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Abstract

The Standard Model (SM) has been established as an effective theory below the electroweak
scale. However, the various phenomena beyond the SM, such as the baryon number asymme-
try in the universe, the existence of dark matter, inflation, and neutrino oscillation have been
observed. The SM also has theoretical problems such as a hierarchy problem. These issues
indicate that the SM is not a complete theory and should be improved. On the other hand, the
Higgs boson with the mass of 125 GeV has been discovered and its couplings have been observed
to be consistent with the SM by the Large Hadron Collider (LHC) experiment at CERN, but
there are still some mysteries in the Higgs sector: existence of the guiding principle, number
of the Higgs bosons, shape of the Higgs potential, dynamics behind the electroweak symmetry
breaking, etc. It means that there is still a lot of room for expansion in the Higgs sector.
Whereas, these mysteries are expected to be solved by the planned collider and gravitational
wave experiments. Future collider experiments such as High Luminosity LHC (HL-LHC) and
International Linear Collider (ILC) can measure the properties of the 125 GeV Higgs boson
with good accuracy. In particular, the electron-positron colliders like the ILC and Compact
Linear Collider (CLIC) measure the triple Higgs boson coupling with about 10% accuracy.
Future gravitational wave experiments such as DECi-hertz Interferometer Gravitational wave
Observatory (DECIGO) and Laser Interferometer Space Antenna (LISA) can observe the grav-
itational wave from the electroweak phase transition. Therefore, researches to approach various
problems of the SM by extending the Higgs sector is actively carried out.

In this paper, we focus on extra dimensions as an expansion of the Higgs sector. Generally,
we perceive a four-dimensional space-time, which consists of three spatial dimensions and a one
time dimension. The extra dimension is the idea that there are hidden dimensions in addition
to the four-dimensional space-time. It has been introduced in various theories such as the
String Theory, Randall-Sundrum Model and Universal Extra Dimensions. The introduction of
extra dimensions gives a new structure to the theory, the geometry of extra dimensions, and
we can benefit from it in various ways. For example, it can control the strength of mutual
constraints, resolve various hierarchies that appear in the SM, and unify the fields and forces.
From a phenomenological point of view, we are interested in the TeV scale extra dimensions
that exist in the experimentally accessible energy scales.

First, we discuss the gauge-Higgs unification model with a flat extra dimension in which the
Higgs is embedded into the extra components of the gauge multiplets. Gauge-Higgs unification
(GHU) is one of the TeV scale paradigms beyond the SM that can solve the hierarchy problem.
In GHU, the Higgs potential is flat at tree level and induced by the quantum corrections due
to the higher dimensional gauge symmetry. We focus on the structure difference of the Higgs
potential from the SM one and investigate the triple Higgs boson coupling. As a concrete
model, we consider the flat SU(3) model with 5D Lorentz symmetry relaxed. In this case, the
deviation of the triple Higgs boson coupling from the SM is predicted to be less than 10% when
the compactification scale is larger than the experimental lower bound, which is around 5 TeV.
It is also shown that the shape of the Higgs potential around the vacuum quickly approaches
that of the SM potential as the compactification scale increases. This behavior is also applied
to the other GHU models with a flat extra dimension.

After that, we also discuss the two-Higgs doublet model (2HDM) with extra dimensions. The
2HDM is one of the simple extensions of the SM, which only adds one additional Higgs doublet,
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but it has rich phenomenology not expected in the SM. In general, when introducing more than
one Higgs doublet, the Yukawa interaction matrix and the mass matrix are not diagonalized
simultaneously, and an unacceptable flavor-changing neutral current (FCNC) appears. To avoid
this, the 2HDM usually requires the fermions to be coupled to only one of the Higgs doublets by
imposing a Z2 symmetry. However, this Z2 symmetry cannot be justified in the framework of
the 2HDM, and its origin is left to some paradigm. Therefore, we introduce the extra dimensions
as a paradigm and reproduce the viable Higgs couplings in the 2HDM without imposing the
Z2 symmetry. It is known that the fermions and scalar fields can be localized in the extra
space by introducing a coupling with a kink field. Then, we localize the right-handed fermions
and Higgs doublets on the extra space and construct an arrangement in which only one of the
couplings to the two Higgs doublets is suppressed by the extra-dimensional integration. In this
way, we can avoid the dangerous FCNC without imposing the Z2 symmetry. This model also
has a feature that the Higgs potential is not constrained by the Z2 symmetry, unlike the usual
2HDM.
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Chapter 1

Introduction

1.1 Overview

The observation of the Higgs boson by the LHC experiment at CERN [1, 2] led to the discov-
ery of all the elementary particles predicted by the Standard Model. Consistent with most
experimental results [3], including the Higgs boson coupling, the SM has been established as an
effective theory below the electroweak scale O100 GeV. The SM is composed of the following
two main components. One is the gauge principle, which defines the form of interactions, and
the other is the mechanism of the spontaneous symmetry breaking, which gives the mass to the
elementary particles. In contrast to the gauge principle, the spontaneous symmetry breaking
only assumes a minimal Higgs potential with one Higgs doublet and leaves the possibility of
extensions. The Higgs potential in the SM also has a theoretical problem called hierarchy prob-
lem. In SM, the quantum corrections to the squared mass of the Higgs boson are proportional
to the square of the cutoff scale of the theory. Therefore, a fine-tuning between the bare mass
and the quantum correction is required to explain the observed Higgs mass. From the point
of view of improving the accuracy of measurement for the Higgs properties in future collider
experiments, the Higgs sector is an interesting study topic today.

1.1.1 Extention of the Higgs sector

Based on the above background, various models that extend the Higgs sector have been proposed
to date. Those models can be broadly classified into two types: bottom-up and top-down. In
the bottom-up approach, such as the 2HDM and the SM Effective Field Theory (SMEFT),
simple extensions of the Higgs sector are applied to investigate the structure of the Higgs sector
and its phenomenological features. The top-down approaches are mainly motivated to solve the
hierarchical problem by assuming the TeV scale paradigms, such as supersymmetry (SUSY),
compositeness, and gauge-Higgs unification. It is significant to decide which of these directions
is the proper one. We should clarify the relationship between these models and investigate how
to distinguish these models by using the future experiments.

1.1.2 Models in bottom-up approach

We briefly introduce the four types of the 2HDM [4], Inert doublet model (IDM) [4], and SM
effective field theory (SMEFT) [5, 6] as famous bottom-up approaches. First, the 2HDM is a
simple model of the SM with one additional Higgs doublet, but it has rich phenomenological
features not found in the SM, such as the electroweak baryogenesis. The 2HDM usually imposes

1



2 CHAPTER 1. INTRODUCTION

a softly broken Z2 symmetry to avoid the flavor-changing neutral current (FCNC) at the tree
level. Depending on the Z2 parity assignment, the 2HDM are classified into four types: Type-
I, II, X, and Y. In contrast, the IDM is almost identical to the 2HDM, but the exact Z2

symmetry makes it a model in which the additional Higgs field has no vacuum expectation
value (VEV) and is not coupled with the SM particles. SMEFT is a very general model that
incorporates information from the BSM by including the possible dimension 6 operators to
the SM Lagrangian. In particular, this model is useful experimentally because it allows us to
determine physical quantities such as the Higgs couplings in a more model-independent way.

1.1.3 Models in top-down approach

The top-down approach is represented by SUSY [7], compositeness [8–11], and GHU [12–15],
each of which extends the Higgs sector by different principles. In the SUSY models, the su-
persymmetry is imposed on the whole theory including the Higgs sector, and superpartners
corresponding to the SM particles are introduced. The divergence for the square mass of the
Higgs boson is canceled by the contributions of the superpartners. The composite models treat
the Higgs not as an elemental particle but as a particle with an internal structure. The di-
vergence for the square mass of the Higgs boson is relaxed by the chiral symmetry from the
internal fermions. In the GHU models, the Higgs is embedded into the extra components of
the gauge multiplets. In other words, the Higgs and gauge field are unified into the higher
dimensional gauge field. Thus, the Higgs sector is also described by the gauge principle. As
similar to the weak bosons, the Higgs mass is also protected by the gauge symmetry.

1.1.4 Future collider experiments

The extended Higgs model and future collider experiments are very closely related. The verifi-
cation of the BSM by collider experiments has been carried out in two ways: direct detection
and indirect detection. The direct detection is aimed at the direct production of new particles
by upgrading the energy, and the hadron collider is good at this. On the other hand, indirect
detection is an experiment to look for signs of BSM by precise measurement of decay rates
and coupling constants, and the lepton collider is good at it because of its clear background.
The planned future collider experiments, such as HL-LHC [16] and ILC [17], are also called the
Higgs Factory. One of its main propositions is to produce a large amount of Higgs processes
and study the properties of the Higgs in detail.

1.2 Organization
This paper is organized as follows. First, in Chapter 2, we briefly review the SM and discuss the
remaining issues in the Higgs sector. In Chapter 3, we introduce the motivation for extending
the Higgs sector and what kind of extended models of the Higgs sector exist. Chapter 4 gives an
overview of the extra dimension and describes the behavior of particles in the extra dimension
used in this study. In Chapter 5, we discuss the gauge-Higgs unification model with a flat
extra dimension. We focus on the characteristic structure of the Higgs potential in gauge-Higgs
unification and show the possibility of testing the model in future collider experiments by
analyzing the triple Higgs boson coupling. In Chapter 6, by introducing the extra dimensions,
we discuss how to reproduce the viable Higgs couplings in the 2HDM without imposing the Z2

symmetry. Finally, we will conclude our discussion in Chapter 7.



Chapter 2

Review of the Standard model

2.1 Standard Model

The SM is currently the best description of the behavior of the elementary particles. It is
composed of the following two main components. One is the gauge principle, which defines the
form of interactions, and the other is the mechanism of the spontaneous symmetry breaking,
which gives the mass to the elementary particles. In this section, we will explain the role of
these components through a simple example. After that, we will present the Weinberg-Salam
theory, which describes the electroweak interaction incorporated into the Standard Model, a
significant part of this research.

2.1.1 Gauge Principle

The gauge principle is a principle that determines the form of the interaction by requiring
gauge symmetry in the physical system (and the associated Lagrangian L). We will see a
simple example below. First, we consider the Lagrangian density LD that describes the motion
of a free Dirac particle ψ with a mass m:

LD = ψ̄(x) (iγµ∂µ −m)ψ(x) (2.1)

The first and second terms represent kinetic and mass terms, respectively. This Lagrangian is
invariant under the global U(1) transformation defined as

ψ(x)→ ψ′(x) = e−θψ(x). (2.2)

Therefore, we can also say that this Lagrangian has a global U(1) symmetry. We next extend
a parameter of the global U(1) symmetry θ to a function Λ(x) that depends on the spacetime
coordinates:

ψ(x)→ ψ′(x) = e−iqΛ(x)ψ(x) (2.3)

This transformation is called the U(1) gauge transformation (or local U(1) transformation),
and the gauge principle requires invariance under such local transformations. However, the
Lagrangian (2.1) is not invariant under the gauge transformations at this state. Note that the
extension of the parameter to a function that depends on space-time gives us an extra term

3
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through the derivative. In order to remove this extra term, we replace the derivative ∂µ with
the covariant derivative Dµ

∂µ → Dµ ≡ ∂µ + iqAµ(x), (2.4)

where Aµ is a gauge field associated with the U(1) gauge symmetry and is required to be
transformed as

Aµ(x)→ A′
µ(x) = Aµ(x) + ∂µΛ(x). (2.5)

Then, the covariant derivative is transformed under the U(1) gauge symmetry as

Dµψ(x)→ D′
µψ

′(x) = e−iqΛ(x)Dµψ(x). (2.6)

Using the covariant derivative, the Lagrangian invariant under the U(1) gauge transformation
is given by

L = ψ̄(x) (iγµDµ −m)ψ(x)− 1

4
FµνF

µν

= ψ̄(x) (iγµ∂µ −m)ψ(x)− qψ̄(x)γµAµψ(x)−
1

4
FµνF

µν , (2.7)

where Fµν is a field strength of Aµ defined as Fµν = ∂µAν(x) − ∂νAµ(x). The new terms
appearing in the second and third terms of the second line mean the interaction term between
ψ and Aµ and kinetic term of Aµ, respectively. Note that the U(1) gauge symmetry requires
the existence of the U(1) gauge field Aµ and an interaction term between the U(1) gauge field
and Dirac particle. It is also important to note that the mass term of the gauge field m2AµA

µ

is forbidden by the gauge symmetry.
The above discussion can be extended to the SU(N) gauge symmetry case by a simple

procedure. First, the SU(N) gauge transformation can be expressed using the transformation
matrix U as

ψ(x)
SU(N)−−−−→ ψ′(x) = U(x)ψ(x) (2.8)

U(x) = exp (−iqΛ(x)) , Λ(x) = θa(x)T a
(
a = 1, · · · , N2 − 1

)
, (2.9)

where T a are generators of N2 − 1 transformations defined as

T aT b = δab (2.10)[
T a, T b

]
= ifabcT c, (2.11)

with structure constant fabc. Then, the covariant derivative and gauge field for this transfor-
mation are expressed as

Dµ = ∂µ + iqAµ(x) Aµ(x) = Aa
µ(x)T

a. (2.12)

SU(N) gauge symmetry requires the N2 − 1 gauge fields Aa
µ(x) transformed as

Aµ(x)
SU(N)−−−−→ A′

µ(x) = U(x)

{
Aµ(x) +

i

q
U−1(x) (∂µU(x))

}
U−1(x). (2.13)
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Therefore, the Lagrangian invariant under the SU(N) gauge transformation is given by

L = ψ̄(x) (iγµ∂µ −m)ψ(x)− qψ̄(x)γµAa
µT

aψ(x)− 1

4
tr (FµνF

µν) , (2.14)

where we use the field strength of the SU(N) gauge group defined as

Fµν ≡ [Dµ, Dν ]/ig =
(
∂µA

a
ν − ∂νAa

µ − gfabcAb
µA

c
ν

)
T a. (2.15)

2.1.2 Spontaneous Symmetry Breaking

As shown in 2.1.1, the gauge symmetry forbids the mass terms of the gauge fields. However, the
W and Z bosons have been observed as massive gauge bosons. Therefore, the SM introduces a
mechanism called spontaneous symmetry breaking that allows elementary particles to acquire
mass. First, we consider the complex scalar field Φ with global U(1) symmetry. Using the two
real scalar fields ϕ1, ϕ2, it can be written as

Φ(x) =
1√
2
(ϕ1(x) + iϕ2(x)) . (2.16)

Taking into account the renormalizability of the theory, the Lagrangian for this complex scalar
with global U(1) symmetry is given by

LΦ = (∂µΦ)
∗ (∂µΦ)− µ2Φ∗Φ− λ (Φ∗Φ)2 . (2.17)

When we take µ2 < 0, λ > 0, the potential term in the Lagrangian (2.17) V = µ2Φ∗Φ+λ(Φ∗Φ)2

has a minimum at |Φ| = |⟨Φ⟩| ̸= 0:

∂V

∂|Φ|

∣∣∣∣
Φ=⟨Φ⟩

= 0 ∴ |⟨Φ⟩| =
√
−µ2

2λ
≡ 1√

2
v. (2.18)

The potential minimums, which are called the vacuum, are degenerate on the circumference in
the complex plane. When we choose one of these vacuums, it spontaneously breaks the global
U(1) symmetry. For example, if we choose a vacuum on the real axis

Φ =
1√
2
(v + η(x)) eiξ(x)/v, (2.19)

Lagrangian (2.17) is expanded around this vacuum as

L =
1

2
∂µη∂

µη +
1

2
∂µξ∂

µξ + λv2η2 + Cubic or higher order terms for x and y + const. (2.20)

In this form, η acquires mass
√
2λv2, while ξ is a massless particle with no mass term. This

phenomenon, in which the symmetry of the Lagrangian is lost in the vacuum, is called the
spontaneous symmetry breaking. The massless scalar particle that appears, as a result, is
called the Nambu-Goldstone boson.
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The Higgs mechanism

Now, we extend the above discussion to consider the spontaneous symmetry breaking under
U(1) gauge symmetry. In this case, the Lagrangian is given by

L = |DµΦ|2 − V −
1

4
F µνFµν . (2.21)

Inserting Eq. (2.19 into the first term of this Lagrangian, we find

|DµΦ|2 =
∣∣∣∣(∂µ + iqAµ(x))

(
1√
2
(v + η(x)) eiξ(x)/v

)∣∣∣∣2
=

∣∣∣∣(∂µ + iq

{
Aµ(x) +

1

qv
∂µξ(x)

})
1√
2
(v + η(x))

∣∣∣∣2
=

1

2
q2v2

{
Aµ(x) +

1

qv
∂µξ(x)

}{
Aµ(x) +

1

qv
∂µξ(x)

}
+ · · · . (2.22)

Here, if we regard A′(x) = Aµ(x) + ∂µξ(x)/qv, we see that the first term in the last line of Eq.
(2.22) is in the form of a mass term. This substitution also implies that the massless gauge
boson gets the mass by absorbing the Nambu-Goldstone boson as a longitudinally polarized
component. This mechanism, in which the corresponding gauge boson absorbs the Nambu-
Goldstone boson that appears upon spontaneous symmetry breaking and acquires mass, is
called the Higgs mechanism.

Above discussion is also applied to the SU(2) gauge symmetry. In that case, we consider a
complex scalar field that behaves as a doublet under the SU(2) transformation. This can be
expressed using four real scalar fields as follows:

Φ(x) =
1√
2

(
ϕ1(x) + iϕ2(x)
ϕ3(x) + iϕ4(x)

)
(2.23)

The VEV take v/
√
2 as same as the U(1) case. If we choose the vacuum on the ϕ3 direction,

the field after symmetry breaking is represented as

Φ(x) =
1√
2

(
ξ1(x) + iξ2(x)

v + η(x) + iξ3(x)

)
(2.24)

This representation can be rewritten the three ξ’s like a phase invariant under the SU(2) gauge
transformation as a U(1) case:

Φ(x) =
1√
2
eiτ ·ξ(x)/v

(
0

v + η(x)

)
(2.25)

Therefore, we see that the η(x) appears as a massive scalar, while the three ξi(x) appear as
Nambu=Goldstone bosons.

Next, we consider the kinetic term. The covariant derivative of the SU(2) gauge group is
given by

Dµ = ∂µ + iq
τa

2
Aa

µ, (2.26)
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QL LL uR dR eR Φ Φc

SU(2)L 2 2 1 1 1 2 2
U(1)Y

1
3
−1 4

3
−2

3
−2 1 −1

Table 2.1: Field representations and eigenvalues in Weinberg-Salam theory

where τa (a = 1, 2, 3) are generators of the SU(2) group represented by the Pauli matrixes.
Therefore, the Higgs mechanism works as

|DµΦ|2 =
∣∣∣∣(∂µ + iqAa

µ

τa

2

)
1√
2

(
0

v + η(x)

)∣∣∣∣2
=

1

2

∣∣∣∣ i2qv
(
A1

µ − iA2
µ

−A3
µ

)
+

1

2

(
iqA1

µ + qA2
µ

∂µ − iqA3
µ

)
η(x)

∣∣∣∣2
=

1

8
q2v2

(
A1

µ
2
+ A2

µ
2
+ A3

µ
2
)
+ · · · . (2.27)

In the last line, the three SU(2) gauge fields, Ai
µ, acquire the same mass by absorbing the

corresponding three Nambu-Goldstone bosons.

2.1.3 Weinberg-Salam theory

The Weinberg-Salam theory is a theory that describes electromagnetism and the weak force in a
unified manner among the four fundamental forces currently known: gravity, electromagnetism,
the strong force, and the weak force. It consists of the SU(2)L × U(1)Y gauge symmetry and
spontaneous symmetry breaking. The three massive gauge bosons appearing after electroweak
symmetry breaking (EWSB) mediate weak interaction while the remaining massless gauge
boson mediates electromagnetic interaction.

Now we consider the SU(2)×U(1) invariant Lagrangian. In this case, the covariant deriva-
tive is given by

Dµ = ∂µ + igW a
µT

a + ig′BµY (2.28)

where T a(= τa/2), Y are the generators of the SU(2)L, U(1)Y gauge groups and Wµ, Bµ are
corresponding gauge fields, respectively. Next, we have to decide to which representation of the
gauge group the matter field expected by the theory belongs and which eigenvalue it has: the
right-handed and left-handed quarks, uR,L dR,L, leptons, eR,L νL, and Higgs, Φ. It is assigned
as shown in Table 2.1 for consistency with experiments. In Table 2.1, the SU(2) doublets are
represented as

QL =

(
uL
dL

)
, LL =

(
νL
eL

)
, Φ =

(
ϕ+

ϕ0

)
, Φc =

(
−ϕ̄0

ϕ−

)
, (2.29)

where Φc is the charged conjugate of Φ defined by Φc = −iτ2Φ∗. Therefore, the SU(2)× U(1)
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invariant Lagrangian is given by

LWS = iQ̄L /DQL + iūR /DuR + id̄R /DdR

+ iL̄L /DLL + iēR /DeR + iν̄R /DνR

− 1

4
W a

µνW
µν
a −

1

4
BµνB

µν

+ (DµΦ)
† (DµΦ)− V (Φ∗Φ)

− yuQ̄LΦcuR − ydQ̄LΦdR − yeL̄LΦceR + h.c., (2.30)

where Wµν and Bµν are the tensors of the strength of the SU(2)L and U(1)Y gauge fields,
respectively. In this Lagrangian, the first and second lines describe kinetic and interaction
terms of the quarks and leptons, the third line describes the gauge kinetic term, and the fourth
and fifth lines are Higgs sector that describes the nature of Higgs.

Then, we will review the mechanism of electroweak symmetry breaking in detail. The
potential of the Higgs boson is taken as in the previous section, V = µ2Φ∗Φ + λ(Φ∗Φ)2 (µ2 <
0, λ > 0). When we choose the VEV of the Higgs boson as

⟨Φ⟩ = 1√
2

(
0
v

)
, (2.31)

the kinetic terms of Higgs after symmetry breaking is rewritten as

|DµΦ|2 =
1

2

∣∣∣∣(∂µ + ig
τa

2
W a

µν + ig′
1

2
Bµ

)(
0

v + h

)∣∣∣∣2 . (2.32)

Extracting the part related to the mass term of the gauge field, we can summarize it as

1

2

∣∣∣∣(ig τa2 W a
µν + ig′

1

2
Bµ

)
⟨Φ⟩
∣∣∣∣2 = 1

8

∣∣∣∣( gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′Bµ

)(
0
v

)∣∣∣∣2
=

1

8
g2v2

(
W 1

µ − iW 2
µ

) (
W 1

µ + iW 2
µ

)
+

1

8
v2(g′Bµ − gW 3

µ)
2

=
1

4
g2v2W+

µ W
−µ +

1

8
(g2 + g′2)v2ZµZ

µ + 0 · AµA
µ (2.33)

where W±
µ ≡ (W 1

µ ∓W 2
µ)/
√
2 are the gauge fields with electromagnetic charge ±1 and Aµ, Z

are masseigenstates defined by(
Zµ

Aµ

)
≡ 1√

g2 + g′2

(
g −g′
g′ g

)(
W 3

µ

Bµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

µ

Bµ

)
. (2.34)

The rotation angle θW of the diagonalization matrix is called the Weinberg angle, and its value
is given by the mass ratio of the W and Z bosons [18]:

sin2 θW = 0.22343± 0.00007 (2.35)

Therefore, after EWSB, W±
µ and Z acquire the mass

mW =
1

2
gv (2.36)

mZ =
1

2

√
g2 + g′2v =

1

2

g

cos θW
v =

mW

cos θW
, (2.37)
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respectively. On the other hand, Aµ is still massless and is the gauge field corresponding to the
symmetry that remains after spontaneous symmetry breaking. For example, the vacuum state
is invariant under the following transformation that combines the SU(2)L×U(1)Y gauge group
generators T a and Y :

1√
2

(
0
v

)
→ exp

[
ie

(
T 3 +

Y

2

)]
1√
2

(
0
v

)
=

1√
2

(
eie 0
0 1

)(
0
v

)
=

1√
2

(
0
v

)
(2.38)

It is the remaining U(1) symmetry, which corresponds to the electromagnetic interaction. eQ
corresponds to the electromagnetic charge when the U(1)EM gauge group generators are defined
by Q ≡ T 2 + Y/2.

As seen from the above Lagrangian, this theory is a non-chiral theory that distinguishes
between the left-hand and right-hand of fermions. The chirality of a fermion is defined as

ψR =
1 + γ5

2
ψ ≡ PRψ γ5ψR = +ψR (2.39)

ψL =
1− γ5

2
ψ ≡ PLψ γ5ψL = −ψL. (2.40)

The left equation expresses the projection from the Dirac spinor to the chiral spinor by the
projection operator PR,L, and the right one implies that the chiral spinor is an eigenstate of γ5.
In addition, the chiral representation has the following significant consequences:

ψ̄γµψ = ψ̄Lγ
µψL + ψ̄Rγ

µψR (2.41)

ψ̄ψ = ψ̄LψR + ψ̄RψL (2.42)

In other words, to write the mass term mψ̄ψ, we need both left-hand and right-hand chirality.
The fermion mass term in the SM (Weinberg-Salam theory) is restricted to the Yukawa inter-
action form in Eq. (2.30) by the conditions of the gauge invariance and chirality. Then, as in
the gauge fields, the fermion mass term emerges from the Yukawa sector due to the EWSB:

LYukawa =− yuQ̄LΦcuR − ydQ̄LΦdR − yeL̄LΦceR + h.c.

=− 1√
2
yuv · ūLuR −

1√
2
ydv · d̄LdR −

1√
2
yev · ēLeR + h.c.+ · · ·

=−muūu−mdd̄d−meēe+ · · · (2.43)

An important prediction of the SM is that the masses of the fermions are proportional to the
VEV as mf = yfv/

√
2.

2.2 Open problems in the SM
The SM is a very successful theory that is consistent with most of the previous experiments.
But it is not end of the story because there are phenomenological and theoretical problems that
cannot be explored by the SM. In particular, the existence of dark matter, the baryon number
asymmetry of the universe, inflation, and the neutrino oscillation are well known as phenomeno-
logical problems, while the gauge hierarchy problem and the unification of the gravity are known
as theoretical problems.
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2.2.1 Existence of the dark matter

Although the definition of the dark matter slightly varies from person to person, we will consider
it to be any matter with the mass that has no electromagnetic interaction. Indirect evidence for
the existence of dark matter has been presented in several ways. One of them is the measurement
of the rotational velocity of galaxies by V. Rubin and K. Ford in 1970 [19]. This observation
showed that the mass density calculated from that was much greater than the mass density of
the optically observable matter. It indirectly proves that there is a large amount of matter in
the universe that does not emit the photons but only has the mass. Candidates for the dark
matter can be classified into two major categories: those derived from the astrophysics and
those derived from the particle physics. Astrophysical candidates include the black hole that
swallow the light and the white dwarf and neutron star that do not emit the enough light to
be observable. These candidates are formed by the baryons, whose abundance is predicted by
the Big Bang cosmology. According to this prediction, these sources of the dark matter cannot
satisfy the required amount of the dark matter. On the other hand, the SM does not contain
any candidate particles for the dark matter. Therefore, to solve this problem from a particle
physical perspective, it is necessary to extend the SM to include the dark matter candidates.
The Weakly Interacting Massive Particle has been recognized as the most famous dark matter
candidate.

2.2.2 Baryon number asymmetry of the universe

In the SM, the particles and antiparticles are equivalent. However, we have known from the
observations that the ratio of baryon number to photon number in the universe is given as
follows [20]:

η =
nB

nγ

=
nq − nq̄

3nγ

∼ 10−9 (2.44)

This result indicates that the present universe has matter dominance. Therefore, from an early
universe where matter and antimatter existed symmetrically, some mechanism would create an
asymmetry in which the matter would be dominant. The conditions for generating a baryon
number from the symmetric early universe are proposed by Sakharov as follows [21]:

• Baryon number violation

• C and CP symmetry violation

• Interactions out of thermal equilibrium

In the SM framework, the possibility of an electroweak baryogenesis scenario has been investi-
gated. In this scenario, above three conditions are translated as follows:

• Baryon number violation → sphaleron process

• C and CP symmetry violation → CKM matrix

• Interactions out of thermal equilibrium→ strongly 1st order phase transition of the Higgs
potential
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However, in the SM, the CKM phase is not sufficient to produce the CP violation [22] and the
125 GeV Higgs cannot realize the 1st order phase transition [23]. Therefore, to solve the baryon
asymmetry in the EW scale, we need an additional source of the CP violation and a suitable
structure of the Higgs potential, which realize the strongly 1st order phase transition.

2.2.3 Neutrino oscillation

In 1998, an experiment at the Super-Kamiokande confirmed the neutrino oscillation [24]. It
is the phenomenon in which three generations of the neutrinos change from one generation to
another during their transportation. When neutrinos have the masses, there are mass eigen-
states ν

(m)
i separate from the gauge eigenstates νi. Then, these eigenstates are related by some

unitary transformation:

νi = Uijν
(m)
j (2.45)

Since the time evolution of |νi⟩ can be written as

|νi, t⟩ =
∑
j

e−iEjtUij|ν
(m)
j ⟩ , (2.46)

using the energy Ei of ν
(m)
i , the transition probability from νi to νj after the time has passed

by t is given by

Pνi→νj
= |⟨νj|νi, t⟩|2 =

∑
k,l

U∗
jkUkiUjlU

ast
li e−i(Ek−El)t . (2.47)

Assuming for simplicity that the only 1st and 2nd generations are mixed, the mixing matrix
becomes

U =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (2.48)

Then, we find

Pνi→νj
= sin2 θ cos2 θ

(
2 + e−i(E1−E2)t + e−i(E2−E1)

)
∼ sin2 2θ sin2 m

2
2 −m2

1

4E
L , (2.49)

where L denotes the neutrino moving distance and we expand the energy as E ∼ |p⃗|+m2
i /2|p⃗|

by using the fact that the neutrino masses are very small. This result indicates that the
mixing between the masseigenstates and a non-zero mass difference are required for the neutrino
oscillations. Since neutrinos are the massless particles in the SM, we need some mechanism to
give them small masses.

2.2.4 Inflation

Inflation was introduced to solve the flatness problem and the horizon problem, which were
cosmological problems that could not be solved by the Big Bang cosmology. This idea makes it
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possible to solve the above problem by causing an exponential expansion in the early universe.
However, the source of this exponential expansion is not yet understood. Since the early
universe is considered as a very high energy, the particle physics valid on such an energy scale.
Therefore, the source of inflation should be included in the general relativity or SM. However,
the SM does not contain the scalar field that causes inflation, and thus we need to extend the
SM.

2.2.5 Hierarchy problem

Then, we will discuss the cut-off scale Λ of the SM. Assuming that the SM will be switched to
another theory by at least the Planck scale, to what energy scale can the SM be applied? The
quadratic divergence of the squared mass for the Higgs boson provides critical insight into this
question. The observed mass is given by the bare mass in the Lagrangian and the quantum
corrections: m2 = m2

0 + ∆m2. The quantum corrections to the masses of the gauge bosons
and fermions are protected from drastic divergences by their symmetry (gauge symmetry and
chiral symmetry). On the other hand, the Higgs field is the only particle in the SM that is
not protected by any symmetry, and its quantum corrections are proportional to the square of
the cut-off scale. Focusing on the top quark that mainly contributes to the Higgs potential, we
obtain

∆m2
h = i

(
−i yt√

2

)2

(−1)
∫

d4p

(2π)4
tr

[
i(/p+mt)

p2 −m2
t

·
i(/p+ /k +mt)

(p+ k)2 −m2
t

]
= −i

∫
d4p

(2π)4

∫ 1

0

dx
2y2t (p · (p+ k) +m2

t )

(p2 + 2xp · k + xk2 −m2
t )

2 . (2.50)

In the second line, we introduce the Feynman parameter x. By replacing l = p + xk and
∆ = m2

t − x(1− x)k2, Eq. (2.50) becomes

∆m2
h = −2i

∫
d4l

(2π)4

∫ 1

0

dx
l2 +∆

(l2 −∆)2

= −2y2t
∫

dΩ4

(2π)4

∫ 1

0

dx

∫ Λ

0

dlE
l2E −∆

(l2E +∆)
2

= −3y2t
8π2

(
Λ2 − 3m2

t ln

(
Λ2

m2
t

)
+ 2m2

t

)
(2.51)

where we perform the Wick rotation in the second line: l0 = il0E. Therefore, if the SM is
applicable up to the Planck scale O(1019) GeV, a delicate fine-tuning between the bare mass
and the quantum corrections O(1034) GeV2 is needed to explain the observed Higgs mass
mh = 125 GeV. It indicates the existence of the new physics beyond the SM around the TeV
scale.

2.3 Effective Potential in the SM
As shown in Sec. 2.1.3, the Higgs potential has a negative mass term required for spontaneous
symmetry breaking. Note that there are no odd power terms because the Higgs field of the SM
is a SU(2)L doublet, and therefore the Higgs potential is given by

V0 = −µ2Φ†Φ + λ
(
Φ†Φ

)2
= −µ

2

2
ϕ2 +

λ

4
ϕ4, (2.52)
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where µ2 and λ are the positive model parameters. These model parameters can be rewritten in
terms of the vacuum expectation value and the Higgs mass from the first and second derivatives
of the Higgs potential:

∂V0
∂ϕ

∣∣∣∣
ϕ=v

= 0 ∴ µ2 = λv2

∂2V0
∂ϕ2

∣∣∣∣
ϕ=v

= m2
h ∴ m2

h = 2µ2 (2.53)

Therefore, at the tree level, the Higgs self-couplings are uniquely predicted as

λ0hhh =
∂3V0
∂ϕ3

∣∣∣∣
ϕ=v

= 3
m2

h

v
,

λ04h =
∂4V0
∂ϕ4

∣∣∣∣
ϕ=v

= 3
m2

h

v2
. (2.54)

In the following, we will see how these results are modified by the quantum corrections. The
one-loop contributions to the Higgs potential is given by

V = V0 + V1 + · · · , V1 =
∑
I

σI
2

∫
d4pE
(2π)4

ln
(
p2E +m2

I

)
, (2.55)

where σI = 1 for bosons and σI = −1 for fermions, and the sum runs over all particles whose
masses depend on the VEV. Similar to the Higgs mass calculation, focusing on the top quark
that gives the main contribution, the one-loop contribution can be calculated as follows:

−
∫

d4pE
(2π)4

ln
(
p2E +m2

t

)
= − ∂

∂α

∫
d4pE
(2π)4

1

(k2E +m2
t )

α

∣∣∣∣
α=0

= − ∂

∂α

(
1

(4π)d/2
Γ(α− d

2
)

Γ(α)

1

(m2
t )

α−d/2

)∣∣∣∣∣
α=0

= −
Γ(−d

2
)

(4π)d/2
1

(m2
t )

−d/2
(2.56)

Evaluating this result with the MS scheme, we obtain

−
Γ(−d

2
)

(4π)d/2
1

(m2
t )

−d/2
= − 1

d
2

(
d
2
− 1
) Γ (2− d

2

)
(4π)d/2

(m2
t )

d/2

= − m4
t

2(4π)2

(
2

ϵ
− γ + ln(4π)− ln(m2

t ) +
3

2

)
→ − m4

t

2(4π)2

(
− ln

m2
t

Q2
+

3

2

)
, (2.57)

where we use ϵ = d−4 and Q is an arbitrary mass scale parameter. Thus, the one-loop effective
potential is given by

Veff = −µ
2

2
ϕ2 +

λ

4
ϕ4 − 3

64π2

y4t ϕ
4

4

(
− ln

y2t ϕ
2

2Q2
+

3

2

)
, (2.58)
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where we use mt(ϕ) = ytϕ/
√
2. Then, the tadpole and Higgs mass conditions are modified as

∂Veff
∂ϕ

∣∣∣∣
ϕ=v

= 0 ∴ µ2 = λv2 +
3

4v2
m4

t

(
1− ln

m2
t

Q2

)
,

∂2Veff
∂ϕ2

∣∣∣∣
ϕ=v

= m2
h ∴ m2

h = 2µ2 +
3

2v2
m4

t . (2.59)

Note that the arbitrary mass parameter Q is renormalized by these conditions. Therefore, by
using these relations, the SM triple Higgs boson coupling is predicted at the one-loop level as

λhhh =
∂3Veff
∂ϕ3

∣∣∣∣
ϕ=v

=
3m2

h

v

(
1− 1

π2

m4
t

v2m2
h

)
. (2.60)

When the mass is proportional to the vacuum expectation value, as in the case of SM particles,
the one-loop contribution is proportional to the 4th power of its mass spectrum. Therefore, the
contribution of the top quark is the largest, about 10% of the tree level.



Chapter 3

Review of the extended Higgs sector

In this chapter, we introduce the extended Higgs model that we will study in the following
chapters. we see the model structures for the bottom-up approaches and how to solve the
hierarchy problems in the SM for the top-down approaches.

3.1 Two-Higgs-Doublet Model
The 2HDM has almost the same structure as the SM. The most significant difference is the
existence of one additional Higgs doublet. In other words, there are two Higgs doublets with
different VEV:

Φ1 =

(
w+

1
1√
2
(h1 + iz1 + v1)

)
, Φ2 =

(
w+

2
1√
2
(h2 + iz2 + v2)

)
(3.1)

In general, there exist two Yukawa interactions, and thus the mass matrix and Higgs coupling
matrixes are not diagonalized simultaneously [25]. For example, we consider the down sector.
Using the Yukawa couplings yij1d, y

ij
2d, the mass matrix m, and the Higgs couplings gij, the gauge

and mass eigenstates can be related as

yij1dq̄
i
LΦ1d

j
R + yij2dq̄

i
LΦ2d

j
R + (h.c.) = d̄imij

d d
j + d̄i

(
hgijh +HgijH +H ′gijH′

)
dj, (3.2)

where h,H,H ′ are the neutral masseigenstates determined by the linear combination of h1, h2, z1, z2.
Then, the unacceptable FCNC are appear in the off-diagonal components of the Higgs couplings.
If yij2d = 0 is proportional to yij1d, then the mass matrix and Higgs coupling matrixes are diago-
nalized simultaneously. It is called the Yukawa alignment [26] or Alined 2HDM [27]. To avoid
it more naturally, we usually only couple fermions with either Higgs doublets, yij1d or y

ij
2d = 0, by

imposing the Z2 symmetry. There are four types of the Z2 parity assignments, Type-I,II,Y,X,
that achieve the above, as shown in the table 3.1. The Higgs potential is also modified as

V (Φ1,Φ2) = m2
1Φ

†
1Φ1 +m2

2Φ
†
2Φ2 −

(
m2

3Φ
†
1Φ2 + h.c.

)
+

1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

(
1

2
λ5(Φ

†
1Φ2)

2 + h.c.

)
. (3.3)

Of the terms that break the Z2 symmetry, fourth order terms such as (Φ†
1Φ1)(Φ

†
1Φ2), (Φ

†
2Φ2)(Φ

†
1Φ2)

are forbidden, while second order terms such as Φ†
1Φ2 are kept to make the additional Higgs

15
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Φ1 Φ2 qL lL uR dR eR
Type-I + − + + − − −
Type-II + − + + − + +
Type-X + − + + − − +
Type-Y + − + + − + −

Table 3.1: Z2 parity assignment in the 2HDM

bosons heavier. Therefore, what we impose on the 2HDM is not exact Z2 symmetry, but so-
called softly broken Z2 symmetry. The two VEVs v1, v2 are determined by the minimum of the
Higgs potential as

∂V

∂Φ1

∣∣∣∣
Φ1=v1

= 0 ∴ −m2
1 = −

v2
v1
m2

3 +
1

2
v21λ1 +

1

2
v22 (λ3 + λ4 + λ5) ,

∂V

∂Φ2

∣∣∣∣
Φ2=v2

= 0 ∴ −m2
2 = −

v1
v2
m2

3 +
1

2
v22λ2 +

1

2
v21 (λ3 + λ4 + λ5) . (3.4)

From the mass representations of the gauge bosons, we get the relations

v21 + v22 = v2 = 246 GeV , tan β =
v2
v1
, (3.5)

where rotation angle β is defined as(
v1
v2

)
=

(
cos β − sin β
sin β cos β

)(
v
0

)
. (3.6)

We can get the mass matrixes of the Higgs doublets from the second derivatives of the Higgs
potential around the VEV. For the imaginary parts of the neutral components in Φ1,Φ2, we
find the massless Goldstone boson z and CP odd Higgs A with mass MA(

z1 z2
)( M2

Ac
2
β −M2

Acβsβ
−M2

Acβsβ M2
As

2
β

)(
z1
z2

)
=
(
z A

)(0 0
0 M2

A

)(
z
A

)
, (3.7)

where the mass MA and relation between the two basis are given by

M2
A =

m2
3

cβsβ
− λ5v2 =M2 − λ5v2 ,

(
z1
z2

)
=

(
cβ −sβ
sβ cβ

)(
z
A

)
. (3.8)

For the charged components in Φ1,Φ2, we find the two massless Goldstone bosons w± and
charged Higgs bosons H± with mass MH±

(
w−

1 w−
2

)( M2
H±c2β −M2

H±cβsβ
−M2

H±cβsβ M2
H±s2β

)(
w+

1

w+
2

)
=
(
w− H−)(0 0

0 M2
H±

)(
w+

H+

)
, (3.9)

where the mass MH± and relation between the two basis are given by

M2
H± =M2 − 1

2
(λ4 + λ5) v

2 ,

(
z1
z2

)
=

(
cβ −sβ
sβ cβ

)(
z
A

)
. (3.10)
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Finally, for the real parts of the neutral components in Φ1,Φ2, we find the two CP even Higgs
bosons H and h with two different mass mH and mh(

h1 h2
)( M2 + λ1v

2c2β −M2 + λ345v
2cβsβ

−M2 + λ345v
2cβsβ M2 + λ2v

2s2β

)(
h1
h2

)
=
(
H h

)(M2
H 0
0 M2

h

)(
H
h

)
,

(3.11)

where we take λ345 = λ3 + λ4 + λ5 and relation between the two basis is given by(
h1
h2

)
=

(
cα −sα
sα cα

)(
H
h

)
. (3.12)

We identify h as the 125 GeV Higgs boson and H as an additional heavier Higgs boson.

3.2 Inert Doublet Model
The Inert Doublet Model also has two Higgs doublets. However, in contrast to the 2HDM, which
has a soft broken Z2 symmetry, the IDM has an unbroken (exact) Z2 symmetry. Under this Z2

symmetry only the additional Higgs doublet η has a negative Z2 parity: η → −η. Therefore, η
does not appear in the Yukawa sector. The Higgs potential with exact Z2 symmetry is given
by

V (Φ, η) = m2
1Φ

†Φ +m2
2η

†η +
1

2
λ1(Φ

†Φ)2 +
1

2
λ2(η

†η)2

+ λ3(Φ
†Φ)(η†η) + λ4(Φ

†η)(η†Φ) +

(
1

2
λ5(Φ

†η)2 + h.c.

)
. (3.13)

where the two Higgs doublets are written by

Φ =

(
G+

1√
2
(h + iG0 + v1)

)
, η =

(
H+

1√
2
(H + iA)

)
. (3.14)

η does not have a VEV due to the Z2 symmetry, and thus the VEV of Φ becomes the electroweak
vacuum v ≃ 246 GeV. There are three Goldstone bosons, G+, G−, G0, SM like Higgs, h, and
additional Higgs bosons, H+, H−, H,A. From the second derivatives of the Higgs potential,
these masses are given by

m2
h = λ1v

2,

mH± = m2
2 +

1

2
λ3v

2,

mH = m2
2 +

1

2
(λ3 + λ4 + λ5) v

2,

mA = m2
2 +

1

2
(λ3 + λ4 − λ5) v2, (3.15)

wherem1 is eliminated by the stationary condition of the Higgs potential. Note that the lightest
additional Higgs boson can be candidate of the dark matter because it does not decay into the
SM particles thanks to the Z2 symmetry. We note that the lightest Z2 odd field, H or A, can
be a dark matter candidate since it does not decay into the SM particles [28,29].
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3.3 TeV scale paradigms
As seen in Sec. 2.2, the Higgs mass in the SM is sensitive to the cut-off scale of the theory. It
is because the SM Higgs is an elementary scalar with no symmetry. Therefore, we naturally
consider that the SM is replaced by some new physics models around the TeV scale. The
candidates of such a new physics model are supersymmetry, compositeness, and gauge-Higgs
unification. They protect the mass of the Higgs boson from the second divergence to introduce
some symmetries in the Higgs sector in a different way. In the following, we will discuss
SUSY as a famous and clean example of canceling divergence. In brief, the SUSY model
introduces partner particles (Sparticles) that differ only in spin from the SM particles and
imposes symmetry (called supersymmetry) between them. For the introduction of Sparticles,
the Yukawa sector is modified as

LYukawa = −
yt√
2
ϕt̄t− fLϕ|t̃L|2 − fRϕ|t̃R|2 −

λL
2
ϕ2|t̃L|2 −

λR
2
ϕ2|t̃R|2 + · · · , (3.16)

where h, t, and t̃ denote the Higgs boson, top quark, and top superpartner (stop), respectively.
Focusing on the top quark again, there are new contributions from the stop:

∆m2
h = ∆m2

h|(a) +∆m2
h|(b) +∆m2

h|(c) (3.17)

∆m2
h|(a) is a contribution from the top quark given by

∆m2
h|(a) = −

3y2t
8π2

(
Λ2 − 3m2

t ln

(
Λ2

m2
t

)
+ 2m2

t

)
. (3.18)

∆m2
h|(b) denotes the contribution from the four point coupling with the stop. Noting that stop

is a boson, it is calculated as

∆m2
h|(b) = 3i

∑
i=L,R

(
−iλi

2

)∫
d4p

(2π)4
tr

[
i

p2 −m2
t̃

]

=
∑
i=L,R

3λi
16π2

(
Λ2 −m2

t̃i
ln

(
Λ2

m2
t̃i

))
. (3.19)

Similarly, ∆m2
h|(c) denotes the contribution from the three point coupling with the stop. It also

calculated as

∆m2
h|(b) = 3i

∑
i=L,R

(−ifi)2
∫

d4p

(2π)4
tr

[
i

p2 −m2
t̃

i

(p+ k)2 −m2
t̃

]

=
∑
i=L,R

3f 2
i

16π2

(
− ln

(
Λ2

m2
t̃i

)
+ 1

)
. (3.20)

Since supersymmetry generally leads to the relationship between yt and λi,

λL = λR = y2t , (3.21)
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we can see that the divergence proportional to the second-order of the cut-off cancels out. If
supersymmetry is not broken at any scale,

mt̃L
= mt̃R

= mt,

fL = fR =
√
2ytmt, (3.22)

even further log divergence can be elegantly canceled out. The possibility of canceling out
the whole cutoff scale is a unique property of SUSY and one of the reasons why SUSY has
been favored. It is generally known that the quantum divergence of a particle with some
symmetry can be suppressed to a log divergence by that symmetry. In GHU, the Higgs can
be regarded as part of a higher-dimensional gauge field and thus has a higher dimensional
gauge symmetry. Therefore, although GHU is a high-dimensional theory, the Higgs mass is
believed to be protected by the high-dimensional gauge symmetry. Actually, the finiteness of
the Higgs potential has been confirmed up to the two-loop level in several GHU models. The
Higgs potential at the higher loop level has also been investigated. Finally, in the composite
model, the Higgs is not regarded as an elementary particle, but as a particle with an internal
structure. Therefore, the symmetry (e.g., chiral symmetry) of the internal particles that make
up the Higgs protects the Higgs mass.





Chapter 4

Overview of the extra dimensions

We usually perceive only three-dimensional space (length, width, and height) and one-dimensional
time. The theory of relativity treats them as equals and describes them as a unified four-
dimensional space-time. However, the possibility of other extra dimensions has not been elim-
inated as long as they satisfy the experiment. In other words, as long as it is satisfied, there
are many variations of extra dimensions: the number of dimensions, structure of the space. For
example, the Kaluza-Klein theory attempted to unify gravity and electromagnetism by expand-
ing spacetime to five dimensions in the 1920s after the publication of general relativity [30]. It
also introduced the compactification of space, which is still frequently used today [31]. In the
String Theory [32], six extra dimensions are introduced for consistency. The Randall-Sundrum
model [33] introduces a ”warped” extra dimension defined by the metric

ds2 = e−2kx5ηµνxµxν + dx25 (4.1)

where x5 is an extra-dimensional coordinate. In the following, we first see how the signs of extra
dimensions would appear if there were one. Then we discuss the compactification of space in
a flat extra dimension and its benefits. Finally, we introduce Orbifolding of space to create a
chiral theory as a 4D effective theory.

4.1 Power laws in the higher dimensions

If the elementary particles can move in the extra-dimensional direction, then the effect of the
extra dimensions will be reflected in the power-law and so on. For example, we consider Gauss’s
law of electromagnetic field: In classical electromagnetism, the electric field emitted by a point
charge Q1 is given by ∫

S

E · n dS =
Q1

ϵ0
∴ E(r) =

Q1

4πϵ0

1

r2
er. (4.2)

It indicates that the electric field originating from the point charge is inversely proportional
to the surface area of the 3D sphere 4πr2 because it is isotropically emitted into 3D space.
Similarly, the electrostatic potential created from this electric field is given by

V (r) =

∫
E(r) · dr =

1

4πϵ0r
. (4.3)
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The Coulomb force acting between the point charges can be expressed as F (r) = Q2E(r) using
the above electric field E, which is still inversely proportional to the square of the distance r.
Here, introducing the extra space dimensions of d-dimension, the Coulomb force is modified as

F (r) =
Q1Q2

ϵ0

1

r2+d

(∫
dΩ3+d

)
, (4.4)

since the magnitude of the electric field is inversely proportional to the surface area of the
3 + d-dimensional sphere. As you can see, any extra spatial dimensions that would be equal
to our three-spacial dimensions visibly change the power law and must be eliminated. Then,
what kind of extra-space dimensions are left as possibilities? In the following, as an example,
we introduce the concept of compactification, which has been adopted in a lot of the extra-
dimensional models.

4.2 Compactification of the space

The extra spatial dimension, which seems to expand infinitely just like three-dimensional space,
was not a candidate. Then, what about extra dimensions that can move only slightly in
its direction? Compactification is one of the methods to make it possible. In this idea, we
think of the d-dimensional extra space as a small circle in its direction. In the following, we
consider the five-dimensional space-time where the coordinates are denoted by xM = (xµ, x5)
(M = 0, 1, 2, 3, 5). The metric is given by ηMN = (+1,−1,−1,−1,−1) from

ds2 = ηMNdx
MdxN = ηµνdx

µdxν − dx5dx5. (4.5)

We identify x5 with x5 + 2πR for the fifth dimension coordinate. Then we can represent the
fifth dimension as a circumference of a circle S1 with radius R. Considering the Lagrangian
density, this identification can be expressed as invariance to the Lagrangian as

L(xµ, x5) = L(xµ, x5 + 2πR). (4.6)

In the flat space-time, the same invariance is required for each field in the Lagrangian

Φ(xµ, x5) = eiθΦ(xµ, x5 + 2πR), (4.7)

where, θ is the free phase parameter, and this expression implies that the fields are periodic for
the fifth dimension. Therefore, the field Φ propagating in this 5D space-time can be expanded
in the Fourier series as

Φ(xµ, x5) =
1√
2πR

ϕ0(xµ) +
1√
πR

∞∑
n=1

(
ϕ+n(xµ) cos

nx5
R

+ ϕ−n(xµ) sin
nx5
R

)
. (4.8)

After expansion, each mode satisfies the normalization and orthogonal conditions∫ 2πR

0

dx5 ηiηjf
i(x5)f j(x5) = δij, (4.9)
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with

fn(x5) ≡
1√
πR


cos |n|x5

R
(n > 0)

1 (n = 0)

sin |n|x5

R
(n < 0)

, ηn =


1 (n > 0)
1√
2

(n = 0)

1 (n < 0)

. (4.10)

Now we consider the theory of free scalar fields in five dimensions. The action for the scalar
Φ with 5D mass M is given by

S =

∫
d4x

∫ 2πR

0

dx5L5D, L5D =
1

2
(∂µΦ(xM))2 − 1

2
M2 (Φ(xM))2 . (4.11)

Integrating into the fifth dimension, we can see how this theory looks from our four-dimensional
space-time

S4D =
∞∑

i=−∞

∫
d4x

[
1

2

(
∂µϕ

i(xµ)
)2 − 1

2
m2

i

(
ϕi(xµ)

)2]
. (4.12)

We can see that this action include the infinite number of scalar fields ϕi with the mass mi =
M2 + |i|2/R2. In this case, the mode ϕ0 with constant configuration in the fifth dimension
is called a zero mode, and the oscillating modes ϕ±n are called the Kaluza-Klein (KK) mode.
Note that the oscillation energy in the extra-dimensional direction is observed as mass from
a 4D point of view, and its magnitude is inversely proportional to the radius R of the extra
dimension. The above discussion can be applied to other fields.

Now that we have formulated the 5D theory from the 4D point of view, we will see how the
power law is modified in this case. As an analogy to the previous electromagnetic interaction,
let us assume a U(1) interaction in 5 dimensions where the coupling constant is g5. If we look at
this interaction from the fourth dimension, the U(1) gauge field, which was originally one in the
fifth dimension, appears as an infinite number of gauge fields with mass mn, and these will have
the same coupling constant g4 in the fourth dimension. In such a situation, the electrostatic
potential can be calculated by adding up the Green’s functions representing the propagation of
each mode as

V (r) = g24G(r,m0) + 2
∞∑
n=1

g24G(r,mn) =
1

4πR

[
1 +

2e−r/R

1− e−r/R

]
. (4.13)

The first and second terms represent the contribution from the zero mode and KK modes,
respectively. When the radius R of the extra dimension is sufficiently small, the second term
can be neglected. Therefore, we see that the four-dimensional power law (4.3) is successfully
reproduced as

V (r) ∼ g24
4πr

, for R≪ r. (4.14)

On the other hand, if R is large enough, the potential is inversely proportional to r2:

V (r) ∼ g24
4πr

[
1 +

2R

r

]
=

g24
4π2r2

(2πR)
[ r
2R

+ 1
]

∼ 2πR× g24
4π2r2

for R≫ r (4.15)
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In other words, we can see that the power-law changes around the radius R.

Finally, we will finish by introducing some significant features of the compactification. As
a simple example, we consider the action of the U(1) gauge field AM(xµ, x5) in five dimensions
given by

S =

∫
d4x

∫
dx5L5D (4.16)

L5D = −1

4
FMNF

MN = −1

4
FµνF

µν − 1

2
Fµ5F

µ5 (4.17)

where we use the field strength defined as FMN = ∂MAN−∂NAM . We will discuss what happens
when we look at this theory from the 4D perspective. As in the case of the scalar field, if we
expand the gauge fields and integrate them in the fifth dimension, we obtain

S =

∫
d4x L0

4D +
∞∑
n=1

∫
d4x L±n

4D . (4.18)

where the Lagrangian densities of the zero-mode and KK modes are given by

L0
4D = −1

4

(
F 0
µν

)2 − 1

2

(
∂µA

0
5

)2
, (4.19)

L±n
4D = −1

4

(
F±n
µν

)
− m2

n

2

(
A±n

µ −
1

mn

∂µA
∓n
5

)2

. (4.20)

The zero-mode for the extra component of the 5D gauge field appears as a scalar in the zero-
mode Lagrangian. On the other hand, the KK modes for the extra component of the 5D gauge
field are absorbed by the corresponding KK modes for the 4D gauge field as these longitudi-
nal components. Note that when we consider the 5D gauge field from the four-dimensional
perspective, there appear not only the gauge fields but also the scalar field.

4.3 Orbifolding of the space

Compactification is not enough to construct the extra dimensions for the chiral fermions. Then,
we discuss it considering the 5D Dirac equation(

iΓM∂M −W
)
Ψ =

(
iγµ∂µ − γ5∂5 −W

)
Ψ = 0, (4.21)

where we use the 5D Gamma matrix ΓM = (γµ, iγ5) satisfying the anti-commutation relation
{ΓM ,ΓN} = ηMN . Note that γ5 is appears as equal to the others gamma matrixes in the Dirac
equation. In other words, we can not consider a chiral theory as long as keeping the proper 5D
Lorentz invariance. It implies that under the 5D Lorentz transformation, the right-hand and
left-hand fermions are mixed. For the compactified extra dimension, it still remains.

Then, we use the method called orbifolding to get the chiral theory. By using the γ5 matrix,
5D fermions are transformed under the Z2 symmetry in the x5 direction as

Ψ(xµ, x5)→ ΨP (xµ, x5) ≡ γ5Ψ(xµ,−x5), (4.22)
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because Ψ(xµ, x5) and Ψ(xµ,−x5) are obey the same 5D Dirac equation. Using the anti-
commutation relation {Γ5,Γµ} = 0, we find[

iγµ
∂

∂xµ
− γ5 ∂

∂x5

]
ΨP (xµ, x5) = −γ5

[
iγµ

∂

∂xµ
− γ5 ∂

∂(−x5)

]
Ψ(xµ,−x5). (4.23)

Since the mass term mΨ is not invariant to this transformation, this discussion is only valid
for the massless 5D fermions. Eq. (4.22) is rewritten by

ΨR(x
µ, x5)→ ΨP

R(x
µ, x5) = +ΨR(x

µ,−x5),
ΨL(x

µ, x5)→ ΨP
L(x

µ, x5) = −ΨL(x
µ,−x5), (4.24)

where the 4D chiral eigenstates are defined by

ΨR ≡
1√
2πR

ψ0
R(xµ) +

1√
πR

∞∑
n=1

(
ψ+n
R (xµ) cos

nx5
R

+ ψ−n
R (xµ) sin

nx5
R

)
,

ΨL ≡
1√
2πR

ψ0
L(xµ) +

1√
πR

∞∑
n=1

(
ψ+n
L (xµ) cos

nx5
R

+ ψ−n
L (xµ) sin

nx5
R

)
. (4.25)

Focusing on the Z2 invariant states, ΨR and ΨL are the even and odd functions for the x5
direction, respectively:

ΨR(xµ, x5) = +ΨR(xµ,−x5), ΨL(xµ, x5) = −ΨL(xµ,−x5) (4.26)

Therefore, if we impose the Z2 symmetry discussed above on this theory, only the right-hand
fermion remains for the zero modes: ψ0

R. It allows us to create a chiral asymmetric theory as a
low energy effective theory in four dimensions. In the 5D case, it is possible to create a chiral
asymmetric 4D effective theory by identifying x5 with 2πR−x5, which is called the orbifolding.
It also changes the compactified space of [0, 2πR] without edges into a space of [0, πR] with
two edges (boundaries). The identification of this space can be read as a boundary condition
on the field as

Φ(xµ, x5) = P0Φ(xµ, x5) ≡ ηP0Φ(xµ,−x5)
Φ(xµ, πR + x5) = P1Φ(xµ, πR + x5) ≡ ηP1Φ(xµ, πR− x5) (4.27)

where P0, P1 are parity transformation operators at two boundaries and ηP0 , ηP1 are the eigen-
values of them, which take ±1. In addition, these boundary conditions are related to that of
the compactification as

P0P1 = U, (4.28)

where the operator U is defined by

Φ(xµ, x5) = UΦ(xµ, x5) = ηUΦ(xµ, 2πR + x5). (4.29)





Chapter 5

Gauge-Higgs unification

Gauge-Higgs Unification is one of the TeV scale paradigms beyond the SM that solve the
hierarchy problem. In GHU, the Higgs is embedded into the extra components of the gauge
multiplets. Namely, the 4D Higgs and gauge field are unified into the higher dimensional
gauge field. The Higgs potential in GHU is flat at tree level and induced by the quantum
correction due to the higher dimensional gauge symmetry. The realistic GHU models have
been constructed in a flat or warped S1/Z2 extra dimension [34–38]. In these models, the
vacuum expectation value of the Higgs field corresponds to the Aharonov-Bohm phase for the
S1 extra space, which has a non-zero value through the quantum corrections, causing the gauge
symmetry breaking [13,14]. This mechanism is called the Hosotani mechanism. The Higgs and
top quark masses have been a bottleneck in constructing the realistic GHU models, but various
models have been proposed to overcome this problem. Now, we are in the verification phase
of these models. We focus on the structure difference of the Higgs potential from the SM and
test the models by analyzing the triple Higgs boson coupling. The triple Higgs boson coupling
has been analyzed by the previous studies in the warped models [39, 40] and the flat SU(3)
model with a large representation [41, 42]. Therefore, we analyze it on the SU(3) model with
5D Lorentz symmetry relaxed [34]. We then discuss the structure of the Higgs potential that
is common to GHU models with a flat extra dimension.

5.1 Toy SU(3) Model

We first consider the toy SU(3) model, which consists of the flat M4 × S1/Z2 spacetime and
SU(3)c × SU(3)w gauge symmetry. The extended electroweak gauge group SU(3)w is the
minimal group with the SU(2) × U(1) group as a subgroup. The gauge field AM = Aa

MT
a of

the SU(3)w gauge group has boundary conditions on the S1/Z2 orbifold,

S1 :AM(x5 + 2πR) = ηAM(x5)

Z2 :Aµ(−x5) = P †Aµ(x
5)P, A5(−x5) = −P †A5(x

5)P (5.1)

where η stands for the periodicity of the field, periodic (1) and antiperiodic (-1), P is the
eigenvalue matrix of the Z2 parity. By choosing the boundary conditions as

P =

−1 0 0
0 −1 0
0 0 +1

 , η = 1, (5.2)
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the SU(3c)× SU(3)w gauge group breaks down to the SU(3)c× SU(2)L×U(1)w gauge group.
Since the zero-modes are the even functions for the x5 direction, we get

A0
µ =

1

2

A
3,0
µ + 1√

3
A8,0

µ A1,0
µ − iA2,0

µ 0

A1,0
µ + iA2,0

µ −A3,0
µ + 1√

3
A8,0

µ 0

0 0 − 2√
3
A8,0

µ

 , (5.3)

A0
5 =

1

2

 0 0 A4,0
5 − iA

5,0
5

0 0 A6,0
5 − iA

7,0
5

A4,0
5 + iA5,0

5 A6,0
5 + iA7,0

5 0

 =
1√
2

(
0 Φ
Φ† 0

)
. (5.4)

A0
µ is a gauge field of the SU(2)L × U(1)w gauge group, while A0

5 is consist of the broken
generators and Φ is regarded as a SU(2)w doublet scalar. Thus we can identify Φ as the SM
Higgs because it can obtain the non-zero VEV from the Hosotani mechanism. The KK modes
of A5 are absorbed into the KK modes of Aµ as seen in Sec. 4.2. For the following calculations,
we define the VEV of A5 as

⟨Aa
5⟩ =

2α

g5R
δa7. (5.5)

So far, we have seen how the gauge field and the Higgs field can be unified. Now let us
turn our attention to the matter field. It is tempting to construct a theory based only on
the bulk field, which, like the gauge field, propagates freely in the extra-dimensional direction.
However, if we consider only the bulk field, the zero modes of the fermion are also naively
determined by the gauge coupling. Then these masses are degenerate to the EW scale, which is
inconsistent with the observation. To solve this problem, we consider two types of fermions in
this model: massive bulk fermions and localized massless brane fermions. The brane fermions
are localized at either end of the S1/Z2 orbifold. By mixing the bulk and brane fermion and
through the heavy bulk fermion, we can get the brane fermion to have a mass lighter than the
EW scale, like a seesaw mechanism. For simplicity, we will ignore flavor structure and consider
the quark Lagrangian for one generation. This model contains the five types of matter fields:
bulk fermion pairs {Ψj, Ψ̃j}, left-handed quark doublet QL = (tL, bL)

T, right-handed up-type
quark uR, right-handed down-type quark dR. These representations and quantum numbers are
summarized in Table 5.1. The bulk fermion pair is required to have a mass sufficiently larger
than the EW scale to form a mixing term with a 5D mass parameter Mj. We introduce e1 and
e2 as parameters to represent the degree of mixing between bulk and brane fermions with a
mass dimension. From the remarks above, the 5D matter Lagrangian is given by

Lmatter =
∑
j=u,d

{
Ψ̄j

(
i /D4 −D5γ

5
)
Ψj +

¯̃Ψj

(
i /D4 −D5γ

5
)
Ψ̃j +

(
Ψ̄jMjΨ̃j + h.c.

)}
+ δ(x5 − l1)

{
Q̄Li /D4QL +

(
ed1Q̄Lψd + eu1Q̄

c
Rψu + h.c.

)}
+ δ(x5 − l2)

{
ūRi /D4uR + d̄Ri /D4dR +

(
ed2d̄Rχd + eu2 ū

c
Lχu + h.c.

)}
, (5.6)

where /D4 ≡ γµDµ withDµ andD5 being covariant derivatives, and ψu,d and χu,d are the SU(2)L
doublet and singlet components of the bulk fermions Ψu,d. In place of Mj and e

a
i , we introduce

dimensionless parameters λj = πRMj and ϵai =
√
πR/2eai (a = u, d; i = 1, 2), respectively.

There are totally 6 model parameters: λu, λd, ϵu1 , ϵ
u
2 , ϵ

d
1 and ϵd2.
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Table 5.1: Matter contents and the quantum numbers. The color factor is denoted by CF .
Fields SU(3)c × SU(3)w periodicity (η) SU(3)c × SU(2)L × U(1)Y CF

(Ψt, Ψ̃t) (3, 6̄) periodic (0) (3,1)2/3 + (3,2)1/6 + (3,3)−1/3 3

(Ψb, Ψ̃b) (3,3) periodic (0) (3,1)−1/3 + (3,2)1/6 3
QL (3,2)1/6 3
tR (3,1)2/3 3
bR (3,1)−1/3 3

5.1.1 Mass spectrum of a bulk gauge field

We will now discuss the mass spectrums of the bulk and brane fields. As a simple example, we
first consider the bulk gauge fields. The action for the SU(3)w gauge field, which contains the
SM Higgs-like field, is given by

Sgauge =
∫
d4x

∫ 2πR

0

dx5 L5D,

L5D = −1

2
Tr
(
FMNF

MN
)
= −1

2
Tr (FµνF

µν)− Tr
(
Fµ5F

µ5
)
, (5.7)

where the strength of the 5D gauge field is defined by FMN = ∂MAN − ∂NAM + ig5[AM , AN ]
with its coupling constant g5. By integrating out the fifth dimension, effective 4D Lagrangian
is given by

L4D =− 1

2
Tr
(
∂µA

0
ν − ∂νA0

µ

)2 − Tr
(
∂µA

0
5

)2
−

∞∑
n=1

(
1

2
Tr
(
∂µA

±n
ν − ∂νA±n

µ

)2
+m2

nTr

(
A±n

µ ±
1

mn

∂µA
∓n
5

)2
)

−
∞∑

l,m,n=−∞

ig4λlmnTr

(
1

2

{
∂µA

l
ν − ∂νAl

µ,
[
Am

µ , A
n
ν

]}
+

{
∂µA

l
5 −

i

R
A−l

µ ,
[
Am

µ , A
n
5

]})

−
∞∑

k,l,m,n=−∞

(ig4)
2λklmnTr

(
1

2

[
Ak

µ, A
l
ν

] [
Am

µ , A
n
ν

]
+
[
Ak

µ, A
l
5

] [
Am

µ , A
n
5

])
(5.8)

where we define the 4D gauge coupling as g4 = g5/
√
2πR. The first and second lines denote the

kinetic terms of the zero-mode and KK modes gauge fields, respectively. The third and fourth
lines also denote the three-point and four-point interaction terms between all modes of gauge
field. The three and four point coupling constants are written by

(ig4)λlmn =

∫ 2πR

0

dx5 (ig5) ηlηmηnf
lfmfn,

(ig4)
2 λklmn =

∫ 2πR

0

dx5 (ig5)
2 ηkηlηmηnf

kf lfmfn, (5.9)



30 CHAPTER 5. GAUGE-HIGGS UNIFICATION

with

ηn =

{
1√
2

(n = 0)

1 (n ̸= 0)
, (5.10)

f 0 =
1√
2πR

, f+n(x5) =
1√
πR

cos
nx5

R
, f−n(x5) =

1√
πR

sin
nx5

R
. (5.11)

We start from the mass of the zero-mode gauge field. The part of the 4D Lagrangian in Eq.
(5.8) that is relevant to the zero-mode mass is

L0
4D = −1

2
Tr
(
F 0
µν

)2 − Tr
(
F 0
µ5

)2
= −1

2
Tr
(
F 0
µν

)2 − 2Tr|DµH|2, (5.12)

where each strength of the zero-mode gauge field are given by

F 0
µν =∂µA

0
ν − ∂νA0

µ + ig4[A
0
µ, A

0
ν ],

F 0
µ5 =∂µA

0
5 − ∂5A0

µ + ig4[A
0
µ, A

0
5] = ∂µA

0
5 + ig4[A

0
µ, A

0
5]. (5.13)

The first and second terms of this Lagrangian represent the kinetic term of SU(2)L × U(1)w
gauge field and kinetic and interaction terms of the scalar field belonging to the SU(2)L doublet,
respectively. This scalar field corresponds to the SM Higgs field, and its VEV causes sponta-
neous symmetry breaking. It can be clarified by rewriting the second term of this Lagrangian
as follows:

2Tr |DµH|2 = 2Tr|∂µH + ig4[A
0
µ, H]|2

=
1

2

∣∣∣∣∣
(
∂µ + ig4Wµ

a,0 τ

2

a

+ ig4

√
3

2
B0

µ

)
(v + h(xµ))

∣∣∣∣∣
2

=
1

4
g24v

2W+
µ W

−µ +
1

2
g24v

2ZµZ
µ + 0AµA

µ + · · ·

(5.14)

We identify Aa,0
µ ≡ W a,0

µ (i = 1, 2, 3) and A8,0
µ ≡ B0

µ. The mass eigenstates Aµ and Zµ are given
by

Aµ =

√
3A3,0

µ + A8,0
µ

2
, (5.15)

Zµ =
A3,0

µ −
√
3A8,0

µ

2
. (5.16)

In this case, the Weinberg angle is predicted as sin θW =
√
3/2, or θW = π/3. The masses

corresponding to W and Z bosons are given by

m0
W =

1

2
g4v =

α

R
, (5.17)

m0
Z = g4v =

2α

R
. (5.18)
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Then we consider the masses of the KK modes. The corresponding Lagrangian part is extracted
as

Ln
4D =− 1

2
Tr
(
∂µA

+n
ν − ∂νA+n

µ

)2 −m2
nTr

(
A+n

µ +
1

m2
n

∂µA
−n
5

)2

− 1

2
Tr
(
∂µA

−n
ν − ∂νA−n

µ

)2 −m2
nTr

(
A−n

µ −
1

m2
n

∂µA
+n
5

)2

− ig4Tr
({ n

R
A+n

µ ,
[
A−n

µ , ⟨A0
5⟩
]}
−
{ n
R
A−n

µ ,
[
A+n

µ , ⟨A0
5⟩
]})

− (ig4)
2Tr
([
A+n

µ , ⟨A0
5⟩
] [
A+n

µ , ⟨A0
5⟩
]
+
[
A−n

µ , ⟨A0
5⟩
] [
A−n

µ , ⟨A0
5⟩
])
, (5.19)

where each KK mode of gauge field A
(±n)
µ (n = 1, 2, · · · ) are represented by boundary conditions

as following form:

A+n
µ =

1

2


1√
3
A8,+n

µ + A3,+n
µ A1,+n

µ + iA2,+n
µ 0

A1,+n
µ − iA2,+n

µ
1√
3
A8,+n

µ − A3,+n
µ 0

0 0 −2√
3
A8,+n

µ

 =
1

2

 A+n
µ

√
2W+,+n

µ 0√
2W−,+n

µ −2Z1,+n
µ 0

0 0 −2Z2,+n
µ


A−n

µ =
1

2

 0 0 A4,−n
µ + iA5,−n

µ

0 0 A6,−n
µ + iA7,−n

µ

A4,−n
µ − iA5,−n

µ A6,−n
µ − iA7,−n

µ 0

 =

√
2

2

 0 0 W ′+,−n
µ

0 0 Z ′+,−n
µ

W ′−,−n
µ Z ′−,−n

µ 0


By defining Z ≡ Z1−Z2 = (A3−

√
3A8)/2 and W± = (A1±A2)/

√
2, we can rewrite the third

and fourth lines of Eq. (5.19) as

3rd line = − n
R

α

R

{
2i
(
W−,+n

µ W ′+,−n
µ −W+,+n

µ W ′−,−n
µ

)
+ 4A7,−n

µ · Z+n
µ

}
(5.20)

4th line = −1

2

(α
R

)2 {
2
(
W−,+n

µ W+,+n
µ +W ′+,−n

µ W ′−,−n
µ

)
+ 4

(
A7,−n

µ

)2
+ 4

(
Z+n

µ

)2 }
. (5.21)

where we use following relations:

[
A+n

µ , ⟨A0
5⟩
]
=
v

4

 0 0
√
2W+,+n

µ

0 0 −2Z+n
µ

−
√
2W−,+n

µ 2Z+n
µ 0

 (5.22)

[
A−n

µ , ⟨A0
5⟩
]
=

√
2v

4

 0 W ′+,−n
µ 0

−W ′−,−n
µ

√
2 i A7,−n

µ 0

0 0 −
√
2 i A7,−n

µ

 (5.23)

Therefore, for the basis of (W+,+n
µ ,W ′+,−n

µ ) and (Z+n
µ , Z ′+,−n

µ ), we can write the mass matrixes
of the KK modes of W and Z bosons as

1

R2

(
W−,+n

µ ,W ′−,−n
µ

)(n2 + α2 2inα
−2inα n2 + α2

)(
W+,+n

µ

W ′+,−n
µ

)
(5.24)

1

2R2

(
Z+n

µ , A7,−n
µ

)(n2 + 4α2 4nα
4nα n2 + 4α2

)(
Z+n

µ

A7,−n
µ

)
(5.25)
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These mass matrixes can be diagonalized by the following unitary matrixes:

UW =
1√
2

(
1 i
−i −1

)
, UZ =

1√
2

(
1 1
−1 1

)
(5.26)

Then, the mass eigenstates and mass spectrums of the gauge fields are defined as

Â+n
µ =

(√
3A3,+n

µ + A8,+n
µ

2

)
mA+ =

n

R
,

Â−n
µ =

√
2Re

[
Z ′+,−n

µ

]
= A6,−n

µ mA− =
n

R
,

Ŵ+,+n
µ =

1√
2

(
W+,+n

µ + iW ′+,−n
µ

)
mW+ =

n+ α

R
,

Ŵ+,−n
µ =

1√
2

(
W+,+n

µ − iW ′+,−n
µ

)
mW− =

n− α
R

,

Ẑ+n
µ =

1√
2

(
A3,+n

µ −
√
3A8,+n

µ

2
+ A7,−n

µ

)
mZ+ =

n+ 2α

R
,

Ẑ+n
µ =

1√
2

(
A3,+n

µ −
√
3A8,+n

µ

2
− A7,−n

µ

)
mZ− =

n− 2α

R
. (5.27)

If we consider only the SU(3) gauge field, the value of the Weinberg angle will deviate signifi-
cantly from the experimental value. Two methods have been devised to correct it: introducing
a gauge kinetic term in the brane or additional U(1) gauge symmetry [43,44].

5.1.2 Mass spectrum of a bulk fermion

Next, we will see how the bulk fermion appears in the 4D effective theory. The boundary
conditions imposed on the bulk fermion are given by

Ψ(xµ, x5) = ÛΨ(xµ, x5) = ηUΨ(xµ, x5 + 2πR)

Ψ(xµ, x5) = P̂Ψ(xµ, x5) = ηPγ5Ψ(xµ,−x5). (5.28)

Since bulk fermions also have periodicity for S1, they can be Fourier expanded by trigonometric
functions. From Eq. (5.28), each chiral eigenstate is restricted to an even or odd function
depending on the eigenvalue ηP . For ηU = 1 and ηP = +1(−1), we find ΨR = even (odd) and
ΨL = odd (even). For the sake of convenience, we will define chiral fermions as

Ψ =

(
ξ
ζ̄T

)
. (5.29)

Then, the action for a free bulk fermion is given by

S =

∫
d4x

∫ 2πR

0

dx5 iΨ̄
(
ΓM∂M

)
Ψ

=

∫
d4x

∫ 2πR

0

dx5
{
i
(
ζT , ξ̄

)(−i∂5 σµ∂µ
σ̄µ∂µ i∂5

)(
ξ
ζ̄T

)}
, (5.30)
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where the Z2 invariance forbid the mass term Ψ̄MΨ. In the case of ηU = 1 and ηP = +1, the
4D effective Lagrangian for the zero mode and KK modes are calculated as

L0
4D =

1

2πR

∫ 2πR

0

dx5 i
(
ζ0

T

, 0
)( 0 σµ∂µ

σ̄µ∂µ 0

)(
0

ζ̄0
T

)
= i ζ0

T

σµ∂µζ̄
0T , (5.31)

L±n
4D =

∞∑
n=1

∫ 2πR

0

dx5 iη2n

(
f+nζ+nT

,−f−nξ̄−n
)(−i∂5 σµ∂µ

σ̄µ∂µ i∂5

)(
−f−nξ−n

f+nζ̄+nT

)
=

∞∑
n=1

(
iξ̄−nσ̄µ∂µξ

−n + iζ̄+nT

σµ∂µζ̄
+nT − n

R

(
ζ+nT

ξ−n + ξ̄−nζ̄+nT
))

=
∞∑
n=1

ψ̄n
(
iγµ∂µ −

n

R

)
ψn, : ψn =

(
ξ−n

ζ̄+nT

)
(5.32)

with

ΨR =
∞∑
n=0

ηnf
+n(x5)ψ+n

R (xµ), ΨL = −
∞∑
n=0

ηnf
−n(x5)ψ−n

L (xµ). (5.33)

We can see that the effective 4D theory includes massless left-handed fermion and both chirality
fermions with mass spectrums mn = n/R. While in the case of ηU = 1 and ηP = −1, the 4D
effective Lagrangian for the zero mode and KK modes are also calculated as

L0
4D =

1

2πR

∫ 2πR

0

dx5 i
(
0, ξ̄0

)( 0 σµ∂µ
σ̄µ∂µ 0

)(
ξ0

0

)
= i ξ0

†
σµ∂µξ

0, (5.34)

L±n
4D =

∞∑
n=1

∫ 2πR

0

dx5 iη2n

(
f−nζ−nT

f+n, ξ̄+nT
)(−i∂5 σµ∂µ

σ̄µ∂µ i∂5

)(
f+nξ+n

f−nζ̄−nT

)
=

∞∑
n=1

(
iξ̄−nσ̄µ∂µξ

−n + iζ̄+nT

σµ∂µζ̄
+nT − n

R

(
ζ−nT

ξ+n + ξ̄+nζ̄−nT
))

=
∞∑
n=1

ψ̄n
(
iγµ∂µ −

n

R

)
ψn, : ψn =

(
ξ+n

ζ̄−nT

)
(5.35)

with

ΨR =
∞∑
n=0

ηnf
−n(x5)ψ−n

R (xµ), ΨL =
∞∑
n=0

ηnf
+n(x5)ψ+n

L (xµ). (5.36)

Note that in the both case, the KK modes have the both chirality while zero mode only has a
left- or right-handed chirality. It is the desired result reflecting the effect of the Orbifolding of
the space. We can expect the theory to be chiral asymmetric below the compactification scale
1/R.
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5.1.3 Mass spectrum of a bulk fermion (Fundamental)

So far, we have discussed a free bulk fermion. Now let’s move on to a bulk fermion coupled to
the bulk gauge field. Its action is given by

S =

∫
d4x

∫ 2πR

0

dx5Ψ̄
(
iΓMDM

)
Ψ, (5.37)

where we define the covariant derivative as DM = ∂M + ig5AM . From the boundary conditions,
we have four possible choices for the eigenvalues of the field. Let us first consider the case where
ηU = +1, ηP = +1, then the case where ηU = +1, ηP = −1, and finally the case where ηU = −1.

We consider Ψ̃d as a bulk fermion in the fundamental 3 representation with ηP = +1. From
boundary conditions Eq. (5.28), this bulk fermion can be rewritten in terms of the 4D chiralities
as

Ψ̃d =

ψ̃d
1L + ψ̃d

1R

ψ̃d
2L + ψ̃d

2R

χ̃d
R + χ̃d

L

 =
∞∑
n=0

ηn

f+nψd,+n
1L + f−nψd,−n

1R

f+nψd,+n
2L + f−nψd,−n

2R

f+nχd,+n
R − f−nχd,−n

L

 (5.38)

where (ψ1, ψ2) and χ denote the doublet and singlet of the SU(2)L gauge group. Since we are
interested in the mass of the bulk fermion, we extract the part of the action in Eq. (5.37) that
is related to the mass term:

S =

∫
d4x

∫ 2πR

0

dx5 ¯̃Ψd

(
iΓM∂M − ig5γ5⟨A5⟩

)
Ψ̃d

=

∫
d4x

∫ 2πR

0

dx5
(
¯̃Ψ1
d,
¯̃Ψ2
d,
¯̃Ψ3
d

)iΓM∂M 0 0
0 iΓM∂M −iγ5 α

R

0 −iγ5 α
R

iΓM∂M

Ψ̃1
d

Ψ̃2
d

Ψ̃3
d

 (5.39)

After a basis transformation using the diagonalization matrix

U =

1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2

 (5.40)

and integration for the fifth dimension direction, the 4D effective Lagrangian is given by

L4D =
∞∑

n=−∞

¯̃Ψ
(1)
d,n

(
iγµ∂µ +

n

R

)
Ψ̃

(1)
d,n +

∞∑
n=−∞

¯̃Ψ
(2)
d,n

(
iγµ∂µ +

n+ α

R

)
Ψ̃

(2)
d,n, (5.41)

where the 4D mass eigenstates and these mass spectrums are defined as

Ψ̃
(1)
d,n =

ηn√
2


−ψd,+n

1L + ψd,−n
1R (n > 0)

2
(
−ψd,0

1L + ψd,0
1R

)
(n = 0)

−ψd,−n
1L + ψd,+n

1R (n < 0)

: m̃
(1)
d,n = − n

R

Ψ̃
(2)
d,n =

ηn√
2


−ψd,+n

2L + iχd,+n
R + ψd,−n

2R − iχd,−n
L (n > 0)

2
(
ψd,0
2R − iχ

d,0
L

)
(n = 0)

ψd,−n
2L − iχd,−n

R + ψd,+n
2R − iχd,+n

L (n < 0)

: m̃
(2)
d,n = −n+ α

R
. (5.42)
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Therefore, the 4D effective theory contains the two types of fermion: infinite modes with mass
spectrums mn = −n/R and mn = −(n+ α)/R.

Then we consider Ψd as a bulk fermion in the fundamental 3 representation with ηP = −1.
If it has the same quantum numbers as Ψ̃d except for the eigenvalues of Z2 parity, then we can
write a Z2 invariant mass term (Ψ̄dMΨ̃d + h.c.). From boundary conditions Eq. (5.28), this
bulk fermion also can be rewritten in terms of the 4D chiralities as

Ψd =

ψd
1R + ψd

1L

ψd
2R + ψd

2L

χd
L + χd

R

 =
∞∑
n=0

ηn

f+nψd,+n
1R − f−nψd,−n

1L

f+nψd,+n
2R − f−nψd,−n

2R

f+nχd,+n
L + f−nχd,−n

R

 . (5.43)

After separation of variables, the 4D fields are the same as that of Ψ̃d. The part of the action for
Ψd that is related to mass is the rewriting of Ψ̃d to Ψd in Eq. (5.39). After a basis transformation
using the same diagonalization matrix to (5.40) and integration for the fifth dimension direction,
we find the 4D effective Lagrangian

L4D =
∞∑

n=−∞

Ψ̄
(1)
d,n

(
iγµ∂µ −

n

R

)
Ψ

(1)
d,n +

∞∑
n=−∞

Ψ̄
(2)
d,n

(
iγµ∂µ −

n+ α

R

)
Ψ

(2)
d,n, (5.44)

where the 4D mass eigenstates and these mass spectrums are defined as

Ψ
(1)
d,n =

ηn√
2


ψd,+n
1R + ψd,−n

1L (n > 0)

2
(
ψd,0
1R + ψd,0

1L

)
(n = 0)

ψd,+n
1R + ψd,−n

1L (n < 0)

: m
(1)
d,n =

n

R

Ψ
(2)
d,n =

ηn√
2


ψd,+n
2R + iχd,+n

L + ψd,−n
2L + iχd,−n

R (n > 0)

2
(
ψd,0
2R + iχd,0

L

)
(n = 0)

ψd,−n
2R + iχd,−n

L − ψd,+n
2L − iχd,+n

R (n < 0)

: m
(2)
d,n =

n+ α

R
. (5.45)

Therefore, Ψd appears as the infinite modes with mass spectrums mn = n/R and mn = (n +
α)/R in the 4D effective theory.

Finally, let’s discuss the behavior of the bulk fermion with ηU = −1. It means that the field
is an antiperiodic function for S1. Therefore, the Fourier decomposition is not done with a set
of periodic functions but with that of antiperiodic ones:

f+n(x5) =
1√
πR

cos

(
n+ 1

2

)
x5

R

f−n(x5) =
1√
πR

sin

(
n+ 1

2

)
x5

R
(5.46)

Since these functions also satisfy the orthonormal conditions, the only change that appears in
the 4D effective theory after integration is that the mass shifts n/R→ (n+1/2)/R. In summary,
when considering a field with ηU = −1, we only need to shift that mass with ηU = +1 by half
an integer.
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5.1.4 Mass spectrum of a bulk fermion (Symmetric)

Then what happens in the case of the symmetric 6̄ representation? In general, when we consider
fields belonging to different representations, the differences appear in the number of components
and the coupling to another field. In other words, we expect that the α dependence of the mass
eigenstates will change, and we will check it in the following. The bulk fermion in the symmetric
6̄ representation has two subscripts for the SU(3)w gauge group and is symmetric for these two
subscripts. These two subscripts can be represented as

Ψij =
1√
2

√2Ψ1 Ψ2 Ψ4

Ψ2

√
2Ψ3 Ψ5

Ψ4 Ψ5

√
2Ψ6

i

j

. (5.47)

Since this field transforms for the gauge transformation U3 of SU(3)w as

Ψij → Ψi′j′ = ΨijU ii′

3 U
jj′

3 , (5.48)

the covariant derivative that keeps it gauge invariant is given by DM = ∂M + 2i g5AM . Thus,
the action for the bulk fermion in symmetric representation is given by

S =

∫
d4x

∫ 2πR

0

dx5Tr
[
Ψ̄iΓM(∂M + 2i g5AM)Ψ

]
. (5.49)

This action satisfies the following boundary conditions for Ψ:

Ψ(xµ, x5) = ÛΨ(xµ, x5)Û
T = ηUΨ(xµ, x5 + 2πR)

Ψ(xµ, x5) = P̂Ψ(xµ, x5)P̂
T = ηPΨ(xµ,−x5) (5.50)

There are four possible choices of the eigenvalues ηU , ηP as same as the fundamental case. First,
we consider Ψu as the bulk fermion in symmetric representation with ηP = +1. From boundary
conditions Eq. (5.50), It can be rewritten in terms of the 4D chiralities as

Ψu =
1√
2

√2 (ϕu
1R + ϕu

1L) ϕu
2R + ϕu

2L ψu
1L + ψu

1R

ϕu
2R + ϕu

2L

√
2 (ϕu

3R + ϕu
3L) ψu

2L + ψu
2R

ψu
1L + ψu

1R ψu
2L + ψu

2R

√
2 (χu

R + χu
L)


=

∞∑
n=0

ηn√
2

 √2 (f+nϕu,+n
1R − f−nϕu,−n

1L

)
f+nϕu,+n

2R − f−nϕu,−n
2L f+nψu,+n

1L + f−nψu,−n
1R

f+nϕu,+n
2R − f−nϕu,−n

2L

√
2
(
f+nϕu,+n

3R − f−nϕu,−n
3L

)
f+nψu,+n

2L + f−nψu,−n
2R

f+nψu,+n
1L + f−nψu,−n

1R f+nψu,+n
2L + f−nψu,−n

2R

√
2
(
f+nχu,+n

R − f−nχu,−n
L

)
, (5.51)

where {ϕ1, ϕ2, ϕ3}, {ψ1, ψ2} and χ denote triplet, doublet and singlet of the SU(2)L gauge group,
respectively. After a basis transformation using the same diagonalization matrix to (5.40) and
integration for the fifth dimension direction as similar to the fundamental case, we find the 4D
effective Lagrangian

L4D =
∞∑

n=−∞

∑
i=1,2

Ψ̄(i)
u,n

(
iγµ∂µ −m(i)

u,n

)
Ψ(i)

u,n

+
∞∑

n=−∞

Ψ̄(3)
u,n

(
iγµ∂µ −m(3)

u,n(α)
)
Ψ(3)

u,n +
∞∑

n=−∞

Ψ̄(5)
u,n

(
iγµ∂µ −m(5)

u,n(2α)
)
Ψ(5)

u,n, (5.52)
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where each mass eigenstates and mass eigenvalues is defined as

Ψ(1)
u,n =

ηn√
2


ϕu,+n
1R + ϕu,−n

1L (n > 0)

2ϕu,0
1R (n = 0)

ϕu,−n
1R + ϕu,+n

1L (n < 0)

: m(1)
u,n =

n

R

Ψ(2)
u,n =

ηn√
2


−ϕu,+n

3R + χu,+n
R − ϕu,−n

3L + χu,−n
L (n > 0)

2
(
−ϕu,0

3R + χu,0
R

)
(n = 0)

−ϕu,−n
3R + χu,−n

R − ϕu,+n
3L + χu,+n

L (n < 0)

: m(2)
u,n =

n

R

Ψ(3)
u,n =

ηn√
2


ϕu,+n
2R + iψu,+n

1L + ϕu,−n
2L + iψu,−n

1R (n > 0)

2
(
ϕu,0
2R + iψu,0

1L

)
(n = 0)

ϕu,−n
2R + iψu,−n

1L − ϕu,+n
2L − iψu,+n

1R (n < 0)

: m(3)
u,n =

n+ α

R

Ψ(5)
u,n =

ηn
2


ϕu,+n
3R + χu,+n

R + i
√
2ψu,+n

2L + ϕu,−n
3L + χu,−n

L + i
√
2ψu,−n

2R (n > 0)

2
(
ϕu,0
3R + χu,0

R + i
√
2ψu,0

2L

)
(n = 0)

ϕu,−n
3R + χu,−n

R + i
√
2ψu,−n

2L − ϕu,+n
3L − χu,+n

L − i
√
2ψu,+n

2R (n < 0)

: m(5)
u,n =

n+ 2α

R

(5.53)

Therefore, we can see that Ψu appears in the 4D effective theory as two infinite particles with
mu,n = n/R, infinite particles with mu,n = (n + α)/R, and infinite particles with mu,n =
(n+2α)/R. We can also read from it that there is a difference in the α dependence of the mass
spectrums compared to the fundamental representation.

Next, we prepare Ψ̃u with ηP = −1 as a pair of Ψu. It allows us to add a mass term
Tr[Ψ̄uMΨ̃u] + h.c. to the Lagrangian, just as in the fundamental representation case. From
boundary conditions Eq. (5.50), Ψ̃u also can be rewritten in terms of the 4D chiralities as

Ψ̃u =
1√
2


√
2
(
ϕ̃u
1L + ϕ̃u

1R

)
ϕ̃u
2L + ϕ̃u

2R ψ̃u
1R + ψ̃u

1L

ϕ̃u
2L + ϕ̃u

2R

√
2
(
ϕ̃u
3L + ϕ̃u

3R

)
ψ̃u
2R + ψ̃u

2L

ψ̃u
1R + ψ̃u

1L ψ̃u
2R + ψ̃u

2L

√
2 (χ̃u

L + χ̃u
R)


=

∞∑
n=0

ηn√
2

 √2 (f+nϕu,+n
1L + f−nϕu,−n

1R

)
f+nϕu,+n

2L + f−nϕu,−n
2R f+nψu,+n

1R − f−nψu,−n
1L

f+nϕu,+n
2L + f−nϕu,−n

2R

√
2
(
f+nϕu,+n

3L L + f−nϕu,−n
3R

)
f+nψu,+n

2R − f−nψu,−n
2L

f+nψu,+n
1R − f−nψu,−n

1L f+nψu,+n
2R − f−nψu,−n

2L

√
2
(
f+nχu,+n

L + f−nχu,−n
R

)
. (5.54)

After the same calculations as in Ψu, the 4D effective Lagrangian for Ψ̃u is given by

L4D =
∞∑
n=0

∑
i=1,2

¯̃Ψ(i)
u,n

(
iγµ∂µ − m̃(i)

u,n

)
Ψ̃(i)

u,n

+
∞∑

n=−∞

¯̃Ψ(3)
u,n

(
iγµ∂µ − m̃(3)

u,n(α)
)
Ψ̃(3)

u,n +
∞∑

n=−∞

¯̃Ψ(5)
u,n

(
iγµ∂µ − m̃(5)

u,n(2α)
)
Ψ̃(5)

u,n. (5.55)

We omit each mass eigenstate in this case because they can be easily derived from the previous
discussion. As a result, mass eigenstates with masses opposite in sign to the case of Ψu appear.

Let us now consider a low-energy effective theory below the compactification scale 1/R, and
discuss whether it can reproduce the SM. Since only zero modes appear at this energy scale, we
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Figure 5.1: The corrected propagator for d

Figure 5.2: The corrected propagator for u

will focus our discussion on the zero mode of each bulk field. Because the masses of the zero-
mode bulk fields are typically zero or integer multiples of α/R, we will see that some ingenuity
is required to create a fermion mass hierarchy in the SM. It is essentially due to the fact that
the gauge coupling controls both the bulk gauge field and bulk fermions. In this model, the
brain fermions play the role of the SM fermions. Therefore, we introduce a mixing term Ψ̄MΨ̃
with a mixing massM sufficiently larger than 1/R to avoid the zero modes of the bulk fermions
appearing at low energy.

5.1.5 Mass spectrum of a brane fermion

Finally, we will discuss the mass spectrums of the brane fermions. The brane fermion is massless
before the symmetry breaking and acquires the mass through coupling to the bulk fermion after
that. To discuss that process concretely, we summarize the mass eigenstates of the bulk fermions
in the form of a two-component vector (Ψ

(i)
n , Ψ̃

(i)
n )Ta . Then the projector for this vector can be

represented in momentum space using the following 2× 2 matrix:

K(i)
a,n =

(
/p−m(i)

a,n(α) Ma

Ma /p+m
(i)
a,n(α)

)
(5.56)

The propagator ∆
(i)
a,n for each mass eigenstates of the bulk fermion is obtained by taking the

inverse of this matrix as

∆(i)
a,n =

i

p2 −m(i) 2
a,n (α)−M2

a

(
/p+m

(i)
a,n(α) −Ma

−Ma /p−m(i)
a,n(α)

)
. (5.57)

Now that we are ready to discuss the mass of the brane fermion. Let us start by rewriting
the bulk-brane mixing term in Eq. 5.8 with Ψ

(i)
a,n. After integrating out the fifth direction,
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bulk-brane mixing terms in the 4D effective Lagrangian is rewritten as

L4D ⊃
∞∑
n=0

1

2

ηnξ1,n√
πR

(
ed1Q̄Lψ

d,+n
R + eu1Q̄

c
Rψ

u,+n
L + h.c.

)
+

∞∑
n=0

1

2

ηnξ1,n√
πR

(
ed2d̄Rχ

d,+n
L + eu2 ū

c
Lχ

u,+n
R + h.c.

)
. (5.58)

Note that the odd function vanishes on the brane, x5 = 0, πR, the relationship between
ψa(±n),χa(±n) and Ψ

(i)
a,n can be read as

L4D ⊃
1

πR

∞∑
n=−∞

[
−iϵu1ξ1,n

(
d̄ c
RΨ

(3)
u,nL − ū

c
RΨ

(5)
u,nL

)
+

ϵu2√
2
ξ2,nū

c
L

(
Ψ

(5)
u,nR +Ψ

(2)
u,nR

)
+ϵd1ξ1,n

(
ūLΨ

(1)
d,nR + d̄LΨ

(2)
d,nR

)
− iϵd2ξ2,n d̄RΨ

(2)
d,nL + h.c.

]
. (5.59)

where the coefficient ξi,n denotes the fifth-dimensional wave function on the brane:

ξi,n = cos

(
nx5i
R

)
=

{
1 : x5i = 0

(−1)n : x5i = πR
(5.60)

For the following calculations, we define a new field Ψ
(i)′
a,n modified by a phase from Ψ

(i)
a,n

Ψ
(1)′

d,nR = Ψ
(1)
d,nR Ψ

(3)′

u,nL = −iΨ(3)
u,nL

Ψ
(2)′

d,nR = Ψ
(2)
d,nR Ψ

(5)′

u,nL = −iΨ(5)
u,nL

Ψ
(2)′

d,nL = −iΨ(2)
d,nL Ψ

(5)′

u,nR +Ψ
(2)′

u,nR = −
(
Ψ

(5)
u,nR +Ψ

(2)
u,nR

)
(5.61)

Then, Eq. (5.59) is rewritten as

L4D ⊃
1

πR

∞∑
n=−∞

[
ϵu1ξ1,n

(
d̄ c
RΨ

(3)′

u,nL − ū
c
RΨ

(5)′

u,nL

)
− ϵu2√

2
ξ2,nū

c
L

(
Ψ

(5)′

u,nR +Ψ
(2)′

u,nR

)
+ϵd1ξ1,n

(
ūLΨ

(1)′

d,nR + d̄LΨ
(2)′

d,nR

)
+ ϵd2ξ2,n d̄RΨ

(2)′

d,nL + h.c.
]
. (5.62)

Only Ψ
(2)′

d,n and Ψ
(5)′
u,n couple to brane fields with both left and right chirality, and this coupling

induces the mass term. The other Ψ
(i)′
a,n are only coupled to either the left or right chirality, which

induces corrections to the kinetic operators Ku and Kd for the brane fermions u = uR + uL
and d = dR + dL. The propagators for u, d after adding the correction for bulk-brane mixing
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are given by

∆u = i

[
/pRe

(
1 +

ϵd 21
xd
PLf0(x

d, 0) +
ϵu22
2xu

PRf0(x
u, 0) +

(
ϵu21
xu
PL +

ϵu22
2xu

PR

)
f0(x

u, 2α)

)
− 1

πR
Im

ϵu1ϵ
u
2√
2
(PL + PR) fδ(x

u, α)

]−1

(5.63)

∆d = i

[
/pRe

(
1 +

(
ϵd1

2

xd
PL +

ϵd2
2

xd
PR

)
f0(x

d, α) +
ϵu1

2

xu
PLf0(x

u, α)

)

− 1

πR
Im ϵd1ϵ

d
2 (PL + PR) fδ(x

d, α)

]−1

(5.64)

To calculate the infinite sum in the above equation, we moved to Euclidean space and used the
dimensionless momentum variables x = πRp and xa = πR

√
p2 +M2

a . It allows us to rewrite
the infinite sum as follows:

f0(x, α) =
∞∑

n=−∞

1

x+ iπ(n+ α)
= coth(x+ iπα)

f1(x, α) =
∞∑

n=−∞

(−1)n

x+ iπ(n+ α)
= sinh−1(x+ iπα) (5.65)

The function fδ(x, α) can also be interpreted as representing the propagation of a bulk fermion
between two fixed points separated by a distance δπR. This expression can also be summarized
as

fδ(x, α) =
∞∑

k=−∞

e−|2k+δ|(x+iπα) (5.66)

By taking the inverse of Eq. (5.64), (5.63), the kinetic operators are given by

Ku = /pRe

[
1 +

ϵd 21
xd
PLf0(x

d, 0) +
ϵu22
2xu

PRf0(x
u, 0) +

(
ϵu21
xu
PL +

ϵu22
2xu

PR

)
f0(x

u, 2α)

]
− 1

πR
Im

[
ϵu1ϵ

u
2√
2
fδ(x

u, α)

]
, (5.67)

Kd = /pRe

[
1 +

(
ϵd 21
xd
PL +

ϵd 22
xd
PR

)
f0(x

d, α) +
ϵu21
xu
PLf0(x

u, α)

]
− 1

πR
Im
[
ϵd1ϵ

d
2fδ(x

d, α)
]
. (5.68)

The mixing between the brain and bulk fermions should affect the mass of the bulk fermion
as same as the brane fermion case. However, if the mass induced for the brane fermion is
sufficiently smaller than that of the bulk fermion, we can neglect the mixing corrections to the
bulk fermion. In this case, the physical masses of the brane fermions are given by

ma =
ma

0√
Za

1Z
a
2

, (5.69)
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where the normalization factors Za
i and mass parameters ma

0 are defined as

mu
0 =

ϵu1ϵ
u
2√

2πR
Imfδ(λ

u, 2α),

md
0 =

ϵd1ϵ
d
2

πR
Imfδ(λ

d, α),

Zu
i = 1 + δi1

ϵd
2

1

λd
Ref0(λ

d, 0) + δi2
ϵu

2

2

2λu
Ref0(λ

u, 0) +
ϵu

2

i

2δi2λu
Ref0(λ

u, 2α),

Zd
i = 1 +

ϵd
2

i

λd
Ref0(λ

d, α) + δi1
ϵu

2

1

λu
Ref0(λ

u, α). (5.70)

5.1.6 One-loop effective potential

As mentioned above, the Higgs potential in GHU is flat at the tree level due to the higher
dimensional gauge symmetry. Then, the quantum corrections induce its shape. In this part, we
discuss the 1-loop contribution to the Higgs potential of each particle in the GHU model with
flat extra dimension. As used in Sec. 2.3, the effective potential at the one-loop level is given
by

Veff(α) = V0 +
∑
I

σI
2

∫
d4pE
(2π)4

ln
(
p2E +m2

I(α)
)
, (5.71)

where V0 is a constant and the sum runs over all 4D fields whose masses depend on α. Let’s
start with the contribution of the bulk fields to the effective potential. Looking at the 5D bulk
field from the perspective of 4D, an infinite number of mass eigenstates (zero and KK modes)
appear. After the EWSB, the masses of these modes are typically given by

m2(α) =M2 +m2
n(α) , mn(α) =

n+ qα

R
, (5.72)

whereM denotes the 5D mass of the bulk field and mn(α) is the mass induced by the oscillation
energy on the fifth dimension and the spontaneous symmetry breaking. The coefficient q is
the charge related to the coupling with the Higgs doublet, and determined from the SU(3)w
representation of the bulk field. Then, we represent Eq. (5.71) as

Vbulk(α) = −
1

2

∑
I

(−)FI

∫ ∞

0

dt

t

∫
d4pE
(2π)4

e−t(p2E+M2
I (α))

= −1

2

∑
I

(−)FI

∫ ∞

0

dt

t

∫
dΩ4

(2π)4
1

2

∫ ∞

0

dp2E p
2
E e−t(p2E+M2

I (α))

= − 1

32π2

∑
I

(−)FI

∫ ∞

0

dt

t3
e−tM2

I (α), (5.73)

In the first line, we use the following relation in the limit ϵ→ 0:

Γ(ϵ)

∫
dp

M(p)ϵ
=

∫ ∞

0

du uϵ−1

∫
dp e−uM(p) (5.74)
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For simplicity, we start with the case of M = 0. After variable transformation at t = 1/l, we
can rewrite the effective potential by using the Poisson summation formula B as

Vbulk(α) = −
∑
I

(−)FI
1

32π2

∫ ∞

0

dl l

(∑
n

e−
(n+qα)2

R2l

)

= −
∑
I

(−)FI
R

32π
3
2

∑
n

e2πinqα
∫ ∞

0

dl l
3
2 e−π2ln2R2

(5.75)

where we perform the sum over the KK expansion (n) from the sum over all mass eigenstates.
From this integral form, we can see that the contribution for the zero modes is divergent.
However, since this contribution does not depend on α, it can be treated as a constant term
in the potential. Therefore, we can ignore this term by appropriately choosing the reference
point of the potential. A more detailed discussion is provided in Ref. [45]. By changing the
integration variable to l′ = π2ln2R2, we can perform the momentum integration for the KK
mode contribution as ∫ ∞

0

dl l
2
3 e−π2ln2R2

= (πnR)−5 Γ(
5

2
). (5.76)

Therefore, the one-loop contribution from bulk field with M = 0 is given by

Vbulk(α) = −
∑
I

(−)FI
Γ(5

2
)

32π
13
2

R
∑
n̸=0

1

(nR)5
e2πinqα

= −
∑
I

(−)FI
1

32π2

1

(πR)4
3

4

∑
n̸=0

1

n5

{
cos (2πnqα) + i sin (2πnqα)

}
= −

∑
I

(−)FI
1

32π2

1

(πR)4
3

2

∞∑
n=1

1

n5
cos (2πnqα). (5.77)

In the last line, we rewrites the sum using the property of the even and odd functions. Then
we will move on our discussion for M ̸= 0. The modified part is integral over l, and then we
find ∫ ∞

0

dl l
3
2 e−

M2

l
−(πnR)2l =

1

(πnR)5
·
(
e−2πnRM 3

√
π

4
(1 + 2πnRM + (2πnRM)2)

)
=

3
√
π

4(πR)5
1

n3
e−2nλ

(
1

n2
+

2λ

n
+

4λ2

3

)
. (5.78)

Thus, the one-loop contribution from bulk field with M ̸= 0 is given by

Vbulk(α) = −
∑
I

(−)FI
1

32π2

1

(πR)4
3

2

∞∑
n=1

1

n3
e−2nλ cos (2πnqα)

(
1

n2
+

2λ

n
+

4λ2

3

)
. (5.79)

It can reproduce the above result in the limit M = 0. On the other hand, when the 5D mass
parameter λ is large, the contribution is exponentially suppressed. As a result, the bulk field
with a large 5D mass is less contribute to the Higgs potential.
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Next, we discuss the contribution of the brane fermions to the effective potential. Unlike
the bulk field, the mass eigenstates of the brane fermions are finite in number, but each mass
has a complex form. By using the normalization factors and mass parameters in Eq. (5.70),
the one-loop contributions from the brane fermions are defined as

Va = −12 ·
1

2

∫
d4p

(2π)4
ln
(
−p2EZa

1Z
a
2 + (ma(α))2

)
, (5.80)

where the factor 12 is from the spin, color, and particle/antiparticle degrees of freedom. It can
be rewritten in terms of x = πRp as

Va = −12 ·
1

16π2

∫ ∞

0

dx x3
1

(πR)4
ln

(
Za

1Z
a
2

x2

(πR)2
+ma(α)2

)
= − 3

4π2(πR)4

∫ ∞

0

dx x3
[
ln

(
Za

1Z
a
2 +

(πR)2

x2
ma(α)2

)
− ln

x2

(πR)4

]
. (5.81)

The second term in this integral diverges. But since it does not depend on α, we can ignore
this term as in the bulk field case. Therefore, one-loop contributions from u and d are given by

Vu(α) =
−3

4π6R4

∫ ∞

0

dx x3 ln

[
2∏

i=1

Re

[
1 + δi1

ϵd
2

1

xd
f0(x

d, 0) + δi2
ϵu

2

2

2xu
f0(x

u, 0) +
ϵu

2

i

2δi2xu
f0(x

u, 2α)

]

+
2∏

i=1

Im

[
ϵu

2

i

2δi2x
fδ(x

u, α)

]]
, (5.82)

Vd(α) =
−3

4π6R4

∫ ∞

0

dx x3 ln

[
2∏

i=1

Re

[
1 +

ϵd
2

1

xd
f0(x

d, α) + δi1
ϵu

2

1

xu
f0(x

u, α)

]

+
2∏

i=1

Im

[
ϵd

2

i

x
fδ(x

d, α)

]]
. (5.83)

The net effective potential is the sum of these contributions. When this effective potential has
a minimum at α ̸= 0, electroweak symmetry breaking occurs. This alternative set of procedures
to the Higgs mechanism is called the Hosotani mechanism. However, it is non-trivial that the
symmetry breaking occurs. The symmetry breaking requires the properly prepared particles
and model parameters.

5.2 SU(3) model with 5D Lorentz symmetry relaxed

So far, we have considered the Toy SU(3) model. Although this model can reproduce the masses
of most SM particles, it suffers from several problems: (1) When the extended electroweak
symmetry is SU(3)w only, the Weinberg angle does not agree with the experimental value. (2)
The masses of the top quark and Higgs cannot be reproduced. (3) The configuration of the Toy
SU(3) model expects the KK particle much too light, which is inconsistent with the collider
experiments. To solve these problems, following two extensions are proposed as the realistic
GHU model with a flat extra dimension: SU(3) model with large representation, SU(3) model
with 5D Lorentz symmetry relaxed. Our study will be based on the latter model.
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Figure 5.3: Field configuration on the S1/Z2 orbifold.

In this model, the electroweak symmetry is extended to SU(3)w×U(1)′. With the additional
U(1) symmetry, we can construct the hypercharge generators by a linear combination of two
U(1) generators as Y = t8/

√
3 + t′. The gauge field of U(1)Y and its orthogonal gauge field of

U(1)X are defined by

AY =
g′A8 +

√
3gA′√

3g2 + g′2
, AX =

√
3gA8 + g′A′√
3g2 + g′2

. (5.84)

Similarly, the gauge coupling constant of U(1)Y is defined by the combination of the two gauge
coupling constants of SU(3)w and U(1)′ as gY =

√
3gg′/

√
3g2 + g′2. With the introduction of

the additional gauge coupling constant g′ for U(1)′, the Weinberg angle is modified as

sin2 θW =
g2Y

g2 + g2Y
=

3

4 + 3g2/g′2
. (5.85)

By determining the appropriate ratio of the two gauge coupling constants, we can reproduce
the experimental value of the Weinberg angle. We briefly discuss an additional gauge field AX

that does not appear in the SM. In contrast to the SM gauge group, the U(1)X gauge group
has a quantum anomaly on the brane due to the presence of the brane fermions. Then, the
AX acquires a brane localized mass MX whose natural value is the cut-off scale of the model.
Therefore, AX can be neglected for the low-energy effective theory we discuss. Details are
discussed in Ref. [34, 44]. The gauge anomalies coming from brane localized fermions is also
discussed in Ref [44,46,47]

Now we move on to the discussion of the matter sector. This model has two changes from
the Toy SU(3) model: The first is the addition of an anti-periodic bulk fermion pair to adjust
the shape of the Higgs potential. The second is the introduction of a 5D Lorentz symmetry
breaking parameter in the fifth component of the covariant derivative to reproduce the top quark
and Higgs masses. According to Ref. [34], we localize left- and right-handed brane fermions
on the different brane (δ = 1 set up) to reproduce the Higgs mass. The field configuration on
the S1/Z2 orbifold is shown in Fig. 5.3 Focusing on the third-generation quark, which gives a
dominant contribution to the Higgs potential, the matter Lagrangian in Eq. (5.6) is modified
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Table 5.2: Matter contents and those quantum numbers. The hypercharge of (ΨA, Ψ̃A) is chosen
such that (ΨA, Ψ̃A) do not mix with the bulk or brane fermions. The color factor is denoted by
CF .

Fields SU(3)c × SU(3)w periodicity (η) SU(3)c × SU(2)L × U(1)Y CF

(Ψt, Ψ̃t) (3, 6̄) periodic (0) (3,1)2/3 + (3,2)1/6 + (3,3)−1/3 3

(Ψb, Ψ̃b) (3,3) periodic (0) (3,1)−1/3 + (3,2)1/6 3

(ΨA, Ψ̃A) (1,6) antiperiodic (1) (1,1)X + (1,2)X+1/2 + (1,3)X+1 1
QL (3,2)1/6 3
tR (3,1)2/3 3
bR (3,1)−1/3 3

by these changes as

Lmatter =
∑

j=t,b,A

{
Ψ̄j

(
i /D4 − kjD5γ

5
)
Ψj +

¯̃Ψj

(
i /D4 − k̃jD5γ

5
)
Ψ̃j +

(
Ψ̄jMjΨ̃j + h.c.

)}
+ δ(y − 0)

{
Q̄Li /D4QL +

(
eb1Q̄Lψb + et1Q̄

c
Rψt + h.c.

)}
+ δ(y − πR)

{
t̄Ri /D4tR + b̄Ri /D4bR +

(
eb2b̄Rχb + et2t̄

c
Lχt + h.c.

)}
, (5.86)

where the matter contents are summarized in Table 5.2. For the sake of simplicity, we take
kj = k̃j. Thus, there are totally 10 model parameters: kt, kb, kA, λ

t, λb, λA, ϵt1, ϵ
t
2, ϵ

b
1 and ϵb2.

In principle, similar Lorentz symmetry breaking effects can be also introduced in the bulk
gauge sector. Since the deviation of the triple Higgs boson coupling is caused mainly by the
fermionic sector, we set the gauge and Higgs counterparts to the unity in the following analysis
for simplicity in this thesis.

5.2.1 Mass spectrums

To estimate the quantum effect on the Higgs potential, we need to clarify the α dependence on all
particles. In this part, we will discuss the mass spectrums contained in this model from the 4D
perspective. The introduction of the Lorentz symmetry breaking parameters can be interpreted
as a change in the compactification scale perceived by each particle as 1/R→ kj/R. Therefore,
this effect can be incorporated by replacing the parameter in the Toy model as follows:

R→ R/k , λ→ λ/k , ϵ→ ϵ/k (5.87)

In the limit MX → ∞ where we ignore the effect of AX , the masses of the weak bosons are
given by

m
(n)

W±(α) =
n+ α

R
, m

(n)
Z (α) =

n+ α sec θW
R

. (5.88)

By modifing the Weinberg angle, we can reproduce the SM masses: m
(0)

W± = α/R and m
(0)
Z =

sec θWα/R. For the bulk fermions, we can ignore the bulk-brane mixing effect as mentioned in
Sec 5.1. Then the mass spectrums of bulk fermions are given by

m
(n)
j (qα) =

√(
kj
n+ η/2 + qα

R

)2

+

(
λj

πR

)2

, (5.89)
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where the parameter η = 0 (1) stands for periodic (antiperiodic) bulk fermions. The charge re-
lated to the coupling with the Higgs doublet q is determined from the SU(3)w indices of the bulk
fermions: q = 0, 1 for the fundamental representation and q = 0, 1, 2 for the symmetric represen-
tation. Thus we have following mass spectrums which depend on α: m

(n)
t (α),m

(n)
t (2α),m

(n)
b (α),m

(n)
A (α)

and m
(n)
A (2α). For the brane fermions, normalization factors and mass parameters defined in

Eq. (5.70) are modified as

mt
0 =

kt√
2πR

ϵt1ϵ
t
2

k2t
Imf1(λ

t/kt, 2α),

mb
0 =

kb
πR

ϵb1ϵ
b
2

k2b
Imf1(λ

b/kb, α).

Zt
i = 1 + δi1

(ϵb1)
2

kbλb
Ref0(λ

b/kb, 0) + δi2
(ϵt2)

2

2ktλt
Ref0(λ

t/kt, 0) +
(ϵti)

2

2δi2ktλt
Ref0(λ

t/kt, 2α),

Zb
i = 1 +

(ϵbi)
2

kbλb
Ref0(λ

b/kb, α) + δi1
(ϵt1)

2

ktλt
Ref0(λ

t/kt, α). (5.90)

Finally, we check how the mass of the top quark is given in α≪ 1. In such a limit, the physical
masses of the brane top and bottom are expanded as

mt
phys ≃

2ktα√
2R

ϵt1ϵ
t
2

k2t

coth(λt/kt)
sinh(λt/kt)√(

1 +
ϵb

2
1

kbλb coth
(

λb

kb

)
+

ϵt
2
1

ktλt coth
(

λt

kt

))(
1 +

ϵt
2
2

ktλt coth
(

λt

kt

)) +O(α3) ,

mb
phys ≃

kbα

R

ϵb1ϵ
b
2

k2b

coth(λb/kb)
sinh(λb/kb)√(

1 +
ϵb

2
1

kbλb coth
(

λb

kb

)
+

ϵt
2
1

ktλt coth
(

λt

kt

))(
1 +

ϵb
2

2

kbλb coth
(

λb

kb

)) +O(α3) , (5.91)

where we use following approximation:

Imfδ(b, α) ≃ −π
coth(b)

sinh(b)
α +O(α3)

1√
a+Re coth(c+ iπα)

≃ 1√
a+ coth(c)

+O(α2) (5.92)

For the sake of simplicity, we take ϵt1,2 ≪ 1 and ϵb1,2 = 0, then it is reduced as

mt
phys ≃

√
2ktmW

λt/kt
sinhλt/kt

<
√
2ktmW , (5.93)

where we use mW = α/R. Therefore, if we keep the 5D Lorentz symmetry (kt = 1), the mass of
the top quark is smaller than the experimental value. Moreover, for α≪ 1, we can approximate
the masses of the brane fermions in a form linear to the VEV (α), as in the SM. Therefore,
ignoring the higher-order terms in α, the contribution to the triple Higgs boson coupling is
given by

∂3

∂α3
Va =

3

α

∂2

∂α2
Va −

3

α2

∂

∂α
Va − 3

m4
a

π2v3

(
g4R

2

)−3

, (5.94)

as in the SM case.
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5.2.2 One-loop effective potential

Next, we discuss how the 1-loop contribution of each particle to the Higgs potential can be
formalized using the mass spectrums defined above. For the bulk gauge fields, it takes the form
of

VV (α) = −
9

64π6R4

∞∑
n=1

1

n5
cos(2πnα). (5.95)

Then, the total contribution from the gauge sector is summarized as

Vg(α) = 2VV (α) + VV (α sec θW ). (5.96)

Similarly, for the bulk fermions, it takes the form of

VΨj
(qα) =

3k4jCF

8π6R4

∞∑
n=1

(σS)
n

n5

[
1 + 2n

λj

kj
+

4

3
n2 (λ

j)2

k2j

]
e−2nλj/kj cos(2πnqα), (5.97)

where σS = (−1)η and CF stands for the color factor. Then, the total contribution from the
bulk fermion pairs is summarized as

Vf (α) = VΨt(α) + VΨt(2α) + VΨb
(α) + VΨA

(α) + VΨA
(2α). (5.98)

Finally, for the brane fermions, Eq. (5.82) and Eq. (5.83) are modified as

Vt(α) =
−CF

4π6R4

∫ ∞

0

dx x3 ln

[
2∏

i=1

Re

[
1 + δi1

(ϵb1)
2

kbxb
f0

(
xb

kb
, 0

)
+ δi2

(ϵt2)
2

2ktxt
f0

(
xt

kt
, 0

)

+
(ϵt1)

2

2δi2ktxt
f0

(
xt

kt
, 2α

)]
+

2∏
i=1

Im
(ϵti)

2

2δi2ktx

[
f1

(
xt

kt
, 2α

)]]
, (5.99)

and

Vb(α) =
−CF

4π6R4

∫ ∞

0

dx x3 ln

[
2∏

i=1

Re

[
1 +

(ϵbi)
2

kbxb
f0

(
xb

kb
, α

)
+ δi1

(ϵt1)
2

ktxt
f0

(
xt

kt
, α

)]

+
2∏

i=1

Im

[
(ϵbi)

2

kbx
f1

(
xb

kb
, α

)]]
. (5.100)

These contributions are finite for any α, respectively. Therefore, although GHU is a non-
renormalizable higher dimensional theory, it predicts a finite Higgs mass because the effective
potential is finite at the one-loop level. Putting the above contributions together, we get the
total one-loop effective potential,

Veff(α) = Vg(α) + Vf (α) + Vt(α) + Vb(α). (5.101)

The minimum value α0 of this potential is obtained by the tadpole condition,(
gR

2

)
∂Veff
∂α

∣∣∣∣
α=α0

= 0. (5.102)
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The mass squared of the Higgs boson is given by the second derivatives of this potential:

m2
h =

(
gR

2

)2
∂2Veff(α)

∂α2

∣∣∣∣
α=α0

(5.103)

Similarly, the triple Higgs boson coupling is given by the third derivatives of that:

λhhh =

(
gR

2

)3
∂3Veff(α)

∂α3

∣∣∣∣
α=α0

(5.104)

The compactification scale 1/R is determined by using the mass relation of the W boson,

m
(0)

W± = α0/R. In order to avoid the experimental constraints for KK particles, 1/R should be
sufficiently large. In other words, α0 should be very small (α0 ≪ 1). It should be emphasized
that tuning of model parameters is required to obtain the very small α0. The reason is that
the Higgs potential in GHU is generated only by radiative corrections and is sensitive to model
parameters. Therefore, it is nontrivial whether the Higgs field develops a nonzero VEV as
mentioned before. We also have to adjust the mass of the Higgs boson to its experimental value
by further tuning the model parameters. Namely, the mass of the discovered Higgs boson and
the tadpole condition strongly constrain the shape of the Higgs potential. It plays s significant
role in our analysis.

5.3 Experimental constraints
Before the discussion of the triple Higgs boson coupling, we check several constraints on the
model parameters. In general, GHU should be aware of the experimental limit on the masses
of the top quark and the Higgs boson, and the compactification scale. In the earlier study
performed in Ref. [34], the Lorentz-violating parameters kj are introduced to increase the masses
of the top quark and the Higgs boson. In Refs. [34,35], the ρ parameter and the ZbLb̄L coupling
are investigated and turned out to be strongly affected by the KK modes of the bulk fields, such
as the sine modes of A

(n)
X and the lightest modes of the bulk fermions, typically 1st Ψt mode.

An improved analysis of electroweak observables in a slightly refined SU(3)w GHU model gives
the lower bound on the compactification scale as 1/R ≳ 5 TeV for mh = 125 GeV [35]. Since
the works of Refs. [34,35] were done before the discovery of the Higgs boson in 2012, we revisit
the SU(3)w model to investigate viable parameter regions.

First, let us discuss the necessity of the antiperiodic fermion. Even if there was no antiperi-
odic fermion, it seems to be possible to satisfy the experimental constraints, because there are
a lot of model parameters. We will mainly check the two experimental constraints, compact-
ification scale and mass of the top boson. Then, we analyze the potential minimum, α0, by
taking the following model parameter regions:{

0.7 < kt < 3
0.7 < kb < 3

,

{
0.5 < λt < 1.5
5 < λb =< 7

,

{
0.5 < ϵt1,2 < 9.5
0.5 < ϵb1,2 < 9.5

(5.105)

Since 5D mass parameters λi control the scale of the brane fermion masses roughly as mi ∝
e−λi

, we set λt = 1 and λb = 6.9. The numerical results is shown in Fig. 5.4. From the
analytical expression (5.93), the parameter region kt < 1 is excluded because it cannot satisfy
the constraint of the top mass. In the remaining parameter regions, we predict very small
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Figure 5.4: Potential minimum in the model without the antiperiodic fermion

compactification scale that is experimentally unacceptable. In particular, Figure 5.4 shows
that the VΨt

(2α), with a minimum at α ≃ 0.3, or VΨt
(α)+VΨb

(α), with a minimum at α = 0.5,
mainly contribute to the Higgs potential. Therefore, we need the contribution of the antiperiodic
fermion to cancel these contributions.

Next, we perform a random scan of model parameters, and numerically calculate the masses
of the top quark and the Higgs boson as well as the compactification scale from the effective
potential defined above. According to the previous study [34], we scan the following model
parameter regions :


1.5 < kt < 2.5,
1.25 < kb < 2.25,
1.1× kt < kA < 1.5× kt,


0.5 < λt < 1.5,
5 < λb < 7,
0.75 < λA < 3.5,

{
0.75 < ϵt1,2 < 7.5,
2 < ϵb1,2 < 7.

(5.106)

Figure 5.5 shows the numerical results of the predicted values of the top quark mass mt and
the Higgs boson mass mh. The left (right) scatter plot shows cases for compactification scales
larger than 800 GeV (5 TeV). Point colors are assigned to each range of the Lorentz violating
parameter kt: Blue points stands for 2.25 < kt < 2.5, green for 2 < kt < 2.25, red for
1.75 < kt < 2, and black for 1.5 < kt < 1.75. The left plot corresponds to the results presented
in Ref. [34]. The effective potential roughly scales as the fourth power of k’s. This is reflected
in the plots that show the mass of the Higgs boson is positively correlated with kt. As the
compactification scale 1/R is increased, a finer tuning is required for obtaining the correct
weak-scale VEV. Therefore, as shown in the right panel of Fig. 5.5, the number of allowed
parameter sets is smaller if we impose the experimental lower bound on the compactification
scale, 1/R > 5 TeV [35]. The bottom line is that there is still enough room for reproducing the
measured values of the masses of the top and Higgs boson for 1.5 < kt < 2. However, since this
analysis uses the top quark and Higgs masses at the weak scale, an RGE analysis is necessary
to ensure that these masses are reproduced correctly at the compactification scale. It is future
work.
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Figure 5.5: Scatter plots of the predicted values of the top quark mass mt and the Higgs boson
mass mh for 1/R > 800 GeV (left) and for 1/R > 5 TeV (right). Point colors are assigned to
each range of the Lorentz violating parameter kt: Blue points stands for 2.25 < kt < 2.5, green
for 2 < kt < 2.25, red for 1.75 < kt < 2, and black for 1.5 < kt < 1.75.

5.4 Analysis of the triple Higgs boson coupling
After imposing the experimental constraints mentioned above, we will discuss the deviation
of the triple Higgs boson coupling λhhh from the SM value λSMhhh. Before moving on to the
calculations, we should mention the experimental accuracy of λhhh. The Higgs pair production
at the LHC Run2 imposes constraints on the triple Higgs boson coupling as −5.0 < λhhh/λ

SM
hhh <

12.0 for ATLAS [48] and −11.8 < λhhh/λ
SM
hhh < 18.8 for CMS [49] at the 95% confidence level. It

is expected that the accuracy of the triple Higgs boson coupling measurement will be drastically
improved in future collider experiments. At the High-Luminosity LHC, 0.52 < λhhh/λ

SM
hhh < 1.5

and 0.57 < λhhh/λ
SM
hhh < 1.5 with and without systematic uncertainties (1 σ), respectively [16].

At the ILC with a center-of-mass energy of
√
s = 1 TeV and integrated luminosity of L = 4 ab−1,

a precision of 10% is estimated [50]. At the CLIC with
√
s = 3 TeV and L = 5 ab−1, the triple

Higgs boson coupling will be measured with a relative uncertainty of −8% to 11% (1 σ) [51].
In particular, the lepton colliders have a cleaner background than the proton colliders, which
allows accurate determination of λhhh.

In the following, we define the deviation of the triple Higgs boson coupling as

∆λ =
λhhh − λSMhhh

λSMhhh
. (5.107)

where λSMhhh only include the top quark effect as a dominant one-loop correction. Taking into
account the scale dependence of top quark and Higgs masses, we use the model parameters
in the range of 152 GeV < mt < 182 GeV and 110 GeV < mh < 140 GeV in our analysis.
Fig. 5.6 shows the compactification scale dependence on the deviation of the triple Higgs boson
coupling. The orange band denotes the 1 σ accuracy expected at the ILC. From Fig. 5.6, we
can see that the deviation ∆λ is primarily characterized by the compactification scale 1/R.
At very large compactification scales, the deviation of the triple Higgs boson coupling almost
vanishes. Namely, we expect

lim
1/R→∞

∆λ = 0. (5.108)
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Figure 5.6: Compactification scale dependence of the deviation of the triple Higgs boson cou-
pling ∆λ. The orange band denotes the 1 σ accuracy expected at the ILC.

If a significant deviation is observed at the future colliders, we need the additional extension
to our GHU model compared with the current constraint on the compactification scale, 1/R >
5 TeV.

We next investigate which field contributions have a significant impact on the deviation.
For a moment, we decompose the deviation into parts that derive from each field as

∆λhhh =
∑
i

∆λi =
∑
i

δλi − λSMhhh
λSMhhh

, (5.109)

where δλi denotes the contribution from a field i,

δλi =
∂3Vi
∂α3

∣∣∣∣
α=α0

− 3

α

∂2Vi
∂α2

∣∣∣∣
α=α0

+
3

α2

∂Vi
∂α

∣∣∣∣
α=α0

. (5.110)

As a result, the deviation mainly consists of the following three contributions: ∆λΨt(2α)
,∆λt

and ∆λΨA(2α). In Fig. 5.7, green points shows the each contribution to the deviation ∆λi for

Ψt(2α) (upper left panel), t (upper right), ΨA(2α) (lower left), and their sum (lower right),

∆λΨt(2α)+t+ΨA(2α) =
δλΨt(2α)

+ δλt + δλΨA(2α) − λSMhhh
λSMhhh

. (5.111)

For comparison, the total deviation parameter ∆λ is also plotted (red). Particles with larger q
values imply the stronger couplings to the Higgs field, and give dominant contributions to the
deviation of the triple Higgs boson coupling. Ψt(2α) has the lightest bulk fermion mode and
largest q and thus give the largest contribution to the deviation.

From the above numerical results, the deviation of the triple Higgs boson coupling con-
verges to zero as the compactification scale increases. It means that the shape of our GHU
Higgs potential is close to the SM Higgs potential at around the VEV for small α0 although
their tree-level formulas are completely different. Here, we analyze the shape of the Higgs po-
tential at small α to investigate this mystery. First, we consider the contribution of the brane
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Figure 5.7: Each contribution to the deviation ∆λi for Ψt(2α) (upper left panel), t (upper
right), ΨA(2α) (lower left), and their sum (lower right). For comparison, the total deviation
∆λ is also plotted (red).

fermions to the effective potential. Although the field-dependent masses of the brane fermions
are complicated functions of α as discussed in Sec. 5.1, they can be approximated by linear
functions of α for α ≪ 1 as is the case for the fermions in the SM. Thus they are consistent
with SM contributions. For the bulk contributions, we find the following representations by
expanding on α:

Vg(qα) ≃
1

R4

{
Cg

1q
2α2 + Cg

2q
4α4 + Cg

3q
4α4 ln(q2α2) + Cg

4q
6α6 +O(α6)

}
Vf (qα) ≃

1

R4

{
CΨ

1 q
2α2 + CΨ

2 q
4α4 + CΨ

4 q
6α6
}

(5.112)

where the coefficients C’s are the dimensionless coefficients formed by model parameters and
naturally have a same order. The logarithmic term in (5.112) comes from the fourth derivative
of Vg:

∂4Vg
∂α4

∝ ln(1− e−2iπqα) + ln(1− e2iπqα)

∼ ln(2iπqα) + ln(−2iπqα) = 2 ln(2π) + ln(q2α2) (5.113)

Since it is originated from the zero modes of the bulk gauge fields, it takes the same value as
that of the SM gauge fields. On the other hand, this term not appears in (5.112) due to the
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5D mass parameters of the bulk fermions:

∂4Vf
∂α4

→ ln(1− e2
k
λ
−2iπqα) + ln(1− e2

k
λ
+2iπqα) ∼ 2 ln(1− e2

k
λ ) (5.114)

Keeping this in mind, the GHU Higgs potential can be expanded with respect to α as

Veff(α) =

(
1

R

)4(
−Ãα2 + B̃α4 + C̃α4 ln

α2

α2
0

+ D̃α6 +O(α8)

)
, (5.115)

where Ã, B̃, C̃ and D̃ are dimensionless parameters that are functions of the model parameters.
Let us focus on the region where α/R is around the weak scale for a successful EWSB. Using
the relation α/R = gϕ/2, Eq. (5.115) is rewritten with respect to ϕ as

Veff(ϕ) ≃ −
(
1

R

)2

Aϕ2 +Bϕ4 + Cϕ4 ln
ϕ2

v2
+

(
1

R

)−2

Dϕ6, (5.116)

where

A =
(g
2

)2
Ã, B =

(g
2

)4
B̃, C =

(g
2

)4
C̃, D =

(g
2

)6
D̃. (5.117)

From the tadpole and Higgs mass conditions for the Higgs potential, we find

0 = −
(
1

R

)2
A

2v2
+B +

C

2
+

3

2

(
1

R

)−2

Dv2, (5.118)

and

m2
h = 4

(
1

R

)2

A+ 8Cv2 + 12

(
1

R

)−2

Dv4. (5.119)

Namely, two of the four coefficients are rewritten by the experimental values. There remain the
two independent parameters. There must be a gap of at least 10 times between the compactness
scale and the VEV. Therefore, for the coefficient of the first term to be on the EW scale,
parameter A must be very small due to the cancellation between the model parameters. It is
called the little hierarchy problem. In our GHU model, this cancellation is accomplished by
introducing the additional bulk fields (ΨA, Ψ̃A). Eliminating the parameters A and B using the
tadpole and mass conditions, Eqs. (5.118) and (5.119), the triple Higgs boson coupling becomes
an implicit function of the parameters A and B and is written as

λhhh =
3

v

[
m2

h +
16

3
Cv2 + 16

(
1

R

)−2

Dv4

]
. (5.120)

Since the term proportional to ϕ4 lnϕ2 arises from loop diagrams in which only SM like particles
are involved, the value of the coefficient C is surprisingly the same as that in the SM. Therefore,
the difference with the SM only appears in the third term. Then the its deviation from the SM
takes the form of

∆λ =
48Dv3

λSMhhh

(
1

R

)−2

. (5.121)
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Namely, in the cases when the ϕ6 term and higher order ones are negligibly small, the shape of
the potential and the triple Higgs boson coupling should be close to the SM ones irrespective
of the origin of the potential. In deriving the Analytical expression for the effective potential,
we have not assumed specific bulk fields or Lorentz-violating parameters. We emphasize that
such a conclusion is applicable to a wide range of GHU models with a flat extra dimension that
reduces to the Higgs sector with one Higgs doublet below the compactification scale. It has not
been manifested in earlier works. Therefore, if a significant deviation of the triple Higgs boson
coupling is observed at the future collider experiments, we have to extensively modify the GHU
framework.



Chapter 6

Two Higgs doublet model from the ex-
tra dimensions

In this chapter, we will introduce the 2HDM originated from the extra dimension as research
that utilizes the extra dimension. The two-Higgs-doublet model (2HDM) is a simple extension
of the standard model (SM) which only adds one another Higgs doublet, but it has rich phe-
nomenology not expected in the SM. In particular, various studies have been performed to real-
ize the electroweak baryogenesis scenario [52–55], muon g−2 [56–60] and neutrino mass [61–63].
The following three assumptions are conventionally imposed in the 2HDM: (1) softly broken Z2

symmetry, (2) CP invariance in the Higgs potential, and (3) custodial symmetry or mH± = mA.
However, these assumptions can not be justified in the framework of the 2HDM, and their origin
is left to some paradigms. For example, it is well known that the Type-II 2HDM appears as a
low-energy effective theory of the Minimal Supersymmetric Standard Model [64]. There is also
work on extending electroweak symmetry to naturally derive these three assumptions for all
four types of the 2HDMs [65]. Nevertheless, the relationship between each type of the 2HDM
and the paradigms is not well understood. In our study, we propose a model in which each
type of the 2HDM appears as an effective theory by introducing an extra dimension without
imposing the Z2 symmetry. Namely, we have to avoid the dangerous FCNC by using physics
of extra dimensions instead of the Z2 symmetry. To achieve it, we use the technique, which
localizes the field on the extra space proposed in Ref. [66]. With this technique, the coupling
between fields localized at different points in the extra space can be exponentially suppressed
by the extra-dimensional integration. This idea has been applied to some studies: suppression
of the proton decay [66–68] and explanation of the fermion mass hierarchy [69,70]. We will use
this idea to either one of the two Higgs couplings with ϕ1, ϕ2 to avoid the dangerous FCNC.
First, we define the kink configurations used for field localization in Sec. A. In Sec. B, we
discuss the localization of fermions and the Higgs in 5D. Then we will construct a toy model
for the 5D case and investigate the problems. In order to make a realistic model, we will move
to the 6D space-time. In Sec. C, we discuss the localization of the field in 6D. Finally, we
build a viable model and see how the problems in 5D can be solved in Sec. D. Throughout this
chapter, we do not assume a concrete extra-dimensional structure such as S1/Z2 in GHU but
only consider its length and boundary conditions on edge.

55
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6.1 Kink configuration
As preparation for discussing field localization, we will introduce kink coordination. A kink is
a nontrivial 1+1 dimensional soliton that has different values at both ends of the space. As a
simple example, we will show a kink that changes only in the extra-dimensional direction in
the 5D spacetime. It is usually described by the following 5D action:

SS =
1

g2Y

∫
d4x dx5

[
1

2
(∂MS)

2 − λ2

2

(
S2 − v2

)2]
(6.1)

Since the scalar potential of eq.(6.1) has the two minimum at S = ±v, the kink has multiple
vacuum states. The equation of motion for S(x5) is derived from eq.(6.1) as

∂25S(x5) = 2λ2
(
S(x5)

2 − v2
)
S(x5) . (6.2)

If we consider the length of the extra dimension to be infinite at this instant and impose the
boundary condition S(∞) = +v, S(−∞) = −v, the general solution to this equation is given
by

S(x5) = v tanh[λv(x5 − l)] , (6.3)

where l represents the point in which the two ground states meet. By inserting this solution
into Eq. (6.1), we find the energy density of the kink E(x5) as

S = −
∫
d4x dx5E(x5) , E(x5) =

(
v4

g2Y

)
λ2

cosh4[λv(x5 − l)]
. (6.4)

It means that kink energies are concentrated at x5 = l because the potential wall is crossed
where the two ground states meet. We use this energy to localize the field. Since the behavior
of the kink at x5 = l is significant in the following discussion, we approximate the general
solution as

S(x5) ≃ 2µ2(x5 − l) , (6.5)

where µ2 = λv2/2 denotes the typical kink scale. This approximate representation is valid when
the size of the extra dimension is finite.

[61]

6.2 Field Localization in 5D
Now let us discuss how the fermions and scalar fields are localized in 5D spacetime using the
kink. We first consider the one 5D fermion Ψ coupled to the kink S(y), described by the action

SΨ =

∫
d4x dy Ψ̄

[
iΓµ∂µ + iΓ5∂y + ySS(y)

]
Ψ , (6.6)

where we use the kink coupling yS and following 4 × 4 gamma matrices in 5D that satisfy
{ΓM ,ΓN} = gMN ≡ diag(+1,−1,−1,−1,−1):

Γµ = γµ =

(
0 σµ

σ̄µ 0

)
, Γ5 = iγ5 = i

(
−1 0
0 1

)
(6.7)
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By using the separation of variables for Ψ

Ψ(xµ, y) =
∞∑
n=0

ψ
(n)
R (xµ)χ

(+)
n (y) +

∞∑
n=0

ψ
(n)
L (xµ)χ

(−)
n (y) , (6.8)

we can separate the Dirac equation derived from the action (6.6) into the chirality of the

fermion ψ
(n)
R,L. For example, multiplying the Dirac equation by the right-hand chirality operator

PR = (1 + γ5)/2 from the left, we find

iΓµ∂µ

(∑
n

ψ
(n)
L (xµ)χ

(−)
n (y)

)
=
[
−iΓ5∂y + ySS(y)

](∑
n

ψ
(n)
R (xµ)χ

(+)
n (y)

)
. (6.9)

Since this equation holds identically for any ψ(n)(xµ) and χn(y), we have

iΓµ∂µψ
(n)
L (xµ)χ

(−)
n (y) = mnψ

(n)
R (xµ)χ

(−)
n (y) ,[

−iΓ5∂y + ySS(x5)
]
ψ

(n)
R (xµ)χ

(+)
n (y) = mnψ

(n)
R (xµ)χ

(−)
n (y) . (6.10)

Considering the same way for PL, we get the two sets of equations for ψ(n) and χn respectively
as a result: {

Q+χ
(+)
n (y) = mnχ

(−)
n (y)

Q−χ
(−)
n (y) = mnχ

(+)
n (y)

,

{
iγµ∂µψ

(n)
R = mnψ

(n)
L

iγµ∂µψ
(n)
L = mnψ

(n)
R

(6.11)

where we define Q± ≡ ∓∂y + ySS(y) = Q†
∓ by using γ5ψR/L = ±ψR/L. Furthermore, equations

for χ
(±)
n can be summarized in the form of matrix equation

Q̂

(
χ
(+)
n

χ
(−)
n

)
= mn

(
χ
(+)
n

χ
(−)
n

)
, where Q̂ ≡

(
0 Q−
Q+ 0

)
= iσ2∂y + σ1ySS(y) . (6.12)

Then, we find the Schrödinger equation for the wave-functions χ
(±)
n

H(±)χ(±)
n = m2

nχ
(±)
n ,

H(±) = Q†
±Q± = −∂2y + y2SS

2(y)± yS∂yS(y) . (6.13)

By using the approximating kink, Eq. (6.13) becomes[
−∂2y + 4y2Sµ

4(y − l)2 ± 2ySµ
2
]
χ(±)
n (y) = m±

n
2
χ(±)
n (y) . (6.14)

This differential equation is the same as the Schrödinger equation of a Harmonic oscillator,

d2ψn(x)

dx2
−m2ω2ψn(x) = −2mEnψn(x) (6.15)

with a solution

ψn(x) = NHn(x) exp
(
−mω

2
x2
)
,

En = ω

(
n+

1

2

)
, (6.16)
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where Hn is the Hermite polynomial, N is the normalization factor, and n = 0, 1, 2, · · · . Using
this well-known result, if ySµ

2 > 0, we find

χ(±)
n (y) = NHn(y) exp

[
−ySµ2(y − l)2

]
,

m±
n
2
= 4ySµ

2

(
n+

1

2
± 1

2

)
, (6.17)

as the solution for Eq. (6.14). Thus, for ySµ
2 > 0, the left-handed fermion only has a massless

mode mn = 0 and its wave function is given by the Gaussian centered at y = l:

χ
(−)
0 (y) =

(
2ySµ

2

π

)1/4

exp
[
−ySµ2(y − l)2

]
(6.18)

On the other hand, for ySµ
2 < 0, the equations for the right-handed and left-handed fermions are

exchanged and right-handed fermion only has a massless mode. As we have seen in Sec. 4.3, the
free 5D fermions have mixed left and right chirality due to the 5D Lorentz symmetry. However,
thanks to the kink coupling, chiral asymmetry can be reproduced at the low energy. Therefore,
we can localize the chiral fermion at any point in the extra space. Then, we will mention the
validity of the approximation of the kink. For the non-approximating kink, Eq. (6.13) becomes

0 =
[
∂2y − y2SS2(y)∓ yS(∂yS(y)) + ω2

n

]
χ(±)
n (y)

= ∂2yχ
(±)
n (y) +

(
ω2
n − y2Sv2 +

v2(y2S ∓ ySλ)
cosh2[λv(y − l)]

)
χ(±)
n (y) . (6.19)

This equation has a same form to the Gauss’s hypergeometric differential equation. After
complicated calculations performed in [], we obtain similar results to the approximating kink
case. For yS/λ > 0 (yS/λ < 0), the left-handed (right-handed) zero-mode wave function is
normalized as

χ0(y) =
(λv)1/2

π1/4

√
Γ(s+ 1/2)

Γ(s)

1

coshs[λv(y − l)]
, (6.20)

where we use s = ∓yS/λ. On the other hand, right-handed (left-handed) one is not normaliz-
able. Compared to Eq. (6.17), this wave function is more widely spread on the extra space as
shown in Fig. 6.1.

Then we extend this discussion to the scalar fields such as the Higgs fields. The action for
the scalar field Φ coupled to the background kink S is given by

SΦ =

∫
d4x dy

(
1

2

(
∂µΦ∂

µΦ− ∂yΦ∂yΦ
)
− 1

2
λSΦ

2S2 − V (Φ)

)
. (6.21)

The equation of motion for Φ is given by

∂µ∂
µΦ− ∂2yΦ + λSS

2Φ +M2Φ = 0 , (6.22)
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y

Figure 6.1: Localized wave functions by using the approximating (orange) and non-
approximating (blue) kinks.

where we replace V (Φ) with 1
2
M2Φ2 to keep only the linear terms in Eq. (6.22). By using the

separation of variables for Φ

Φ(xµ, y) =
∞∑
n=0

ϕ(n)(xµ)χ
n
Φ(y) , (6.23)

as in the case of the fermions, we can separate the Eq. (6.22) for Φ as follow:

0 = ∂µ∂
µϕ(n) +m2

nϕ
(n)

0 = ∂2yχ
n
Φ − λSS2(y)− (M2 −m2

n)χ
n
Φ (6.24)

By using the approximating kink as in the case of the fermion, the equation for χn
Φ becomes[

−∂2y + 4λSµ
4(y − l)2

]
χn
Φ = (m2

n −M2)χn
Φ . (6.25)

In contrast to the fermion case, it does not contain a first derivative term. This equation is also
the same as the Schrödinger equation of a Harmonic oscillator. Thus, for λS > 0, the solution
of this equation is given by

χn
Φ(y) = NHn(y) exp

[
−
√
λSµ

4(y − l)2
]
,

m2
n −M2 = 4

√
λSµ

2

(
n+

1

2

)
. (6.26)

In particular, the zero-mode wave function and its mass are given by

χ0
Φ(y) =

(
2
√
λSµ

2

π

)1/4

exp
[
−
√
λSµ

2(y − l)2
]
,

m2
0 =M2 + 2

√
λSµ

2 . (6.27)
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Because of the difference in the equation, the right-hand side of mass relation in Eq. (6.26) does
not become zero for n = 0. If there is a cancellation between the M2 and 2

√
λSµ

2, we can get
the mass parameter m2

0 below the electroweak scale. Thus, only ϕ0 remains in the 4D effective
theory.

6.3 Higgs couplings in 5D

In the previous section, we learned that fermions and scalar fields are localized on the extra
space. In order to make a difference between the Yukawa coupling with the two Higgs doublets,
these two fields should be separated. Therefore, we use two kinks with different centers to
localize ϕ0

1 and ϕ0
2 to y = l1 and y = l2, respectively. For simplicity, we unify the width of the

wave function to 1/µ. We also define the ratio of the extra dimension scale 1/2L to the kink
scale ϵ as ϵµ = 1/2L. From these remarks, we prepare the following fifth dimensional wave
functions:

ϕ0
1(xµ) : χ

0
Φ1

=

(
2µ2

π

)1/4

exp
[
−µ2(y − l1)2

]
with m2

1 =M2
1 + 2µ2 ,

ϕ0
2(xµ) : χ

0
Φ2

=

(
2µ2

π

)1/4

exp
[
−µ2(y − l2)2

]
with m2

2 =M2
2 + 2µ2 ,

u0R(xµ) : χ
0
UR

=

(
2µ2

π

)1/4

exp
[
−µ2(y − lu)2

]
with m2

u0
R
= 0 ,

d0R(xµ) : χ
0
DR

=

(
2µ2

π

)1/4

exp
[
−µ2(y − ld)2

]
with m2

d0R
= 0 ,

e0R(xµ) : χ
0
ER

=

(
2µ2

π

)1/4

exp
[
−µ2(y − le)2

]
with m2

e0R
= 0 ,

q0L(xµ) : χ
0
QL

=
√
ϵµ with m2

q0L
= 0 ,

l0L(xµ) : χ
0
LL

=
√
ϵµ with m2

l0L
= 0 , (6.28)

The right-handed fermions are localized on either of l1 or l2. The left-handed fermions are not
coupled to the kink for simplicity, and therefore the zero mode is flat on the extra space. By
using above representation, the Yukawa sector in 4D effective theory is given by

LYukawa ⊃ yuΦ1
q̄0Lϕ

0∗
1 u

0
R + ydΦ1

q̄0Lϕ
0
1d

0
R + yeΦ1

l̄0Lϕ
0
1e

0
R

+ yuΦ2
q̄0Lϕ

0∗
2 u

0
R + ydΦ2

q̄0Lϕ
0
2d

0
R + yeΦ2

l̄0Lϕ
0
2e

0
R + h.c. , (6.29)

where the 4D effective Yukawa couplings yfΦi
are defined by the extra dimensional integration

as

yfΦi
= y′fΦi

∫
dy χ0

FL
χ0
Φi
χFR

= y′fΦi

√
ϵµ

∫
dy χ0

Φi
χ0
FR

. (6.30)

y′fΦi
is a 5D Yukawa couplings which have a mass dimension m1/2. Note that there are only two

patterns for the integration in Eq. (6.30): (a) ϕi and fR are localized at the same point. (b) ϕi
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ϕ1 ϕ2 qL lL uR dR eR
Type-I + − + + − − −
Type-II + − + + − + +
Type-X + − + + − − +
Type-Y + − + + − + −

ϕ0
1 ϕ0

2 q0L l0L u0R d0R e0R
Type-I S1 S2 − − S2 S2 S2

Type-II S1 S2 − − S2 S1 S1

Type-X S1 S2 − − S2 S2 S1

Type-Y S1 S2 − − S2 S1 S2

Table 6.1: Assignment of the Z2 parity for each type of the 2HDM (left). Corresponding kink
couplings (right) in 5D case.

and fR are localized at different points. In particular, the latter is exponentially suppressed by
the extra-dimensional integration:

(a) : yfϕi
= y′fϕi

√
ϵµ

(b) : yfϕi
= y′fϕi

√
ϵµ exp

[
−1

2
µ2l2

]
(6.31)

Here, we use the relative distance l = |l1 − l2|. Therefore, the Yukawa coupling ratio between
yfϕ1

and yfϕ2
take the form of (b)/(a) or (a)/(b). When UR couples to S2, the Yukawa coupling

ratio for u0R is given by

ruϕ1/ϕ2
≡
yuϕ1

yuϕ2

=
y′uϕ1

y′uϕ2

exp

[
−1

2
µ2l2

]
. (6.32)

It means that the fermions strongly couple with Higgs doublet that localize at the same point,
and the dangerous FCNC can be avoided if the Higgs doublets are separated enough from each
other. For example, for µl = 5 and y′uϕ1

= y′uϕ2
, we find

ruϕ1/ϕ2
≃ 10−6 <

mu

mt

(6.33)

where we use the mass ratio of the top to up quark as a guide for the upper limit on the
acceptable FCNC. Therefore we can easily avoid the dangerous FCNC. In addition that, the
classification of the four types of 2HDM by Z2 parity can correspond to the assignment of the
kink coupling as shown in Table 6.1. Fig. 6.2 also shows the field configuration on the extra
space in each situation.

Let us now discuss the effect of the above configuration on the Higgs potential. Since our
model does not impose a softly broken Z2 symmetry, the Higgs potential in 5D takes the general
form of

V (Φ1,Φ2) =M2
1Φ

†
1Φ1 +M2

2Φ
†
2Φ2 −

(
M2

3Φ
†
1Φ2 + h.c.

)
+

1

2
λ′1(Φ

†
1Φ1)

2 +
1

2
λ′2(Φ

†
2Φ2)

2 + λ′3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ′4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

(
1

2
λ′5(Φ

†
1Φ2)

2 + λ′6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ′7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

)
, (6.34)

where λ′i is the coupling constants in the Higgs potential which have a mass dimension m−1.
We should define M2

1 ,M
2
2 ≫M2

3 to treat M2
3 as a perturbation in Eq. (6.22). Since the scale of
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Figure 6.2: Arrangement of the wave functions for the 1st generation fermions and Higgs
doublets on a extra space in the case of the Type-I (Upper left) ,Type-X (Upper right) Type-II
(Lower left) and Type-Y (Lower right).

the extra dimension is sufficiently larger than the EW scale, the Higgs VEVs are defined after
the extra dimensional integration. After separating the variables for Φ1,2, we can find the 4D
Higgs potential for the zero-modes of the Higgs doublets ϕ0

1, ϕ
0
2

V (ϕ0
1, ϕ

0
2) = m2

1ϕ
0
1
†
ϕ0
1 +m2

2ϕ
0
2
†
ϕ0
2 −

(
m2

3ϕ
0
1
†
ϕ0
2 + h.c.

)
+

1

2
λ1(ϕ

0
1
†
ϕ0
1)

2 +
1

2
λ2(ϕ

0
2
†
ϕ0
2)

2 + λ3(ϕ
0
1
†
ϕ0
1)(ϕ

0
2
†
ϕ0
2) + λ4(ϕ

0
1
†
ϕ0
2)(ϕ

0
2
†
ϕ0
1)

+

(
1

2
λ5(ϕ

0
1
†
ϕ0
2)

2 + λ6(ϕ
0
1
†
ϕ0
1)(ϕ

0
1
†
ϕ0
2) + λ7(ϕ

0
2
†
ϕ0
2)(ϕ

0
1
†
ϕ0
2) + h.c.

)
. (6.35)

where we use m2
i =M2

Φi
+2µ2. The mass parameter m3 and coupling constants λi are modified

by the extra-dimensional integration as follow:

m2
3 =M2

3

∫
dy χ0

Φ1
χ0
Φ2

λi = λ′i

∫
dy χ0

Φj
χ0
Φk
χ0
Φl
χ0
Φm

(j, k, l,m = 1, 2) (6.36)
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By using the above configuration, we calculate them as

m2
3 =M2

3 exp

(
−1

2
µ2l2

)
,

λi = λ′i
µ√
π

(i = 1, 2) ,

λj = λ′j
µ√
π

exp
(
−µ2l2

)
(j = 3, 4, 5) ,

λk = λ′k
µ√
π

exp

(
−3

4
µ2l2

)
(k = 6, 7) . (6.37)

Except for λ1, λ2, those coefficients are exponentially suppressed similarly to the Yukawa cou-
pling. In the following, we will check the mass eigenstates of the Higgs bosons in the above
situation. Zero-mode 4D Higgs doublets are characterized as follow:

ϕ0
1 =

(
w0+

1
1√
2
(h01 + iz01 + v1)

)
, ϕ0

2 =

(
w0+

2
1√
2
(h02 + iz02 + v2)

)
(6.38)

The two vacuum expectation values v1,2 are defined by the minimum of the classical Higgs
potential:

∂V

∂ϕ0
1

∣∣∣∣√
2ϕ0

1=v1

= 0 ∴ −m2
1 =

v2
v1

(
−m2

3 +
v22λ7
2

)
+

1

2
v21λ1 +

1

2
v22 (λ3 + λ4 + λ5) +

3

2
v1v2λ6

∂V

∂ϕ0
2

∣∣∣∣√
2ϕ0

2=v2

= 0 ∴ −m2
2 =

v1
v2

(
−m2

3 +
v22λ6
2

)
+

1

2
v22λ2 +

1

2
v21 (λ3 + λ4 + λ5) +

3

2
v1v2λ7

(6.39)

We can get the mass matrix of the Higgs doublets from second derivatives of the Higgs potential:

Mij =
∂V

∂ϕi∂ϕ
†
j

∣∣∣∣∣√
2ϕ1,2=v1,2

(6.40)

For the CP odd Higgs, it is given by

Mz01,2
=

2m2
3 − 2v1v2λ5 − v21λ6 − v22λ7

4

(
v2/v1 −1
−1 v1/v2

)
→ 1

2

(
m2

3

cβsβ
− λ5v2 − λ6v2

cβ
sβ
− λ7v2

sβ
cβ

)(
1 0
0 0

)
=

1

2

(
m2

A 0
0 0

)
(6.41)

For the charged Higgs, it is given by

Mw0
1,2

=
2m2

3 − v1v2 (λ4 + λ5)− v21λ6 − v22λ7
2

(
v2/v1 −1
−1 v1/v2

)
→
(
m2

A +
1

2
(λ5 − λ4) v2

)(
1 0
0 0

)
=

(
m2

H± 0
0 0

)
(6.42)
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Thus, we obtain the three Goldstone bosons and CP odd Higgs A, charged Higgs H± with mass
spectrums, mA,mH± :

m2
A =

(
m2

3

cβsβ
− λ5v2 − λ6v2

cβ
sβ
− λ7v2

sβ
cβ

)
m2

H± = m2
A +

1

2
(λ5 − λ4) v2 . (6.43)

Finally, for the CP even Higgs, the mass matrix is given by

Mh0 =
1

2

(
A C
C B

)
, tan 2α =

2C

A−B

A =
1

2

(
2m2

1 + 3λ1v
2
1 + v22λ345 + 6λ6v1v2

)
B =

1

2

(
2m2

2 + 3v22λ2 + v21λ345 + 6v1v2λ7
)

C =
1

2

(
−2m2

3 + 2v1v2λ345 + 3(v21λ6 + v22λ7)
)
, (6.44)

where λ345 = λ3 + λ4 + λ5. Then, mass eigenstate is defined by the rotation angle α as follow:

H = − cos(α)h01 − sin(α)h02
h = sin(α)h01 − cos(α)h02 (6.45)

As mentioned in Sec. 3.1, small m3 value means that the additional Higgs bosons and SM Higgs
become degenerate in the EW scale. Therefore, the 5D Toy model predicts the too light masses
of the additional Higgs bosons due to the spatial separation of the two Higgs doublets. Even a
slight rearrangement of the field does not fundamentally solve this problem, then we move to
the 6D space-time.

6.4 Field Localization in 6D
In this section, we extend our discussion of the field localization in the 5D case to the 6D
space-time (xµ, y, z). For simplicity, we will use two kinks that only change in the different
extra-dimensional direction: S1(y) and S2(z). We first consider the 6D fermion. The action for
the 6D fermion Ψ coupled with kink S1(y) is given by

SΨ =

∫
d6xΨ̄

(
iΓM←→∂M −M − y1S1(y)

)
Ψ , (6.46)

where we use the following 8× 8 6D gamma matrixes:

Γ0 = γ0 ⊗ σ1 , Γi = γi ⊗ σ1 (i = 1, 2, 3)

Γ5 = iγ5 ⊗ σ1 , Γ6 = iI4 ⊗ σ2 (6.47)

In Eq. (6.46, we define Ψ̄ = Ψ†Γ0 and derivative which multiplies both Ψ and Ψ̄ like
←→
∂M =

(
−→
∂M −

←−
∂M)/2. The 6D fermon is an 8-component spinor that can be decomposed into 2-
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component spinors by Γ7 = −I4 ⊗ σ3 and ΓR/L = γ5 ⊗ I2 as

PR/LP±Ψ = P±PR/LΨ =


ΨL−
0
0
0

 ,


0

ΨR−
0
0

 ,


0
0

ΨL+

0

 ,


0
0
0

ΨR+

 , (6.48)

where P± and PR/L imply the 6D and 4D chiral operators. Applying the variational principle
to this action and extracting the surface term, we find(

iΨ†Γ0Γ5δΨ− iδΨ†Γ0Γ5Ψ
)
y=±Ly

= 0 ,
(
iΨ†Γ0Γ6δΨ− iδΨ†Γ0Γ6Ψ

)
z=±Lz

= 0 , (6.49)

where Ly and Lz are half length of the extra space for y and z direction. We have to deter-
mine the boundary conditions to satisfy this equation. After separation of variables and basis
transformation

Ψ =
∑
i

∑
ny ,nz

ψ
(ny ,nz)
i (xµ)f

(ny)
i (y)g

(nz)
i (z) ,

(
Ψ1

Ψ2

)
=

1√
2

(
1 −1
1 1

)(
Ψ−
Ψ+

)
, (6.50)

where sums run over i = 1L, 1R, 2L, 2R and ny, nz = 0, 1, 2, · · · , ψ(ny ,nz)
i and g

(nz)
i obey the

following free field equations:

(∂µ∂µ +m2
y +m2

z)ψ
(ny ,nz)
i = 0 , (∂2z +m2

z)g
(nz)
i = 0 (6.51)

On the other hand, the equation for f
(ny)
i has a same form to the Schrödinger equation of a

Harmonic oscillator due to the kink coupling as

(∂2y − (2µ2
Ψ(y − lΨ))2 + 2µ2

Ψ +m2
y)f

(ny)
1R,2L(y) = 0 ∴ m2

y = 4µ2
Ψ(ny + 1) ,

(∂2y − (2µ2
Ψ(y − lΨ))2 − 2µ2

Ψ +m2
y)f

(ny)
1L,2R(y) = 0 ∴ m2

y = 4µ2
Ψny , (6.52)

where we define µ2
Ψ = y1µ

2
1 and lΨ = l1+M/2µ2

Ψ. The resulting equation is the same as that for
fermions in five dimensions, and it is found that two two-component spinors with different 4D

chirality, Ψ1L,Ψ2R, are possible to have a massless zero mode. The wave function f
(ny)
i satisfy

the condition (6.49) on y = ±Ly brane: f
(ny)
i (±Ly) = 0. Whether they are massless or not is

left to the boundary conditions on g
(n)
i . The general solution of the wave function in z-direction

is given by solving the equation of motion for g
(nz)
i :

∂2zg
(nz)
i +m2

zg
(nz)
i = 0 , ∴ g

(nz)
i (z) = C1 cosmzz + C2 sinmzz . (6.53)

Imposing the Neumann and Dirichlet BC’s on g
(nz)
i , we obtain

Neuman BC : g
(nz)
i (z) =

1

2Lz

, g
(nz)
i (z) =

1

Lz

cos(mzz) with mz =
πnz

Lz

,

Dirichlet BC : g
(nz)
i (z) =

1

Lz

sin(mzz) with mz =
πnz

Lz

. (6.54)
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Figure 6.3: Zero mode wave function of the 6D fermion in the extra spaces

The massless zero mode only appears in the Neuman BC. Therefore, by imposing different
boundary conditions on Ψ1L and Ψ2R, we can obtain only one massless chiral fermion. This
choice satisfies the condition (6.49) on z = ±Ly brane Putting these results together, we find
the zero-mode wave function for the 6D fermion and corresponding 4D mass spectrum

χ
(0,0)
i =

1√
2Lz

(
2µ2

Ψ

π

)1/4

exp
[
−µ2

Ψ(y − lΨ)2
]
, (i = 1L or 2R)

m2(0, 0) = 0 with m2(ny, nz) = 4µ2
Ψny +

(
πnz

Lz

)2

. (6.55)

Note that the 6D mass parameter M shifts center of the wave function: l1 → l1 +M/2µ2
Ψ. We

obtain similar result from the 6D fermion coupled with S2(z) as

χ
(0,0)
i =

1√
2Ly

(
2µ2

Ψ

π

)1/4

exp
[
−µ2

Ψ(z − l′Ψ)2
]
, (i = 4L or 4R)

m2(0, 0) = 0 with m2(ny, nz) = 4µ2
Ψnz +

(
πny

Ly

)2

, (6.56)

where we use l′Ψ = l2 +M/2µ2
Ψ and another basis transformation(

Ψ3

Ψ4

)
=

1√
2

(
1 −i
1 +i

)(
Ψ−
Ψ+

)
. (6.57)

Therefore, upon coupling with S1(y) or S2(z), the 6D fermions are localized like a band on the
two-dimensional extra space as shown in Fig. 6.3.

Then, we consider the localization of scalars. The action for a 6D scalar Φ coupled with
S1(y) is given by

SΦ =

∫
d6x

(
1

2
gMN (∂MΦ∂NΦ)−

1

2
λΦSΦ

2S2
1(y)− V (Φ)

)
, (6.58)
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where we use the metric gMN = diag(+1,−1,−1,−1,−1,−1). Applying the variational princi-
ple to this action, we find the requirement

(∂yΦ)δΦ|y=±Ly = 0 , (∂zΦ)δΦ|z=±Lz = 0 (6.59)

There are two possible boundary conditions (BC’s) that satisfy the above requirement:

• Neuman BC: ∂Φ|bound = 0

• Dirichlet BC: Φ|bound = 0→ δΦ|bound = 0 （Fixed value at the boundary）

The equation of motion for Φ derived from Eq. (6.58) is

∂µ∂
µΦ− ∂2yΦ− ∂2zΦ + λΦSS

2
yΦ +M2Φ = 0 , (6.60)

where we replace V (Φ) with M2Φ2/2 to keep only the linear terms. By using the separation of
variables

Φ =
∑
ny ,nz

ϕ(ny ,nz)(xµ)f
(ny)(y)g(nz)(z) , (6.61)

we derive equation of motion for ϕ(ny ,nz), f (ny) and g(nz) as follows:
∂µ∂

µϕ(ny ,nz)(xµ) + (m2
y +m2

z)ϕ
(ny ,nz)(xµ) = 0

∂2yf
(ny)(y)− λΦSS

2
yf

(ny)(y) = (M2 −m2
y)f

(ny)(y)
∂2zg

(nz)(z) +m2
zg

(nz)(z) = 0

For the approximating form of the kink, the wave function in y-direction obeys an identical
equation to the Schrödinger equation of a Harmonic oscillator. Thus, wave function in y-
direction is given by

f (ny)(y) = NHny(y) exp
(
− µ2

Φ(y − l1)2
)
, m2

y =M2 + 4µ2
Φ

(
ny +

1

2

)
. (6.62)

where we use µ2
Φ =

√
λΦSµ4

y and ny = 0, 1, 2, · · · . The general solution of the wave function in

z-direction is given by solving the equation of motion for g(nz)(z):

∂2zg
(nz)(z) +m2

zg
(nz)(z) = 0 ∴ g(nz)(z) = C1 cosmzz + C2 sinmzz . (6.63)

Imposing the Neumann and Dirichlet BC’s for h(z), we obtain

Neuman BC : g(0)(z) =
1

2Lz

, g(nz)(z) =
1

Lz

cos(mzz) with mz =
πnz

Lz

,

Dirichlet BC : g(nz)(z) =
1

Lz

sin(mzz) with mz =
πnz

Lz

, (6.64)

where nz = 1, 2, · · · . The zero mode (lowest energy mode) wave function only appears in the
Neuman BC. Putting these results together, we find the zero-mode wave function for the 6D
scalar and corresponding 4D mass spectrum

χ
(0,0)
Φ =

1√
2Lz

(
2µ2

Φ

π

)1/4

exp
[
−µ2

Φ(y − l1)2
]
,

m2(0, 0) with m2(ny, nz) =M2 + 4µ2
Φ

(
ny +

1

2

)
+

(
πnz

Lz

)2

. (6.65)

Therefore, we get the wave function localized as Gaussian in the y-direction and flat in the
z-direction, as in the fermion case. The similar result holds for Φ coupled with Sz.
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Figure 6.4: Example of the field localization in the y, z plane

6.5 Higgs couplings in 6D

Using the either kink of S1(y), S2(z) that only cange in the y or z direction, we found that
the 6D scalars and fermions are localized on extra spaces. In the following, we will check
whether we can actually reproduce the required Higgs couplings. As a concrete example, we
concider the arrangement of scalars and fermions as shown in Fig. 6.4. For simplicity, we unify
Li = L, µi = µ and put 1/2L = ϵµ. The zero-mode wave function for Φ1, UR coupled with
S1(y), Φ2, DR coupled with S2(z) and QL coupled with no kink are given by

ϕ0
1 : χ

(0,0)
Φ1

=
√
ϵµ

(
2µ2

π

)1/4

exp
[
−µ2y2

]
with m2

ϕ0,0
1

=M2
1 + 2µ2 ,

ϕ0
2 : χ

(0,0)
Φ2

=
√
ϵµ

(
2µ2

π

)1/4

exp
[
−µ2z2

]
with m2

ϕ0,0
2

=M2
2 + 2µ2 ,

u0R : χ
(0,0)
UR

=
√
ϵµ

(
2µ2

π

)1/4

exp
[
−µ2(y − ly)2

]
with m2

u0,0
R

= 0 ,

d0R : χ
(0,0)
DR

=
√
ϵµ

(
2µ2

π

)1/4

exp
[
−µ2(z − lz)2

]
with m2

d0,0R

= 0 ,

q0L : χ
(0,0)
QL

=
√
ϵµ
√
ϵµ with m2

q0,0L

= 0 , (6.66)

where we assume M3 ≪ 1/Ly,z for the mixing term M2
3Φ1Φ2 in the Higgs sector to keep the

equation of motions for the extra dimensions. By using these representation, the 4D Higgs
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ϕ1 ϕ2 qL lL uR dR eR
Type-I + − + + − − −
Type-II + − + + − + +
Type-X + − + + − − +
Type-Y + − + + − + −

ϕ0
1 ϕ0

2 q0L l0L u0R d0R e0R
Type-I S1 S2 − − S1 S1 S1

Type-II S1 S2 − − S1 S2 S2

Type-X S1 S2 − − S1 S1 S2

Type-Y S1 S2 − − S1 S2 S1

Table 6.2: Type classification of the 2HDMs by the kink coupling in 6D case

couplings for down-type quark are calculated as

Y1Q̄LΦ1DR → q̄0Lϕ
0
1d

0
R · Y1

∫
dy ϵµ

(
2µ2

π

)1/4

e−µ2y2
∫
dz ϵµ

(
2µ2

π

)1/4

e−µ2(z−lz)2

= q̄0Lϕ
0
1d

0
R · Y1 (ϵµ)

2

(
2π

µ2

)1/2

= q̄0Lϕ
0
1d

0
R · Y1

√
2πµ2ϵ2 , (6.67)

and

Y2Q̄LΦ2DR → q̄0Lϕ
0
2d

0
R · Y2

∫ +ϵµ/2

−ϵµ/2

dy (ϵµ)3/2
∫
dz
√
ϵµ

(
2µ2

π

)1/2

e−µ2z2−µ2(z−lz)2

= q̄0Lϕ
0
1d

0
R · Y2 ϵµ exp

[
−µ

2l2z
2

]
, (6.68)

where Y1 and Y2 denote 6D Yukawa couplings between down-type quark and Φ1,Φ2. The
exponential suppression in the second line reflects the result of the overlap integration in the z
direction. Therefore, the ratio between the 4D Higgs couplings are given by

y2
y1

=
Y2
Y1

1√
2πϵ

exp

[
−µ

2l2z
2

]
. (6.69)

Considering ϵ ≪ 1 from the relation between the extra-dimensional scale and the kink scale,
y2 > y1 in the limit of ly → 0, while y1 ≫ y2 in the limit of ly → Ly (1/ϵµ) due to the
exponential suppression. In other words, we can avoid the dangerous FCNC by separating Φ2

and DR sufficiently in this case. Since Higgs coupling is suppressed by the integration when
right-handed fermions and scalars are parallel, but not when they are orthogonal, we can replace
the Z2 parity assignment with a kink coupling assignment as shown in Table 6.2.

The remainig issue is the effect of the extra dimensional integration on the Higgs potential
in the 4D effective theory. To evaluate it, we start from the 6D action for the Higgs sector

SΦ1,Φ2
=

∫
d6x

{
1

2
∂MΦ†

1∂
MΦ1 −

1

2
λΦ1S1Φ

†
1Φ1S

2
1

+
1

2
∂MΦ†

2∂
MΦ2 −

1

2
λΦ2S2Φ

†
2Φ2S

2
2 − V (Φ1,Φ2)

}
, (6.70)
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with the 6D Higgs potential

V (Φ1,Φ2) =M2
1Φ

†
1Φ1 +M2

2Φ
†
2Φ2 −

(
M ′

3
2
Φ†

1Φ2 + h.c.
)

+
1

2
λ′1(Φ

†
1Φ1)

2 +
1

2
λ′2(Φ

†
2Φ2)

2 + λ′3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ′4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

(
1

2
λ′5(Φ

†
1Φ2)

2 + λ′6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ′7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

)
, (6.71)

which contains λ6, λ7 terms due to the absence of the Z2 symmetry. As mentioned above, we
make the hierarchy between these mass parameters M2

1 ,M
2
2 ≫ M2

3 by hand. Then, the zero-
mode wave functions are represented as in Eq. (6.66). After extra dimensional integrarion, the
4D Higgs potential in the low-energy effective theory is given by

V (ϕ0
1, ϕ

0
2) = m2

1ϕ
0
1
†
ϕ0
1 +m2

2ϕ
0
2
†
ϕ0
2 −

(
m2

3ϕ
0
1
†
ϕ0
2 + h.c.

)
+

1

2
λ1(ϕ

0
1
†
ϕ0
1)

2 +
1

2
λ2(ϕ

0
2
†
ϕ0
2)

2 + λ3(ϕ
0
1
†
ϕ0
1)(ϕ

0
2
†
ϕ0
2) + λ4(ϕ

0
1
†
ϕ0
2)(ϕ

0
2
†
ϕ0
1)

+

(
1

2
λ5(ϕ

0
1
†
ϕ0
2)

2 + λ6(ϕ
0
1
†
ϕ0
1)(ϕ

0
1
†
ϕ0
2) + λ7(ϕ

0
2
†
ϕ0
2)(ϕ

0
1
†
ϕ0
2) + h.c.

)
, (6.72)

where the mass parameters and Higgs self couplings are calculated as

m2
1 =

∫
dy

∫
dz
{
∂yf1∂yf1g

2
1 + ∂zg1∂zg1f

2
1 +

(
λΦ1S1S

2
1 +M2

1

)
f 2
1 g

2
1

}
=M2

1 + 2µ2 ,

m2
2 =

∫
dy

∫
dz
{
∂yf2∂yf2g

2
2 + ∂zg2∂zg2f

2
2 +

(
λΦ2S2S

2
2 +M2

2

)
f 2
2 g

2
2

}
=M2

2 + 2µ2 ,

m2
3 =M2

3

∫
dy f1f2

∫
dz g1g2 =M2

3 ϵµ

√
2µ2

π

∫
dy e−µ2y2

∫
dz e−µ2z2

=
√
2πϵM2

3 , (6.73)

and

λ1 = λ′1
2ϵ2µ4

π

∫
dy e−4µ2y2

∫ +1/2ϵµ

−1/2ϵµ

dz = λ′1
ϵµ2

√
π
,

λ2 = λ′2
2ϵ2µ4

π

∫
dz e−4µ2z2

∫ +1/2ϵµ

−1/2ϵµ

dy = λ′2
ϵµ2

√
π
,

λj = λ′j
2ϵ2µ4

π

∫
dy e−2µ2y2

∫
dz e−2µ2z2 = λ′j(ϵµ)

2 , (j = 3, 4, 5)

λ6 = λ′6
2ϵ2µ4

π

∫
dy e−3µ2y2

∫
dz e−µ2z2 = λ′6

2(ϵµ)2√
3

,

λ7 = λ′7
2ϵ2µ4

π

∫
dy e−µ2y2

∫
dz e−3µ2z2 = λ′7

2(ϵµ)2√
3

. (6.74)
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They are not exponentially suppressed, in contrast to the 5D case. It is because the wave
functions of ϕ0

1 and ϕ0
2 are not parallel. However, there is a milder Hierarchy linear to ϵ:

λ1,2 > λ3,4,5,6,7. Therefore, we can reproduce the viable Higgs couplings in such a 6D model.
Although there is still a complaint about placing the kink coupling by hand, we can construct
the four types of viable 2HDMs originated from the extra dimension. In contrast to the usual
2HDMs, our model has a generic Higgs potential not constrained by the softly broken Z2

symmetry. Therefore, we expect to distinguish this model from the usual 2HDM by examining
the physics as λ6 and λ7 affect it.





Chapter 7

Conclusion

We have studied the effects of the extra dimensions in Higgs physics. While the Higgs sector
of the SM is so far consistent with the experiments, this is also true for various models that
extend the Higgs sector. Therefore, in order to understand the Higgs sector properly, we
need to investigate the possible extensions of the Higgs sector and distinguish those models by
determining the nature of the Higgs sector accurately by the future collider experiments.

We first focused on the structure of the Higgs potential in GHU and analyzed the triple Higgs
boson coupling. Since the triple Higgs boson coupling has been analyzed by previous studies
for the warped model and SU(3) model with large representation, we consider the SU(3) model
with 5D Lorentz symmetry relaxed. This model introduces a 5D Lorentz symmetry breaking
to reproduce the masses of the Higgs and top quark. As a result, the deviation of the triple
Higgs boson coupling from the SM is characterized by the compactification scale corresponding
to the size of the extra dimension. It was also predicted that the deviation would be less than
10% within the compactification scale allowed by the experiment of about 1/R > 5 TeV. Based
on this result, we have investigated the shape of the Higgs potential and found that around the
vacuum, it rapidly approaches that of the SM potential as the compactification scale increases.
Furthermore, We have also indicated that the behavior of the potential and the triple Higgs
boson coupling to the compactification scale is also applicable to the other GHU models with
a flat extra dimension.

Then we have proposed a model that reproduces the viable Higgs couplings in the 2HDM
without imposing the Z2 symmetry by introducing extra dimensions. Reference [66] pointed
out that the fermions could be localized on the extra space by introducing the coupling with
a kink. This mechanism was often used, in particular, to resolve the flavor hierarchy of the
fermions. We applied this mechanism to the Higgs sector in the 2HDM. By localizing the right-
handed fermions and Higgs doublets on the extra space, we have exponentially suppressed
either one of the Yukawa couplings to the two Higgs doublets. In the 5D case, since the two
Higgs doublets are spatially separated, the parameters in the Higgs sector are also exponentially
suppressed. Therefore, it was hard to avoid restrictions from experiments such as the mass of
the additional Higgs bosons. However, vertically crossing the two Higgs doublets in the 6D case,
we have found an arrangement that simultaneously avoids both the FCNC and Higgs potential
problems. We have also seen that the Z2 parity assignment, which classify the 2HDM into four
types, corresponds to the kink coupling assignment as shown in Table 6.1. In addition, the
Higgs potential of this model is not restricted by the Z2 symmetry, and terms such as λ6, λ7
remain. Therefore, in principle, it would be possible to distinguish this model from the 2HDM
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with Z2 by measuring this effect with a triple Higgs boson coupling or something.
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Appendix A

Clifford algebra of SO(4), SO(6)

In this chapter, we consider a general extension to the Clifford algebra of SO(4) to SO(6) in
order to define a six-dimensional gamma matrix. The Clifford algebra Γi of SO(N) is defined
as satisfying the anticommutation relation {Γi,Γj} = 2δij. For example, the Clifford algebra of
SO(3) is given by the Pauli matrix σi, (i = 1, 2, 3), and the Clifford algebra of SO(N) can also
be defined by the direct product of Pauli matrices, as follows.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ0 =

(
1 0
0 1

)
(A.1)

A.1 SO(4)

The Clifford algebra of SO(4) can be represented as a 22 × 22 matrix by the following five
matrices.

Γ1
4 = σ1 ⊗ σ1

Γ2
4 = σ2 ⊗ σ1

Γ3
4 = σ3 ⊗ σ1

Γ4
4 = σ0 ⊗ σ2

Γ5
4 = σ0 ⊗ σ3

σi ⊗ σ1 =

(
0 σi

σi 0

)

Γ5 can be also represented as Γ5 = −Γ1Γ2Γ3Γ4. This is checked from the calculation of the
direct product

−Γ1
4Γ

2
4Γ

3
4Γ

4
4 = −σ1σ2σ3σ0 ⊗ σ1σ1σ1σ2

= −iσ3σ3 ⊗ σ0(iσ3) = σ0 ⊗ σ3 , (A.2)

where we use σ1σ2 = iσ3. In fact, since we consider the Minkowski space of SO(1, 3),
the anticommutation relation to be satisfied by the gamma matrix is {γµ, γν} = 2gµν ≡
2diag(+1,−1,−1,−1). The gamma matrix in Weil representation (see Peskin) is given by

γ0 = σ0 ⊗ σ1 =

(
0 I2
I2 0

)
, γi = iσi ⊗ σ2 =

(
0 σi

−σi 0

)
(i = 1, 2, 3) . (A.3)
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IN implies the N ×N identity matrix. Using the remaining gamma matrix

γ5 = −σ0 ⊗ σ3 =

(
−I2 0
0 I2

)
= iγ0γ1γ2γ3 , (A.4)

we can define the 4D chirality for the four-component spinor ψ and decompose it into the
two-component Weil spinors ψL, ψR:

1 + γ5

2
ψ = PRψ =

(
0
ψR

)
,

1− γ5

2
ψ = PLψ =

(
ψL

0

)
where ψ =

(
ψL

ψR

)
(A.5)

A.2 SO(6)

The Clifford algebra of SO(6) can be expressed as an extension of SO(4) by a 23 × 23 matrix
as follows:

Γ1
6 = σ1 ⊗ σ1 ⊗ σ1

Γ2
6 = σ2 ⊗ σ1 ⊗ σ1

Γ3
6 = σ3 ⊗ σ1 ⊗ σ1

Γ4
6 = σ0 ⊗ σ2 ⊗ σ1

Γ5
6 = σ0 ⊗ σ3 ⊗ σ1

Γ6
6 = σ0 ⊗ σ0 ⊗ σ2

Γ7
6 = σ0 ⊗ σ0 ⊗ σ3 (A.6)

The gamma matrix for the Minkowski space of SO(1, 5) is the 8×8 matrix satisfying {ΓM ,ΓN} =
2gMN ≡ 2diag(+1,−1,−1,−1,−1) where M,N = 0, 1, 2, 3, 5, 6. It can be analogized from
above representations as follows:

Γ0 = σ0 ⊗ σ1 ⊗ σ1 = γ0 ⊗ σ1

Γi = iσi ⊗ σ2 ⊗ σ1 = γi ⊗ σ1 (i = 1, 2, 3)

Γ5 = −iσ0 ⊗ σ3 ⊗ σ1 = iγ5 ⊗ σ1

Γ6 = iσ0 ⊗ σ0 ⊗ σ2 = iI4 ⊗ σ2 (A.7)

The remaining gamma matrix becomes a six-dimensional chiral operator that decomposes the
eight-component spinor into the four-component spinors as in the SO(1, 3) case

Γ7 = −σ0 ⊗ σ0 ⊗ σ3 =

(
−I4 0
0 I4

)
= Γ0Γ1Γ2Γ3Γ5Γ6 , (A.8)

where

Γ0Γ1Γ2Γ3Γ5Γ6 = (i)2γ0γ1γ2γ3γ5I4 ⊗ σ1σ1σ1σ1σ1σ2

= iγ5γ5 ⊗ iσ3 = −I4 ⊗ σ3 . (A.9)

Then we can define the 6D chirality as follow:

1 + Γ7

2
Ψ = P+Ψ =

(
0
Ψ+

)
,

1− Γ7

2
Ψ = P−Ψ =

(
Ψ−
0

)
Ψ =

(
Ψ−
Ψ+

)
(A.10)
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We can also define the 4D chirality by using the operator ΓR/L = γ5 ⊗ σ0:

1 + ΓR/L

2
Ψ = PRΨ =


0
ΨR

0
ΨR

 ,
1− ΓR/L

2
Ψ = PLΨ =


ΨL

0
ΨL

0

 (A.11)

Since these two operators are commutative, [Γ7,ΓR/L] = 0, the combination of them decomposes
the eight-component spinor into the four two-component spinors:

PR/LP±Ψ = P±PR/LΨ =


ΨL−
0
0
0

 ,


0

ΨR−
0
0

 ,


0
0

ΨL+

0

 ,


0
0
0

ΨR+

 (A.12)





Appendix B

Poisson summation formula

In the calculation of Eq. (5.75), we use the Poisson summation formula that relates the Fourier
series coefficients of the periodic summation of a function to values of the function’s continuous
Fourier transform. For example, let us consider the following infinite sum of the function:

h(x) =
∞∑

n=−∞

f(x+ n) (B.1)

Since this fuction is obviously a periodic function, h(x) = h(x+1), we can expand it by Fourier
series as follow:

h(x) =
∞∑

n=−∞

an e
2πinx (B.2)

Hence, the Fourier series coefficients an are calculated as

an =

∫ 1

0

dx h(x) e−2πinx

=
∞∑

m=−∞

∫ 1

0

dx f(x+m) e−2πinx

=
∞∑

m=−∞

∫ m+1

m

dy f(y) e−2πin(y−m)

=

∫ ∞

−∞
dy f(y) e−2πiny = f̂(n) . (B.3)

Namely, Fourier series coefficients an are rewritten by the Fourier transformation of f(n). Then,
we find the following relation:

∞∑
n=−∞

f(x+ n) =
∞∑

n=−∞

f̂(n) e2πinx (B.4)

For f(x+ n) = exp[(x+ n)/a]2 as in our calculation, Equation (B.4) becomes

∞∑
n=−∞

e−(x+n
a

)2 =
∞∑

n=−∞

√
πa e−(πna)2e2πinx , (B.5)
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where we use the Fourier transformation of the Gaussian∫ ∞

−∞
e−αn2

e2πinw dn =

√
π

α
e−

π2w2

α . (B.6)



Appendix C

Field localization by the general kink

C.1 Fermion case

In this chapter, we will follow the process up to Eq. (6.20) in detail. First we transform
Eq. (6.19) into the Gauss’s hypergeometric differential equation. Putting ξ = tanh[λv(y − l)]
and using the notation

ϵ2 =
−ω2

n + y2Sv
2

λ2v2

s(s+ 1) =
y2S ∓ ySλ

λ2
, s =

1

2

(
−1 +

√
1 + 4

y2S ∓ ySλ
λ2

)
= ∓yS

λ
, (C.1)

Eq. (6.19) becomes

d

dξ

[
(1− ξ2)dχ

dξ

]
+

[
s(s+ 1)− ϵ2

1− ξ2

]
χ = 0 , (C.2)

where we also use

d2χ

dy2
=
dξ

dy

d

dξ

(
dξ

dy

dχ

dξ

)
= v2λ2(1− ξ2) d

dξ

[
(1− ξ2)dχ

dξ

]
. (C.3)

The first term of Eq. (C.2) is transformed as

d

dξ

[
(1− ξ2)dχ

dξ

]
=

d

dξ

[
(1− ξ2) d

dξ

(
(1− ξ2)

ϵ
2ρ(ξ)

)]
=

d

dξ

[
(1− ξ2)

ϵ
2
+1ρ′(ξ)− ϵ ξ(1− ξ2)

ϵ
2ρ(ξ)

]
= (1− ξ2)

ϵ
2

{
(1− ξ2)ρ′′(ξ)− 2ξ

( ϵ
2
+ 1
)
ρ′(ξ)

− ξϵρ′(ξ)− ϵρ(ξ) + ϵ2ξ2(1− ξ2)−1ρ(ξ)
}
. (C.4)
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Thus, Eq. (C.2) is rewritten as

d

dξ

[
(1− ξ2)dχ

dξ

]
+

[
s(s+ 1)− ϵ2

1− ξ2

]
χ

= (1− ξ2)
ϵ
2

(
(1− ξ2)ρ′′(ξ)− 2ξ(ϵ+ 1)ρ′(ξ) + s(s+ 1)ρ(ξ)− ϵ(ϵ+ 1)ρ(ξ)

)
= (1− ξ2)

ϵ
2

(
(1− ξ2)ρ′′(ξ)− 2ξ(ϵ+ 1)ρ′(ξ)− (ϵ− s)(ϵ+ s+ 1)ρ(ξ)

)
= (1− ξ2)

ϵ
2

(
u(1− u)ρ′′(u) + (ϵ+ 1)(1− 2u)ρ′(u)− (ϵ− s)(ϵ+ s+ 1)ρ(u)

)
= 0 , (C.5)

where we use

ρ′′(ξ) =

(
−1

2

)2

ρ′′(u) , ρ′(ξ) = −1

2
ρ′(u) : u =

1

2
(1− ξ) . (C.6)

It has a same form as the Gauss’ hypergeometric differential equation

x(1− x)y′′ + (γ − (α + β + 1)x)y′ − αβy = 0 , (C.7)

with a solution represented by a hypergeometric function

2F1(α, β; γ;x) =
∞∑
n=0

(α)n(β)n
(γ)n

xn

n!
= 1 +

αβ

γ

x

1!
+
α(α + 1)β(β + 1)

γ(γ + 1)

x2

2!
+ · · · . (C.8)

By making the substitution χ = (1 − ξ2)ϵ/2ρ(ξ) and temporarily changing the variable to
u = 1

2
(1− ξ), we obtain

u(1− u)ρ′′(u) + (ϵ+ 1)(1− 2u)ρ′(u)− (e− s)(e+ s+ 1)ρ(u) = 0 . (C.9)

The solution finite for ξ = 1 (for x =∞) is

χ(±)
n ∝ (1− ξ2)ϵ/2 2F1

[
ϵ− s, ϵ+ s+ 1; ϵ+ 1;

1

2
(1− ξ)

]
. (C.10)

The hypergeometric function F diverge for ξ = −1 as seen in Eq. (C.8), unless we take ϵ−s = −n
(or ϵ+s+1 = −n). When we take ϵ−s = −n (or ϵ+s+1 = −n), the hypergeometric function
F become polynomial of degree n, which is finite for ξ = −1:

χ(±)
n ∝ (1− ξ2)(s−n)/2

2F1

[
−n, 2s− n+ 1; s− n+ 1;

1

2
(1− ξ)

]
. (C.11)

Then, the 4D mass spectrums ωn are determined by s− ϵ = −n or

−ω2
n + y2Sv

2

λ2v2
= (s− n)2 ∴ ω2

n = v2λ2
(
2ns− n2

)
. (C.12)

For s > 0, the zero-mode wave function χ0 can be normalized as follow:∫ ∞

−∞
χ0χ

∗
0 dy =

∫ ∞

−∞

N2dy

cosh2s[λv(y − l)]
= 2

∫ ∞

0

N2dy

cosh2s[λv(y − l)]

=
N2

λv

∫ 1

0

ts−1(1− t)−1/2dt =
N2

λv

Γ(s)Γ(1/2)

Γ(s+ 1/2)
= 1 ∴ N =

(λv)1/2

π1/4

√
Γ(s+ 1/2)

Γ(s)
,

(C.13)
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where we take t = sech2[λv(y − l)] and use

dt

dy
= sech2[λv(x5 − l)] tanh[λv(y − l)] ∴ dy = t−1(1− t)−1/2dt . (C.14)

It implies that only either right-handed or left-handed fermion can be normalized. As denoted
in Sec. 6.2 , for yS/λ > 0 (yS/λ < 0), the left-handed (right-handed) zero-mode wave function
is normalized as

χ0(y) =
(λv)1/2

π1/4

√
Γ(s+ 1/2)

Γ(s)

1

coshs[λv(y − l)]
, (C.15)

while right-handed (left-handed) one is not normalizable.

C.2 Scalar case

Next, we consider the same process for the 5D scalar. For the non-approximating kink S(y) =
v tanh[λv(y − l)], the equation of motion for χn

Φ is turned into

0 =
[
∂2y − λSS2(y) +m2

n

]
χn
Φ(y)

= ∂2yχ
n
Φ(y) +

(
m2

n − λSv2 +
λSv

2

cosh2[λv(y − l)]

)
(C.16)

The only difference from the fermion case is the absence of the ∂yS(y) term. Putting ξ =
tanh[λv(y − l)] and using the notation

ϵ2 =
−m2

n + λSv
2

λ2v2

s(s+ 1) =
λS
λ2

, s =
1

2

(
−1 +

√
1 + 4

λS
λ2

)
, (C.17)

we obtain

d

dξ

[
(1− ξ2)dχΦ

dξ

]
+

[
s(s+ 1)− ϵ2

1− ξ2

]
χΦ = 0 . (C.18)

We can solve this equation in the same way as in the fermion case. Then, the n-th mode wave
function χn

Φ is also given by

χn
Φ ∝ (1− ξ2)(s−n)/2

2F1

[
−n, 2s− n+ 1; s− n+ 1;

1

2
(1− ξ)

]
. (C.19)

The 4D mass spectrums mn are determined by s− ϵ = −n:
−m2

n + λSv
2

λ2v2
= (s− n)2 ∴ m2

n = λ2v2[(2n+ 1)s− n2] (C.20)

In particular, the zero-mode wave function is also normalized as

χ0
Φ(y) =

(λv)1/2

π1/4

√
Γ(s+ 1/2)

Γ(s)

1

coshs[λv(y − l)]
. (C.21)

The only difference from the fermion case is a mass spectrum, and the wave function has the
same shape.
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