afp     |
| Adamts2 | Lox      | 0.595 | Adamts2 |
| Ano5    | Myot     | 0.595 | Ano5    |
| Bcl2l11 | Birc3    | 0.595 | Bcl2l11 |
| Cd68    | Cd80     | 0.595 | Cd68    |
| Ctss    | H2-K1    | 0.595 | Ctss    |
| Dnajc10 | Hspa12a  | 0.594 | Dnajc10 |
| Dnm3    | Samd3    | 0.593 | Dnm3    |
| Gabrg2  | Zdhhc3   | 0.593 | Gabrg2  |
| Rasgrp1 | Skap1    | 0.593 | Rasgrp1 |
| Dhfr    | Rfc4     | 0.592 | Dhfr    |
| Esyt3   | Reep5    | 0.592 | Esyt3   |
| Mrvi1   | Slc36a1  | 0.592 | Mrvi1   |
| Atf7    | Nfe2     | 0.591 | Atf7    |
| Gc      | Trf      | 0.591 | Gc      |
| Vps37c  | Vps4b    | 0.591 | Vps37c  |
| Acot1   | Cyp4a14  | 0.59  | Acot1   |
| Dnajc10 | Rrm1     | 0.59  | Dnajc10 |
| Asfla   | Rrm1     | 0.589 | Asfla   |
| Baz2b   | Phip     | 0.589 | Baz2b   |
| Chat    | Gc       | 0.589 | Chat    |
| Kif14   | Rad51ap1 | 0.589 | Kif14   |
| Bloc1s5 | Snrnp48  | 0.588 | Bloc1s5 |
| Fdps    | Ldlr     | 0.588 | Fdps    |
| Cdh18   | Ctnnd2   | 0.587 | Cdh18   |
| Mzfl    | Zfp623   | 0.587 | Mzf1    |
| Atp2b4  | Nkiras1  | 0.586 | Atp2b4  |
| Esyt3   | Ralgapa1 | 0.586 | Esyt3   |

| Gc       | Serpina5  | 0.586 | Gc       |
|----------|-----------|-------|----------|
| Pxdc1    | Zmiz1     | 0.586 | Pxdc1    |
| Bcl2111  | Mdm2      | 0.585 | Bcl2l11  |
| Pde6b    | Th        | 0.585 | Pde6b    |
| Cd68     | Ldlr      | 0.584 | Cd68     |
| 119      | Serpinb9f | 0.584 | I19      |
| Kri1     | Slc25a36  | 0.584 | Kri1     |
| Raly     | Ralyl     | 0.584 | Raly     |
| Chat     | Sacs      | 0.583 | Chat     |
| Fv1      | Xpr1      | 0.582 | Fv1      |
| Gap43    | Syt1      | 0.582 | Gap43    |
| Gpat2    | Taz       | 0.582 | Gpat2    |
| Ak4      | Ak7       | 0.581 | Ak4      |
| Btk      | Dmd       | 0.581 | Btk      |
| Cd68     | Crp       | 0.581 | Cd68     |
| Lcp1     | Mpeg1     | 0.581 | Lcp1     |
| Abca3    | Lzts1     | 0.58  | Abca3    |
| Amot     | Wwox      | 0.579 | Amot     |
| Lingo2   | Ralyl     | 0.579 | Lingo2   |
| Aanat    | Tph1      | 0.578 | Aanat    |
| Btbd11   | Cul1      | 0.578 | Btbd11   |
| Ce2d2a   | Invs      | 0.578 | Cc2d2a   |
| Cdh1     | Pparg     | 0.578 | Cdh1     |
| Afp      | Lin28a    | 0.577 | Afp      |
| Gap43    | Th        | 0.577 | Gap43    |
| Asns     | Nadsyn1   | 0.576 | Asns     |
| Bub1b    | Cdk14     | 0.576 | Bub1b    |
| Lmo3     | Ssbp2     | 0.576 | Lmo3     |
| Bloc1s5  | Lingo2    | 0.574 | Bloc1s5  |
| Kctd11   | Kctd20    | 0.574 | Kctd11   |
| Kcnc1    | Ldhc      | 0.573 | Kene1    |
| Mep1a    | Pla2g7    | 0.573 | Mep1a    |
| Prkg1    | Rgs9      | 0.573 | Prkg1    |
| Prrg1    | Smpx      | 0.573 | Prrg1    |
| Bloc1s5  | Dtna      | 0.572 | Bloc1s5  |
| Cdc40    | Dhx34     | 0.572 | Cdc40    |
| Rgs7bp   | mCG_22911 | 0.572 | Rgs7bp   |
| Kiaa1109 | Vps13d    | 0.571 | Kiaa1109 |
| Cytip    | Ly9       | 0.57  | Cytip    |
| Hspb3    | Perm1     | 0.57  | Hspb3    |
| Ncf2     | Prdx6     | 0.57  | Ncf2     |
| Brcc3    | Usp11     | 0.569 | Brcc3    |
| Mal      | Mobp      | 0.569 | Mal      |

| Crp     | Pla2g7    | 0.568 | Crp     |
|---------|-----------|-------|---------|
| Msgn1   | Spock3    | 0.568 | Msgn1   |
| Adamts6 | mCG_22911 | 0.567 | Adamts6 |
| Cul1    | Mdm2      | 0.567 | Cul1    |
| Cbfa2t3 | Wwox      | 0.566 | Cbfa2t3 |
| P2rx3   | Scn9a     | 0.566 | P2rx3   |
| Prpf31  | Rpgr      | 0.566 | Prpf31  |
| Sec22a  | Syn2      | 0.566 | Sec22a  |
| Timm10b | Timm21    | 0.566 | Timm10b |
| Cc2d2a  | Upf3b     | 0.565 | Cc2d2a  |
| Cyp4a14 | Scd1      | 0.565 | Cyp4a14 |
| Gnl1    | Kri1      | 0.565 | Gnl1    |
| Rnf2    | Ube2d1    | 0.565 | Rnf2    |
| Rtn1    | Scube2    | 0.565 | Rtn1    |
| Afp     | Serpina5  | 0.564 | Afp     |
| Invs    | Ttc21b    | 0.564 | Invs    |
| Mak16   | Prpf31    | 0.564 | Mak16   |
| Clenkb  | Slc5a2    | 0.563 | Clenkb  |
| Ly9     | Traf3ip3  | 0.563 | Ly9     |
| Pparg   | Sgk1      | 0.563 | Pparg   |
| Cdh1    | Mmp17     | 0.562 | Cdh1    |
| Kifla   | Snap25    | 0.562 | Kifla   |
| Aplf    | Macrod2   | 0.561 | Aplf    |
| Ccdc198 | Kif12     | 0.561 | Ccdc198 |
| Fgf6    | Fgfbp1    | 0.561 | Fgf6    |
| Hspb3   | Klhl30    | 0.561 | Hspb3   |
| Adam26b | Fbxo44    | 0.56  | Adam26b |
| Adarb1  | Grik2     | 0.56  | Adarb1  |
| Itk     | Kirrel2   | 0.56  | Itk     |
| Cc2d2a  | Lrrc6     | 0.559 | Cc2d2a  |
| Ube213  | Usp9y     | 0.559 | Ube213  |
| Gabrb2  | Mark1     | 0.558 | Gabrb2  |
| Nsf     | Taf2      | 0.558 | Nsf     |
| Phip    | Rfwd3     | 0.558 | Phip    |
| Ranbp17 | Tmem190   | 0.558 | Ranbp17 |
| Batf3   | Tcf4      | 0.557 | Batf3   |
| Loxhd1  | Strc      | 0.557 | Loxhd1  |
| Snap25  | Unc13c    | 0.557 | Snap25  |
| Aspa    | Trpv3     | 0.556 | Aspa    |
| Crp     | Gc        | 0.556 | Crp     |
| Bub1b   | Depdc1b   | 0.555 | Bub1b   |
| Cdh1    | Dnmt3b    | 0.555 | Cdh1    |
| Agrn    | Ldlr      | 0.554 | Agrn    |

| Atp5d   | Txn2     | 0.554 | Atp5d   |
|---------|----------|-------|---------|
| Cd68    | Mpeg1    | 0.554 | Cd68    |
| Celf6   | Rrm1     | 0.554 | Celf6   |
| Itk     | Skap1    | 0.554 | Itk     |
| Clrn1   | Strc     | 0.553 | Clrn1   |
| Ldlr    | Pparg    | 0.553 | Ldlr    |
| Mylpf   | Myog     | 0.553 | Mylpf   |
| Fgf2    | I13      | 0.552 | Fgf2    |
| Casp3   | Xdh      | 0.551 | Casp3   |
| Ly6h    | Ric3     | 0.551 | Ly6h    |
| Map3k7  | Tube1    | 0.551 | Map3k7  |
| Mtl5    | Rbl1     | 0.551 | Mtl5    |
| Spag16  | Spef2    | 0.551 | Spag16  |
| Acsf3   | Sirt5    | 0.55  | Acsf3   |
| Casp3   | Traf1    | 0.55  | Casp3   |
| Cdh1    | Lox      | 0.55  | Cdh1    |
| Casp3   | Mdm4     | 0.549 | Casp3   |
| Casp3   | Prom1    | 0.549 | Casp3   |
| Brcc3   | Cops4    | 0.548 | Brcc3   |
| Ctnnd2  | Sulf1    | 0.548 | Ctnnd2  |
| Gabrg2  | Snap25   | 0.548 | Gabrg2  |
| Prkch   | Rps6ka2  | 0.548 | Prkch   |
| Clenkb  | Gabrg2   | 0.547 | Clcnkb  |
| Dll4    | Mpdz     | 0.547 | Dll4    |
| Gnl1    | Snapc3   | 0.547 | Gnl1    |
| Hifla   | Mmp9     | 0.547 | Hifla   |
| Hifla   | Mdm2     | 0.547 | Hifla   |
| Mylpf   | Smpx     | 0.547 | Mylpf   |
| Piga    | Prrg1    | 0.547 | Piga    |
| Birc3   | Mdm2     | 0.546 | Birc3   |
| Bloc1s5 | Snap25   | 0.546 | Bloc1s5 |
| Casp3   | Pidd1    | 0.546 | Casp3   |
| Prlr    | Spef2    | 0.546 | Prlr    |
| Ring1   | Ube2d1   | 0.546 | Ring1   |
| Aqr     | Dcxr     | 0.545 | Aqr     |
| Casp3   | Tcf7     | 0.545 | Casp3   |
| Cdh1    | Marveld2 | 0.545 | Cdh1    |
| Ddx39b  | Dhx34    | 0.545 | Ddx39b  |
| Clenkb  | Gabra5   | 0.544 | Clcnkb  |
| Crp     | Serpina5 | 0.544 | Crp     |
| Klhl30  | Perm1    | 0.544 | Klhl30  |
| Perm1   | Smpx     | 0.544 | Perm1   |
| Fignl1  | Rrm1     | 0.543 | Fignl1  |

| Gk5     | Ipo9                   | 0.542 | Gk5     |
|---------|------------------------|-------|---------|
| Hormad1 | Rad51                  | 0.542 | Hormad1 |
| Irak2   | Tnfsf9                 | 0.542 | Irak2   |
| Mcoln2  | Trpm1                  | 0.542 | Mcoln2  |
| Rbm41   | Ybx1                   | 0.542 | Rbm41   |
| Timm10b | Yme111                 | 0.542 | Timm10b |
| Dhfr    | Msh3                   | 0.541 | Dhfr    |
| Lmbr1   | Srek1ip1               | 0.541 | Lmbr1   |
| Btbd11  | Fbxo17                 | 0.54  | Btbd11  |
| Btbd11  | Fbxo44                 | 0.54  | Btbd11  |
| Clenkb  | Gabrb2                 | 0.54  | Clcnkb  |
| Clcnkb  | Gabrg3                 | 0.54  | Clcnkb  |
| Prom1   | Tcf4                   | 0.54  | Prom1   |
| Rbm41   | Snrnp48                | 0.54  | Rbm41   |
| Cc2d2a  | Cspp1                  | 0.539 | Cc2d2a  |
| Cdkn2b  | Rbl1                   | 0.539 | Cdkn2b  |
| Crp     | Slc37a2                | 0.539 | Crp     |
| Gnl1    | Nol12                  | 0.539 | Gnl1    |
| Mfsd11  | Slc25a36               | 0.539 | Mfsd11  |
| Rgs7bp  | Srek1ip1               | 0.539 | Rgs7bp  |
| Acss2   | Aspa                   | 0.538 | Acss2   |
| Itk     | P2ry10                 | 0.538 | Itk     |
| Phf12   | Rsph6a                 | 0.538 | Phf12   |
| Casp3   | Pparg                  | 0.537 | Casp3   |
| Col11a2 | Tectb                  | 0.537 | Col11a2 |
| Ctss    | Ncf2                   | 0.537 | Ctss    |
| Gm128   | Srek1ip1               | 0.537 | Gm128   |
| Lin28a  | Ybx1                   | 0.537 | Lin28a  |
| Mdm2    | Rbl1                   | 0.537 | Mdm2    |
| Pde6b   | Rpgr                   | 0.537 | Pde6b   |
| Btk     | Cd86                   | 0.536 | Btk     |
| Crkl    | Itk                    | 0.536 | Crkl    |
| Lrrc6   | Lrrc69                 | 0.536 | Lrrc6   |
| Luc7l   | Rbm41                  | 0.536 | Luc7l   |
| Mfsd11  | Slc16a14               | 0.536 | Mfsd11  |
| Pparg   | Taz                    | 0.536 | Pparg   |
| Sstr3   | Ttc21b                 | 0.536 | Sstr3   |
| Asfla   | Rad51                  | 0.535 | Asfla   |
| Astn2   | Cntn4                  | 0.535 | Astn2   |
| Cspp1   | ENSMUSG000<br>00029620 | 0.535 | Cspp1   |
| Dhx34   | Utp6                   | 0.535 | Dhx34   |
| Dlgap1  | Grik2                  | 0.535 | Dlgap1  |

| Fgf13        | Mmp9      | 0.535 | Fgf13      |
|--------------|-----------|-------|------------|
| Fsd2         | Klhl30    | 0.535 | Fsd2       |
| Mmp9         | Prom1     | 0.535 | Mmp9       |
| Scfd1        | Snap25    | 0.535 | Scfd1      |
| Tmem208      | Zfp280d   | 0.535 | Tmem208    |
| Ak7          | Susd2     | 0.534 | Ak7        |
| Tcf4         | Tnik      | 0.534 | Tcf4       |
| Afp          | Bub1b     | 0.533 | Afp        |
| Dhx34        | Srrm2     | 0.533 | Dhx34      |
| Lin28a       | Prom1     | 0.533 | Lin28a     |
| Sdcbp        | Vps4b     | 0.533 | Sdcbp      |
| Pkd212       | Trpv3     | 0.532 | Pkd212     |
| Adarb1       | Syt12     | 0.531 | Adarb1     |
| Btk          | Taz       | 0.531 | Btk        |
| Casp3        | Hifla     | 0.53  | Casp3      |
| Ccl25        | Itga4     | 0.53  | Ccl25      |
| Hspa12a      | Zfp949    | 0.53  | Hspa12a    |
| Msh3         | Neil1     | 0.53  | Msh3       |
| Nol12        | Utp6      | 0.53  | Nol12      |
| Prps113      | Zfp185    | 0.53  | Prps113    |
| Dmd          | Fgf2      | 0.529 | Dmd        |
| Mctp1        | Nkain3    | 0.529 | Mctp1      |
| Mdm2         | Pidd1     | 0.529 | Mdm2       |
| Cdh1         | Epb4.113  | 0.528 | Cdh1       |
| ENSMUSG00000 | Pex51     | 0.528 | ENSMUSG000 |
| 024209       |           |       | 00024209   |
| Fbn2         | Lox       | 0.528 | Fbn2       |
| Frmd4b       | Lrrc69    | 0.528 | Frmd4b     |
| Polr1b       | Slc25a36  | 0.528 | Polr1b     |
| Camk1g       | Spock3    | 0.527 | Camk1g     |
| Cdh1         | Lin28a    | 0.527 | Cdh1       |
| Lmo7         | Pdlim5    | 0.527 | Lmo7       |
| Prlr         | Wnt9b     | 0.527 | Prlr       |
| Anxa7        | Snx13     | 0.526 | Anxa7      |
| P2ry10       | Traf3ip3  | 0.526 | P2ry10     |
| Strc         | Vmn1r58   | 0.526 | Strc       |
| Adamts6      | Srek1ip1  | 0.525 | Adamts6    |
| Cc2d2a       | Lca5      | 0.525 | Cc2d2a     |
| Cspp1        | Vmn1r58   | 0.525 | Cspp1      |
| Ly6c1        | Serpinb9f | 0.525 | Ly6c1      |
| Nfat5        | Sgk1      | 0.525 | Nfat5      |
| Ppt1         | Slc2a8    | 0.525 | Ppt1       |
| Ranbp10      | Ranbp17   | 0.525 | Ranbp10    |

| Agrn         | Fgf2      | 0.524 | Agrn       |
|--------------|-----------|-------|------------|
| Ak4          | St5       | 0.524 | Ak4        |
| Atad2        | Fignl1    | 0.524 | Atad2      |
| Dusp15       | Emc8      | 0.524 | Dusp15     |
| ENSMUSG00000 | S1-25-26  | 0.524 | ENSMUSG000 |
| 027811       | 51025836  |       | 00027811   |
| Hifla        | Prom1     | 0.524 | Hifla      |
| Btk          | Rasgrp1   | 0.523 | Btk        |
| Casp3        | Lox       | 0.523 | Casp3      |
| Cd80         | I13       | 0.523 | Cd80       |
| Chat         | Pde6b     | 0.523 | Chat       |
| Cpm          | Enpp7     | 0.523 | Cpm        |
| Crp          | Xdh       | 0.523 | Crp        |
| Fgd6         | Syt1      | 0.523 | Fgd6       |
| Pi15         | Zfp185    | 0.523 | Pi15       |
| Crp          | Pparg     | 0.522 | Crp        |
| Enpp2        | P2ry10    | 0.522 | Enpp2      |
| Ppp1r10      | St6gal2   | 0.522 | Ppp1r10    |
| Aldob        | Cps1      | 0.521 | Aldob      |
| Aspa         | Mobp      | 0.521 | Aspa       |
| Cntfr        | Rasgrp1   | 0.521 | Cntfr      |
| Crp          | Ldlr      | 0.521 | Crp        |
| Gemin6       | Ybx1      | 0.521 | Gemin6     |
| Mapk10       | Mmp9      | 0.521 | Mapk10     |
| Nsf          | Sncb      | 0.521 | Nsf        |
| Olfr740      | Ppih      | 0.521 | Olfr740    |
| Oxt          | Prlr      | 0.521 | Oxt        |
| Apobec3      | Xpr1      | 0.52  | Apobec3    |
| Gc           | Pon1      | 0.52  | Gc         |
| Lca5         | Prdm15    | 0.52  | Lca5       |
| I13          | Serpinb9f | 0.519 | I13        |
| Lca5         | Tubgcp4   | 0.519 | Lca5       |
| Ly9          | P2ry10    | 0.519 | Ly9        |
| Tk1          | Tmc6      | 0.519 | Tk1        |
| Art3         | Galnt18   | 0.517 | Art3       |
| Fam175a      | Ube2d1    | 0.517 | Fam175a    |
| Gpr35        | Wdr64     | 0.517 | Gpr35      |
| Prdm2        | Znrf2     | 0.516 | Prdm2      |
| Rgs7bp       | Rgs8      | 0.516 | Rgs7bp     |
| Dennd1c      | Nav2      | 0.515 | Dennd1c    |
| Gc           | Nadsyn1   | 0.515 | Gc         |
| Gm7664       | Reep5     | 0.515 | Gm7664     |
| Otp          | Th        | 0.515 | Otp        |

| Dlgap1  | Iqsec3   | 0.514 | Dlgap1  |
|---------|----------|-------|---------|
| Reg2    | Slc5a2   | 0.514 | Reg2    |
| Aars    | Bub1b    | 0.513 | Aars    |
| Adarb1  | Scaf4    | 0.513 | Adarb1  |
| Atp2b4  | Slc9c1   | 0.513 | Atp2b4  |
| Itga4   | Ly6c1    | 0.513 | Itga4   |
| Itga4   | Lcp1     | 0.513 | Itga4   |
| Spef2   | Wdr64    | 0.513 | Spef2   |
| Cd86    | Ctss     | 0.512 | Cd86    |
| Gadl1   | Phip     | 0.51  | Gadl1   |
| Mdm2    | Usp11    | 0.51  | Mdm2    |
| Mlxip   | Vps37c   | 0.51  | Mlxip   |
| Nsf     | Stxbp51  | 0.51  | Nsf     |
| Fgf2    | Lox      | 0.509 | Fgf2    |
| Rgs9    | Stxbp51  | 0.509 | Rgs9    |
| Aqr     | Dhx34    | 0.508 | Aqr     |
| H2-K1   | Lcp1     | 0.508 | H2-K1   |
| Lzts1   | Patl2    | 0.508 | Lzts1   |
| Adam7   | Ldhc     | 0.507 | Adam7   |
| Polr1b  | Rpp38    | 0.507 | Polr1b  |
| Armc9   | Clmp     | 0.506 | Armc9   |
| Kri1    | Wdr18    | 0.506 | Kri1    |
| Astn2   | Phactr1  | 0.505 | Astn2   |
| Gabra5  | Syn2     | 0.505 | Gabra5  |
| Txn2    | Xdh      | 0.505 | Txn2    |
| Jakmip1 | Kif1b    | 0.504 | Jakmip1 |
| Opcml   | Syn2     | 0.504 | Opcml   |
| Stxbp51 | Syt1     | 0.504 | Stxbp51 |
| Cdh1    | Cdkn2b   | 0.503 | Cdh1    |
| Cul1    | Myog     | 0.503 | Cul1    |
| Dhx34   | Nadsyn1  | 0.503 | Dhx34   |
| Gnpat   | Pex51    | 0.503 | Gnpat   |
| Lrrk2   | Syt11    | 0.503 | Lrrk2   |
| Atp1b4  | Tor1aip1 | 0.502 | Atp1b4  |
| Birc3   | Mmp9     | 0.502 | Birc3   |
| Ctnnd2  | Srbd1    | 0.502 | Ctnnd2  |
| Kif12   | Sstr3    | 0.502 | Kif12   |
| Cdh1    | Ctsl     | 0.501 | Cdh1    |
| Gabrg2  | Iqsec3   | 0.501 | Gabrg2  |
| 119     | Itk      | 0.501 | I19     |
| Col11a2 | Strc     | 0.5   | Col11a2 |
| Fdps    | Scd1     | 0.5   | Fdps    |
| Dhfr    | Rb11     | 0.499 | Dhfr    |
| Masp1        | Smpx    | 0.499 | Masp1      |
|--------------|---------|-------|------------|
| Tssk2        | Txn2    | 0.499 | Tssk2      |
| Btk          | Mmp9    | 0.498 | Btk        |
| L3mbtl3      | Phf2011 | 0.498 | L3mbtl3    |
| Clmp         | Stfa211 | 0.497 | Clmp       |
| Cps1         | Ybx1    | 0.497 | Cps1       |
| Dlgap1       | Ptprd   | 0.497 | Dlgap1     |
| Dll4         | Fgf2    | 0.497 | Dll4       |
| Lin28a       | Sox1    | 0.497 | Lin28a     |
| Prdm15       | Ripk4   | 0.497 | Prdm15     |
| Snap25       | Sncb    | 0.497 | Snap25     |
| Acsf3        | Pik3r6  | 0.496 | Acsf3      |
| Itk          | Ly9     | 0.496 | Itk        |
| BC055324     | Rfc4    | 0.495 | BC055324   |
| Kif14        | Mdm4    | 0.495 | Kif14      |
| Fam175a      | Xrcc4   | 0.494 | Fam175a    |
| Ferd31       | Hdac9   | 0.494 | Ferd31     |
| Kifla        | Syt1    | 0.494 | Kifla      |
| Ldlr         | Mmp9    | 0.494 | Ldlr       |
| Tnfsf9       | Trafl   | 0.494 | Tnfsf9     |
| Bub1b        | Pidd1   | 0.493 | Bub1b      |
| Casp3        | Lcp1    | 0.493 | Casp3      |
| Agrn         | Ispd    | 0.492 | Agrn       |
| Dnal1        | Gemin2  | 0.492 | Dnal1      |
| Gap43        | Prkcg   | 0.492 | Gap43      |
| Mlf1         | Myot    | 0.492 | Mlf1       |
| Neurod6      | Tcf4    | 0.492 | Neurod6    |
| Aqr          | Tbcel   | 0.491 | Aqr        |
| Camta1       | Gabrg2  | 0.491 | Camta1     |
| BC018507     | Upf3b   | 0.49  | BC018507   |
| Cdh1         | Podxl   | 0.49  | Cdh1       |
| Mak16        | Pex12   | 0.49  | Mak16      |
| Prom1        | Sdcbp   | 0.49  | Prom1      |
| Atp13a2      | Cln3    | 0.489 | Atp13a2    |
| Cdkn2b       | Dnmt3b  | 0.489 | Cdkn2b     |
| ENSMUSG00000 | 0100-5  | 0.490 | ENSMUSG000 |
| 044121       | S100a5  | 0.489 | 00044121   |
| ENSMUSG00000 | D11.1   | 0.490 | ENSMUSG000 |
| 056004       | PIDI    | 0.489 | 00056004   |
| Gjb6         | Strc    | 0.489 | Gjb6       |
| Aqr          | Prkch   | 0.488 | Aqr        |
| Gm28040      | Kcnc1   | 0.488 | Gm28040    |
| Rpgr         | Ttc21b  | 0.488 | Rpgr       |

| Slc17a5      | Th         | 0.488 | Slc17a5    |
|--------------|------------|-------|------------|
| Cdk13        | ENSMUSG000 | 0.497 | G 11 12    |
|              | 00027811   | 0.487 | Cakis      |
| Clu          | Lrrk2      | 0.487 | Clu        |
| Dennd1c      | Gnl1       | 0.487 | Dennd1c    |
| Diap2        | Vmn1r199   | 0.487 | Diap2      |
| Dnmt3b       | Tfap2c     | 0.487 | Dnmt3b     |
| Galnt18      | Gramd1b    | 0.487 | Galnt18    |
| Ring1        | Ube213     | 0.487 | Ring1      |
| Setdb2       | Wwox       | 0.487 | Setdb2     |
| Afp          | Casp3      | 0.485 | Afp        |
| Cdh1         | Snai3      | 0.485 | Cdh1       |
| Prdx6        | Txn2       | 0.485 | Prdx6      |
| Rad51ap1     | Rrm1       | 0.485 | Rad51ap1   |
| Aldob        | Gc         | 0.484 | Aldob      |
| Casp3        | Nfat5      | 0.484 | Casp3      |
| ENSMUSG00000 | 1.10       | 0.404 | ENSMUSG000 |
| 028300       | Lrrk2      | 0.484 | 00028300   |
| St5          | Ulk4       | 0.484 | St5        |
| Batf3        | Cd86       | 0.483 | Batf3      |
| Casp3        | I13        | 0.483 | Casp3      |
| Casp3        | Crp        | 0.483 | Casp3      |
| Mak16        | Rpp38      | 0.483 | Mak16      |
| Marveld2     | Mpdz       | 0.483 | Marveld2   |
| Scaf4        | Tk2        | 0.483 | Scaf4      |
| Ap5m1        | Pde4d      | 0.482 | Ap5m1      |
| BC055324     | Rad51ap1   | 0.482 | BC055324   |
| Baz2b        | Phf2011    | 0.482 | Baz2b      |
| Bub1b        | Dsc1       | 0.482 | Bub1b      |
| Cd68         | Ncf2       | 0.482 | Cd68       |
| Fgf2         | I19        | 0.482 | Fgf2       |
| Hspb3        | Smpx       | 0.482 | Hspb3      |
| Lox          | Xdh        | 0.482 | Lox        |
| Ap2b1        | Zcchc10    | 0.481 | Ap2b1      |
| H2-K1        | Ly6c1      | 0.481 | H2-K1      |
| Mmp9         | Serpinb9f  | 0.481 | Mmp9       |
| Nsf          | Slc4a8     | 0.481 | Nsf        |
| Nsf          | Syt11      | 0.481 | Nsf        |
| Acss2        | Gnpat      | 0.48  | Acss2      |
| Adam26b      | Gnpda2     | 0.48  | Adam26b    |
| Btbd11       | Tmod1      | 0.48  | Btbd11     |
| Ccdc88c      | Dgkg       | 0.48  | Ccdc88c    |
| Lingo2       | Zfp608     | 0.48  | Lingo2     |

| Acot4   | Acsm1      | 0.479 | Acot4   |
|---------|------------|-------|---------|
| Cul1    | Mpeg1      | 0.479 | Cul1    |
| Hifla   | Pparg      | 0.479 | Hifla   |
| Astn2   | Brinp2     | 0.478 | Astn2   |
| Ccdc88c | Mpdz       | 0.478 | Ccdc88c |
| Dnajc10 | Prdx6      | 0.478 | Dnajc10 |
| Gpr35   | St6gal2    | 0.478 | Gpr35   |
| Batf3   | Ly6c1      | 0.477 | Batf3   |
| Ctss    | Lcp1       | 0.477 | Ctss    |
| Gabrg2  | Scn3a      | 0.477 | Gabrg2  |
| Hsf3    | Pdzd2      | 0.477 | Hsf3    |
| P2rx3   | Trpv3      | 0.477 | P2rx3   |
| Atad2   | Bub1b      | 0.476 | Atad2   |
| Clenkb  | Slc4a8     | 0.476 | Clcnkb  |
| Ctnnd2  | Rtn1       | 0.476 | Ctnnd2  |
| Dnm3    | Pik3ip1    | 0.476 | Dnm3    |
| Syn2    | Syt11      | 0.476 | Syn2    |
| Abca3   | Lpcat1     | 0.475 | Abca3   |
| Cd81    | H2-K1      | 0.475 | Cd81    |
| Cps1    | Gc         | 0.475 | Cps1    |
| Sox1    | Th         | 0.475 | Sox1    |
| Stxbp51 | Unc13c     | 0.475 | Stxbp51 |
| Ccdc33  | Lrrtm4     | 0.474 | Ccdc33  |
| Clu     | Gc         | 0.474 | Clu     |
| Dnah17  | Kifla      | 0.474 | Dnah17  |
| Hdac9   | Snx13      | 0.474 | Hdac9   |
| Mdc1    | Mdm2       | 0.474 | Mdc1    |
| Msgn1   | Spef2      | 0.474 | Msgn1   |
| Sv2b    | Syn2       | 0.474 | Sv2b    |
| Acvr1b  | Mtl5       | 0.473 | Acvr1b  |
| Akap9   | Tnik       | 0.473 | Akap9   |
| Anxa7   | Cd81       | 0.473 | Anxa7   |
| Casp3   | Cdkn2b     | 0.473 | Casp3   |
| Loxhd1  | Rnf165     | 0.473 | Loxhd1  |
| Mpeg1   | Traf3ip3   | 0.473 | Mpeg1   |
| Spag16  | Vwc21      | 0.473 | Spag16  |
| Bcl2111 | Cdh1       | 0.472 | Bcl2l11 |
| Cd80    | I19        | 0.472 | Cd80    |
| Chat    | ENSMUSG000 | 0.472 | Chat    |
|         | 00024209   | 0.4/2 |         |
| Dnmt3b  | Mthfr      | 0.472 | Dnmt3b  |
| Gap43   | Rtn1       | 0.472 | Gap43   |
| Masp1   | Skap1      | 0.472 | Masp1   |

| Slc17a5  | Slc37a2                | 0.472 | Slc17a5  |
|----------|------------------------|-------|----------|
| Ak4      | Gpr35                  | 0.471 | Ak4      |
| Aqr      | BC018507               | 0.471 | Aqr      |
| Cdh1     | Tcf4                   | 0.471 | Cdh1     |
| Cdk14    | ENSMUSG000<br>00056004 | 0.471 | Cdk14    |
| Cpm      | Ctnnd2                 | 0.471 | Cpm      |
| Pirb     | Xdh                    | 0.471 | Pirb     |
| Prdm11   | Setd3                  | 0.471 | Prdm11   |
| Adam8    | Ctss                   | 0.47  | Adam8    |
| Ak7      | Polr1b                 | 0.47  | Ak7      |
| Junb     | Nfat5                  | 0.47  | Junb     |
| Ly9      | Mpeg1                  | 0.47  | Ly9      |
| Acsf3    | Emc8                   | 0.469 | Acsf3    |
| Asfla    | Sirt5                  | 0.469 | Asfla    |
| Atp13a2  | Rab29                  | 0.469 | Atp13a2  |
| Avil     | Hspb3                  | 0.469 | Avil     |
| Brinp2   | Tle4                   | 0.469 | Brinp2   |
| Casp3    | Lrrk2                  | 0.469 | Casp3    |
| Kiaa1211 | Wdr18                  | 0.469 | Kiaa1211 |
| Lpcat1   | Scd1                   | 0.469 | Lpcat1   |
| Dnal1    | Тпро3                  | 0.468 | Dnal1    |
| Lin28a   | Tfap2c                 | 0.468 | Lin28a   |
| Arhgef6  | Camk4                  | 0.467 | Arhgef6  |
| Camta1   | Kiflb                  | 0.467 | Camta1   |
| Gabrb2   | Spock3                 | 0.467 | Gabrb2   |
| Mfsd11   | Slc16a9                | 0.467 | Mfsd11   |
| Mthfr    | Pon1                   | 0.467 | Mthfr    |
| Rspo3    | Wnt9b                  | 0.467 | Rspo3    |
| Ube2d1   | Xrcc4                  | 0.467 | Ube2d1   |
| Dennd4a  | Esyt3                  | 0.466 | Dennd4a  |
| Gnpat    | Lpcat1                 | 0.466 | Gnpat    |
| Gnpda2   | Snx12                  | 0.466 | Gnpda2   |
| Serpina5 | Trf                    | 0.466 | Serpina5 |
| Slc2a8   | Slc5a2                 | 0.466 | Slc2a8   |
| Chat     | Gap43                  | 0.465 | Chat     |
| Invs     | Wnt9b                  | 0.465 | Invs     |
| Cenpw    | Tk1                    | 0.464 | Cenpw    |
| Sncb     | Syn2                   | 0.464 | Sncb     |
| Cd86     | Itga4                  | 0.463 | Cd86     |
| Ap5m1    | Dtna                   | 0.462 | Ap5m1    |
| Batf3    | H2-K1                  | 0.462 | Batf3    |
| Cd68     | H2-K1                  | 0.462 | Cd68     |

| Cd68     | Fgf2     | 0.462 | Cd68     |
|----------|----------|-------|----------|
| Ddx39b   | Raly     | 0.462 | Ddx39b   |
| Kene1    | Tph1     | 0.462 | Kcnc1    |
| Ppp6r2   | Znrf2    | 0.462 | Ppp6r2   |
| Prdm2    | Setdb2   | 0.462 | Prdm2    |
| Prkcb    | Tnik     | 0.462 | Prkcb    |
| Bcl2l11  | Traf1    | 0.461 | Bcl2l11  |
| Fbxo17   | Pik3r6   | 0.461 | Fbxo17   |
| Fgf2     | Mmp16    | 0.461 | Fgf2     |
| Gm4312   | Upf3b    | 0.461 | Gm4312   |
| Invs     | Ttll3    | 0.461 | Invs     |
| Asfla    | Rfc4     | 0.46  | Asfla    |
| Atf7     | Det1     | 0.46  | Atf7     |
| BC018507 | Pidd1    | 0.46  | BC018507 |
| Batf3    | Det1     | 0.46  | Batf3    |
| Cd81     | Itga4    | 0.46  | Cd81     |
| Col11a2  | Ring1    | 0.46  | Col11a2  |
| Dnm3     | Rtn1     | 0.46  | Dnm3     |
| Hspb3    | Mmp9     | 0.46  | Hspb3    |
| Ispd     | Myot     | 0.46  | Ispd     |
| Casp3    | Chat     | 0.459 | Casp3    |
| Cd68     | Pparg    | 0.459 | Cd68     |
| Cd86     | I19      | 0.459 | Cd86     |
| Edil3    | Ssbp2    | 0.459 | Edil3    |
| Exosc9   | Polr1b   | 0.459 | Exosc9   |
| Fignl1   | Rtn1     | 0.459 | Fignl1   |
| Gabrg2   | Neurod6  | 0.459 | Gabrg2   |
| Hspb3    | Taf2     | 0.459 | Hspb3    |
| Mmp9     | Serpina5 | 0.459 | Mmp9     |
| Odf1     | Olfr157  | 0.459 | Odf1     |
| Prdm15   | Setd6    | 0.459 | Prdm15   |
| Prkcb    | Rps6ka2  | 0.459 | Prkcb    |
| Casp3    | Gap43    | 0.458 | Casp3    |
| Ку       | Pstpip2  | 0.458 | Ку       |
| Asns     | Cps1     | 0.457 | Asns     |
| Atad2    | Rad51    | 0.457 | Atad2    |
| Camta1   | Lzic     | 0.457 | Camtal   |
| Cc2d2a   | Sstr3    | 0.457 | Cc2d2a   |
| Cd81     | Cd86     | 0.457 | Cd81     |
| Cdh1     | Hifla    | 0.457 | Cdh1     |
| H2-K1    | Tnfsf9   | 0.457 | H2-K1    |
| Invs     | Lrrc6    | 0.457 | Invs     |
| Irak2    | Pidd1    | 0.457 | Irak2    |

| Macrod2 | Sema5a    | 0.457 | Macrod2 |
|---------|-----------|-------|---------|
| Anxa7   | Syn2      | 0.456 | Anxa7   |
| Ap2b1   | Tfap2c    | 0.456 | Ap2b1   |
| Capn15  | Casp3     | 0.456 | Capn15  |
| Dmd     | H2-K1     | 0.456 | Dmd     |
| Dmd     | Sacs      | 0.456 | Dmd     |
| Dmd     | Large     | 0.456 | Dmd     |
| Etaa1   | Rfwd3     | 0.456 | Etaa1   |
| Grhl1   | Taf2      | 0.456 | Grhl1   |
| Tcp10b  | Tifa      | 0.456 | Tcp10b  |
| Acss2   | Sirt5     | 0.455 | Acss2   |
| Dlgap1  | Gabrg2    | 0.455 | Dlgap1  |
| Gpr110  | Ntng2     | 0.455 | Gpr110  |
| Atp5d   | Gid8      | 0.454 | Atp5d   |
| Fgf13   | Fgfbp1    | 0.454 | Fgf13   |
| Avil    | Sulf1     | 0.453 | Avil    |
| Clu     | Trf       | 0.453 | Clu     |
| Itk     | Kirrel3   | 0.453 | Itk     |
| Ppih    | Rfc4      | 0.453 | Ppih    |
| Acss2   | Fdps      | 0.452 | Acss2   |
| Atp13a2 | Unc13c    | 0.452 | Atp13a2 |
| Bai1    | mCG_17678 | 0.452 | Bai1    |
| Raly    | Srrm2     | 0.452 | Raly    |
| Atp13a2 | Ppt1      | 0.451 | Atp13a2 |
| Cbfa2t3 | Cnbd2     | 0.451 | Cbfa2t3 |
| Cd86    | Lcp1      | 0.451 | Cd86    |
| Depdc1b | Macrod2   | 0.451 | Depdc1b |
| Fam214a | Spef2     | 0.451 | Fam214a |
| L3mbtl3 | Phc2      | 0.451 | L3mbtl3 |
| Lrrc6   | Rpgr      | 0.451 | Lrrc6   |
| Nsf     | Sv2b      | 0.451 | Nsf     |
| Prkcg   | Rps6ka2   | 0.451 | Prkcg   |
| Snap25  | Th        | 0.451 | Snap25  |
| Zfp558  | Zfp608    | 0.451 | Zfp558  |
| Casp3   | Serpinb9f | 0.45  | Casp3   |
| Csmd2   | Ctnnd2    | 0.45  | Csmd2   |
| Gabrg2  | Grik2     | 0.45  | Gabrg2  |
| Adam8   | Cd68      | 0.449 | Adam8   |
| Atf7    | Batf3     | 0.449 | Atf7    |
| Cps1    | Cyp2a12   | 0.449 | Cps1    |
| Gabra5  | Grik2     | 0.449 | Gabra5  |
| Gabrg2  | Rtn1      | 0.449 | Gabrg2  |
| Ano5    | Ispd      | 0.448 | Ano5    |

| Cdh1     | Fgf13     | 0.448 | Cdh1     |
|----------|-----------|-------|----------|
| Fgf2     | Podxl     | 0.448 | Fgf2     |
| Gm7978   | Pif1      | 0.448 | Gm7978   |
| Gpat2    | Lpcat1    | 0.448 | Gpat2    |
| Phip     | Pwwp2a    | 0.448 | Phip     |
| Rtn1     | Rtn2      | 0.448 | Rtn1     |
| Casp3    | Rps6ka2   | 0.447 | Casp3    |
| Casp3    | Pde6b     | 0.447 | Casp3    |
| Ctnnd2   | Dlgap1    | 0.447 | Ctnnd2   |
| Nsf      | Vps4b     | 0.447 | Nsf      |
| Adh6a    | Dcxr      | 0.446 | Adh6a    |
| Cdkn2b   | Mdm4      | 0.446 | Cdkn2b   |
| Ctsl     | Mmp9      | 0.446 | Ctsl     |
| Dnajc10  | Uty       | 0.446 | Dnajc10  |
| Gabrg2   | Ralyl     | 0.446 | Gabrg2   |
| Kenc1    | Spock3    | 0.446 | Kenc1    |
| Gm11437  | Mrm1      | 0.445 | Gm11437  |
| Macrod2  | Wwox      | 0.445 | Macrod2  |
| Rtkn2    | Unc13c    | 0.445 | Rtkn2    |
| Rtn1     | Snap25    | 0.445 | Rtn1     |
| Slc17a2  | Slc37a2   | 0.445 | Slc17a2  |
| Ano5     | mCG_17678 | 0.444 | Ano5     |
| Asrgl1   | Tktl2     | 0.444 | Asrgl1   |
| Ccl25    | Dll4      | 0.444 | Ccl25    |
| Dhx34    | Snrnp40   | 0.444 | Dhx34    |
| Grk6     | Rgs9      | 0.444 | Grk6     |
| Hdac9    | Kidins220 | 0.444 | Hdac9    |
| Atf7     | Mapk12    | 0.443 | Atf7     |
| Kene1    | Snap25    | 0.443 | Kcnc1    |
| Pdzd2    | Scn9a     | 0.443 | Pdzd2    |
| Pdzd2    | Ptprd     | 0.443 | Pdzd2    |
| Rnf148   | Rnf170    | 0.443 | Rnf148   |
| Rtkn2    | Snx13     | 0.443 | Rtkn2    |
| Acsf3    | Pex51     | 0.442 | Acsf3    |
| Fgf2     | Ntrk3     | 0.442 | Fgf2     |
| Mdm2     | Rnf2      | 0.442 | Mdm2     |
| Rad51ap1 | Tk1       | 0.442 | Rad51ap1 |
| Sncb     | Th        | 0.442 | Sncb     |
| Aldob    | Cyp2a12   | 0.441 | Aldob    |
| Bub1b    | Rbl1      | 0.441 | Bub1b    |
| Cbfa2t3  | Dennd4a   | 0.441 | Cbfa2t3  |
| Clu      | Serpina5  | 0.441 | Clu      |
| Hspa12a  | Polr1b    | 0.441 | Hspa12a  |

| Mlf1         | Smpx      | 0.441 | Mlf1       |
|--------------|-----------|-------|------------|
| Scn9a        | Trpv3     | 0.441 | Scn9a      |
| Spef2        | Ttll3     | 0.441 | Spef2      |
| Spef2        | Spock3    | 0.441 | Spef2      |
| Cntfr        | Ntrk3     | 0.44  | Cntfr      |
| Cps1         | Gnpda2    | 0.44  | Cps1       |
| ENSMUSG00000 | Hanh?     | 0.44  | ENSMUSG000 |
| 091089       | risp05    | 0.44  | 00091089   |
| Grik2        | Ptprd     | 0.44  | Grik2      |
| Lmo3         | Neurod6   | 0.44  | Lmo3       |
| Mmp9         | Xdh       | 0.44  | Mmp9       |
| Nsf          | Srrm2     | 0.44  | Nsf        |
| Prkcg        | Tnik      | 0.44  | Prkcg      |
| Acsf3        | Matn2     | 0.439 | Acsf3      |
| Akap9        | Cdh1      | 0.439 | Akap9      |
| Astn2        | Ctnnd2    | 0.439 | Astn2      |
| BC018507     | Serpinb9f | 0.439 | BC018507   |
| ENSMUSG00000 | Dorm 1    | 0.430 | ENSMUSG000 |
| 091089       |           | 0.439 | 00091089   |
| Ggnbp1       | Polr3e    | 0.439 | Ggnbp1     |
| Ntrk3        | Th        | 0.439 | Ntrk3      |
| Asfla        | Pif1      | 0.438 | Asfla      |
| Casp3        | Clu       | 0.438 | Casp3      |
| Csmd2        | Gadl1     | 0.438 | Csmd2      |
| Dmd          | Mmp9      | 0.438 | Dmd        |
| Gabrb2       | Grik2     | 0.438 | Gabrb2     |
| Ptgds        | Serpinb9f | 0.438 | Ptgds      |
| Rtn1         | Tmem208   | 0.438 | Rtn1       |
| Abcb4        | Zfp608    | 0.437 | Abcb4      |
| Adra2a       | Th        | 0.437 | Adra2a     |
| Agrn         | Fgf13     | 0.437 | Agrn       |
| Cd86         | Mpeg1     | 0.437 | Cd86       |
| Fignl1       | Tk1       | 0.437 | Fignl1     |
| Lcp1         | Mmp9      | 0.437 | Lcp1       |
| Abca9        | Abcc9     | 0.436 | Abca9      |
| Agbl2        | Plcz1     | 0.436 | Agbl2      |
| Anxa7        | Dtna      | 0.436 | Anxa7      |
| Aplf         | Mdc1      | 0.436 | Aplf       |
| Chat         | Fgf2      | 0.436 | Chat       |
| Phip         | Zfp280d   | 0.436 | Phip       |
| Rad51ap1     | Zfyve9    | 0.436 | Rad51ap1   |
| Rgs6         | Rnf2      | 0.436 | Rgs6       |
| Sgk1         | Tcf7      | 0.436 | Sgk1       |

| Adarb1   | Hormad1  | 0.435 | Adarb1   |
|----------|----------|-------|----------|
| Btaf1    | Chd7     | 0.435 | Btafl    |
| Cep78    | Cspp1    | 0.435 | Cep78    |
| Cspp1    | Dennd4a  | 0.435 | Cspp1    |
| Dlgap1   | Jph4     | 0.435 | Dlgap1   |
| Dsc3     | Grhl1    | 0.435 | Dsc3     |
| Gnl1     | Mr1      | 0.435 | Gnl1     |
| Jakmip1  | Kirrel3  | 0.435 | Jakmip1  |
| Mpeg1    | Ncf2     | 0.435 | Mpeg1    |
| BC055324 | Bub1b    | 0.434 | BC055324 |
| Grhl1    | Rnf2     | 0.434 | Grhl1    |
| Hdac9    | Ube2d1   | 0.434 | Hdac9    |
| Mcoln2   | Trpv3    | 0.434 | Mcoln2   |
| Pparg    | Xdh      | 0.434 | Pparg    |
| Ppt1     | Snap25   | 0.434 | Ppt1     |
| Aplf     | Taf2     | 0.433 | Aplf     |
| Arl15    | Zmiz1    | 0.433 | Arl15    |
| Casp3    | Cul1     | 0.433 | Casp3    |
| Cd86     | Mmp9     | 0.433 | Cd86     |
| Cyp2a12  | Gc       | 0.433 | Cyp2a12  |
| Gimap6   | Pdzd2    | 0.433 | Gimap6   |
| Hecw2    | Kiaa1109 | 0.433 | Hecw2    |
| Atad2    | Rfc4     | 0.432 | Atad2    |
| BC048546 | Nlrp10   | 0.432 | BC048546 |
| Cln3     | Mfsd11   | 0.432 | Cln3     |
| Dhfr     | Pdf      | 0.432 | Dhfr     |
| Jph4     | Lmo3     | 0.432 | Jph4     |
| Kcng4    | Pex51    | 0.432 | Kcng4    |
| Lpcat1   | Taz      | 0.432 | Lpcat1   |
| Luc7l    | Rrm1     | 0.432 | Luc7l    |
| Abcc9    | Akap9    | 0.431 | Abcc9    |
| Asns     | Gnpda2   | 0.431 | Asns     |
| Camta1   | Prdm2    | 0.431 | Camta1   |
| Cdkl3    | Slc25a36 | 0.431 | Cdkl3    |
| I13      | Ly6c1    | 0.431 | I13      |
| Pdzd2    | Scn3a    | 0.431 | Pdzd2    |
| Atp2b4   | Sv2b     | 0.43  | Atp2b4   |
| Det1     | Mplkip   | 0.43  | Det1     |
| Det1     | Gm7102   | 0.43  | Det1     |
| Dhx34    | Prpf31   | 0.43  | Dhx34    |
| Fgf2     | Tcf4     | 0.43  | Fgf2     |
| Pparg    | Syn2     | 0.43  | Pparg    |
| Raph1    | Trim67   | 0.43  | Raph1    |

| Bub1b   | Tube1      | 0.429 | Bub1b   |
|---------|------------|-------|---------|
| Gabrg2  | Opcml      | 0.429 | Gabrg2  |
| Ispd    | Pdf        | 0.429 | Ispd    |
| Prkg2   | Rgs9       | 0.429 | Prkg2   |
| Tcf7    | Tox        | 0.429 | Tcf7    |
| Casp3   | Mmp16      | 0.428 | Casp3   |
| Cdc40   | Taf2       | 0.428 | Cdc40   |
| Cep78   | Unc13c     | 0.428 | Cep78   |
| Clec2i  | Dhfr       | 0.428 | Clec2i  |
| Grhl1   | Ripk4      | 0.428 | Grhl1   |
| Rad51   | Rfwd3      | 0.428 | Rad51   |
| Ccdc171 | Phactr1    | 0.427 | Ccdc171 |
| Dnajc16 | Susd2      | 0.427 | Dnajc16 |
| Fgf2    | Sulf1      | 0.427 | Fgf2    |
| Aanat   | Cpm        | 0.426 | Aanat   |
| Aldob   | Rtkn2      | 0.426 | Aldob   |
| Ano5    | Faxc       | 0.426 | Ano5    |
| Astn2   | Nkiras1    | 0.426 | Astn2   |
| Atf7    | Tcf7       | 0.426 | Atf7    |
| Cdh1    | Ctnnd2     | 0.426 | Cdh1    |
| Chat    | Ntrk3      | 0.426 | Chat    |
| Scly    | Tmc6       | 0.426 | Scly    |
| Tnpo3   | Trim5      | 0.426 | Тпро3   |
| Dll4    | Prom1      | 0.425 | Dll4    |
| Fignl1  | Rbl1       | 0.425 | Fignl1  |
| Frmd4b  | Pdzd2      | 0.425 | Frmd4b  |
| I13     | Mcpt8      | 0.425 | I13     |
| Kcng4   | Lrrc6      | 0.425 | Kcng4   |
| Amot    | Cdh1       | 0.424 | Amot    |
| Astn2   | Prlr       | 0.424 | Astn2   |
| Camk1g  | Unc13c     | 0.424 | Camk1g  |
| Casp3   | Krt19      | 0.424 | Casp3   |
| Cull    | ENSMUSG000 | 0 424 | Cull    |
|         | 00091089   |       |         |
| Depdc1b | Rad51      | 0.424 | Depdc1b |
| Dhfr    | Rad51      | 0.424 | Dhfr    |
| Dnajc10 | Nudt21     | 0.424 | Dnajc10 |
| Esyt3   | Phf2011    | 0.424 | Esyt3   |
| Gabra5  | Grm2       | 0.424 | Gabra5  |
| Gramd2  | Traf3ip3   | 0.424 | Gramd2  |
| Grik2   | Mapk10     | 0.424 | Grik2   |
| L3mbtl3 | Ring1      | 0.424 | L3mbtl3 |
| Sat2    | Scly       | 0.424 | Sat2    |

| Sat2     | St3gal4 | 0.424 | Sat2     |
|----------|---------|-------|----------|
| Casp3    | Mmp17   | 0.423 | Casp3    |
| Depdc1b  | Kif14   | 0.423 | Depdc1b  |
| Dnah14   | Spag16  | 0.423 | Dnah14   |
| Dnah17   | Spag16  | 0.423 | Dnah17   |
| Kcng4    | Wdr18   | 0.423 | Kcng4    |
| Tom1     | Txn2    | 0.423 | Tom1     |
| Acsm1    | Aldob   | 0.422 | Acsm1    |
| Atad2    | Rrm1    | 0.422 | Atad2    |
| Atp13a2  | Syt12   | 0.422 | Atp13a2  |
| Cytip    | Tcf4    | 0.422 | Cytip    |
| Dtna     | Taz     | 0.422 | Dtna     |
| Fgf2     | Krt19   | 0.422 | Fgf2     |
| Kril     | Scaf4   | 0.422 | Kri1     |
| Prm2     | Tsn     | 0.422 | Prm2     |
| Rasgrf2  | Ssbp2   | 0.422 | Rasgrf2  |
| Snx12    | Tnpo3   | 0.422 | Snx12    |
| Afp      | Dnmt3b  | 0.421 | Afp      |
| Afp      | Crp     | 0.421 | Afp      |
| Dll4     | Mmp9    | 0.421 | Dll4     |
| Hifla    | Lox     | 0.421 | Hifla    |
| Mobp     | Syt1    | 0.421 | Mobp     |
| Prkch    | Txn2    | 0.421 | Prkch    |
| Raph1    | Skap1   | 0.421 | Raph1    |
| Rnf2     | Swt1    | 0.421 | Rnf2     |
| Specc1   | Vps13d  | 0.421 | Specc1   |
| Asns     | Fgd6    | 0.42  | Asns     |
| Crkl     | Dock6   | 0.42  | Crkl     |
| Dusp15   | Mapk10  | 0.42  | Dusp15   |
| Fgf2     | Mapk10  | 0.42  | Fgf2     |
| Gemin6   | Prpf31  | 0.42  | Gemin6   |
| Ispd     | Tktl2   | 0.42  | Ispd     |
| Lox      | Ptgds   | 0.42  | Lox      |
| Ly6c1    | Mmp9    | 0.42  | Ly6c1    |
| Sacs     | Trhr    | 0.42  | Sacs     |
| BC055324 | Rad51   | 0.419 | BC055324 |
| Btafl    | Wdr18   | 0.419 | Btafl    |
| Cbfa2t3  | Zfp106  | 0.419 | Cbfa2t3  |
| Cdh1     | Spint2  | 0.419 | Cdh1     |
| Cenpw    | Rfc4    | 0.419 | Cenpw    |
| Chd7     | Phactr4 | 0.419 | Chd7     |
| Cps1     | Pon1    | 0.419 | Cps1     |
| Ctss     | Pirb    | 0.419 | Ctss     |

| Fgf2     | Gap43   | 0.419 | Fgf2     |
|----------|---------|-------|----------|
| Mpeg1    | Pirb    | 0.419 | Mpeg1    |
| Nbeal1   | Phip    | 0.419 | Nbeal1   |
| Nsf      | Syt12   | 0.419 | Nsf      |
| Afp      | Cps1    | 0.418 | Afp      |
| Akap9    | Rfc4    | 0.418 | Akap9    |
| Arhgefl  | 113     | 0.418 | Arhgefl  |
| Arid5a   | Tcp10b  | 0.418 | Arid5a   |
| Bcl2111  | I13     | 0.418 | Bcl2l11  |
| Casp3    | Taf2    | 0.418 | Casp3    |
| Depdc1b  | Fign11  | 0.418 | Depdc1b  |
| Frmd4b   | Smim3   | 0.418 | Frmd4b   |
| Gabrg2   | Snx12   | 0.418 | Gabrg2   |
| Itk      | Snapc3  | 0.418 | Itk      |
| Kncn     | Prom1   | 0.418 | Kncn     |
| Mdm2     | Mmp9    | 0.418 | Mdm2     |
| Myog     | Pparg   | 0.418 | Myog     |
| Nadsyn1  | Syt12   | 0.418 | Nadsyn1  |
| Pdlim5   | Prkch   | 0.418 | Pdlim5   |
| Polr3e   | Rnf157  | 0.418 | Polr3e   |
| Prom1    | Sox1    | 0.418 | Prom1    |
| Slc25a36 | Utp6    | 0.418 | Slc25a36 |
| Aldob    | Glyat   | 0.417 | Aldob    |
| Cd68     | Dmd     | 0.417 | Cd68     |
| Chd7     | Fbn2    | 0.417 | Chd7     |
| Cps1     | Ica     | 0.417 | Cps1     |
| Crkl     | Samsn1  | 0.417 | Crkl     |
| Ctc1     | Pif1    | 0.417 | Ctc1     |
| Mmp9     | Sacs    | 0.417 | Mmp9     |
| Oxt      | Ptgds   | 0.417 | Oxt      |
| Polr1b   | Prpf31  | 0.417 | Polr1b   |
| Acvr1b   | Fgf2    | 0.416 | Acvr1b   |
| Asrgl1   | Baz2b   | 0.416 | Asrgl1   |
| Cps1     | Crp     | 0.416 | Cps1     |
| Gap43    | Syn2    | 0.416 | Gap43    |
| Pif1     | Plbd1   | 0.416 | Pifl     |
| Ankle1   | Lmo7    | 0.415 | Ankle1   |
| Asfla    | Atad2   | 0.415 | Asfla    |
| Cd68     | Th      | 0.415 | Cd68     |
| Diap2    | Stxbp51 | 0.415 | Diap2    |
| Hormad1  | Mdc1    | 0.415 | Hormad1  |
| Polr1b   | Rad51   | 0.415 | Polr1b   |
| Adra1d   | Th      | 0.414 | Adra1d   |

| Apc          | Reep5     | 0.414 | Apc        |
|--------------|-----------|-------|------------|
| Arhgef1      | Rgs6      | 0.414 | Arhgefl    |
| Asfla        | Msh3      | 0.414 | Asfla      |
| Cdh18        | Zfp37     | 0.414 | Cdh18      |
| Cops4        | Ube213    | 0.414 | Cops4      |
| Cped1        | Rspo3     | 0.414 | Cped1      |
| Cul1         | Wdr64     | 0.414 | Cul1       |
| Dlgap1       | Lrfn1     | 0.414 | Dlgap1     |
| Nav2         | Syt1      | 0.414 | Nav2       |
| Nrip1        | Taf2      | 0.414 | Nrip1      |
| Ntrk3        | Ptprd     | 0.414 | Ntrk3      |
| Pdzd2        | Ripk4     | 0.414 | Pdzd2      |
| Prdm11       | Setd6     | 0.414 | Prdm11     |
| Cenpw        | Cped1     | 0.413 | Cenpw      |
| Csmd2        | Tnik      | 0.413 | Csmd2      |
| ENSMUSG00000 | T 120     | 0.412 | ENSMUSG000 |
| 029559       | 1 mem 130 | 0.413 | 00029559   |
| Etaa1        | Pidd1     | 0.413 | Etaa1      |
| G3bp1        | Rrm1      | 0.413 | G3bp1      |
| Btk          | Pirb      | 0.412 | Btk        |
| Bub1b        | Mdm2      | 0.412 | Bub1b      |
| Cul1         | Usp11     | 0.412 | Cul1       |
| Hsf3         | Hspa12a   | 0.412 | Hsf3       |
| Phip         | Taf2      | 0.412 | Phip       |
| Plcl2        | Zfp608    | 0.412 | Plcl2      |
| Agbl2        | Crp       | 0.411 | Agbl2      |
| Арс          | Crkl      | 0.411 | Арс        |
| Ctnnd2       | Fer       | 0.411 | Ctnnd2     |
| Dnm3         | Nsf       | 0.411 | Dnm3       |
| Fgf2         | Fignl1    | 0.411 | Fgf2       |
| Grhl1        | Ring1     | 0.411 | Grhl1      |
| Irak2        | Traf1     | 0.411 | Irak2      |
| Arl15        | Cobl11    | 0.41  | Arl15      |
| Atad2        | Kif14     | 0.41  | Atad2      |
| Crkl         | Rasgrp1   | 0.41  | Crkl       |
| Dpy1913      | Rtkn2     | 0.41  | Dpy1913    |
| Fgf13        | Prom1     | 0.41  | Fgf13      |
| Gas2l1       | Tnik      | 0.41  | Gas211     |
| Setd6        | Setdb2    | 0.41  | Setd6      |
| Wdr18        | Ybx1      | 0.41  | Wdr18      |
| Cdk14        | Rb11      | 0.409 | Cdk14      |
| Ddx39b       | Snrnp40   | 0.409 | Ddx39b     |
| Dnal1        | Spag16    | 0.409 | Dnal1      |

| Hdac9    | Sirt5                  | 0.409 | Hdac9    |
|----------|------------------------|-------|----------|
| Myot     | Tnpo3                  | 0.409 | Myot     |
| Rnf165   | Srp54b                 | 0.409 | Rnf165   |
| Rrm1     | Uty                    | 0.409 | Rrm1     |
| Bcl2l11  | Prune2                 | 0.408 | Bcl2l11  |
| Casp3    | Fgf13                  | 0.408 | Casp3    |
| Cd80     | Mmp9                   | 0.408 | Cd80     |
| Clrn1    | Rpgr                   | 0.408 | Clrn1    |
| Cntn4    | Macrod2                | 0.408 | Cntn4    |
| Fgf6     | Mmp9                   | 0.408 | Fgf6     |
| Galnt10  | Mthfr                  | 0.408 | Galnt10  |
| Got111   | Rtn2                   | 0.408 | Got111   |
| Grk6     | Trhr                   | 0.408 | Grk6     |
| Hertr2   | Rpgr                   | 0.408 | Hcrtr2   |
| Klf9     | Trp53i11               | 0.408 | K1f9     |
| Rad51    | Tsn                    | 0.408 | Rad51    |
| Agrn     | Large                  | 0.407 | Agrn     |
| Asfla    | Cdh1                   | 0.407 | Asfla    |
| BC018507 | Mdc1                   | 0.407 | BC018507 |
| Gemin6   | Rfc4                   | 0.407 | Gemin6   |
| Ispd     | Snx13                  | 0.407 | Ispd     |
| Itga4    | Prom1                  | 0.407 | Itga4    |
| Lox      | Ripk4                  | 0.407 | Lox      |
| Slc25a36 | Yme111                 | 0.407 | Slc25a36 |
| Actbl2   | Lcp1                   | 0.406 | Actbl2   |
| Asns     | BC018507               | 0.406 | Asns     |
| Baz2b    | Tcf4                   | 0.406 | Baz2b    |
| Dnajc16  | Sacs                   | 0.406 | Dnajc16  |
| Dnajc16  | Hspa12a                | 0.406 | Dnajc16  |
| Dnm3     | Snap25                 | 0.406 | Dnm3     |
| Dtna     | Kiflb                  | 0.406 | Dtna     |
| I13      | Prom1                  | 0.406 | I13      |
| Slc36a1  | Slc39a2                | 0.406 | Slc36a1  |
| Acsf3    | ENSMUSG000<br>00024209 | 0.405 | Acsf3    |
| Cyp2a12  | Pon1                   | 0.405 | Cyp2a12  |
| Gnl1     | Specc1                 | 0.405 | Gnl1     |
| Mat2b    | Mthfr                  | 0.405 | Mat2b    |
| Pdlim5   | Prkcb                  | 0.405 | Pdlim5   |
| Rab29    | Syt11                  | 0.405 | Rab29    |
| Acsm1    | Cps1                   | 0.404 | Acsm1    |
| Btaf1    | Yme111                 | 0.404 | Btafl    |
| Cd80     | Lcp1                   | 0.404 | Cd80     |

| Cd86         | Crp       | 0.404 | Cd86       |
|--------------|-----------|-------|------------|
| Cdh6         | Ctnnd2    | 0.404 | Cdh6       |
| Invs         | Sstr3     | 0.404 | Invs       |
| Adra2a       | Ptafr     | 0.403 | Adra2a     |
| Birc3        | Sdcbp     | 0.403 | Birc3      |
| Camk4        | Syn2      | 0.403 | Camk4      |
| Clu          | Myot      | 0.403 | Clu        |
| Ctnnd2       | Gabrg2    | 0.403 | Ctnnd2     |
| Cyp2a12      | Ica       | 0.403 | Cyp2a12    |
| Edrf1        | Hdac9     | 0.403 | Edrf1      |
| Gpr27        | Gpr35     | 0.403 | Gpr27      |
| Inpp4b       | Sh2d5     | 0.403 | Inpp4b     |
| Mpdz         | Wwc1      | 0.403 | Mpdz       |
| Pex51        | Srp54b    | 0.403 | Pex51      |
| Aanat        | Luc71     | 0.402 | Aanat      |
| Cenpw        | Rad51     | 0.402 | Cenpw      |
| Cngb3        | Lrrc6     | 0.402 | Cngb3      |
| Dnajc10      | Sacs      | 0.402 | Dnajc10    |
| Fgf2         | Pparg     | 0.402 | Fgf2       |
| Gnpat        | Taz       | 0.402 | Gnpat      |
| Lrrc6        | Pde6b     | 0.402 | Lrrc6      |
| Phc2         | Prdm2     | 0.402 | Phc2       |
| Sec22a       | Yme111    | 0.402 | Sec22a     |
| Sncb         | Zmiz1     | 0.402 | Sncb       |
| Aars         | Yme111    | 0.401 | Aars       |
| Ak4          | Dock6     | 0.401 | Ak4        |
| Bcl2l11      | Hspb3     | 0.401 | Bcl2l11    |
| Cd80         | Crp       | 0.401 | Cd80       |
| Cd81         | Rasgrp1   | 0.401 | Cd81       |
| Dlgap1       | Fam172a   | 0.401 | Dlgap1     |
| Gnl1         | Prpf31    | 0.401 | Gnl1       |
| Mdm2         | Wwox      | 0.401 | Mdm2       |
| Acsm1        | Pon1      | 0.4   | Acsm1      |
| Adra1d       | Akap9     | 0.4   | Adra1d     |
| BC018507     | Snrnp40   | 0.4   | BC018507   |
| Car8         | Tox       | 0.4   | Car8       |
| Crp          | Cyp2a12   | 0.4   | Crp        |
| Dcbld2       | Nudt21    | 0.4   | Dcbld2     |
| ENSMUSG00000 | Dad51an1  | 0.4   | ENSMUSG000 |
| 027811       | Каизтарт  | 0.4   | 00027811   |
| Glyat        | Serpinala | 0.4   | Glyat      |

Table S3 Hub genes and their functions

| Table S3 Hub genes and their functions |                |                                                                       |                                                                                                    |
|----------------------------------------|----------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| No                                     | Gene<br>Symbol | Full name                                                             | Gene function                                                                                      |
| 1                                      | Hecw2          | HECT, C2 and WW<br>domain containing E3<br>ubiquitin protein ligase 2 | Hecw2 contributes to ubiquitin protein ligase activity.                                            |
| 2                                      | Asb14          | ankyrin repeat and SOCS<br>box-containing 14                          | Asb14 mediates the ubiquitination and<br>subsequent proteasomal degradation of target<br>proteins. |
| 3                                      | Lmo7           | LIM domain only 7                                                     | Lmo7 contributes to ubiquitin-protein transferase activity.                                        |
| 4                                      | Fbxo17         | F-box protein 17                                                      | Fbxo17 contributes to ubiquitin protein ligase activity.                                           |
| 5                                      | Det1           | de-etiolated homolog 1                                                | Det1 contributes to ubiquitin protein ligase<br>binding.                                           |
| 6                                      | Ube2d1         | ubiquitin-conjugating<br>enzyme E2D 1                                 | Ube2d1 functions in the ubiquitination of the tumor-suppressor protein p53                         |
| 7                                      | Znrf2          | zinc and ring finger 2                                                | Znrf2 contributes to ubiquitin protein ligase activity.                                            |
| 8                                      | Fbxo44         | F-box protein 44                                                      | Fbxo44 contributes to ubiquitin protein ligase activity.                                           |
| 9                                      | Cul1           | cullin 1                                                              | Cullin 1 contributes to ubiquitin-protein<br>transferase activity.                                 |

## Table S4 Major hubs in the network

Degree means number of node connections (edges).

The betweenness of a node reflects the amount of control that this node exerts over the intera ctions of other nodes in the network.

Closeness is a measure of how fast information spreads from a given node to other reachable nodes in the network.

| Table S4 Major hubs in the network |        |             |             |
|------------------------------------|--------|-------------|-------------|
| Major hubs                         | Degree | Betweenness | Closeness   |
| Hecw2                              | 8      | 0           | 0.270018622 |
| Asb14                              | 9      | 1.11E-04    | 0.27027027  |
| Lmo7                               | 9      | 1.11E-04    | 0.27027027  |
| Fbxo17                             | 9      | 1.11E-04    | 0.27027027  |
| Det1                               | 11     | 0.006252114 | 0.27938343  |
| Ube2d1                             | 25     | 0.07613847  | 0.326576577 |
| Znrf2                              | 8      | 0           | 0.270018622 |
| Fbxo44                             | 9      | 1.11E-04    | 0.27027027  |
| Cull                               | 15     | 0.043067603 | 0.333333333 |