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Abstract

The neural architecture search has gained high importance and effectively improved

many machine learning techniques. During my PhD program, I devoted myself to the

neural architecture design of dendritic neuron model and swarm intelligence, which

are described as follows:

First, dendritic neuron model (DNM), which is a single neuron model with a plas-

tic structure, has been applied to resolve various complicated problems. However,

its main learning algorithm, namely the back-propagation (BP) algorithm, suffers

from several shortages. That largely limits the performances of the DNM. To address

this issue, another bio-inspired learning paradigm, namely the artificial immune sys-

tem (AIS) is employed to optimize the weights and thresholds of the DNM, which is

termed AISDNM. These two methods have advantages on different issues. Due to the

powerful global search capability of the AIS, it is considered to be efficient in improv-

ing the performance of the DNM. To evaluate the performance of AISDNM, eight

classification datasets and eight prediction problems are adopted in our experiments.

The experimental results and corresponding statistical analysis confirm the superior

performance of the AISDNM when compared with other models. It can be concluded

that the reasonable combination of two different bio-inspired learning paradigms is

efficient. Furthermore, for the classification problems, empirical evidence also val-

idates the AISDNM can delete superfluous synapses and dendrites to simplify its

neural structure, then transform the simplified structure into the logic circuit clas-

sifier (LCC). The process does not sacrifice accuracy but significantly improves the

classification speed. Based on these results, both the AISDNM and the LCC can be

regarded as effective machine learning techniques to solve practical problems.
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Second, the scale-free network is well known as an important complex network.

The degree of nodes in a scale-free network adheres to a power-law distribution. In

the skeleton of the scale-free network, there exists a few nodes which own huge neigh-

borhood size and play a great vital role in information transmission of the entire

network, while the majority of the network nodes have few connections whose influ-

ences of information exchange are limited to a relatively low level. We introduce a

scale-free population topology into the cuckoo search (CS) algorithm to propose a

novel variant, which is termed the scale-free cuckoo search (SFCS) algorithm. Unlike

other CS algorithms where the individuals exchange information randomly, two prop-

erties of a scale-free network can improve the SFCS in two aspects: the possibility

that the information of competent individuals quickly floods the whole population is

reduced significantly, which guarantees population diversity; and the corrupt individ-

uals can learn from competent individuals with greater probability, which is beneficial

for convergence. Thus, SFCS can obtain a better trade-off between exploitation and

exploration. To evaluate the effectiveness of the proposed SFCS, 58 benchmark func-

tions with different dimensions (10-Dimension, 30-Dimension, and 50-Dimension),

and 21 real-world optimization problems are employed in our experiment. We com-

pare SFCS with the basic CS algorithm, two CS variants, and five state-of-the-art

optimization methods, and the corresponding results and statistical analysis verify the

superiority of SFCS. Furthermore, SFCS is compared with a scale-free fully informed

particle swarm optimization algorithm (SFIPSO) and the experimental results prove

our scale-free idea is effective despite its simplicity. We also introduce the scale-free

population topology into the differential evolution (DE) and the firefly algorithm (FA)

and the additional results show that the scale-free population topology enhance the

search ability of the DE and FA. These results lead us to believe that our scale-free

population architecture design may be a new perspectives for improving the perfor-

mance of the population-based algorithms.

The rest of my thesis is structured as follows: first of all, Chapter 1 presents

a detailed introduction to the dendritic neuron model and cuckoo search. Chapter

2 reviews the conventional dendritic neuron model and basic cuckoo search algo-
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rithm, together with the neural mechanisms and scale-free network. Next, Chapter

3 describes the proposed evolutionary DNM and SFCS algorithm in details. The

performance of the AISDNM is evaluated in Chapter 4. Chapter 5 provides an inves-

tigation of the SFCS algorithm. Chapter 6 summarizes the conclusion and presents

some future research.



vi

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Dendritic neuron model . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A cuckoo search algorithm with scale-free population topology . . . . 5

2 Related works 9

2.1 Dendritic neuron model . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Synaptic layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Dendritic layer . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Membrane layer . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Cell body (Soma) . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Neural mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Connection definition . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Synaptic pruning . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Dendritic pruning . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Hardware implementation . . . . . . . . . . . . . . . . . . . . 12

2.3 Cuckoo search algorithm (CS) . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Scale-free network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Method 20

3.1 Artificial immune system (AIS) . . . . . . . . . . . . . . . . . . . . . 20



vii

3.2 Scale-free cuckoo search algorithm (SFCS) . . . . . . . . . . . . . . . 21

3.2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3 Computational complexity . . . . . . . . . . . . . . . . . . . . 24

4 Experimental studies of evolutionary dendritic neuron model 26

4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Classification datasets . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Prediction problems . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Performance evaluation criteria . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Sensitivity analysis of user-defined parameters . . . . . . . . . 32

4.4 Comparison of the classification datasets . . . . . . . . . . . . . . . . 33

4.5 Neuronal pruning and hardware implementation . . . . . . . . . . . . 39

4.5.1 Comparison of the prediction problems . . . . . . . . . . . . . 40

5 Experimental studies of scale-free cuckoo search 67

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Benchmark functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Performance evaluation criteria . . . . . . . . . . . . . . . . . . . . . 68

5.4 Comparison of the CSs . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Comparison of the SFCS with five metaheuristic algorithms . . . . . 77

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.1 Parameter sensibility . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.2 Real-world optimization tasks . . . . . . . . . . . . . . . . . . 86

5.6.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 100

Bibliography 102



viii

List of Figures

2.1 The structure topology of the DNM. . . . . . . . . . . . . . . . . . . . 10

2.2 Four connection cases of the synaptic layers. . . . . . . . . . . . . . . . 17

2.3 Six types of parameter settings. . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Synaptic and dendritic pruning. . . . . . . . . . . . . . . . . . . . . . . 18

2.5 The logic circuit simulation of the DNM. . . . . . . . . . . . . . . . . . 18

2.6 Degree distribution of a scale-free network. . . . . . . . . . . . . . . . . 19

2.7 Structural topologies of a scale-free architecture and a random architec-

ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Flowchart of the evolutionary neural architecture design methodology. 23

3.2 Flowchart of the SFCS algorithm. . . . . . . . . . . . . . . . . . . . . . 24

4.1 The ROCs of three models for eight classification datasets. . . . . . . . 49

4.2 The convergence speeds of three models for eight classification datasets. 50

4.3 The evolution of the AISDNM structure on the Breast dataset. . . . . 52

4.4 The evolution of the structure of the AISDNM on the Glass dataset. . 52

4.5 The evolution of the structure of the AISDNM on the Haberman dataset. 53

4.6 The evolution of the structure of the AISDNM on the Iris dataset. . . 53

4.7 The evolution of the structure of the AISDNM on the Thyroid dataset. 54

4.8 The evolution of the structure of the AISDNM on the Wine dataset. . 54

4.9 The evolution of the structure of the AISDNM on the Rice dataset. . . 55

4.10 The evolution of the structure of the AISDNM on the Heart dataset. . 56

4.11 The logic circuits of the AISDNM on the Breast. . . . . . . . . . . . . 57

4.12 The logic circuits of the AISDNM on the Glass. . . . . . . . . . . . . . 58



ix

4.13 The logic circuits of the AISDNM on the Haberman. . . . . . . . . . . 58

4.14 The logic circuits of the AISDNM on the Iris. . . . . . . . . . . . . . . 59

4.15 The logic circuits of the AISDNM on the Thyroid. . . . . . . . . . . . 59

4.16 The logic circuits of the AISDNM on the Wine. . . . . . . . . . . . . . 60

4.17 The logic circuits of the AISDNM on the Rice. . . . . . . . . . . . . . 61

4.18 The logic circuits of the AISDNM on the Heart. . . . . . . . . . . . . . 62

4.19 The convergence speeds of three models for eight prediction datasets. . 64

4.20 The correlation coefficient of prediction of the DNM. . . . . . . . . . . 65

4.21 The correlation coefficient of prediction of the AISDNM. . . . . . . . . 66

5.1 Convergence graphs of CS, PSOCS, MCS and SFCS on 12 randomly-

selected benchmark functions. . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Convergence graphs of SFCS and the five metaheuristic algorithms on

12 randomly-selected benchmark functions. . . . . . . . . . . . . . . . 85



x

List of Tables

4.1 The detail of eight classification datasets. . . . . . . . . . . . . . . . . 28

4.2 The detail of eight prediction datasets. . . . . . . . . . . . . . . . . . . 29

4.3 Parameter settings of three models for eight classification datasets. . . 33

4.4 Parameter settings of three models for eight prediction datasets. . . . . 34

4.5 L16(43) The Taguchi’s experimental result of the Breast dataset. . . . . 35

4.6 L16(43) The Taguchi’s experimental result of the Glass dataset. . . . . 36

4.7 L16(43) The Taguchi’s experimental result of the Haberman dataset. . 37

4.8 L16(43) The Taguchi’s experimental result of the Iris dataset. . . . . . 38

4.9 L16(43) The Taguchi’s experimental result of the Thyroid dataset. . . . 39

4.10 L16(43) The Taguchi’s experimental result of the Wine dataset. . . . . 40

4.11 L16(43) The Taguchi’s experimental result of the Rice dataset. . . . . . 41

4.12 L16(43) The Taguchi’s experimental result of the Heart dataset. . . . . 42

4.13 L16(43) The Taguchi’s experimental result of the BoxJenkins dataset. . 43

4.14 L16(43) The Taguchi’s experimental result of the EEG dataset. . . . . . 43

4.15 L16(43) The Taguchi’s experimental result of the MackeyGlass dataset. 44

4.16 L16(43) The Taguchi’s experimental result of the Tourism dataset. . . . 44

4.17 L16(43) The Taguchi’s experimental result of the Chaos-01 dataset. . . 45

4.18 L16(43) The Taguchi’s experimental result of the Chaos-02 dataset. . . 45

4.19 L16(43) The Taguchi’s experimental result of the Chaos-03 dataset. . . 46

4.20 L16(43) The Taguchi’s experimental result of the Chaos-04 dataset. . . 46

4.21 Accuracy comparison of three models on eight classification datasets. . 47

4.22 Additional comparison of three models on eight classification datasets. 48



xi

4.23 Experimental results of the cross-validation methods on eight classifica-

tion datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.24 Comparison of the AISDNM and the LCC on eight classification datasets. 52

4.25 Comparison of DNM performance for prediction problems. . . . . . . . 56

4.26 Comparison of DNM performance for prediction problems. . . . . . . . 63

5.1 Initial parameters of the five metaheuristic algorithms . . . . . . . . . 68

5.2 Comparison of the CSs on 10-dimensional benchmark functions from

CEC’2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Comparison of the CSs on 10-dimensional benchmark functions from

CEC’2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Comparison of the CSs on 30-dimensional benchmark functions from

CEC’2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Comparison of the CSs on 30-dimensional benchmark functions from

CEC’2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Comparison of the CSs on 50-dimensional benchmark functions from

CEC’2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Comparison of the CSs on 50-dimensional benchmark functions from

CEC’2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8 Comparison of SFCS with the five metaheuristic algorithms on 10-dimensional

benchmark functions from CEC’2013 . . . . . . . . . . . . . . . . . . . 79

5.9 Comparison of SFCS with the five metaheuristic algorithms on 10-dimensional

benchmark functions from CEC’2017 . . . . . . . . . . . . . . . . . . . 80

5.10 Comparison of SFCS with the five metaheuristic algorithms on 30-dimensional

benchmark functions from CEC’2013 . . . . . . . . . . . . . . . . . . . 81

5.11 Comparison of SFCS with the five metaheuristic algorithms on 30-dimensional

benchmark functions from CEC’2017 . . . . . . . . . . . . . . . . . . . 82

5.12 Comparison of SFCS with the five metaheuristic algorithms on 50-dimensional

benchmark functions from CEC’2013 . . . . . . . . . . . . . . . . . . . 83



xii

5.13 Comparison of SFCS with the five metaheuristic algorithms on 50-dimensional

benchmark functions from CEC’2017 . . . . . . . . . . . . . . . . . . . 84

5.14 Statistical analysis of the SFCSs with different values of M0 by the

Friedman’s test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.15 Description of the real-world benchmark problems from CEC’2011 . . . 87

5.16 Comparison of the SFCS with different values of M0 on the benchmark

functions from CEC’2013 . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.17 Comparison of the SFCS with different values of M0 on the benchmark

functions from CEC’2017 . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.18 Comparison with the CSs on the benchmark functions from CEC’2011 92

5.19 Comparison of SFCS with the five metaheuristic algorithms on the

benchmark functions from CEC’2011 . . . . . . . . . . . . . . . . . . . 93

5.20 Comparison of SFCS with the SFIPSO on CEC’2013 . . . . . . . . . . 94

5.21 Comparison of SFCS with the SFIPSO on CEC’2017 . . . . . . . . . . 95

5.22 Comparison of SFDE with the DE on CEC’2013 . . . . . . . . . . . . 96

5.23 Comparison of SFDE with the DE on CEC’2017 . . . . . . . . . . . . 97

5.24 Comparison of SFFA with the FA on CEC’2013 . . . . . . . . . . . . . 98

5.25 Comparison of SFFA with the FA on CEC’2017 . . . . . . . . . . . . . 99



1

Chapter 1

Introduction

1.1 Dendritic neuron model

Artificial neural network (ANN) is well-known as one of the respective computational

models that inspired by biological neural networks and has recently been applied to

diverse engineering and computer science fields [1]. McCulloch and Pitts have first

mathematically pioneered the elemental concepts of ANNs [2]. Due to the develop-

ment of neurobiology and biophysics, the importance of dendritic neural structures in

neural computing has been emphasized [3, 4]. Based on the theoretical development

of the nerve membrane models and the detailed body of quantitative electrophys-

iological information, Rall has started the development of mathematical models of

dendritic neurons in 1962 [5]. Subsequently, Rall and Rinzel et al. have conducted

various researches on a single branch of a dendritic neuron model [6, 7, 8, 9]. More-

over, [10] suggests that single neurons are capable of performing memory, learning,

and other specialized cognitive functions in particular dendritic structures.

With the advancement of neuroscience, a δ-like cell model with dendritic mor-

phology has been proposed by Koch, the model analyzes the interactions between

excitatory and inhibitory inputs in neural cells [11, 12]. It is confirmed that the

model plays an essential role in the retinal ganglion cells [13] and the human auditory

system [14]. However, since Koch’s model has failed to make any changes on the

dendritic structure due to the lack of effective pruning mechanism, it is considered

to be implausible in the view of biological neural models [13]. Legenstein and Maass
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have designed a comprehensive method for nonlinear dendritic calculation, based on

synaptic plasticity and branch-strength potentiation. They also provided a math-

ematical proof that, the synaptic and dendritic plasticity mechanisms can promote

rivalry among dendrites, and a individual neuron can perform complex nonlinear

functions through appropriate plasticity mechanisms in the dendritic structure [15].

In addition, it has been proven that the evolutionary neural architecture has a strong

influence on the performance of ANN [16, 17].

In our previous research, we also proposed a biologically plausible neuron model,

which can use a novel dendritic plasticity mechanism to implement different nonlinear

functions on dendrites [18]. And a generalized delta-rule-like algorithm is proposed

to train its parameters. Further, we have proposed a novel dendritic neuron model

(DNM) by modifying the activation functions [19]. The DNM can generate a distinct

dendritic neuron morphology for any particular assignment. And its simplified struc-

ture allows for the realization in hardware. Since no floating-point computation is

in the logic circuit, so the DNM can respond extremely quickly. The neural model

has been deployed effectively to solve various complex tasks, such as computer-aided

diagnosis [20, 21, 22], transmission trend of the COVID-19 [23], PM2.5 concentration

prediction [24] and financial time series prediction [25].

Since the back-propagation (BP) algorithm and its variants have become popular

approaches to train ANNs [26], they are also used as the main learning algorithms

of the DNM. However, since the BP algorithm utilizes gradient descent to optimize

the error function, it is compulsory to use differentiable transfer functions in ANNs.

Besides, the BP algorithm also suffers from the following disadvantages, such as the

high sensitivity to the initial conditions, slowness of convergence, tendencys to fall

into local minimum, and over-fitting problem [27, 28]. Therefore, the BP algorithm

has greatly limited the performance of the DNM.

To address these issues, we consider using meta-heuristic algorithms to improve

the performance of the DNM. Due to the inspiration from the immune system in vivo,

the artificial immune system (AIS) has been widely regarded as an excellent informa-

tion processing and learnable system, which bridges the research field of immunology
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and computer science [29, 30, 31, 32]. Because of its powerful search ability, the AIS

has achieved considerable success in the field of artificial intelligence [33, 34], and

the AIS and its variants have been applied in software personalization [35], classifica-

tion [36, 37, 38, 39], music piece similarity measures [40] and music recommendation

[41]. The AIS mainly includes the following four algorithms. The first is the arti-

ficial immune network. It performs immune memory primarily through a reciprocal

reinforcement network of B cells [42]. The second is the clonal selection algorithm.

It increases population diversity by cloning and hypermutation operators [43]. The

negative selection algorithm is the third, which draws inspiration from the negative

selection process of T cells [44]. The last is the dendritic cell algorithm, which is

derived from the danger theory [45].

Due to distinct advantages, such as few control parameters, simple structure and

excellent search ability, the clonal selection algorithms have been regarded as one

of the most representative AIS technologies. May et al. have proposed an immune

inspired algorithm on the basis of the clonal selection algorithm for the evolution

of software test data [46]. Cutello et al. have introduced two exceptional variation

operations, namely hypermutation and hypermacromutation, and proposed a novel

immune incentive operator into the clonal selection algorithm. The improved variant

achieves excellent performance in protein structure prediction problems [47]. Wil-

son et al. have applied the clonal selection algorithm to solve time series prediction

problems [48]. Moreover, the method of hybridizing the clonal selection algorithms

with the ANNs was proposed to attack various challenging problems. Jie et al. have

designed a multi-user detection technique, in which the Hopfield neural network is

employed as the ”immune operator” to further improve the affinity of antibodies in

the clonal selection algorithm [49]. And the results show that the embedded Hop-

field neural network effectively addresses the computational complexity of the clonal

selection algorithm and improves the convergence speed. Wang et al. have also in-

troduced the Hopfield neural network into the clonal selection algorithm to further

solve the problem of multiple-input multiple-output multiuser detection [50]. Sim-

ilarly, the techniques to train neural networks by using clone selection algorithms
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have also obtained impressive results. To achieve the optimal hidden nodes in the

cascade–correlation network, Gao et al. have used differential evolution to improve

the affinity of the clones of the antibodies and applied the novel clonal selection algo-

rithm to the construction of neural networks [51]. Chitsaz et al. have proposed a new

wind power prediction engine on the basis of the wavelet neural network, in which the

clonal selection algorithm is utilized to train the forecasting engine. The fusion has

been proved to be beneficial to the adjustment of the free parameters of the wavelet

neural network [52]. Since the clonal selection algorithm guarantees population diver-

sity and is theoretically able to utilize local characteristic information to prevent the

population from being trapped into the local minimum [53], it is considered suitable

for improving the computation capacity of the DNM.

In this paper, we leverage recent researches on the clonal selection algorithm to

optimize the DNM, by utilizing it as the training algorithm. The major contributions

of this research are listed as follows: taking into account the drawbacks of the BP algo-

rithm and the superiority of the AIS algorithm, especially the powerful global search

capability, we introduced the AIS into the DNM. The performances of the AISDNM

are examined on eight classification datasets and eight prediction problems, compared

with other six techniques. The results suggest that the reasonable combination of two

different bio-inspired learning paradigms is better than other methods on all datasets.

Moreover, when compared with other traditional classifiers, the AISDNM can prune

the redundant synaptic layers and useless dendritic layers, thus allowing for simpli-

fication of the evolutionary neural structure. The simplified unique topology can

be replaced by a logic circuit classifier (LCC). Since the LCC avoids floating-point

operations, it can solve complex classification problems with very little computing re-

sources and has almost no effect on accuracy. It can be concluded that the AISDNM

and LCC are promising machine learning techniques in the era of big data.
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1.2 A cuckoo search algorithm with scale-free pop-

ulation topology

The cuckoo search algorithm, proposed by Xin-She Yang et al. [54], is an efficient and

powerful nature-inspired metaheuristic algorithm that addresses optimization issues

[55, 56, 57]. The CS algorithm is verified to be capable of converging to the global

best solution generally due to the employed Lévy flights. Specifically, the local and

global search in the CS are restrained by the switching/discovery selection scheme,

which allows the CS algorithm to explore the solution space more efficiently when

compared with algorithms implemented by standard random walks [58]. Moreover,

the CS algorithm has fewer control parameters to be tuned compared with other meta-

heuristic algorithms. Therefore, the CS has witnessed rapid developments and has

been efficiently applied in numerous fields over the past decade, such as engineering

optimization [59], load forecasting [60], surface roughness [61], flow shop scheduling

[62], the travelling salesman problem [63] and reliability optimization problems [64].

In addition, various variations of the CS algorithm have been proposed to hasten the

convergence and prevent being trapped into local minima in the search process, which

can be primarily grouped into three categories.

The first one is hybridization. Li and Yin hybridized the CS algorithm with

Nawaz-Enscore-Ham (NEH), which can efficiently generate an initialized population

with a specific diversity [62]. In [65], a method of hybridizing the CS with the power

series was proposed to solve the electrostatic deflection of micro fixed-fixed actuators.

Khan and Sahai combined an ANN with the CS algorithm to assess the performance of

computer-aided workstations [66]. Lian et al. combined the CS with the evolutionary

strategy in the PSO named PSOCS to solve the optimization problems [67]. Moreover,

a hybridization of the krill herd method and the CS algorithm was designed for global

optimization tasks [68].

The second category usually embeds newly generated operators. The chaotic op-

erators with a novel strategy of the step size was employed to enhance the search

capability of the CS in [69]. Ouaarab et al. incorporated the discrete search mecha-
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nism into CS to address the traveling salesman problem [63]. In [70], Walton et al.

proposed a modified gradient-free optimization CS model named MCS which increases

the information exchange among the top solutions. In addition, Layeb introduced the

quantum-inspired computing into the CS algorithm, which contains the superposition

of all potential solutions and three novel operations inspired from quantum comput-

ing, namely measurement, mutation, and interference [71].

The third category is adopting the adaptive parameter strategy to control the

parameters of the CS algorithm. Tuba et al. proposed another modified CS model,

where the step size is defined by the sorted function rather than a simple random

walk [72]. And Naik and Panda developed a novel variant where the step size of each

cuckoo is adapted by its fitness and current position [73]. In [74], the CS algorithm

was modified to include a linear decreasing probability mechanism and an adaptive

parameter method that increases the diversity of the population.

In addition, the CS has been transformed into a multi-objective optimization al-

gorithm due to its effectiveness and simplicity. Distinct from the single-objective

optimization, the multi-objective optimization contains several objectives which con-

tradict each other. Since numerous real-world optimization tasks are generally multi-

objective, the multi-objective CS is applied to deal with these complex and highly

nonlinear problems, such as design optimization [75], multi-objective unit commit-

ment problem [76] and Jiles-Atherton vector hysteresis parameters estimation [77].

However, most of these studies ignore individual differences in the search process.

Recent research has verified that reasonable population structures can significantly

enhance the performance of evolutionary algorithms [78, 79, 80]. Thus, numerous

evolutionary algorithms have modified the structural topologies to improve their per-

formances, such as the genetic algorithm (GA) [81, 82], PSO [83, 84] and DE [85, 86].

Following this point of view, to introduce a suitable population topology into the CS,

we focus on the complex networks which simulate several real-world phenomena, such

as space systems, food webs, and collaborative networks. Complex networks consist

of classical random networks, small-world networks, and scale-free networks. It is

noting that the scale-free networks are considered to be highly appropriate to recon-
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struct the population topology of the CS algorithm. It is because that, most vertices

in scale-free networks are low-degree nodes. Hence, they can effectively control the

impact of vertices on the entire network. Additionally, a few nodes with many con-

nections structure the framework, and they are significant roles in the information

transmission of the whole network. The scale-free population topology enables the

CS algorithm to obtain a better compromise between exploitation and exploration.

These appealing properties suggest that the scale-free network is effective to im-

prove population-based optimization algorithms. Thus the introduction of scale-free

networks into evolutionary algorithms has attracted significant attention [87, 88]. Gi-

acobini et al. first introduced the evolutionary algorithms whose populations are

constructed in accordance with a scale-free network. Nevertheless, the high selection

force induced by scale-free topology leads to premature convergence, and the perfor-

mance is not superior to the standard panmictic setting [89]. Subsequently, Zhang

and Yi designed a novel PSO variant where the Barabási and Albert (BA) scheme

was adopted to construct the scale-free population structure [90]. The modified PSO

algorithm was verified to improve the performance in dealing with real power loss min-

imization task [91]. However, the computational complexity is drastically increased

in this algorithm because the construction of the population topology is gradually

carried out during the optimization process. Compared with the basic algorithm,

the improved variant will undoubtedly suffer from a more significant computational

burden when solving the same problem.

The main motivation of this research is summarized as follows: first, to use the

scale-free network to enables the SFCS to obtain a better agreement between exploita-

tion and exploration and second, to propose a novel scale-free population topology

technique for enhancing the search ability of the population-based algorithms. To

settle this issue, we novelly introduce the scale-free population topology into the CS

algorithm in an efficient way, which is termed the SFCS algorithm. In SFCS, the ef-

fect of competent individuals on the whole population is controlled, which ensures the

population diversity. While corrupt individuals have a higher probability of learning

from competent individuals without paying the cost of random trial and error, which
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is beneficial for convergence. The computational complexity of the SFCS architecture

design is analyzed to verify its computational efficiency. And exhaustive experiments

are carried out to evaluate the performances of the SFCS on the benchmark prob-

lems, in comparison with the conventional CS, two CS variants, and five metaheuristic

optimization algorithms. In addition, the results of parameter sensibility and the per-

formance on real-world tasks are also presented in our study. Finally, we also compare

the SFCS with the SFIPSO and introduce the scale-free population topology into the

DE and FA. The contributions are generalized as follows: first, a novel mechanism

that constructs a scale-free population topology for the CS algorithm is proposed

and second, the principle of a scale-free population topology to enhance the search

ability of CS is analyzed in this paper and third extensive experimental results verify

that the SFCS obtains superior performance than other algorithms. Last but not

least, we prove that the SFCS outperforms the SFIPSO where the scale-free network

is introduced into the PSO in another way and our scale-free architecture design is

capable of improving the performance of SFCS and valid for other population-based

algorithms.
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Chapter 2

Related works

2.1 Dendritic neuron model

As shown in Fig. 2.1, the structure of the DNM mainly contains the synaptic layer,

the dendritic layer, the membrane layer and the cell body.

2.1.1 Synaptic layer

First, input signals of other neurons are delivered to the synaptic layers. In the

synaptic layer, the computation performed on these signals can be illustrated as

follows:

Yi,m =
1

1 + e−k(wi,mxi−qi,m)
, (2.1)

where xi is the ith input feature. Yi,m denotes the output of the ith synaptic layer

on the mth dendrite. k is a user-defined constant parameter. wi,m and qi,m are the

connection weight and bias, respectively. Depending on the values of wi,m and qi,m,

the θi,m of each synapse can be determined by:

θi,m =
qi,m
wi,m

. (2.2)

2.1.2 Dendritic layer

Then, the outputs of the synaptic layers are transmitted to each dendritic layer. The

multiplication operation is considered to be an important operation in the nervous
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Figure 2.1: The structure topology of the DNM.

system for processing visual [92] and auditory information [93]. Inspired by these

biological phenomena, a simplest nonlinear computation named the multiplication is

applied to the dendritic layer, which can be defined as follows:

Zm =
I∏
i=1

Yi,m, (2.3)

where Zm represents the output of the mth dendrite.

2.1.3 Membrane layer

All the results of the dendritic branches are collected and transmitted into membrane

layer. A summation operation is used to describe this process, which is formulated

by:

V =
M∑
m=1

Zm, (2.4)

where V denotes the output of the membrane layer.
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2.1.4 Cell body (Soma)

Finally, the cell body obtains the result of the membrane layer and compares it with

its threshold. If the signal strength exceeds the value of threshold, the cell body will

fire. Otherwise, it will not fire. Depended on the membrane potential, the state of

the cell body is given as follows:

O =
1

1 + e−k(V−θsoma)
, (2.5)

where O represents the final neural signal of DNM and θsoma is a user-defined param-

eter.

2.2 Neural mechanisms

2.2.1 Connection definition

As mentioned in Section 2.1, wi,m and qi,m are modified by the optimization algo-

rithms. Depending on the different combinations of wi,m and qi,m, the evolutional

directions of synapes are divided into four types, which are illustrated in Fig. 2.2.

For a better understand, the mathematical description of each connection type is

depicted in Fig. 2.3. From Fig. 2.3, we can observe that, in the synaptic layer of the

direct connection, if xi is larger than θi,m, the output Yi,m is 1. Otherwise, it will be

0. On the contrary, the synaptic layer of inverse connection implies that, if xi exceeds

θi,m, its signal will be 0; otherwise, the signal is 1. For the constant 1 connection,

the signal Yi,m will maintain at 1 approximately. On the contrary, the synaptic layer

will ignore the value of xi and consistently output 0 for the constant 0 connection.

By the definition of distinct synaptic layers, the DNM can perform a unique pruning

mechanism to simply its neural structure.
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2.2.2 Synaptic pruning

The synaptic pruning mechanism can remove the redundant synaptic layers in DNM.

As introduced above, the output of the synaptic layer in the constant 1 connection

case is always 1. Since a multiplication operation is performed in the dendrite, the

synaptic layer has no effect on the results of the dendrite, according to the rule ’any

value multiplied by 1 is equal to itself’. As shown in Fig. 2.4, the synapses in the

constant 1 connection case can be deleted completely.

2.2.3 Dendritic pruning

The dendritic pruning mechanism can discard unnecessary dendritic layers. Similarly,

the output of the synaptic layer in the constant 0 connection case is 0. Based on the

rule ’any value multiplied by 0 is equal to 0’, the signal of the whole dendritic layer

is 0. In other words, these dendritic layer cannot contribute to the result of the

membrane layer. Thus, DNM needs to remove this kind of dendritic layers in DNM,

which has been shown in Fig. 2.4.

2.2.4 Hardware implementation

Through the synaptic and dendritic pruning, DNM can generate a unique and sim-

plified structure for each specific task. Furthermore, the simplified structure can be

replaced by an LCC. For example, as shown in Fig. 2.5, the function of the synapses

in the direct connection case is replaced by a comparator. While the function of the

synapses in the inverse connection case can be realized by a comparator and a logic

NOT gate. The dendritic layer actually implements a logical conjunction function,

which can be approximately substituted by a logic AND gate. The function of the

membrane layer is nearly a logical disjunction function, which can be implemented

by a logic OR gate. Finally, the soma body can simply be replaced by a wire. In this

way, an LCC can be obtained to approximate the function of the DNM. It is easy

for hardware implementation. All the computation of the LCC is a binary operation,

rather than the floating-point operation of the DNM and other ANNs. It can vastly
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improve the computation speed of the DNM.

2.3 Cuckoo search algorithm (CS)

Cuckoos is an exotic kind of birds because of their pleasant sounds and particular

breeding strategies, for instance, they are parasitic in that they lay eggs in other

birds’ nests (generally other species). They even remove the eggs of their hosts in

order to maximize the probability of incubation of their eggs [94]. Besides, it is found

that fruit flies or Drosophila melanogaster may suddenly turn 90 degrees in their

flight direction while searching for food, which is called Lévy flights [95]. Numerous

researches have suggested that the movement patterns of various species show the

ordinary feature of Lévy flights [96, 97]. Inspired by the nest parasite of cuckoos and

the Lévy flights, the CS was designed. The procedure of the CS is employed by the

following principles:

(1) Every cuckoo lays a egg in each iteration, and parasitizes a random host’s nest;

(2) The nests that have the highest qualified eggs (solutions) are retained in the

offspring generation;

(3) The host can identify a parasitic egg by using a certain probability (Pa ∈ [0, 1])in

a fixed number of host nests.

Initially, each host nest is randomly assigned to an egg, which is given as follows:

xi,j = Lj + rand(0, 1)(Uj − Lj), (2.6)

where Lj and Uj denote the prescribed minimum and maximum boundaries, respec-

tively, of the jth dimensional variable. i ∈ [1, 2, ..., N ] and N is the overall number of

host nests. j ∈ [1, 2, ..., D], and D denotes the dimensional number.

Next, cuckoos explore and exploit the new nests, and the CS algorithm combines

local random search and global exploratory random search in a balanced manner,

which is controlled by the parameter Pa. The local random search can be expressed
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as follows:

X t+1
i = X t

i + α ∗ s⊕H(Pa − ε)⊕ (X t
i −X t

k), (2.7)

where X t+1
i is the new nest searched by the i-th cuckoo in the t + 1th iteration. X t

i

and X t
k are two different solutions in the tth iteration. s represents the step size, α

indicates the scaling factor of s, which is a user-defined parameter. ε is a random

element with uniform distribution. H(u) denotes a Heaviside function. The Lévy

flights are adopted to perform the global exploratory random search which can be

determined by:

X t+1
i = X t

i + α ∗ L(s, λ), (2.8)

where

L(s, λ) =
λΓ(λ) sin(πλ/2)

π

1

s1+λ
, 1 < λ < 3. (2.9)

Eq. (2.9) is a stochastic equation. Since the next solution only depends on the

conversion probability and the current solution, random search of the CS can be

generally regarded as a type of Markov chain. Then, a small portion of the worst

nests are discarded and the new nests are established. According to the principles

mentioned above, the pseudocode of the main process of the CS algorithm is provided

in Algorithm 1.

Algorithm 1 The pseudocode of the CS algorithm

1: Initialize the host nests and evaluate the fitness of each nest;
2: repeat
3: Seek the new nests via Lévy flights and evaluate the fitness of each new

nest;
4: Select an old nest randomly and compare it with the new one;
5: Determine whether to accept the new nest or not, according to the greedy

selection mechanism;
6: Abandon a small portion of the worst nests, and build the new nests via

Lévy flights;
7: Rank the nests via their fitness and find the current best;
8: until (The stopping condition is met.)
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2.4 Scale-free network

The degree of nodes is exponentially decreasing in this kind of network. This property

has been found in the majority of real-world biological networks [98]. In general, the

distribution of node degree in the scale-free network can be expressed by:

P (k) ∝ k−α, (2.10)

in which P (k) denotes the anticipation that a random node has a degree k, and it

is proportional to (1/k)α. α represents the scaling exponent, and it ranges in [2, 3]

for most of the real-world scale-free models. As shown in Fig. 2.6, we provide the

degree distribution of scale-free models in two different ways. The common method

is displaying the distribution of degrees using a straight scale for the k and P (k)

axes. While the same degree distribution are presented on a logarithmic scale for

the k and P (k) axes, a straight line can be observed obviously. Barabási and Albert

first designed the scheme to establish such a scale-free model, namely BA algorithm.

In their procedure, the growth of the model is combined by attaching new nodes to

existing nodes with specific preferences. The main procedure of the BA algorithm is

also provided.

(1) Initially, the scale-free architecture begins from a simple structure of M0 com-

pletely connected nodes;

(2) Calculate the probability by: p(u) = δ(u)/
∑

j δ(j), and δ(u) denotes the linking

degree of uth node ;

(3) Add a new vertex and attach it to an existing node according to the preference

p(u);

(4) Updated the degree of all the nodes;

(5) The previous Step 2-4 are repeated until (N −M0) nodes have been added to the

model.

Barabási et al. demonstrated that the connection probability P (k) of the model
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established by the BA algorithm is proportional to k−3. Therefore, the distribution

of vertex degrees in this model is considered to follow the power law distribution. Fig.

2.7 illustrates a scale-free model built by the BA algorithm and a random model.
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Chapter 3

Method

3.1 Artificial immune system (AIS)

The AIS has been regarded as a promising metaheuristic algorithm [99]. Compared

with other metaheuristic algorithms, the AIS has a stronger capability of preventing

the population from falling into the local minimum. The local information can be

utilized to improve global parallel computing and suppress repetitive and futile work

in the process, which makes crossovers and mutations more efficient. Inspired by the

immune phenomenon in vivo, degradation is also used in the evolutionary process

of the population in the AIS, which enables the population to increase steadily and

healthily [100]. The purpose of introducing the AISDNM is to theoretically use the

local feature information of the AIS to help the DNM escape from the local mini-

mum. In general, the AIS is mainly implemented through four steps, namely, cloning,

hypermutation, crossover and vaccination. Then, the immune selection is employed

to prevent deterioration.

In the AIS, the population PopA is initialized and each individual is assigned a

solution randomly by:

xi,j = Lj + rand(0, 1)(Uj − Lj), (3.1)

where i ∈ [1, N ], N is the number of individuals in the population, and j ∈ [1, D],

D represents the dimensional value of the objective function. Lj and Uj denote the
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specified upper and lower bounds of the jth dimensional variable. [xi,1, xi,2, ..., xi,D]

form the solution Xi of the ith individual. The fitness function of each individual is

calculated by the objective function.

Then, the vaccine population PopV a are selected from the population PopA, and

the cloning operator is employed to clone them t times to generate the intermedi-

ate population PopClo [101]. Next, the hypermutation operators are performed on

the clone population PopClo. In this study, the proportional mutation operation is

utilized to enhance the searching ability of the AIS. The crossover operators act on

the population PopA to produce the population PopB. The information validity of

the vaccine population extracted from the existing individuals plays a crucial role in

accelerating the method to converge. Then, the vaccination operators execute the

population PopB in a point-to-point manner to generate population PopC .

The immune selection contains two steps. The first is the immune test. If the

fitness score of the offspring is worse than that of the original individual, which means

that degradation has occurred, the parent will be selected to participate in the next

iteration. The second is the anneal selection. All the new individuals are selected in

a probabilistic manner. The probability can be calculated by:

P (xi) =
efit(xi)/Tk

N∑
i=1

efit(xi)/Tk

. (3.2)

fit(xi) denotes the fitness value of xi and Tk denotes a temperature-controlled series.

The primary process of the AIS is presented in Algorithm 2. In addition, the flow

chart of the AISDNM is described in Fig. 3.1.

3.2 Scale-free cuckoo search algorithm (SFCS)

In the section, the overall skeleton of the SFCS is first given. Then, a detailed

description of the tion is presented. Finally, the computational complexity is analyzed.



22

Algorithm 2 Artificial immune system.

1: Initialize the population PopA;
2: repeat
3: Extract the vaccine population PopV a from prior knowledge;
4: Perform the cloning operator on the vaccine population PopV a and obtain the

population PopClo;
5: Perform the hypermutation operator on the population PopClo;
6: Perform the crossover operator on the population PopA and obtain the pop-

ulation PopB;
7: Perform the vaccination operator on the population PopB and obtain the

population PopC ;
8: Perform the immune selection on the population PopClo and PopC , and obtain

the next population PopA;
9: until (the termination requirement is satisfied.)

3.2.1 Framework

First, similar to the original CS algorithm, the proposed SFCS algorithm initializes

the population consisting of N nests. Second, we establish a scale-free population

topology having N nodes according to the BA algorithm, which is presented in Fig.

2.7(a) Third, each nest is allocated with a fitness value regarding the evaluation

function of different problems. Fourth, the nests are also sorted in descending order

of the nests’ fitness values, and all nests correspond one-to-one the nodes in the scale-

free population topology. Finally, each solution corrects its position by learning from

one of its neighbors Xneighbor, which are adjacent in a scale-free population topology.

The flow chart of the SFCS is presented in Fig. 3.2.

3.2.2 Motivation

From Fig. 3.2, it can be easy to observe that the crucial part of SFCS is motivation,

except fitness evaluation and population sorting. The mechanism of motivation is

demonstrated in detail in this section. First, all nests are sorted in descending or-

der and are placed into each node of the scale-free population topology in accordance

with its label. Consequently, the nest which owns the high fitness locals into the node

with the high degree, while the nest which has bad fitness locals into the node with

the low degree in the scale-free population topology. In other words, good solutions
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Figure 3.1: Flowchart of the evolutionary neural architecture design methodology.

correspond to more neighbors. but the good ones own fewer neighbors. The power-

law distribution characteristic illustrates that there exists a few high-degree nodes

link to the majority of nodes in the network, which is obvious to observe in Fig. 2.7.

Compared with the random network, good solutions can easily spread their informa-

tion in the scale-free population topology. Besides, the power-law distribution also

ensures there exist numerous nodes, which implies the bad solutions are difficult to

impose ineffective information on other nodes. In general, the power-law distribution

characteristic is effective to improve the convergence speed of the SFCS.

Additionally, the scale-free network has the other remarkable attribute that it

owns a low assortativity. The degree-degree correlation coefficient gauges the extent

that the high-degree nodes attach to each other. A low assortativity suggests that the

connections between the high-degree nodes are relatively fewer, and the information

exchange between the good solutions are less frequent in the scale-free network. It

can effectively prevent some good solution rapidly from taking over the entire pop-
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ulation. Thus, the low degree-degree correlation coefficient attribute is conducive to

maintaining the diversity in the scale-free network. It is worth mentioning that all the

nests are sorted again in each iteration and we place them in order into the nodes of

the scale-free population topology. After that, each nest randomly selects a neighbor

nest as the parasitic object to correct the current position. Hence, the new update

mechanism of the SFCS algorithm can be expressed by:

X t+1
i = X t

i + α ∗ s⊕H(Pa − ε)⊕ (X t
i −X t

neighbor), (3.3)

where X t
neighbor represents a random solution which is selected from the neighbors

individuals of X t
i .

3.2.3 Computational complexity

Finally, a study of the computational complexity is conducted to evaluate the effec-

tiveness of SFCS. T represents largest iteration number, and N indicates the popu-

lation size of the host nests. As shown in Algorithm 1, under the most unfavorable

condition, the complexity of CS can be described as follows:

(1) The complexity of the population initial phase is O(N);

(2) The evaluation of fitness values requires O(N);



25

(3) The local random search requires O(N);

(4) The computational complexity of performing the global exploratory random search

is O(N);

(5) The population sorting costs N ∗ log (N).

Therefore, the total complexity of the CS algorithm in the worst situation is

O(T ∗ (N ∗ log (N) + 4N) + 2N). The upper boundary of time complexity is worth

addressing, so the complexity of the algorithm can be expressed to O(T ∗N ∗ log (N)).

Furthermore, the analysis of the time complexity of the SFCS algorithm is accessible,

owing to the clarity of our proposed mechanism. Apart from the principal framework

of the algorithm, the additional calculation is the construction of a scale-free pop-

ulation topology, which at most requires O(N ∗ log (N)). Consequently, the overall

computational complexity of the SFCS algorithm is O(T ∗ (N ∗ log (N) + 4N) +N ∗

log (N) + 2N), which is slightly larger than that of the CS algorithm. However, the

simplified result is still O(T ∗N ∗ log (N)) which is equal to that of CS. Although the

SFCS architecture design is slightly inferior to the CS algorithm when the maximum

number of iterations is the same, we prove that SFCS architecture design has a more

comparable and efficient convergence capability and can obtain a better solution. We

can conclude that the computational efficiency of the SFCS architecture design is

superior to that of the basic CS algorithm.
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Chapter 4

Experimental studies of
evolutionary dendritic neuron
model

4.1 Experimental setup

The MLP and the conventional DNM are used as the competitors of the AISDNM.

For all the three models, the maximum iteration number is set to 1000, and all

experiments are conducted 30 times independently. Eight classification datasets and

eight prediction problems are adopted in the experiments. 50% of the samples in each

dataset are used for training and the rest are used to test the performances of the

models. In order to prevent small numeric attributes from being taken over by large

numeric attributes, we normalize all values, which can be described as follows:

xnormalized =
xoriginal − xmin
xmax − xmin

. (4.1)

xnormalized represents the normalized data and xoriginal represents the original value.

xmin and xmax denote the maximum and minimum values of xi in all samples, respec-

tively.
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4.2 Datasets description

4.2.1 Classification datasets

Eight classification datasets are employed in the experiments, which include Breast,

Glass, Haberman, Iris, Thyroid, Wine, Rice and Heart, which are summarized in

Table 4.1. Each dataset can be acquired from the UCI Machine Learning Repository

[102]. There are 699 cases in the Breast cancer dataset. The number of features is

nine. It is worth noting that only 683 cases are adopted in the experiment because 16

cases have incomplete feature values. All the cases are divided into benign or malig-

nant instances. The Glass dataset includes 214 glass samples. Each instance has nine

features. According to these chemical components, the glass samples are classified

into the window or the non-window category. The Haberman dataset comprises sam-

ples come from a survey of the survival of patients who have undergone breast cancer

surgery, which is carried out by the University of Chicago’s Billings Hospital. The

dataset records three characteristics of 306 samples, which are labeled into two cat-

egories according to whether the patient survived within five years after the surgery.

Depending on their four attributes, the Iris dataset divides 150 iris instances into

Setosa, Versicolor and Virginica types. Among them, two categories are nonlinearly

separable from each other, while the latter is divisible from the other two linearly.

The Thyroid dataset is supported by the Garavan Institute. It contains 215 samples,

which are classified into three categories, and each sample has five characteristics.

The Wine dataset is the result of the analysis of wines derived from three different

breeds. It consists of 178 instances and each instance has 13 constituents. The Rice

dataset is provided by Cinar and Koklu [103]. In this dataset, a total of 3810 rice

images are taken, processed and feature inferred. Each grain of rice has seven mor-

phological characteristics. The Heart dataset contains twelve clinical characteristics

of 299 patients [104]. These medical information is recorded during their follow-up

period and labeled into two categories.
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Table 4.1: The detail of eight classification datasets.
Dataset Num. of classes Num. of features Num. of samples
Breast 2 9 683
Glass 2 9 214
Haberman 2 3 306
Iris 2 4 150
Thyroid 2 5 215
Wine 2 13 178
Rice 2 7 3810
Heart 2 12 299

4.2.2 Prediction problems

The prediction problems involve BoxJenkins, EEG, MackeyGlass, Tourism and four

chaotic maps, which are listed in Table 4.2. The BoxJenkins times series dataset

can be found in [105]. The EEG dataset is provided by Zak Keirn from the Elec-

trical Engineering Department of Purdue University in his Masters of Science the-

sis. Complete information can refer to https://www.cs.colostate.edu/eeg/main/

data/1989_Keirn_and_Aunon. The MackeyGlass dataset is produced by a nonlinear

time-delay differential equation, which can be expressed as follows:

dx

dt
= β

xτ
1 + xnτ

− γx, (4.2)

where β, τ , n and γ represent the real numbers. xτ is the value of x at t − τ .

And the Tourism dataset records the number of monthly forecast tourists arrival to

Japan, which can be downloaded from https://statistics.jnto.go.jp. The first

chaotic map is a typical logistic map. The iterator represents the chaotic behavior in

a dynamic system, which can be described as follows:

yi+1 = 4yi(1− yi), (4.3)

where yi denotes the ith value in the map, and y0 is equal to 0.152. The second

chaotic map is a piecewise linear chaotic map, which is an invariant density function
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Table 4.2: The detail of eight prediction datasets.
Dataset Num. of instance
BoxJenkins 292
EEG 2492
MackeyGlass 981
Tourism 138
Chaos-01 475
Chaos-02 469
Chaos-03 469
Chaos-04 472

in a defined interval. It is determined by:

yi+1 =


yi
0.7
, yi ∈ (0, 0.7]

0.3(1− yi), yi ∈ (0.7, 1)
, (4.4)

where y0 is set to 0.002. The singer map is adopted as the third chaotic map and

given as follows:

yi+1 = 1.073(7.86yi − 23.31y2
i + 28.75y3

i − 13.302875y4
i ), (4.5)

where y0 is equal to 0.152. The final chaotic map is the sine map. It is generated by

the following equation:

yi+1 = sin (πyi) , (4.6)

where y0 is set to 0.152.

4.3 Performance evaluation criteria

For the classification datasets, a number of performance evaluation criteria are uti-

lized to estimate all the three models. Specifically, the accuracy on 30 independently

runs are used as the four evaluation metrics. Besides, the nonparametric statisti-

cal analysis, named the Wilcoxon signed-rank test, is also employed to distinguish

whether there exists a significant difference between the AISDNM and its competitor

[106, 107]. The null hypothesis suggests no significant difference. When applying a
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statistical procedure to reject a hypothesis, a level of significance is used to determine

at which level the hypothesis may be rejected. Accordingly, the p value represents

the probability of assuming that the null hypothesis is true.

In addition, another five comprehensive performance indicators are also used in

the experiments. The true positive cases (TP) is the number of instances whose ac-

tual and predicted results are both positive. The true negative cases (TN) represents

the number of instances that are classified as negative and the corresponding actual

classes are negative as well. The false positive cases (FP) denotes the number of

samples that are detected as positive, but the actual categories are negative. The

false negative cases (FN) is the number of samples whose predicted categories are

negative, while their actual categories are positive. The sensitivity (TPR) represents

the capability of the technique to identify positive samples, and it can be described by

Sensitivity=TP/(TP+FN). The specificity (TNR) evaluates the ability of the classi-

fier to classify negative instances, which is calculated by Specificity=TN/(FP+TN)

(also called Recall). The false positive rate (FPR) represents the percentage of sam-

ples that are detected as positive, but in fact, they are negative. It can be computed

by FPR=FP/(FP+TN). The false negative rate (FNR) is the percentage of instances

that are classified as negative, while they are positive in actual. It can be defined by

FNR=FN/(TP+FN). The common evaluation criterion named Fmeasure is also used

in our experiments [108]. It can be defined by:

Fmeasure = 2× Precision×Recall
Precision+Recall

, (4.7)

where Precision is defined by:

Precision =
TP

TP + FP
. (4.8)

In addition, a large value of the Cohen’s Kappa (K) denotes the better classifier
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is excellent [109]. It can be described by

K =
Po − Pe
1− Pe

, (4.9)

where Po denotes the agreement probability between actual and predicted classifica-

tion and Pe represents the hypothetical chance consistency probability. The AUC

ranges from 0 to 1, and the value of the AUC closing to 1 corresponds to a reliable

classifier [110]. Last but not least, the convergence speed is the final evaluation met-

ric. It compares the average best-so-far solution of all models in each iteration and

the convergence curves are presented.

For the prediction problems, we adopt six performance evaluation criteria to eval-

uate all the models. The MSE is the first evaluation metric, which can be calculated

as follows:

MSE =
1

M

M∑
m=1

(Om − Tm)2, (4.10)

where Om and Tm are the actual output and target of the mth sample, respectively.

The second evaluation criterion is the mean absolute percentage error (MAPE).

It is an important statistical measure of prediction accuracy, which can be calculated

as follows:

MAPE =
M∑
m=1

∣∣∣∣Om − Tm
Tm

∣∣∣∣ . (4.11)

The mean absolute error (MAE) is employed as the third evaluation criterion, and

it is defined as follows:

MAE =
1

M

M∑
m=1

|Om − Tm| . (4.12)

The fourth evaluation metric is the correlation coefficient (R) [111], which is a fa-

mous goodness-of-fit measure for the standard regression model and linear regressions

are also provided.

R =

M∑
m=1

(Tm − T )(Om −O)√∑M
m=1 (Tm − T )

2
(Om −O)

2
, (4.13)
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where O and T represent the mean values of the vectors O and T .

Similarly, the nonparametric statistical analysis and convergence speed are also

utilized to compare the performances of the algorithms.

4.3.1 Sensitivity analysis of user-defined parameters

It is well known that the selected values of the parameters have a strong effect on

the performance. Various methods have been provided for parameter setting, such

as adaptive parameter mechanisms [112, 113, 114, 115, 116], parameter-setting-free

mechanisms [117, 118] and random disturbance strategy [119]. The Taguchi method is

utilized to analyze the parameter selection of AISDNM [120]. There are three critical

user-defined parameters in the AISDNM, namely, the parameter of the connection

sigmoid functions in synaptic layer and soma body (k), the number of dendrites (M),

and the threshold of the soma body (θsoma). According to the previous studies, there

are 4 levels of interest in each parameter, and the full factorial analysis requires the

total 43 = 64 experiments [19, 18]. Thus, it will be extremely time-consuming. The

Taguchi method can utilize the orthogonal L16(43) array to effectively reduce the

number of experiments. Only 16 experiments are carried out to achieve a suitable

parameter setting of the AISDNM. The best parameter setting of all the classification

and prediction problems are presented in Table 4.5 − 4.20.

In addition, for a relatively fair comparison, the number of weights and thresholds

are set to be as equal as possible. The number of the adjusted weights in the MLP

(NMLP ) is calculated as follows:

NMLP = I × L+ 2× L+ 1, (4.14)

where I refers to the number of features, and L is hidden layers in the MLP. The

adjusted weights number in AISDNM (NDNM) can be determined by:

NDNM = 2× I × J, (4.15)
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Table 4.3: Parameter settings of three models for eight classification datasets.

Datasets Model
No. of No. of Learning No. of
inputs branches/hidden layers rate adjusted weights

Breast
MLP 9 15 0.01 162
DNM 9 9 0.01 166
AISDNM 9 9 - 166

Glass
MLP 9 21 0.01 232
DNM 9 13 0.01 234
AISDNM 9 13 - 234

Haberman
MLP 3 6 0.01 31
DNM 3 5 0.01 30
AISDNM 3 5 - 30

Iris
MLP 4 13 0.01 79
DNM 4 10 0.01 80
AISDNM 4 10 - 80

Thyroid
MLP 5 13 0.01 92
DNM 5 9 0.01 90
AISDNM 5 9 - 90

Wine
MLP 13 29 0.01 436
DNM 13 17 0.01 442
AISDNM 13 17 - 442

Rice
MLP 7 20 0.01 181
DNM 7 13 0.01 182
AISDNM 7 13 - 182

Heart
MLP 12 31 0.01 435
DNM 12 18 0.01 432
AISDNM 12 18 - 432

where J denotes the number of dendrites. Table 4.3 and Table 4.4 illustrate the com-

parison of the number of the adjusted weight on classification datasets and prediction

problems, respectively.

4.4 Comparison of the classification datasets

In the classification datasets, the AISDNM achieves better results than the MLP, DT,

line-SVM, rbf-SVM, poly-SVM and DNM on most datasets. As shown in Table 4.21,

the AISDNM outperforms the MLP, DT, line-SVM and DNM on the Breast dataset

in terms of Max, Min, Average and Std. The rbf-SVM and poly-SVM achieve better

results than the AISDNM in terms of Min, but the AISDNM obtains better results

in all other evaluation criteria. The p values calculated by the Wilcoxon signed-rank

test are inferior than the significant level, indicating that the AISDNM is significantly

superior to the MLP, DT, line-SVM and DNM on the Breast dataset. For the Glass

dataset, the AISDNM is better than the MLP, DT, line-SVM, rbf-SVM, poly-SVM

and DNM in terms of most evaluation criteria. The exception can be found that
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Table 4.4: Parameter settings of three models for eight prediction datasets.

Datasets Model
No. of No. of Learning No. of
inputs branches/hidden layers rate adjusted weights

BoxJenkins
MLP 2 6 0.01 25
DNM 2 6 0.01 24
AISDNM 2 6 - 24

EEG
MLP 4 13 0.01 79
DNM 4 10 0.01 80
AISDNM 4 10 - 80

MackeyGlass
MLP 4 13 0.01 79
DNM 4 10 0.01 80
AISDNM 4 10 - 80

Tourism
MLP 6 15 0.01 121
DNM 6 10 0.01 120
AISDNM 6 10 - 120

Chaos-01
MLP 4 11 0.01 67
DNM 4 8 0.01 64
AISDNM 4 8 - 64

Chaos-02
MLP 4 11 0.01 67
DNM 4 8 0.01 64
AISDNM 4 8 - 64

Chaos-03
MLP 4 11 0.01 67
DNM 4 8 0.01 64
AISDNM 4 8 - 64

Chaos-04
MLP 4 13 0.01 79
DNM 4 10 0.01 80
AISDNM 4 10 - 80

the AISDNM, poly-SVM and DNM obtain the same result of Max accuracy. The

statistical results imply that the AISDNM has a satisfactory performance on the Glass

dataset, compared with the MLP, DT, line-SVM, rbf-SVM, poly-SVM and DNM.

Besides, the AISDNM has the best performance on the Haberman dataset. The MLP

and DNM achieve the same results in terms of Min accuracy. The corresponding p

values suggest that the AISDNM significantly outperforms the MLP, DT, line-SVM,

rbf-SVM, poly-SVM and DNM. Although the MLP, DT, rbf-SVM and poly-SVM

obtain the best Max accuracy on the Iris dataset, which is slightly superior to that of

the DNM and the AISDNM, the AISDNM achieves the best results in terms of Min,

Average and Std, and the statistical results imply that the AISDNM is significantly

better than the MLP, DT, line-SVM and DNM on the Iris dataset. Compared with

the AISDNM, the DT and DNM have a comparable performance of Max accuracy

on the Thyroid dataset. But they cannot perform as well as the AISDNM in terms of

the other evaluation criteria. The MLP, line-SVM, rbf-SVM, poly-SVM are inferior

to AISDNM in terms of all the evaluation criteria. The corresponding p values imply

that the AISDNM has significant better performances than the MLP, DT, line-SVM,
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Table 4.5: L16(43) The Taguchi’s experimental result of the Breast dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 9 0.2 96.49±0.82

2 2 11 0.4 96.28±0.76
3 2 13 0.6 96.42±0.75
4 2 15 0.8 96.46±0.79
5 5 9 0.4 95.90±0.82
6 5 11 0.2 95.99±0.68
7 5 13 0.8 95.71±0.84
8 5 15 0.6 95.94±0.64
9 8 9 0.6 95.70±0.73
10 8 11 0.8 95.50±0.90
11 8 13 0.2 95.79±1.12
12 8 15 0.4 95.88±0.88
13 10 9 0.8 95.69±1.12
14 10 11 0.6 95.30±1.02
15 10 13 0.4 95.70±0.92
16 10 15 0.2 95.62±0.74

rbf-SVM, poly-SVM and DNM on the Thyroid dataset. For the Wine dataset, the

AISDNM achieves a better performance than MLP, DT and DNM in terms of Average

and Std. From the statistical results, it is easy to observe that the AISDNM is

significantly superior to the DT and DNM. The AISDNM outperforms the MLP, DT

and DNM on the Rice dataset in terms of Max, Min, Average and Std. Although the

line-SVM, rbf-SVM and poly-SVM achieve better results than the AISDNM in terms

of Min accuracy, the AISDNM has better results in all other evaluation criteria. The

statistical results demonstrate that the AISDNM has a satisfactory performance on

the Rice dataset, compared with the MLP, DT and DNM. For the Heart dataset, the

AISDNM is better than the MLP, DT, line-SVM, rbf-SVM, poly-SVM and DNM in

terms of all evaluation criteria. The corresponding p values imply that the AISDNM

has significant better performances than the MLP, DT, rbf-SVM and poly-SVM on

the Heart dataset, while there are no significant differences among the AISDNM,

line-SVM and DNM.

To further confirm the performance of the AISDNM, the scores of the additional

metrics are summarized in Table 4.22. It can be found that, for the Breast datasets,
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Table 4.6: L16(43) The Taguchi’s experimental result of the Glass dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 9 0.2 91.93±2.39
2 2 11 0.4 92.83±2.59
3 2 13 0.6 92.96±2.53
4 2 15 0.8 93.40±2.00
5 5 9 0.4 93.36±2.26
6 5 11 0.2 93.30±2.44
7 5 13 0.8 94.17±1.65

8 5 15 0.6 93.77±2.29
9 8 9 0.6 92.99±1.87
10 8 11 0.8 93.52±2.05
11 8 13 0.2 93.21±2.45
12 8 15 0.4 93.71±2.16
13 10 9 0.8 93.30±2.06
14 10 11 0.6 93.30±2.19
15 10 13 0.4 93.12±2.23
16 10 15 0.2 92.68±2.50

the AISDNM obtains better performances than the MLP, DT, line-SVM, rbf-SVM,

poly-SVM and the DNM in terms of Sensitivity, Specificity, Fmeasure, K and AUC.

The AISDNM outperforms the MLP, DT, line-SVM, rbf-SVM, poly-SVM and the

DNM in terms of Sensitivity, Specificity and K on the Glass dataset. The ex-

ceptions can be found that the poly-SVM and MLP have the best performances of

Sensitivity and AUC on Glass dataset, respectively. For the Haberman dataset,

although the line-SVM and DT perform best in Sensitivity and Specificity respec-

tively, and the DNM has the best performance of AUC, the AISDNM is slightly

inferior to them and obtains the best results of Fmeasure and K. For the Iris dataset,

the AISDNM has better results than the MLP, DT, line-SVM, rbf-SVM, poly-SVM

and the DNM in terms of K and AUC. The AISDNM outperforms the MLP, DT,

line-SVM, rbf-SVM, poly-SVM and the DNM in terms of Specificity, Fmeasure, K

and AUC on the Thyroid dataset, and the only exception is that the Sensitivity of

the AISDNM is slightly inferior to the MLP, line-SVM, rbf-SVM and poly-SVM. For

the Wine dataset, the AISDNM has the best result only in terms of AUC. The poly-

SVM and DT obtain the best Sensitivity and AUC respectively on the Rice dataset,



37

Table 4.7: L16(43) The Taguchi’s experimental result of the Haberman dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 3 0.2 73.62±3.49
2 2 5 0.4 74.68±2.57

3 2 7 0.6 74.01±2.55
4 2 9 0.8 74.36±2.56
5 5 3 0.4 72.48±3.53
6 5 5 0.2 73.33±1.84
7 5 7 0.8 72.72±3.40
8 5 9 0.6 73.29±2.70
9 8 3 0.6 73.14±3.46
10 8 5 0.8 73.20±2.88
11 8 7 0.2 73.05±3.20
12 8 9 0.4 73.55±3.75
13 10 3 0.8 72.66±2.72
14 10 5 0.6 73.86±2.79
15 10 7 0.4 73.83±2.75
16 10 9 0.2 72.42±2.71

which are slightly superior to those of the AISDNM, but the AISDNM achieves better

performances than the MLP, DT, line-SVM, rbf-SVM, poly-SVM and the DNM in

terms of Specificity, Fmeasure and AUC. For the Heart dataset, although the DNM

has a better result than the AISDNM in terms of Sensitivity, the Specificity of the

DNM is quite inferior to the AISDNM. The DT obtains the best Specificity which is

slightly superior to the AISDNM, but the Sensitivity of the AISDNM is drastically

better than that of the DT. The AISDNM outperforms the MLP, DT, line-SVM,

rbf-SVM, poly-SVM and the DNM in terms of Fmeasure, K and AUC on the Heart

dataset. The ROC curves of all the models are shown in Fig. 4.1. It is obvious

that the AISDNM achieves larger calculated areas under the ROC curves than the

MLP, DT, line-SVM, line-SVM, poly-SVM and DNM for most problems, which im-

plies that the AISDNM has an excellent classification performance. Furthermore, the

convergence curves of the MLP, DNM and AISDNM for all datasets are compared

in Fig. 4.2. It can be easy to observe that, the convergence speed of AISDNM is

more agile than those of the MLP and DNM for all the classification datasets, which

confirms that the AISDNM consumes less computing resources when solving the same
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Table 4.8: L16(43) The Taguchi’s experimental result of the Iris dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 4 0.2 89.60±4.56
2 2 6 0.4 93.56±3.71
3 2 8 0.6 94.53±3.65
4 2 10 0.8 94.27±2.36
5 5 4 0.4 94.62±1.90
6 5 6 0.2 94.18±1.87
7 5 8 0.8 93.82±2.83
8 5 10 0.6 95.29±1.28

9 8 4 0.6 94.04±2.09
10 8 6 0.8 94.09±2.40
11 8 8 0.2 93.78±2.05
12 8 10 0.4 93.42±2.12
13 10 4 0.8 94.40±2.44
14 10 6 0.6 93.42±2.20
15 10 8 0.4 93.69±2.71
16 10 10 0.2 93.82±2.14

problem. In general, based on the above results, the AISDNM can be regarded as an

effective classifier in terms of distinct evaluation criteria.

In addition, both the 5-fold cross-validation (CV) and 10-fold CV methods are

also performed to estimate the robustness of the AISDNM. It has been proven that

repeated cross-validation with different k-fold subsets can only slightly reduce the

variance of the estimated performance measures [121]. However, it is worth noting

that the training sets of each CV folds contradict the independence assumption of the

standard statistical test, which will underestimate the variance of the estimated per-

formance measure [122]. Thus, each CV method is conducted 30 times independently

in the experiment. Based on the result of the 30 times repeated CV experiment,

the Wilcoxon signed-rank test is also utilized. From Table 4.23, it is easy to observe

that, in both the 5-fold and 10-fold CV experiments, the AISDNM has the best re-

sults on the Glass, Haberman, Thyroid, Rice and Heart datasets in terms of Average

and Std. The exceptions can be found that, the poly-SVM and rbf-SVM have the

best results of Average on the Iris and Wine datasets respectively in both the 5-fold

and 10-fold CV experiments, but those of the AISDNM are slightly inferior to them.
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Table 4.9: L16(43) The Taguchi’s experimental result of the Thyroid dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 5 0.2 85.90±3.53
2 2 7 0.4 87.72±2.88
3 2 9 0.6 89.01±2.74
4 2 11 0.8 89.57±2.80
5 5 5 0.4 92.38±2.00
6 5 7 0.2 92.53±2.68
7 5 9 0.8 93.98±2.73

8 5 11 0.6 92.81±2.13
9 8 5 0.6 92.13±2.23
10 8 7 0.8 93.21±1.86
11 8 9 0.2 92.47±2.36
12 8 11 0.4 92.19±2.29
13 10 5 0.8 91.45±2.70
14 10 7 0.6 92.35±2.78
15 10 9 0.4 91.67±2.33
16 10 11 0.2 91.73±2.14

The rbf-SVM and poly-SVM achieve the best performances on the Breast dataset

in the 5-fold and 10-fold experiments, respectively. Again, the statistical results im-

ply that the AISDNM is significantly superior to the MLP, DT, line-SVM, rbf-SVM,

poly-SVM and DNM on most of the datasets. The exceptions can be found that no

significant differences are detected between the AISDNM and the MLP on both the

Wine dataset. Compared with the AISDNM, the DT and line-SVM have comparable

performances on the Iris and Wine dataset, respectively. The AISDNM performs sim-

ilar to the rbf-SVM and poly-SVM on the Breast, Iris and Wine datasets. According

to the above results, we can conclude that the AISDNM has better robustness than

the MLP, DT, line-SVM, rbf-SVM, poly-SVM and DNM.

4.5 Neuronal pruning and hardware implementa-

tion

According to the aforementioned neuronal pruning mechanism, the dendritic mor-

phology can be reconstructed for each specified problem. The redundant synaptic



40

Table 4.10: L16(43) The Taguchi’s experimental result of the Wine dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 13 0.2 91.12±2.82
2 2 15 0.4 94.42±2.14
3 2 17 0.6 94.19±2.34
4 2 19 0.8 94.19±2.32
5 5 13 0.4 94.42±1.82
6 5 15 0.2 94.64±2.26
7 5 17 0.8 94.98±2.62

8 5 19 0.6 93.75±2.88
9 8 13 0.6 93.52±2.35
10 8 15 0.8 94.04±2.90
11 8 17 0.2 92.96±2.87
12 8 19 0.4 93.22±2.47
13 10 13 0.8 93.52±3.48
14 10 15 0.6 93.41±2.51
15 10 17 0.4 92.62±3.35
16 10 19 0.2 93.03±2.52

and dendritic layers will be removed. The evolution of the structures of the AISDNM

on each classification dataset is provided in Fig. 4.3 − 4.10. It can be found that,

the neural structure of the AISDNM is largely simplified compared with the original

one, only a few useful synapses and dendritic branches are retained. Moreover, the

corresponding LCCs for each classification problem are also presented in Fig. 4.11

− 4.18, and the P represents the threshold θi,m of the corresponding synaptic layer.

The LCC is only composed of the comparators, the logic AND, OR and NOT gates.

The classification accuracies of the LCCs are compared with the AISDNM in Table

4.24. We can observe that the accuracies of the LCCs are almost the same as those

of AISDNM. Thus, it can be concluded that replacing the AISDNM with the LCC

will not sacrifice accuracy on the classification problems.

4.5.1 Comparison of the prediction problems

The results of prediction problems are summarized in Table 4.25 and 4.26. It is

obvious that the AISDNM obtains better results than the MLP, DT, line-SVM, rbf-

SVM, poly-SVM and DNM in terms of MSE, MAPE, MAE, and R on most datasets.
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Table 4.11: L16(43) The Taguchi’s experimental result of the Rice dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 7 0.2 91.74±0.55
2 2 9 0.4 92.75±0.47
3 2 11 0.6 92.81±0.28
4 2 13 0.8 92.92±0.46

5 5 7 0.4 92.55±0.37
6 5 9 0.2 92.68±0.34
7 5 11 0.8 92.82±0.27
8 5 13 0.6 92.83±0.47
9 8 7 0.6 92.58±0.40
10 8 9 0.8 92.81±0.41
11 8 11 0.2 92.68±0.36
12 8 13 0.4 92.81±0.50
13 10 7 0.8 92.54±0.46
14 10 9 0.6 92.80±0.41
15 10 11 0.4 92.75±0.32
16 10 13 0.2 92.73±0.47

The exception can be observe that the DT has the best MAPE on the BoxJenkins,

MackeyGlass and Tourism datasets. Besides, the line-SVM obtains the largest R on

the EEG dataset. The results of the AISDNM in the rest evaluation criteria on all

datasets are all best among the six models. Statistically, the corresponding p values

further confirm that the AISDNM has significantly better performances on most of

the datasets. In addition, the convergence of the three methods is presented in Fig.

4.19, and the AISDNM has the best performance. For the sake of simplicity, only the

fitting graphs and the corresponding linear regression graphs of the AISDNM in the

training and prediction phases are plotted in Fig. 4.20 and 4.21. As shown in the left

panels, the plot on the left side of the black solid line and that on the right side are

the training and prediction phase, respectively. The blue represents the target data

and red lines denote the predicted data. The corresponding linear regression graphs

and R are plotted in the right-hand set. According to these results, we can conclude

that the distributions of points are approximately fitted to the regression lines on

most datasets. However, due to the attributes of the DNM, the performances of the

AISDNM at the peaks and valleys of the data is not satisfactory, which also can be
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Table 4.12: L16(43) The Taguchi’s experimental result of the Heart dataset.
No. k m θsoma Acc(Average±Std)(%)
1 2 12 0.2 80.49±3.84
2 2 14 0.4 81.56±3.69
3 2 16 0.6 81.60±2.70
4 2 18 0.8 82.07±2.80

5 5 12 0.4 81.09±2.28
6 5 14 0.2 81.96±2.60
7 5 16 0.8 81.58±2.88
8 5 18 0.6 81.04±2.75
9 8 12 0.6 80.67±2.66
10 8 14 0.8 81.20±2.63
11 8 16 0.2 80.00±2.88
12 8 18 0.4 80.29±2.61
13 10 12 0.8 81.04±3.23
14 10 14 0.6 79.84±2.54
15 10 16 0.4 81.04±3.17
16 10 18 0.2 79.73±3.34

observed in the corresponding linear regression graphs. Therefore, there are still some

improvements that can be performed to prevent the overestimation of valleys and the

underestimation of peaks.
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Table 4.13: L16(43) The Taguchi’s experimental result of the BoxJenkins dataset.
No. k m θsoma MSE(Average±Std)
1 2 2 0.2 2.75e-02±8.15e-05
2 2 4 0.4 1.44e-02±2.55e-04
3 2 6 0.6 9.83e-03±2.05e-04
4 2 8 0.8 8.44e-03±3.45e-04
5 5 2 0.4 8.27e-03±8.30e-04
6 5 4 0.2 1.29e-02±1.39e-03
7 5 6 0.8 7.36e-03±6.48e-04

8 5 8 0.6 7.74e-03±6.88e-04
9 8 2 0.6 7.37e-03±8.89e-04
10 8 4 0.8 7.92e-03±8.30e-04
11 8 6 0.2 1.02e-02±2.27e-03
12 8 8 0.4 8.48e-03±1.38e-03
13 10 2 0.8 8.82e-03±2.32e-03
14 10 4 0.6 8.53e-03±1.81e-03
15 10 6 0.4 9.25e-03±2.14e-03
16 10 8 0.2 8.86e-03±8.64e-04

Table 4.14: L16(43) The Taguchi’s experimental result of the EEG dataset.
No. k m θsoma MSE(Average±Std)
1 2 4 0.2 2.91e-02±1.18e-04
2 2 6 0.4 1.92e-02±1.51e-04
3 2 8 0.6 1.62e-02±2.84e-04
4 2 10 0.8 1.54e-02±2.63e-04
5 5 4 0.4 1.55e-02±3.37e-04
6 5 6 0.2 1.77e-02±4.45e-04
7 5 8 0.8 1.52e-02±3.15e-04
8 5 10 0.6 1.51e-02±3.32e-04

9 8 4 0.6 1.60e-02±1.09e-03
10 8 6 0.8 1.58e-02±7.17e-04
11 8 8 0.2 1.64e-02±5.66e-04
12 8 10 0.4 1.60e-02±9.89e-04
13 10 4 0.8 1.74e-02±1.94e-03
14 10 6 0.6 1.67e-02±1.78e-03
15 10 8 0.4 1.63e-02±1.05e-03
16 10 10 0.2 1.68e-02±1.27e-03
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Table 4.15: L16(43) The Taguchi’s experimental result of the MackeyGlass dataset.
No. k m θsoma MSE(Average±Std)
1 2 4 0.2 1.48e-02±1.05e-04
2 2 6 0.4 6.38e-03±1.56e-04
3 2 8 0.6 2.91e-03±2.01e-04
4 2 10 0.8 1.64e-03±1.85e-04
5 5 4 0.4 1.52e-03±3.54e-04
6 5 6 0.2 4.58e-03±2.64e-04
7 5 8 0.8 1.10e-03±4.03e-04
8 5 10 0.6 9.67e-04±3.41e-04

9 8 4 0.6 1.89e-03±9.97e-04
10 8 6 0.8 2.38e-03±1.66e-03
11 8 8 0.2 2.27e-03±5.34e-04
12 8 10 0.4 1.32e-03±4.93e-04
13 10 4 0.8 3.54e-03±2.26e-03
14 10 6 0.6 2.61e-03±2.27e-03
15 10 8 0.4 2.09e-03±1.46e-03
16 10 10 0.2 1.74e-03±5.37e-04

Table 4.16: L16(43) The Taguchi’s experimental result of the Tourism dataset.
No. k m θsoma MSE(Average±Std)
1 2 6 0.2 9.80e-03±8.17e-04
2 2 8 0.4 7.55e-03±5.03e-04
3 2 10 0.6 7.38e-03±5.23e-04

4 2 12 0.8 7.70e-03±9.54e-04
5 5 6 0.4 8.97e-03±2.77e-03
6 5 8 0.2 8.31e-03±1.11e-03
7 5 10 0.8 9.17e-03±2.45e-03
8 5 12 0.6 8.59e-03±1.63e-03
9 8 6 0.6 1.04e-02±3.52e-03
10 8 8 0.8 1.06e-02±4.50e-03
11 8 10 0.2 8.99e-03±1.67e-03
12 8 12 0.4 9.58e-03±2.36e-03
13 10 6 0.8 1.20e-02±5.94e-03
14 10 8 0.6 1.26e-02±5.85e-03
15 10 10 0.4 1.13e-02±4.99e-03
16 10 12 0.2 9.38e-03±2.35e-03
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Table 4.17: L16(43) The Taguchi’s experimental result of the Chaos-01 dataset.
No. k m θsoma MSE(Average±Std)
1 2 4 0.2 1.31e-01±2.44e-03
2 2 6 0.4 1.18e-01±2.54e-03
3 2 8 0.6 1.05e-01±2.18e-03
4 2 10 0.8 9.20e-02±3.04e-03
5 5 4 0.4 7.03e-02±6.65e-03
6 5 6 0.2 1.04e-01±6.04e-03
7 5 8 0.8 4.49e-02±9.21e-03

8 5 10 0.6 5.08e-02±1.09e-02
9 8 4 0.6 4.93e-02±2.08e-02
10 8 6 0.8 5.00e-02±1.88e-02
11 8 8 0.2 8.20e-02±9.48e-03
12 8 10 0.4 5.68e-02±1.72e-02
13 10 4 0.8 6.74e-02±2.17e-02
14 10 6 0.6 5.17e-02±1.86e-02
15 10 8 0.4 5.37e-02±1.92e-02
16 10 10 0.2 7.63e-02±1.09e-02

Table 4.18: L16(43) The Taguchi’s experimental result of the Chaos-02 dataset.
No. k m θsoma MSE(Average±Std)
1 2 4 0.2 1.26e-01±1.96e-03
2 2 6 0.4 1.13e-01±2.03e-03
3 2 8 0.6 1.00e-01±1.94e-03
4 2 10 0.8 8.87e-02±1.83e-03
5 5 4 0.4 6.48e-02±5.15e-03
6 5 6 0.2 9.45e-02±3.88e-03
7 5 8 0.8 3.55e-02±6.70e-03

8 5 10 0.6 4.65e-02±6.68e-03
9 8 4 0.6 4.47e-02±1.60e-02
10 8 6 0.8 4.05e-02±1.27e-02
11 8 8 0.2 7.38e-02±6.06e-03
12 8 10 0.4 4.59e-02±9.82e-03
13 10 4 0.8 4.64e-02±1.42e-02
14 10 6 0.6 4.34e-02±1.55e-02
15 10 8 0.4 4.73e-02±1.28e-02
16 10 10 0.2 6.48e-02±6.13e-03
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Table 4.19: L16(43) The Taguchi’s experimental result of the Chaos-03 dataset.
No. k m θsoma MSE(Average±Std)
1 2 4 0.2 8.92e-02±1.58e-03
2 2 6 0.4 8.20e-02±1.47e-03
3 2 8 0.6 7.11e-02±1.34e-03
4 2 10 0.8 6.14e-02±1.79e-03
5 5 4 0.4 4.44e-02±4.96e-03
6 5 6 0.2 6.20e-02±2.29e-03
7 5 8 0.8 2.63e-02±7.04e-03

8 5 10 0.6 3.49e-02±6.70e-03
9 8 4 0.6 3.42e-02±9.92e-03
10 8 6 0.8 3.22e-02±9.08e-03
11 8 8 0.2 4.93e-02±5.75e-03
12 8 10 0.4 3.46e-02±9.08e-03
13 10 4 0.8 3.81e-02±1.00e-02
14 10 6 0.6 3.49e-02±1.14e-02
15 10 8 0.4 3.64e-02±1.09e-02
16 10 10 0.2 4.49e-02±6.02e-03

Table 4.20: L16(43) The Taguchi’s experimental result of the Chaos-04 dataset.
No. k m θsoma MSE(Average±Std)
1 2 4 0.2 7.00e-02±1.41e-03
2 2 6 0.4 6.25e-02±1.56e-03
3 2 8 0.6 5.54e-02±1.74e-03
4 2 10 0.8 4.72e-02±1.70e-03
5 5 4 0.4 3.32e-02±5.15e-03
6 5 6 0.2 4.94e-02±2.82e-03
7 5 8 0.8 2.34e-02±8.21e-03
8 5 10 0.6 2.18e-02±4.22e-03

9 8 4 0.6 2.96e-02±9.10e-03
10 8 6 0.8 3.04e-02±7.55e-03
11 8 8 0.2 3.75e-02±4.45e-03
12 8 10 0.4 2.80e-02±8.66e-03
13 10 4 0.8 4.04e-02±8.96e-03
14 10 6 0.6 3.45e-02±9.49e-03
15 10 8 0.4 3.10e-02±1.10e-02
16 10 10 0.2 3.50e-02±7.69e-03
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Table 4.21: Accuracy comparison of three models on eight classification datasets.
Datasets Model Max (%) Min (%) Average±Std (%) p value

Breast

MLP 97.71 94.00 95.91±0.74 2.40e-03
DT 96.57 91.14 94.21±1.17 1.16e-06

line-SVM 96.86 93.43 95.91±0.88 3.33e-02
rbf-SVM 97.14 95.14 96.05±0.59 5.48e-02

poly-SVM 97.14 95.43 96.27±0.59 3.92e-01
DNM 97.43 93.43 95.51±1.08 5.50e-03

AISDNM 98.00 94.57 96.37±0.83 -

Glass

MLP 96.26 85.98 91.81±2.84 1.10e-03
DT 96.26 82.24 90.84±3.16 3.17e-05

line-SVM 96.26 86.92 91.37±2.08 1.89e-05
rbf-SVM 96.26 85.98 91.03±2.62 1.88e-04

poly-SVM 97.20 88.79 92.93±2.30 3.97e-02
DNM 97.20 85.05 91.90±2.80 2.30e-03

AISDNM 97.20 88.79 93.96±1.97 -

Haberman

MLP 78.43 69.93 73.73±2.17 5.30e-03
DT 78.43 62.09 68.26±4.06 2.31e-06

line-SVM 79.74 68.63 72.85±2.94 2.60e-03
rbf-SVM 78.43 67.97 73.51±2.71 5.90e-03

poly-SVM 77.12 69.28 73.09±2.29 5.01e-03
DNM 80.39 69.93 73.88±2.45 2.30e-03

AISDNM 81.05 69.93 75.19±2.44 -

Iris

MLP 98.67 82.67 92.76±3.43 8.00e-03
DT 98.67 84.00 92.98±3.45 3.74e-03

line-SVM 73.33 60.00 66.18±3.39 8.60e-07
rbf-SVM 98.67 86.67 93.78±2.87 7.89e-02

poly-SVM 98.67 81.33 94.58±3.21 4.95e-01
DNM 97.33 86.67 93.69±2.24 3.36e-02

AISDNM 97.33 89.33 94.76±1.71 -

Thyroid

MLP 96.30 79.63 89.72±3.79 2.01e-05
DT 97.22 86.11 91.05±2.25 1.66e-05

line-SVM 86.11 69.44 78.15±3.81 9.01e-07
rbf-SVM 93.52 79.63 87.22±3.22 8.71e-07

poly-SVM 94.44 82.41 89.51±2.85 2.96e-06
DNM 97.22 87.04 92.69±2.37 5.80e-03

AISDNM 97.22 90.74 94.20±1.83 -

Wine

MLP 98.88 89.89 94.72±2.44 1.78e-01
DT 95.51 84.27 91.24±2.76 1.84e-05

line-SVM 100.00 91.01 96.25±1.99 9.50e-01
rbf-SVM 100.00 91.01 97.38±1.83 9.99e-01

poly-SVM 98.88 91.01 95.81±2.38 8.30e-01
DNM 97.75 85.39 91.54±3.35 7.84e-05

AISDNM 98.88 89.89 95.17±2.21 -

Rice

MLP 93.23 84.46 90.38±2.06 2.52e-06
DT 90.39 87.30 89.07±0.76 9.08e-07

line-SVM 93.75 91.97 92.90±0.43 4.29e-01
rbf-SVM 93.65 91.97 92.86±0.47 4.10e-01

poly-SVM 93.96 92.23 92.83±0.40 1.68e-01
DNM 93.70 89.87 92.00±0.95 9.67e-06

AISDNM 94.12 91.86 92.92±0.46 -

Heart

MLP 79.33 60.00 70.09±5.05 1.00e-06
DT 84.00 73.33 78.13±2.75 3.91e-05

line-SVM 86.67 73.33 81.07±2.95 7.78e-02
rbf-SVM 80.67 66.00 73.51±3.28 8.89e-07

poly-SVM 80.67 68.67 74.49±3.12 1.63e-06
DNM 86.67 72.00 81.09±4.08 2.03e-01

AISDNM 88.00 74.67 82.07±2.80 -
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Table 4.22: Additional comparison of three models on eight classification datasets.

Datasets Model
Sensitivity (%) Specificity (%) Fmeasure K AUC
Average±Std Average±Std Average±Std Average±Std Average±Std

Breast

MLP 97.17±0.86 93.49±2.23 0.969±0.006 0.909±0.016 0.9917±0.003
DT 95.08±1.53 92.55±2.92 0.956±0.009 0.872±0.026 0.9382±0.014

line-SVM 97.86±0.71 92.31±2.36 0.969±0.007 0.909±0.019 0.9509±0.011
rbf-SVM 97.45±0.67 93.36±1.19 0.970±0.005 0.912±0.013 0.9540±0.007

poly-SVM 97.61±0.63 93.72±1.92 0.971±0.004 0.917±0.014 0.9567±0.009
DNM 97.16±0.89 92.37±2.72 0.966±0.008 0.900±0.024 0.9929±0.003

AISDNM 97.31±0.81 94.58±2.04 0.972±0.006 0.919±0.019 0.9945±0.002

Glass

MLP 76.64±8.36 96.65±2.47 0.816±0.061 0.764±0.079 0.9691±0.023
DT 95.99±2.56 74.41±11.85 0.941±0.021 0.733±0.090 0.8520±0.056

line-SVM 96.94±3.04 73.12±8.50 0.945±0.013 0.739±0.064 0.8503±0.037
rbf-SVM 97.04±2.62 72.30±8.87 0.942±0.018 0.738±0.074 0.8467±0.042

poly-SVM 96.27±2.04 82.22±7.20 0.954±0.016 0.800±0.063 0.8925±0.037
DNM 95.35±2.59 81.80±9.63 0.831±0.053 0.778±0.071 0.9539±0.035

AISDNM 97.06±2.50 84.18±6.91 0.869±0.042 0.829±0.054 0.9545±0.032

Haberman

MLP 97.77±2.23 8.54±7.21 0.845±0.013 0.083±0.067 0.6187±0.067
DT 81.44±7.46 32.72±8.46 0.788±0.034 0.150±0.075 0.5708±0.034

line-SVM 99.68±0.70 0.00±0.00 0.843±0.019 0.005±0.010 0.4984±0.004
rbf-SVM 98.61±2.11 2.99±5.43 0.846±0.018 0.021±0.047 0.5080±0.018

poly-SVM 97.89±2.70 4.89±6.70 0.842±0.016 0.036±0.056 0.5139±0.022
DNM 93.12±3.51 23.40±9.96 0.838±0.016 0.197±0.074 0.7008±0.034

AISDNM 93.40±3.28 24.20±8.86 0.847±0.017 0.212±0.078 0.6886±0.036

Iris

MLP 90.94±7.85 93.78±4.64 0.891±0.053 0.837±0.076 0.9832±0.014
DT 95.23±3.84 88.30±7.11 0.948±0.026 0.839±0.078 0.9177±0.040

line-SVM 97.83±5.90 4.14±11.35 0.793±0.024 0.021±0.063 0.5099±0.030
rbf-SVM 92.35±3.40 97.01±6.13 0.952±0.023 0.863±0.061 0.9468±0.032

poly-SVM 92.88±4.92 98.41±2.81 0.958±0.027 0.880±0.065 0.9564±0.024
DNM 91.65±6.19 94.67±4.43 0.906±0.031 0.858±0.047 0.9858±0.010

AISDNM 94.09±4.90 95.12±2.56 0.919±0.030 0.880±0.041 0.9910±0.009

Thyroid

MLP 99.87±0.39 66.27±10.42 0.932±0.025 0.728±0.096 0.9625±0.028
DT 94.28±3.33 83.38±7.83 0.937±0.016 0.781±0.058 0.8883±0.034

line-SVM 100.00±0.00 28.16±8.70 0.864±0.025 0.350±0.097 0.6408±0.044
rbf-SVM 100.00±0.00 57.35±8.10 0.916±0.022 0.651±0.079 0.7867±0.040

poly-SVM 100.00±0.00 64.44±7.92 0.931±0.020 0.717±0.073 0.8222±0.040
DNM 97.45±2.48 81.43±8.72 0.949±0.017 0.818±0.060 0.9639±0.040

AISDNM 97.94±2.13 85.29±5.43 0.960±0.013 0.856±0.045 0.9710±0.020

Wine

MLP 90.85±4.56 97.48±2.59 0.934±0.030 0.889±0.050 0.9888±0.010
DT 87.27±6.02 93.95±3.99 0.890±0.033 0.817±0.055 0.9061±0.029

line-SVM 91.01±4.85 99.82±0.54 0.951±0.028 0.921±0.043 0.9542±0.025
rbf-SVM 95.03±4.40 99.08±1.18 0.967±0.022 0.945±0.037 0.9705±0.021

poly-SVM 93.05±4.79 97.61±2.93 0.947±0.029 0.912±0.049 0.9533±0.026
DNM 86.28±5.87 95.17±5.20 0.892±0.043 0.823±0.070 0.9711±0.017

AISDNM 91.21±4.05 98.01±2.39 0.939±0.028 0.899±0.046 0.9901±0.007

Rice

MLP 92.75±2.69 87.18±4.70 91.727±1.732 0.825±0.005 0.9644±0.014
DT 90.32±1.17 87.42±1.46 90.401±0.666 0.827±0.002 0.8887±0.008

line-SVM 93.91±0.91 91.56±0.97 93.796±0.392 0.819±0.001 0.9274±0.004
rbf-SVM 93.97±0.62 91.37±1.01 93.773±0.415 0.819±0.001 0.9267±0.005

poly-SVM 94.29±0.86 90.87±1.03 93.785±0.367 0.820±0.001 0.9258±0.004
DNM 93.83±0.81 91.20±0.98 93.623±0.332 0.819±0.001 0.9778±0.002

AISDNM 93.56±0.76 92.08±1.26 93.799±0.402 0.819±0.001 0.9791±0.002

Heart

MLP 82.63±5.40 41.21±11.38 78.481±2.591 0.277±0.039 0.6845±0.055
DT 84.71±5.08 64.41±9.27 83.949±2.386 0.378±0.028 0.7456±0.037

line-SVM 89.69±3.42 62.80±10.27 86.655±2.130 0.399±0.030 0.7625±0.043
rbf-SVM 92.59±3.26 34.66±9.66 82.491±2.070 0.307±0.033 0.6362±0.039

poly-SVM 83.26±4.53 56.11±7.86 81.595±2.530 0.338±0.029 0.6968±0.035
DNM 95.57±1.63 50.11±11.87 87.377±2.579 0.387±0.045 0.8254±0.052

AISDNM 91.94±3.24 61.54±7.55 87.434±2.082 0.408±0.026 0.8398±0.030
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Figure 4.1: The ROCs of three models for eight classification datasets.
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Figure 4.2: The convergence speeds of three models for eight classification datasets.
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Table 4.23: Experimental results of the cross-validation methods on eight classifica-
tion datasets.

Datasets Model
5-fold CV (Acc) 10-fold CV (Acc)

Average±Std p value Average±Std p value

Breast

MLP 96.0371±0.566 8.10e-03 96.0572±0.344 1.93e-04
DT 94.2820±0.600 9.09e-07 94.0491±0.627 9.10e-07

line-SVM 96.0644±0.104 7.58e-03 96.0920±0.100 2.46e-06
rbf-SVM 96.3258±0.141 9.89e-01 96.4075±0.134 9.37e-01

poly-SVM 96.3263±0.182 9.65e-01 96.4933±0.141 9.98e-01
DNM 95.5612±0.314 1.00e-06 95.7965±0.363 1.93e-06

AISDNM 96.1952±0.266 - 96.3655±0.185 -

Glass

MLP 92.0393±0.731 9.06e-07 91.8394±1.198 1.49e-06
DT 92.3892±1.129 1.01e-06 92.2032±0.999 9.99e-07

line-SVM 92.0035±0.704 1.01e-06 92.0622±0.724 1.00e-06
rbf-SVM 92.5597±0.776 1.23e-06 92.5892±0.614 1.21e-06

poly-SVM 93.3596±1.060 5.60e-05 93.3727±0.810 1.83e-05
DNM 91.8489±2.930 7.06e-05 90.5835±2.688 1.50e-06

AISDNM 94.5901±0.945 - 94.7251±0.935 -

Haberman

MLP 73.9554±0.544 1.00e-06 73.9870±0.748 2.45e-06
DT 66.8870±2.100 9.12e-07 68.1852±1.767 9.10e-07

line-SVM 73.3896±0.166 9.10e-07 73.3593±0.302 9.06e-07
rbf-SVM 72.8447±0.469 9.10e-07 72.9426±0.427 9.09e-07

poly-SVM 72.8332±0.611 9.12e-07 72.5852±0.577 9.08e-07
DNM 74.1303±0.601 5.33e-06 75.2611±0.484 8.50e-02

AISDNM 75.1895±0.779 - 75.4241±0.416 -

Iris

MLP 93.0000±2.128 2.10e-02 93.6222±1.676 8.00e-03
DT 94.5778±1.144 9.91e-01 94.4667±1.038 4.20e-01

line-SVM 66.8000±0.829 7.89e-07 66.4222±0.934 8.52e-07
rbf-SVM 94.2667±0.851 9.84e-01 94.2222±0.708 3.42e-02

poly-SVM 96.2222±0.750 1.00 96.5333±0.664 1.00
DNM 77.4667±5.941 8.98e-07 75.1333±5.331 8.99e-07

AISDNM 93.8889±0.911 - 94.4889±0.741 -

Thyroid

MLP 89.3488±1.663 8.85e-07 88.8205±1.555 9.06e-07
DT 91.4574±1.390 1.30e-06 92.5647±1.187 2.20e-06

line-SVM 80.0000±0.743 8.56e-07 80.0482±0.533 9.07e-07
rbf-SVM 88.5736±0.435 8.20e-07 89.0226±0.312 9.00e-07

poly-SVM 89.2093±0.628 8.08e-07 89.5379±0.554 8.97e-07
DNM 91.0078±3.317 4.33e-06 90.5281±2.661 9.10e-07

AISDNM 94.5426±0.668 - 94.5611±0.626 -

Wine

MLP 96.7469±1.212 1.00 96.7592±1.223 1.00
DT 90.7774±1.683 9.10e-07 90.4267±1.441 9.08e-07

line-SVM 97.3023±0.811 1.00 97.7153±0.517 1.00
rbf-SVM 98.3830±0.647 1.00 98.8996±0.419 1.00

poly-SVM 96.3749±1.092 1.00 96.3255±0.883 1.00
DNM 79.4506±8.427 9.13e-07 81.6227±5.232 9.12e-07

AISDNM 95.0757±1.497 - 95.2314±0.943 -

Rice

MLP 89.7918±0.838 8.87e-07 89.3526±0.369 5.44e-07
DT 89.2896±0.348 8.96e-07 89.0647±0.127 5.79e-07

line-SVM 92.3648±0.063 8.95e-07 92.3928±0.056 8.78e-07
rbf-SVM 92.5057±0.068 1.04e-06 92.5144±0.040 8.81e-07

poly-SVM 92.6185±0.094 5.53e-05 92.6544±0.056 7.20e-05
DNM 92.5284±0.130 1.10e-06 92.3482±0.177 1.13e-05

AISDNM 92.7437±0.104 - 92.7445±0.072 -

Heart

MLP 70.0705±2.648 9.13e-07 69.7949±2.382 9.12e-07
DT 78.6973±1.970 9.12e-07 79.2871±1.700 9.09e-07

line-SVM 82.1247±0.867 4.14e-05 82.5499±0.912 2.42e-05
rbf-SVM 76.4470±0.930 9.10e-07 77.0227±0.840 9.09e-07

poly-SVM 75.4451±1.358 9.12e-07 75.6370±1.185 9.12e-07
DNM 83.4739±1.176 9.69e-01 83.4498±0.878 3.63e-02

AISDNM 83.0164±1.075 - 83.8714±1.048 -
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Table 4.24: Comparison of the AISDNM and the LCC on eight classification datasets.
Dataset Acc of the AISDNM (%) Acc of the LCC (%)
Breast 97.14 97.71
Glass 97.20 97.20
Haberman 73.86 76.47
Iris 97.33 98.67
Thyroid 97.22 96.30
Wine 94.38 97.75
Rice 93.33 93.28
Heart 85.33 86.67
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Figure 4.3: The evolution of the AISDNM structure on the Breast dataset.
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Figure 4.6: The evolution of the structure of the AISDNM on the Iris dataset.
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Figure 4.7: The evolution of the structure of the AISDNM on the Thyroid dataset.
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Figure 4.8: The evolution of the structure of the AISDNM on the Wine dataset.
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Figure 4.10: The evolution of the structure of the AISDNM on the Heart dataset.

Table 4.25: Comparison of DNM performance for prediction problems.
BoxJenkins

Model MSE p MAPE p MAE p R p
MLP 2.40e-02±7.63e-03 9.13e-07 5.57e-02±3.67e-02 4.89e-06 1.22e-01±1.95e-02 9.13e-07 5.78e-01±2.20e-01 9.13e-07
DT 4.87e-03±8.82e-19 1.01e-06 3.06e-03±1.76e-18 1.00 5.51e-02±2.82e-17 9.13e-07 9.08e-01±6.78e-16 1.01e-06
line-SVM 7.58e-03±2.65e-18 9.13e-07 7.26e-02±4.23e-17 9.13e-07 6.99e-02±5.65e-17 9.13e-07 8.47e-01±2.26e-16 9.13e-07
rbf-SVM 4.27e-03±1.76e-18 1.03e-05 4.23e-02±7.06e-18 9.13e-07 5.08e-02±0.00e+00 5.51e-05 9.22e-01±3.39e-16 3.03e-05
poly-SVM 8.88e-03±1.76e-18 9.13e-07 2.57e-02±3.53e-18 9.13e-07 7.24e-02±4.23e-17 9.13e-07 8.71e-01±2.26e-16 9.13e-07
DNM 3.85e-02±8.80e-02 1.87e-04 2.17e-01±2.80e-01 1.63e-05 1.26e-01±1.35e-01 1.36e-04 8.77e-01±1.46e-01 9.52e-03
AISDNM 3.74e-03±3.89e-04 - 1.09e-02±6.00e-03 - 4.89e-02±2.00e-03 - 9.30e-01±6.56e-03 -

EEG
Model MSE p MAPE p MAE p R p
MLP 1.37e-02±3.25e-03 9.13e-07 4.56e-02±2.18e-02 3.20e-04 9.27e-02±1.10e-02 9.13e-07 8.03e-01±5.24e-02 9.13e-07
DT 1.17e-02±3.53e-18 9.13e-07 2.94e-02±2.12e-17 1.67e-01 8.57e-02±2.82e-17 9.13e-07 8.30e-01±1.13e-16 9.13e-07
line-SVM 8.41e-03±3.53e-18 9.13e-07 6.99e-02±1.41e-17 9.13e-07 7.31e-02±4.23e-17 9.13e-07 8.94e-01±5.65e-16 1.00
rbf-SVM 7.76e-03±5.29e-18 6.40e-02 4.00e-02±7.06e-18 9.13e-07 7.04e-02±2.82e-17 8.25e-04 8.91e-01±6.78e-16 3.40e-01
poly-SVM 1.27e-02±8.82e-18 9.13e-07 1.33e-02±7.06e-18 1.00 8.83e-02±7.06e-17 9.13e-07 8.17e-01±1.13e-16 9.13e-07
DNM 2.03e-01±5.21e-02 9.13e-07 8.27e-01±2.36e-01 9.13e-07 4.07e-01±6.79e-02 9.13e-07 5.84e-01±1.88e-01 9.13e-07
AISDNM 7.71e-03±2.04e-04 - 2.85e-02±4.85e-03 - 6.99e-02±7.35e-04 - 8.91e-01±3.11e-03 -

MackeyGlass
Model MSE p MAPE p MAE p R p
MLP 7.05e-03±5.73e-03 9.13e-07 2.83e-02±1.78e-02 9.13e-07 6.46e-02±2.52e-02 9.13e-07 9.37e-01±5.11e-02 9.13e-07
DT 1.61e-03±6.62e-19 9.13e-07 2.76e-03±1.32e-18 9.66e-01 3.17e-02±7.06e-18 9.13e-07 9.85e-01±5.65e-16 9.13e-07
line-SVM 2.08e-02±0.00e+00 9.13e-07 1.32e-01±5.65e-17 9.13e-07 1.29e-01±5.65e-17 9.13e-07 9.14e-01±5.65e-16 9.13e-07
rbf-SVM 1.55e-02±8.82e-18 9.13e-07 1.14e-01±4.23e-17 9.13e-07 1.12e-01±5.65e-17 9.13e-07 9.14e-01±0.00e+00 9.13e-07
poly-SVM 4.00e-03±2.65e-18 9.13e-07 4.40e-02±7.06e-18 9.13e-07 5.21e-02±2.12e-17 9.13e-07 9.69e-01±1.13e-16 9.13e-07
DNM 3.97e-02±3.59e-02 9.13e-07 1.92e-01±1.39e-01 9.13e-07 1.60e-01±7.47e-02 9.13e-07 9.33e-01±5.15e-02 9.13e-07
AISDNM 4.51e-04±1.06e-04 - 3.86e-03±3.02e-03 - 1.65e-02±2.22e-03 - 9.96e-01±9.03e-04 -

Tourism
Model MSE p MAPE p MAE p R p
MLP 6.24e-03±1.91e-03 9.13e-07 5.04e-02±2.75e-02 3.30e-05 6.43e-02±1.00e-02 2.25e-06 6.19e-01±1.46e-01 2.04e-06
DT 5.95e-03±2.65e-18 9.13e-07 1.74e-02±1.06e-17 7.51e-01 6.39e-02±2.82e-17 9.13e-07 5.93e-01±1.13e-16 9.13e-07
line-SVM 8.21e-03±5.29e-18 9.13e-07 9.05e-02±0.00e+00 9.13e-07 7.20e-02±4.23e-17 9.13e-07 5.98e-01±3.39e-16 9.13e-07
rbf-SVM 4.91e-03±1.76e-18 9.13e-07 1.82e-02±7.06e-18 6.21e-01 5.49e-02±1.41e-17 1.51e-06 6.74e-01±1.13e-16 9.13e-07
poly-SVM 8.83e-03±1.76e-18 9.13e-07 8.60e-02±4.23e-17 9.13e-07 7.70e-02±4.23e-17 9.13e-07 7.40e-01±1.13e-16 1.24e-06
DNM 8.46e-03±1.63e-03 9.13e-07 7.50e-02±1.24e-02 9.13e-07 7.54e-02±7.30e-03 9.13e-07 6.75e-01±1.58e-01 2.96e-04
AISDNM 3.68e-03±3.35e-04 - 1.96e-02±1.31e-02 - 5.02e-02±2.79e-03 - 7.61e-01±1.51e-02 -
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Figure 4.11: The logic circuits of the AISDNM on the Breast.
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Figure 4.16: The logic circuits of the AISDNM on the Wine.



61

P=433.4991

P=180.2460

P=16270.3969

P=187.5418

P=0.8884

P=14455.6542

P=461.4784

P=184.4489

P=0.9064

P=18801.5453

P=461.7337

P=179.9616

P=0.9215

x2

x1

x3

x5

x6

P=9056.4710

P=184.0458

P=60.5251

P=9758.2079

P=0.6811

P=16308.3203

P=469.2975

P=190.9889

P=14782.6855

P=478.2941

P=182.4379

P=0.9167

P=17798.0006

x4

x7

Figure 4.17: The logic circuits of the AISDNM on the Rice.
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Figure 4.18: The logic circuits of the AISDNM on the Heart.
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Table 4.26: Comparison of DNM performance for prediction problems.
Chaos-01

Model MSE p MAPE p MAE p R p
MLP 8.04e-02±2.77e-02 2.25e-06 2.18e-01±5.64e-02 1.12e-06 2.40e-01±5.12e-02 2.04e-06 5.90e-01±2.07e-01 2.25e-06
DT 8.46e-02±1.41e-17 9.13e-07 1.92e-01±5.65e-17 9.13e-07 2.38e-01±1.13e-16 9.13e-07 5.74e-01±4.52e-16 9.13e-07
line-SVM 1.31e-01±0.00e+00 9.13e-07 3.16e-01±2.82e-16 9.13e-07 3.21e-01±0.00e+00 9.13e-07 5.33e-02±1.41e-17 9.13e-07
rbf-SVM 4.80e-02±1.41e-17 2.54e-05 2.04e-01±0.00e+00 9.13e-07 1.97e-01±5.65e-17 9.13e-07 9.96e-01±7.90e-16 1.00
poly-SVM 9.18e-02±4.23e-17 9.13e-07 2.42e-01±1.69e-16 9.13e-07 2.60e-01±0.00e+00 9.13e-07 5.28e-01±3.39e-16 9.13e-07
DNM 3.82e-02±8.66e-03 9.06e-02 1.69e-01±8.75e-02 1.63e-05 1.66e-01±1.57e-02 1.47e-04 9.60e-01±1.85e-02 1.00
AISDNM 3.48e-02±1.14e-02 - 7.22e-02±3.27e-02 - 1.44e-01±2.03e-02 - 8.89e-01±5.82e-02 -

Chaos-02
Model MSE p MAPE p MAE p R p
MLP 8.83e-02±2.83e-02 1.37e-06 2.75e-01±7.08e-02 1.37e-06 2.51e-01±5.13e-02 2.04e-06 5.48e-01±2.03e-01 1.01e-06
DT 7.96e-02±2.82e-17 9.13e-07 2.63e-01±1.69e-16 9.13e-07 2.30e-01±1.41e-16 9.13e-07 6.26e-01±3.39e-16 9.13e-07
line-SVM 1.33e-01±0.00e+00 9.13e-07 3.31e-01±0.00e+00 9.13e-07 3.29e-01±0.00e+00 9.13e-07 7.83e-02±0.00e+00 9.13e-07
rbf-SVM 1.10e-01±2.82e-17 9.13e-07 2.87e-01±5.65e-17 9.13e-07 3.01e-01±5.65e-17 9.13e-07 9.85e-01±5.65e-16 1.00e+00
poly-SVM 1.12e-01±7.06e-17 9.13e-07 3.62e-01±1.69e-16 9.13e-07 2.97e-01±0.00e+00 9.13e-07 4.00e-01±0.00e+00 9.13e-07
DNM 4.97e-02±9.27e-03 1.24e-06 2.04e-01±1.28e-01 5.70e-03 1.90e-01±1.46e-02 1.01e-06 9.46e-01±2.20e-02 1.00
AISDNM 3.62e-02±7.67e-03 - 1.13e-01±3.51e-02 - 1.54e-01±1.97e-02 - 9.02e-01±3.88e-02 -

Chaos-03
Model MSE p MAPE p MAE p R p
MLP 7.78e-02±2.37e-02 1.24e-06 1.65e-01±4.36e-02 1.01e-06 2.34e-01±4.45e-02 9.13e-07 5.64e-01±1.77e-01 1.24e-06
DT 6.14e-02±0.00e+00 9.13e-07 1.16e-01±0.00e+00 9.13e-07 2.04e-01±2.82e-17 9.13e-07 6.90e-01±2.26e-16 9.13e-07
line-SVM 1.12e-01±4.23e-17 9.13e-07 2.81e-01±1.13e-16 9.13e-07 2.98e-01±5.65e-17 9.13e-07 1.82e-01±2.82e-17 9.13e-07
rbf-SVM 1.04e-01±7.06e-17 9.13e-07 2.78e-01±2.26e-16 9.13e-07 2.86e-01±0.00e+00 9.13e-07 4.11e-01±1.13e-16 9.13e-07
poly-SVM 7.73e-02±2.82e-17 9.13e-07 1.55e-01±5.65e-17 9.13e-07 2.45e-01±1.69e-16 9.13e-07 6.24e-01±2.26e-16 9.13e-07
DNM 2.56e-02±5.22e-03 1.00 1.36e-01±6.45e-02 1.95e-05 1.35e-01±1.46e-02 4.84e-01 9.47e-01±2.68e-02 1.00
AISDNM 3.15e-02±6.25e-03 - 4.78e-02±2.90e-02 - 1.34e-01±1.36e-02 - 8.71e-01±3.73e-02 -

Chaos-04
Model MSE p MAPE p MAE p R p
MLP 5.74e-02±1.56e-02 4.03e-06 1.82e-01±4.01e-02 1.51e-06 1.96e-01±3.20e-02 2.04e-06 5.61e-01±1.72e-01 3.33e-06
DT 5.62e-02±2.12e-17 9.13e-07 1.82e-01±8.47e-17 9.13e-07 1.91e-01±1.13e-16 9.13e-07 5.88e-01±0.00e+00 9.13e-07
line-SVM 8.54e-02±4.23e-17 9.13e-07 2.52e-01±1.69e-16 9.13e-07 2.54e-01±1.13e-16 9.13e-07 6.32e-02±1.41e-17 9.13e-07
rbf-SVM 7.49e-02±2.82e-17 9.13e-07 2.17e-01±1.41e-16 9.13e-07 2.38e-01±1.13e-16 9.13e-07 8.00e-01±3.39e-16 2.19e-02
poly-SVM 5.89e-02±3.53e-17 9.13e-07 1.74e-01±8.47e-17 9.13e-07 1.96e-01±2.82e-17 9.13e-07 5.72e-01±2.26e-16 9.13e-07
DNM 8.21e-02±1.57e-02 9.13e-07 3.52e-01±1.54e-01 9.13e-07 2.37e-01±2.86e-02 9.13e-07 7.48e-01±8.91e-02 2.36e-04
AISDNM 3.13e-02±7.22e-03 - 6.86e-02±4.15e-02 - 1.37e-01±1.54e-02 - 8.27e-01±6.49e-02 -
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Figure 4.19: The convergence speeds of three models for eight prediction datasets.
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Figure 4.20: The correlation coefficient of prediction of the DNM.
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Figure 4.21: The correlation coefficient of prediction of the AISDNM.
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Chapter 5

Experimental studies of scale-free
cuckoo search

Extensive comparative experimental studies are carried out to test the optimization

performance of SFCS. We compare SFCS with seven more popular methods, including

the basic CS algorithm, two advanced CS variants, and five metaheuristic algorithms.

The comparison among these methods is executed on CEC2013 and CEC2017 bench-

mark functions.

5.1 Experimental setup

Unless changes are mentioned, the hyperparameters of all the methods are defined as

follows: the maximum number of function evaluations is fixed to 105; the population

size is 50; the search space ranges from -100 to 100; and the search dimension numbers

are set to 10, 30 and 50. For the CS and its variants, the probability of the eggs

being discarded in each generation Pa is set to 0.25, and the step size of a cuckoo

walking in one step α is 0.01. In addition, the user-defined parameters in the other

methods are listed in Table 5.1. To achieve the unbiased estimation, all experiments

are independently performed 30 times.
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Table 5.1: Initial parameters of the five metaheuristic algorithms
Algorithms Parameters Values

DE
F 0.7
CR 0.9

FPA Pa 0.8

GA
Cop 0.3
V ar 0.1

GSA
G0 100
α 20

SMS

α [0.8, 0.2, 0]
β [0.8, 0.4, 0.1]
ρ [0.8, 0.3, 0.1]
H [0.9, 0.2, 0]

5.2 Benchmark functions

To ensure the results’ reliability and generalizability, all the methods are implemented

and compared on 58 benchmark functions that have various characteristics. Among

them, 28 functions are taken from the CEC’2013, and they can be divided into three

categories: 5 unimodal functions (FCEC20131 ∼ 5), 15 basic multimodal functions

(FCEC20136 ∼ 20), and 8 composition functions (FCEC201321 ∼ 28). The remaining

30 functions are selected from the CEC’2017, and it includes 3 unimodal functions

(FCEC20171 ∼ 3), 7 simple multi-modal functions (FCEC20174 ∼ 10), 10 hybridity

functions (FCEC201711 ∼ 20) and 10 composition functions (FCEC201721 ∼ 30). Each

function is rotated, scaled and shifted to increase the complexity. Complete informa-

tion of the two benchmark test suites is described in [123] and [124].

5.3 Performance evaluation criteria

In this research, the first criterion is the average (Average) and the standard de-

viation (Std) of the final fitness values on 30 independent runs. The second is the

nonparametric statistical analysis, which is carried out by the two-sided Wilcoxon

rank-sum test to distinguish whether there are significant differences between SFCS

and its competitors on a specific function [125]. Specifically, when the null hypothesis

is accepted, we summarize these cases as ’w’. A ’l’ demonstrates that the compared

method obtains superior performance, namely, the SFCS cannot outperform with a

significant difference. A ’t’ implies that the SFCS shows comparable performance
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to the competitor algorithm. The specific numbers of three categories of statistical

results (’w/t/l’) for all functions in each benchmark special sessions with different

values of dimensions are summarized at the bottom of the results tables to make a

direct comparison. The last is convergence speed, which is displayed to compare the

convergence speed.

5.4 Comparison of the CSs

In this subsection, we compare the SFCS with three CS algorithms, namely, the basic

CS algorithm [54], which is used to evaluate the degree of improvement of SFCS, a

CS variant algorithm that combines the evolutionary strategy of PSO (PSOCS) [67],

and a modified gradient-free optimization CS algorithm (MCS) [70].

In the experiments on 10-dimensional optimization functions, SFCS obtains bet-

ter results in terms of Average and Std on 50 (out of 58) benchmark functions from

CEC’2013 and CEC’2017, which are listed in Table 5.2 and Table 5.3. For the remain-

ing 8 functions, it can be found that the result of the SFCS is only slightly inferior to

the best result. For the sake of further evaluating the performances of the SFCS, the

statistical analysis of the two-sided Wilcoxon rank-sum test are provided in Table 5.2

and Table 5.3. It can be found that, compared with the CS, the SFCS is observably

superior on 42 functions and comparable on the remaining 16 functions. Compared

with PSOCS, the SFCS presents its superiority on all 58 functions. For the MCS

algorithm, the SFCS achieves significantly better performances on 52 functions and

similar results on 5 functions. The only exception is that SFCS is worse than that

of the MCS on FCEC201322. When the dimensional number is set to 30, from Table

5.4 and Table 5.5, it is easy to observe that the CS, PSOCS, MCS and SFCS have

the best solutions on 2, 1, 7 and 48 functions, respectively. The statistical analysis

suggests that the SFCS is superior to CS on 40 benchmark functions and is similar

to it on 17 functions. The exception can be found that the CS outperforms SFCS

on FCEC20138. For PSOCS, the SFCS outperforms 57 functions and is outperformed

on only 1 function. Compared with the MCS, the SFCS shows satisfactory perfor-
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mance on 46 functions while unsatisfactory on 5 functions. Next, Table 5.6 and Table

5.7 compare the performances of the CSs on the 50-dimensional functions, and the

SFCS obtains the best solutions on 42 (out of 58) functions. In summary, the SFCS

outperforms the CS, PSOCS and MCS on 44, 56 and 39 functions, while it performs

significantly worse on 0, 2 and 10 functions.

In addition, the CSs’ convergence curves of 12 randomly selected functions with

10, 30 and 50 dimensions are plotted in Fig. 5.1, which indicates that the speed of

the convergence curves of the SFCS ranks first. The convergence speed of the PSOCS

and MCS are slower, even compared with the basic CS algorithm, which implies that

the SFCS can be regarded as a more effective optimization algorithm. Thus, we can

conclude that the SFCS achieves better results on most of the benchmark function

with distinct dimensional numbers when compared with the CS, PSOCS and MCS.

The scale-free population topology can enhance the search ability of CS prominently.

Table 5.2: Comparison of the CSs on 10-dimensional benchmark functions from
CEC’2013

Function
CS PSOCS MCS SFCS

Average±Std Average±Std Average±Std Average±Std
FCEC20131 -1.40e+03±5.21e-13 2.14e+03±6.61e+02 -1.40e+03±1.61e-04 -1.40e+03±3.66e-13
FCEC20132 6.19e+03±3.69e+03 1.44e+07±5.73e+06 4.40e+05±2.14e+05 4.81e+03±2.54e+03
FCEC20133 5.82e+05±3.89e+05 7.38e+09±2.21e+09 1.36e+08±2.23e+08 1.40e+05±1.92e+05
FCEC20134 -1.29e+02±3.97e+02 1.43e+04±5.40e+03 2.36e+03±2.04e+03 -2.40e+02±3.16e+02
FCEC20135 -1.00e+03±1.04e-08 -4.03e+02±2.33e+02 -1.00e+03±2.96e-03 -1.00e+03±9.85e-09
FCEC20136 -9.00e+02±7.14e-02 -6.80e+02±5.10e+01 -8.65e+02±3.28e+01 -9.00e+02±5.78e-02
FCEC20137 -7.73e+02±7.78e+00 -6.84e+02±2.29e+01 -7.44e+02±2.52e+01 -7.76e+02±7.54e+00
FCEC20138 -6.80e+02±9.14e-02 -6.80e+02±7.34e-02 -6.80e+02±8.11e-02 -6.80e+02±6.95e-02
FCEC20139 -5.95e+02±6.72e-01 -5.91e+02±6.72e-01 -5.93e+02±1.46e+00 -5.95e+02±6.94e-01
FCEC201310 -5.00e+02±1.68e-02 -1.43e+02±9.75e+01 -4.98e+02±1.12e+00 -5.00e+02±1.96e-02
FCEC201311 -3.92e+02±1.86e+00 -2.96e+02±1.24e+01 -3.88e+02±4.79e+00 -3.94e+02±1.61e+00
FCEC201312 -2.81e+02±5.79e+00 -1.91e+02±1.47e+01 -2.44e+02±2.28e+01 -2.82e+02±4.15e+00
FCEC201313 -1.77e+02±5.82e+00 -9.54e+01±1.27e+01 -1.49e+02±1.56e+01 -1.79e+02±6.75e+00
FCEC201314 2.66e+02±6.98e+01 1.51e+03±1.54e+02 1.97e+02±9.44e+01 1.51e+02±6.72e+01
FCEC201315 8.67e+02±1.23e+02 1.71e+03±1.61e+02 9.79e+02±3.15e+02 7.36e+02±1.18e+02
FCEC201316 2.01e+02±1.26e-01 2.01e+02±2.35e-01 2.01e+02±4.74e-01 2.01e+02±1.40e-01
FCEC201317 3.23e+02±2.76e+00 4.84e+02±2.70e+01 3.34e+02±1.19e+01 3.20e+02±3.93e+00
FCEC201318 4.33e+02±3.52e+00 5.81e+02±2.76e+01 4.33e+02±1.13e+01 4.29e+02±5.43e+00
FCEC201319 5.01e+02±1.73e-01 8.41e+02±2.47e+02 5.02e+02±9.96e-01 5.01e+02±1.90e-01
FCEC201320 6.03e+02±2.69e-01 6.04e+02±2.00e-01 6.04e+02±3.47e-01 6.03e+02±2.19e-01
FCEC201321 8.37e+02±4.88e+01 1.31e+03±5.44e+01 1.10e+03±1.83e+01 8.40e+02±6.21e+01
FCEC201322 1.33e+03±8.85e+01 2.63e+03±1.86e+02 1.16e+03±1.77e+02 1.23e+03±1.18e+02
FCEC201323 1.94e+03±1.62e+02 2.76e+03±2.11e+02 2.18e+03±4.17e+02 1.77e+03±1.82e+02
FCEC201324 1.18e+03±2.70e+01 1.22e+03±1.44e+01 1.22e+03±5.99e+00 1.17e+03±3.34e+01
FCEC201325 1.27e+03±2.15e+01 1.31e+03±1.24e+01 1.32e+03±6.08e+00 1.27e+03±2.97e+01
FCEC201326 1.33e+03±8.20e+00 1.40e+03±5.73e+00 1.41e+03±7.35e+01 1.32e+03±1.00e+01
FCEC201327 1.68e+03±1.32e+01 2.00e+03±4.25e+01 1.74e+03±9.88e+01 1.67e+03±2.12e+01
FCEC201328 1.54e+03±8.43e+01 2.30e+03±1.34e+02 2.13e+03±2.01e+02 1.55e+03±8.60e+01

w/t/l 19/9 /0 28/0/0 25/2/1 -
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Figure 5.1: Convergence graphs of CS, PSOCS, MCS and SFCS on 12 randomly-
selected benchmark functions.
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Table 5.3: Comparison of the CSs on 10-dimensional benchmark functions from
CEC’2017

Function
CS PSOCS MCS SFCS

Average±Std Average±Std Average±Std Average±Std
FCEC20171 1.01e+02±6.11e-01 3.24e+09±8.99e+08 1.18e+03±8.15e+02 1.01e+02±7.72e-01
FCEC20172 2.00e+02±8.11e-07 1.46e+09±1.65e+09 2.45e+02±1.65e+02 2.00e+02±5.34e-07
FCEC20173 3.00e+02±4.96e-03 1.02e+04±2.29e+03 3.00e+02±9.57e-03 3.00e+02±2.15e-03
FCEC20174 4.00e+02±1.73e-01 6.33e+02±6.93e+01 4.05e+02±2.28e+00 4.00e+02±1.52e-01
FCEC20175 5.18e+02±5.21e+00 5.71e+02±1.01e+01 5.28e+02±9.13e+00 5.14e+02±4.40e+00
FCEC20176 6.05e+02±1.99e+00 6.39e+02±7.18e+00 6.05e+02±4.85e+00 6.04e+02±1.54e+00
FCEC20177 7.30e+02±4.20e+00 8.81e+02±2.67e+01 7.46e+02±1.25e+01 7.25e+02±6.12e+00
FCEC20178 8.18e+02±4.42e+00 8.69e+02±9.42e+00 8.17e+02±6.79e+00 8.14e+02±4.58e+00
FCEC20179 9.25e+02±1.75e+01 1.75e+03±2.37e+02 9.39e+02±5.38e+01 9.18e+02±1.20e+01
FCEC201710 1.54e+03±1.16e+02 2.51e+03±1.65e+02 1.78e+03±3.24e+02 1.46e+03±1.43e+02
FCEC201711 1.10e+03±1.14e+00 1.42e+03±1.05e+02 1.13e+03±1.25e+01 1.10e+03±1.30e+00
FCEC201712 1.58e+03±1.13e+02 8.55e+07±4.12e+07 3.55e+05±2.82e+05 1.53e+03±1.34e+02
FCEC201713 1.31e+03±2.45e+00 3.36e+05±3.57e+05 1.11e+04±6.15e+03 1.31e+03±3.44e+00
FCEC201714 1.41e+03±3.75e+00 1.80e+03±3.21e+02 1.61e+03±3.11e+02 1.41e+03±3.19e+00
FCEC201715 1.50e+03±6.08e-01 4.52e+03±1.63e+03 2.09e+03±1.17e+03 1.50e+03±7.67e-01
FCEC201716 1.61e+03±8.17e+00 1.91e+03±8.72e+01 1.83e+03±1.16e+02 1.60e+03±2.48e+00
FCEC201717 1.73e+03±3.81e+00 1.83e+03±2.06e+01 1.76e+03±2.92e+01 1.72e+03±7.25e+00
FCEC201718 1.81e+03±2.35e+00 8.56e+05±8.84e+05 8.19e+03±6.09e+03 1.81e+03±2.79e+00
FCEC201719 1.90e+03±4.33e-01 8.21e+03±5.39e+03 2.62e+03±1.09e+03 1.90e+03±4.16e-01
FCEC201720 2.03e+03±5.86e+00 2.15e+03±2.29e+01 2.06e+03±3.59e+01 2.02e+03±9.20e+00
FCEC201721 2.20e+03±1.77e+01 2.25e+03±1.65e+01 2.32e+03±3.54e+01 2.20e+03±4.75e-01
FCEC201722 2.26e+03±2.93e+01 2.52e+03±9.55e+01 2.30e+03±1.23e+01 2.26e+03±2.91e+01
FCEC201723 2.61e+03±5.06e+01 2.69e+03±1.61e+01 2.65e+03±1.92e+01 2.62e+03±4.89e+00
FCEC201724 2.51e+03±2.09e+01 2.73e+03±4.90e+01 2.76e+03±8.90e+01 2.49e+03±2.42e+01
FCEC201725 2.80e+03±1.27e+02 3.10e+03±5.10e+01 2.93e+03±2.13e+01 2.77e+03±1.36e+02
FCEC201726 2.76e+03±8.67e+01 3.38e+03±9.24e+01 3.16e+03±4.90e+02 2.71e+03±1.06e+02
FCEC201727 3.10e+03±1.62e+00 3.15e+03±1.47e+01 3.14e+03±4.69e+01 3.09e+03±1.64e+00
FCEC201728 3.02e+03±1.12e+02 3.41e+03±6.28e+01 3.30e+03±1.34e+02 3.05e+03±1.11e+02
FCEC201729 3.18e+03±1.56e+01 3.32e+03±3.38e+01 3.24e+03±4.12e+01 3.17e+03±1.22e+01
FCEC201730 5.26e+03±1.36e+03 4.58e+06±2.32e+06 3.05e+05±5.74e+05 4.81e+03±1.30e+03

w/t/l 23/7/0 30/0/0 27/3/0 -
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Table 5.4: Comparison of the CSs on 30-dimensional benchmark functions from
CEC’2013

Function
CS PSOCS MCS SFCS

Average±Std Average±Std Average±Std Average±Std
FCEC20131 -1.40e+03±1.27e-02 5.00e+04±4.78e+03 -1.40e+03±9.78e-02 -1.40e+03±6.78e-03
FCEC20132 1.28e+07±2.79e+06 6.11e+08±1.06e+08 1.76e+07±5.08e+06 9.99e+06±2.24e+06
FCEC20133 2.92e+09±1.14e+09 1.00e+10±0.00e+00 3.84e+09±2.73e+09 1.88e+09±9.49e+08
FCEC20134 6.74e+04±9.27e+03 9.15e+04±1.14e+04 1.73e+04±6.26e+03 7.19e+04±9.96e+03
FCEC20135 -1.00e+03±1.49e-01 1.25e+04±2.69e+03 -9.99e+02±1.89e-01 -1.00e+03±1.34e-01
FCEC20136 -8.61e+02±1.32e+01 6.54e+03±1.13e+03 -8.06e+02±3.32e+01 -8.70e+02±1.17e+01
FCEC20137 -6.88e+02±1.06e+01 1.26e+04±1.18e+04 -6.71e+02±3.44e+01 -6.92e+02±1.51e+01
FCEC20138 -6.79e+02±5.53e-02 -6.79e+02±3.76e-02 -6.79e+02±5.70e-02 -6.79e+02±5.01e-02
FCEC20139 -5.68e+02±1.22e+00 -5.59e+02±1.27e+00 -5.66e+02±2.99e+00 -5.68e+02±2.09e+00
FCEC201310 -4.98e+02±2.74e-01 5.72e+03±7.71e+02 -4.87e+02±5.40e+00 -4.98e+02±2.60e-01
FCEC201311 -2.58e+02±1.81e+01 4.07e+02±5.99e+01 -2.17e+02±3.42e+01 -2.77e+02±1.84e+01
FCEC201312 -7.28e+01±2.64e+01 5.30e+02±7.63e+01 5.48e+01±7.82e+01 -1.11e+02±2.36e+01
FCEC201313 6.00e+01±2.24e+01 6.17e+02±5.37e+01 1.37e+02±5.60e+01 2.81e+01±3.18e+01
FCEC201314 3.24e+03±2.28e+02 7.77e+03±2.61e+02 3.09e+03±6.20e+02 2.89e+03±3.61e+02
FCEC201315 4.65e+03±3.27e+02 7.95e+03±3.01e+02 4.92e+03±7.17e+02 4.40e+03±2.92e+02
FCEC201316 2.03e+02±2.87e-01 2.03e+02±4.11e-01 2.02e+02±7.07e-01 2.02e+02±2.72e-01
FCEC201317 4.81e+02±1.95e+01 2.02e+03±1.21e+02 6.21e+02±8.19e+01 4.70e+02±2.22e+01
FCEC201318 6.34e+02±2.72e+01 2.05e+03±1.24e+02 6.64e+02±4.82e+01 6.16e+02±2.27e+01
FCEC201319 5.13e+02±2.06e+00 8.06e+05±2.94e+05 5.28e+02±6.89e+00 5.12e+02±2.41e+00
FCEC201320 6.14e+02±2.50e-01 6.15e+02±4.07e-02 6.15e+02±1.92e-01 6.14e+02±4.44e-01
FCEC201321 9.43e+02±2.17e+01 4.54e+03±2.09e+02 1.06e+03±7.72e+01 9.38e+02±2.99e+01
FCEC201322 4.92e+03±2.62e+02 9.40e+03±2.59e+02 4.28e+03±9.73e+02 4.46e+03±3.88e+02
FCEC201323 6.46e+03±2.53e+02 9.38e+03±4.12e+02 7.27e+03±8.03e+02 6.06e+03±3.95e+02
FCEC201324 1.28e+03±8.64e+00 1.36e+03±8.41e+00 1.31e+03±2.47e+01 1.28e+03±7.16e+00
FCEC201325 1.44e+03±7.17e+00 1.48e+03±5.98e+00 1.45e+03±1.69e+01 1.43e+03±5.66e+00
FCEC201326 1.40e+03±2.61e-01 1.47e+03±1.82e+01 1.55e+03±6.99e+01 1.40e+03±1.94e-01
FCEC201327 2.53e+03±4.06e+01 2.83e+03±3.66e+01 2.49e+03±1.08e+02 2.49e+03±5.09e+01
FCEC201328 1.91e+03±9.14e+01 6.98e+03±5.41e+02 4.11e+03±1.37e+03 1.88e+03±8.97e+01

w/t/l 19/8/1 28/0/0 23/4/1 -
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Table 5.5: Comparison of the CSs on 30-dimensional benchmark functions from
CEC’2017

Function
CS PSOCS MCS SFCS

Average±Std Average±Std Average±Std Average±Std
FCEC20171 4.80e+05±1.61e+05 1.00e+10±0.00e+00 4.93e+05±1.66e+05 3.15e+05±1.40e+05
FCEC20172 6.36e+17±9.25e+17 1.00e+10±0.00e+00 1.61e+14±6.46e+14 1.83e+17±3.68e+17
FCEC20173 8.86e+04±1.27e+04 1.31e+05±2.05e+04 7.20e+03±3.39e+03 8.10e+04±9.55e+03
FCEC20174 4.85e+02±1.53e+01 1.22e+04±2.43e+03 5.19e+02±1.48e+01 4.81e+02±1.94e+01
FCEC20175 6.64e+02±1.73e+01 9.69e+02±2.05e+01 6.76e+02±3.30e+01 6.52e+02±1.88e+01
FCEC20176 6.48e+02±6.96e+00 6.93e+02±4.88e+00 6.43e+02±6.78e+00 6.43e+02±5.18e+00
FCEC20177 8.83e+02±1.78e+01 2.37e+03±1.31e+02 1.04e+03±7.06e+01 8.76e+02±2.47e+01
FCEC20178 9.50e+02±2.12e+01 1.22e+03±1.89e+01 9.24e+02±2.43e+01 9.31e+02±1.87e+01
FCEC20179 4.85e+03±7.82e+02 1.76e+04±1.94e+03 3.63e+03±8.99e+02 4.57e+03±9.99e+02
FCEC201710 4.86e+03±2.27e+02 8.67e+03±3.89e+02 5.12e+03±6.15e+02 4.46e+03±3.64e+02
FCEC201711 1.24e+03±1.67e+01 9.27e+03±1.96e+03 1.26e+03±3.90e+01 1.22e+03±2.03e+01
FCEC201712 5.46e+05±2.61e+05 8.39e+09±1.16e+09 4.80e+06±2.64e+06 3.49e+05±1.44e+05
FCEC201713 1.18e+04±3.30e+03 3.35e+09±9.92e+08 5.07e+04±1.91e+04 1.13e+04±2.78e+03
FCEC201714 1.65e+03±5.63e+01 1.31e+06±7.37e+05 2.42e+04±1.65e+04 1.63e+03±3.76e+01
FCEC201715 2.61e+03±3.52e+02 4.77e+08±2.05e+08 2.79e+04±1.83e+04 2.45e+03±2.22e+02
FCEC201716 2.76e+03±1.53e+02 4.92e+03±3.27e+02 3.05e+03±2.96e+02 2.64e+03±1.27e+02
FCEC201717 2.08e+03±7.21e+01 3.28e+03±2.09e+02 2.49e+03±1.84e+02 2.02e+03±1.06e+02
FCEC201718 7.05e+04±2.60e+04 2.15e+07±8.88e+06 6.43e+05±5.53e+05 6.84e+04±2.37e+04
FCEC201719 2.10e+03±6.46e+01 6.21e+08±2.14e+08 4.93e+04±3.31e+04 2.12e+03±8.17e+01
FCEC201720 2.45e+03±8.00e+01 2.98e+03±8.55e+01 2.62e+03±1.80e+02 2.36e+03±8.58e+01
FCEC201721 2.46e+03±1.85e+01 2.72e+03±2.88e+01 2.47e+03±3.15e+01 2.44e+03±2.02e+01
FCEC201722 2.71e+03±7.49e+02 8.82e+03±6.06e+02 3.53e+03±2.09e+03 2.36e+03±2.10e+01
FCEC201723 2.90e+03±4.29e+01 3.32e+03±5.00e+01 3.00e+03±8.19e+01 2.87e+03±4.05e+01
FCEC201724 3.03e+03±2.92e+01 3.54e+03±6.13e+01 3.14e+03±8.01e+01 2.99e+03±2.94e+01
FCEC201725 2.89e+03±1.25e+00 7.27e+03±7.98e+02 2.92e+03±1.96e+01 2.89e+03±8.98e-01
FCEC201726 3.93e+03±5.76e+02 1.02e+04±5.46e+02 6.18e+03±1.71e+03 3.50e+03±5.76e+02
FCEC201727 3.34e+03±1.90e+01 3.96e+03±1.06e+02 3.39e+03±8.72e+01 3.31e+03±2.22e+01
FCEC201728 3.22e+03±1.36e+01 7.15e+03±5.02e+02 3.27e+03±2.92e+01 3.22e+03±1.06e+01
FCEC201729 4.15e+03±1.14e+02 6.00e+03±3.52e+02 4.07e+03±2.31e+02 3.99e+03±1.39e+02
FCEC201730 8.90e+04±4.14e+04 4.59e+08±1.38e+08 4.60e+05±1.85e+05 6.81e+04±2.61e+04

w/t/l 21/9/0 29/0/1 23/3/4 -
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Table 5.6: Comparison of the CSs on 50-dimensional benchmark functions from
CEC’2013

Function
CS PSOCS MCS SFCS

Average±Std Average±Std Average±Std Average±Std
FCEC20131 -1.39e+03±4.08e+00 1.08e+05±7.35e+03 -1.39e+03±1.75e+00 -1.39e+03±2.19e+00
FCEC20132 3.62e+07±5.03e+06 1.89e+09±2.41e+08 4.13e+07±1.25e+07 2.92e+07±5.96e+06
FCEC20133 1.83e+10±4.08e+09 1.00e+10±0.00e+00 1.49e+10±7.75e+09 1.51e+10±2.63e+09
FCEC20134 1.24e+05±1.58e+04 1.62e+05±1.81e+04 4.36e+04±1.14e+04 1.22e+05±1.55e+04
FCEC20135 -9.76e+02±7.43e+00 3.02e+04±4.66e+03 -9.79e+02±6.73e+00 -9.82e+02±3.84e+00
FCEC20136 -8.43e+02±1.26e+01 1.29e+04±1.80e+03 -7.27e+02±5.71e+01 -8.45e+02±8.96e+00
FCEC20137 -6.63e+02±1.06e+01 1.00e+04±6.80e+03 -6.50e+02±5.71e+01 -6.67e+02±1.37e+01
FCEC20138 -6.79e+02±5.01e-02 -6.79e+02±3.92e-02 -6.79e+02±4.11e-02 -6.79e+02±2.55e-02
FCEC20139 -5.36e+02±1.71e+00 -5.24e+02±1.13e+00 -5.36e+02±4.72e+00 -5.39e+02±1.81e+00
FCEC201310 -4.53e+02±1.65e+01 1.33e+04±1.01e+03 -3.70e+02±3.20e+01 -4.64e+02±1.06e+01
FCEC201311 -7.12e+01±3.02e+01 1.31e+03±1.01e+02 3.66e+00±5.20e+01 -1.03e+02±3.29e+01
FCEC201312 1.77e+02±3.36e+01 1.33e+03±1.00e+02 3.50e+02±1.16e+02 1.37e+02±5.32e+01
FCEC201313 3.56e+02±3.76e+01 1.44e+03±9.21e+01 4.81e+02±9.84e+01 3.11e+02±3.83e+01
FCEC201314 7.87e+03±3.42e+02 1.46e+04±3.54e+02 6.15e+03±8.32e+02 7.31e+03±3.71e+02
FCEC201315 1.05e+04±4.06e+02 1.52e+04±4.02e+02 9.82e+03±1.16e+03 1.01e+04±3.48e+02
FCEC201316 2.04e+02±3.09e-01 2.04e+02±5.30e-01 2.03e+02±7.86e-01 2.03e+02±4.64e-01
FCEC201317 7.53e+02±3.69e+01 4.09e+03±1.30e+02 1.15e+03±1.30e+02 7.22e+02±3.75e+01
FCEC201318 9.32e+02±4.40e+01 4.12e+03±1.91e+02 1.09e+03±1.19e+02 9.29e+02±3.90e+01
FCEC201319 5.49e+02±7.48e+00 4.00e+06±1.05e+06 5.64e+02±1.16e+01 5.43e+02±8.37e+00
FCEC201320 6.24e+02±3.29e-01 6.25e+02±6.34e-03 6.24e+02±2.83e-01 6.24e+02±2.72e-01
FCEC201321 1.26e+03±1.10e+02 9.14e+03±3.85e+02 1.55e+03±2.92e+02 1.17e+03±1.21e+02
FCEC201322 1.06e+04±3.97e+02 1.66e+04±4.39e+02 9.38e+03±1.40e+03 9.77e+03±4.99e+02
FCEC201323 1.28e+04±4.46e+02 1.70e+04±3.60e+02 1.34e+04±1.38e+03 1.21e+04±6.81e+02
FCEC201324 1.36e+03±1.03e+01 1.54e+03±3.01e+01 1.39e+03±5.96e+01 1.35e+03±1.15e+01
FCEC201325 1.58e+03±7.91e+00 1.65e+03±1.15e+01 1.58e+03±2.77e+01 1.57e+03±1.37e+01
FCEC201326 1.42e+03±9.54e+00 1.63e+03±4.40e+01 1.66e+03±4.98e+01 1.41e+03±2.90e+00
FCEC201327 3.45e+03±5.68e+01 3.97e+03±6.97e+01 3.44e+03±1.38e+02 3.37e+03±7.24e+01
FCEC201328 1.90e+03±3.29e+01 1.22e+04±7.18e+02 4.99e+03±2.50e+03 1.89e+03±2.04e+01

w/t/l 20/8/0 27/0/1 20/4/4 -
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Table 5.7: Comparison of the CSs on 50-dimensional benchmark functions from
CEC’2017

Function
CS PSOCS MCS SFCS

Average±Std Average±Std Average±Std Average±Std
FCEC20171 3.30e+07±1.22e+07 1.00e+10±0.00e+00 2.09e+07±5.45e+06 2.67e+07±1.32e+07
FCEC20172 4.06e+44±8.60e+44 1.00e+10±0.00e+00 1.61e+34±4.40e+34 1.82e+42±7.41e+42
FCEC20173 2.19e+05±2.75e+04 2.75e+05±3.13e+04 6.19e+04±1.54e+04 2.24e+05±3.28e+04
FCEC20174 6.18e+02±3.34e+01 4.45e+04±4.78e+03 6.39e+02±5.32e+01 5.97e+02±4.71e+01
FCEC20175 8.42e+02±3.01e+01 1.40e+03±3.83e+01 8.07e+02±3.61e+01 8.12e+02±3.95e+01
FCEC20176 6.66e+02±4.79e+00 7.14e+02±4.12e+00 6.56e+02±4.32e+00 6.62e+02±5.50e+00
FCEC20177 1.17e+03±3.81e+01 4.46e+03±1.89e+02 1.52e+03±1.21e+02 1.12e+03±4.01e+01
FCEC20178 1.15e+03±2.34e+01 1.70e+03±3.36e+01 1.11e+03±4.82e+01 1.11e+03±2.66e+01
FCEC20179 1.91e+04±3.13e+03 5.77e+04±4.87e+03 1.29e+04±2.79e+03 1.70e+04±2.51e+03
FCEC201710 8.98e+03±3.46e+02 1.52e+04±3.49e+02 8.04e+03±9.99e+02 8.57e+03±3.79e+02
FCEC201711 1.67e+03±8.98e+01 2.96e+04±4.80e+03 1.44e+03±7.72e+01 1.52e+03±6.99e+01
FCEC201712 1.48e+07±4.47e+06 1.00e+10±0.00e+00 2.89e+07±1.67e+07 9.59e+06±3.52e+06
FCEC201713 9.27e+04±3.67e+04 1.00e+10±0.00e+00 1.11e+05±4.83e+04 6.71e+04±2.42e+04
FCEC201714 3.99e+04±2.26e+04 1.70e+07±5.98e+06 4.47e+05±2.52e+05 4.20e+04±1.97e+04
FCEC201715 1.13e+04±3.59e+03 5.78e+09±1.07e+09 3.14e+04±1.76e+04 1.08e+04±3.33e+03
FCEC201716 3.77e+03±2.15e+02 8.05e+03±4.68e+02 3.65e+03±4.49e+02 3.41e+03±2.85e+02
FCEC201717 3.17e+03±1.29e+02 9.72e+03±2.33e+03 3.55e+03±3.43e+02 2.97e+03±1.52e+02
FCEC201718 1.65e+06±4.96e+05 9.46e+07±2.94e+07 3.28e+06±1.69e+06 1.08e+06±5.23e+05
FCEC201719 1.68e+04±4.03e+03 2.59e+09±5.61e+08 2.02e+05±9.47e+04 1.63e+04±4.26e+03
FCEC201720 3.22e+03±1.23e+02 4.31e+03±1.29e+02 3.35e+03±2.86e+02 3.11e+03±1.60e+02
FCEC201721 2.67e+03±2.77e+01 3.20e+03±3.38e+01 2.68e+03±6.50e+01 2.62e+03±3.74e+01
FCEC201722 1.08e+04±3.72e+02 1.68e+04±3.87e+02 1.04e+04±9.02e+02 1.01e+04±7.78e+02
FCEC201723 3.37e+03±6.83e+01 4.18e+03±1.05e+02 3.51e+03±1.16e+02 3.29e+03±6.41e+01
FCEC201724 3.42e+03±6.39e+01 4.50e+03±1.05e+02 3.53e+03±1.03e+02 3.37e+03±5.58e+01
FCEC201725 3.11e+03±2.54e+01 2.73e+04±3.52e+03 3.19e+03±2.98e+01 3.09e+03±2.69e+01
FCEC201726 8.36e+03±8.96e+02 1.97e+04±8.95e+02 1.07e+04±1.04e+03 8.21e+03±1.04e+03
FCEC201727 4.20e+03±9.78e+01 5.96e+03±2.69e+02 4.35e+03±2.92e+02 4.05e+03±1.28e+02
FCEC201728 3.42e+03±4.41e+01 1.46e+04±8.72e+02 3.51e+03±5.38e+01 3.41e+03±3.67e+01
FCEC201729 5.24e+03±2.58e+02 1.67e+04±4.26e+03 5.13e+03±4.25e+02 5.05e+03±1.99e+02
FCEC201730 1.51e+07±2.62e+06 4.02e+09±8.48e+08 1.52e+07±2.65e+06 1.26e+07±1.88e+06

w/t/l 24/6/0 29/0/1 19/5/6 -
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5.5 Comparison of the SFCS with five metaheuris-

tic algorithms

To further illustrate the effectiveness of the SFCS, five representative metaheuristic

algorithms are chosen for comparison with the SFCS, namely, DE [126], the FPA, GA

[127], the GSA and the SMS [128]. For the DE, the corresponding hyper-parameters

refer to the analysis in [129]. The hyper-parameters of the FPA are set according to

the analysis in [130]. For the GA, the corresponding hyper-parameters are consistent

with the settings in [131]. The analysis in [132] suggests that the G0 of GSA is fixed

to 100 and α is 20. The hyper-parameters of the SMS are set according to the analysis

in [133].

Table 5.8 and Table 5.9 show the optimization results obtained by these algo-

rithms. Upon optimizing the 10-dimensional functions, DE, FPA, GA, GSA, SMS

and SFCS achieve the best solutions on 27, 5, 2, 9, 0 and 15 functions. In addition,

Wilcoxon rank-sum test is adopted. Specifically, the SFCS outperforms DE on 23

functions and has a comparable performance on 7 functions. In this case, the DE

obtains better performance than SFCS. For FPA, the performance of the SFCS is

better on 45 functions but worse on the 5 benchmark functions. Compared with the

GA, the SFCS has better performances on 53 functions and performs similarly on

2 functions. The SFCS outperforms the GSA on 45 functions obviously and is out-

performed by the GSA on 10 functions. Moreover, the SFCS performs better than

the SMS on 56 functions and worse on 1 function. Upon optimizing 30-dimensional

functions, as shown in Table 5.10 and Table 5.11, the SFCS has advantages over the

other algorithms on number 18, 5, 4, 8, 2 and 21. Specifically, the SFCS obviously

outperforms the DE on 34 functions and has a comparable performance on 7 func-

tions. The SFCS is distinctly superior to the FPA on 50 functions and worse on the

remaining 8 functions. Compared with the GA, the SFCS achieves more satisfactory

performance on 49 functions but unsatisfactory on 4 functions. Moreover, the SFCS

evidently performs better than GSA on 45 functions but is outperformed on the re-

maining 11 functions. For SMS, the SFCS is obviously superior on 53 functions but
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inferior on 4 functions. From Table 5.12 and Table 5.13, it is obvious that the DE,

FPA, GA, GSA, SMS and SFCS obtain the best solutions on 18, 4, 3, 9, 2 and 22

functions separately with 50 dimensions. The SFCS solutions are distinctly superior

to those of the DE, FPA, GA, GSA and SMS on 35, 49, 51, 39 and 51 functions,

respectively.

Hence, these results suggest that the SFCS is an outstanding algorithm among

numerous metaheuristic algorithms for various functions with different dimensions.

Fig. 5.2 depicts the convergence curves of each algorithm. It is obvious that the other

five metaheuristic algorithms converge fast in the early phase, but they fall into the

local minima in a later phase. The SFCS continues to converge consistently in the

whole search process and finally has the best solutions in contrast with other algo-

rithms. Generally, the results verify that the SFCS not only has structural simplicity

but also presents outstanding performance and high computational efficiency due to

its scale-free population topology.

5.6 Discussion

The previous results present convincing proof that the scale-free population topol-

ogy plays an irreplaceable guiding role in the process of searching for solutions. It

successfully enables the CS to achieve a better agreement between exploitation and

exploration. Compared with the basic CS algorithm, two CS variants, and five meta-

heuristic optimization algorithms, the SFCS showed promising and comparable per-

formance. Additionally, further analysis of SFCS algorithm is carried out. First,

the influence of the parameter M0 on the performance of the SFCS is detected and

analyzed. Then, we attempt to apply SFCS architecture design to resolve real-world

tasks. The comparisons are also provided with the statistical results.

5.6.1 Parameter sensibility

There is an important parameter named M0 in the scale-free population topology,

which indicates the number of fully attached nodes in the initialization phase. It
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Figure 5.2: Convergence graphs of SFCS and the five metaheuristic algorithms on 12
randomly-selected benchmark functions.
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Table 5.14: Statistical analysis of the SFCSs with different values of M0 by the
Friedman’s test

M0 Ranking z − value Unadjusted p pBonf

4 3.2931 0.00000 1.00000 5.00000
5 3.2931 - - -
6 3.5086 0.62037 0.53502 2.67509
7 3.6207 0.94295 0.34570 1.72852
8 3.8966 1.73702 0.08238 0.41192
9 3.3879 0.27296 0.78488 3.92442

precisely affects the topological structure. Hence, the performances of the SFCS

algorithm on CEC’2017 special session with different values of M0 are examined,

and the corresponding results are presented in Table 5.16 and Table 5.17. M0 is

assigned to be 4, 5, 6, 7, 8 and 9. It is obvious that the SFCSs with these values

of M0 achieve the best solutions on 12, 13, 5, 10, 7 and 11 functions accordingly.

When M0 is 5, the SFCS obtains the best solution on the maximum number of

functions. The performances of SFCS with M0 = 4 rank in the second, and M0 = 6

presents the worst performance. Moreover, Friedman’s test is utilized to distinguish

the significance difference between each pair of SFCS architecture design, and the

results are provided in Table 5.14 [107]. We can observe that the SFCS with M0

= 5 and M0 = 4 achieves more satisfactory performance than the SFCS with other

values of M0. The performance of the SFCS with M0 = 9 ranks second. M0 = 6

has the third-best result, while M0 = 8 has the worst. In addition, the Bonferroni-

Dunn procedure is utilized as the post hoc test to describe differences obtained by

statistical tests [106]. The results illustrate that all adjusted p − values are larger

than 0.05. In other words, there is no statistical significance difference when M0 is

assigned different values. Thus, it can be concluded that the value setting of M0 has

little influence on the superiority of the SFCS algorithm.

5.6.2 Real-world optimization tasks

We adopt 21 real-world optimization tasks from CEC’2011, and more properties are

summarized in Table 5.15. [134].The performance of the SFCS adopted in optimizing

real-world problems is compared with the basic CS algorithm and two CS variants.

From Table 5.18, we find that the CS, PSOCS, MCS and SFCS obtain the best
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Table 5.15: Description of the real-world benchmark problems from CEC’2011
Function Dimension Constraints
FCEC20111 6 Bound constrained
FCEC20112 30 Bound constrained
FCEC20113 1 Bound constrained
FCEC20114 1 Unconstrained
FCEC20115 30 Bound constrained
FCEC20116 30 Bound constrained
FCEC20117 20 Bound constrained
FCEC20118 7 Equality and inequality constraints
FCEC20119 126 Linear equality constraints
FCEC201110 12 Bound constrained
FCEC201111 120 Inequality constraints
FCEC201112 216 Inequality constraints
FCEC201113 6 Inequality constraints
FCEC201114 13 Inequality constraints
FCEC201115 15 Inequality constraints
FCEC201116 40 Inequality constraints
FCEC201117 140 Inequality constraints
FCEC201118 96 Inequality constraints
FCEC201119 96 Inequality constraints
FCEC201120 96 Inequality constraints
FCEC201121 26 Bound constrained

solutions on 2, 0, 7 and 12 problems, respectively. It is easy to observe that the

SFCS is superior to the other methods in terms of Average and Std. It is obvious

that the SFCS significantly outperforms CS on 11 problems and performs similarly

on 10 problems. For the PSOCS, the SFCS evidently outperforms the CS on all 21

problems. Compared with MCS, the SFCS clearly obtains better performances on 14

problems and worse performances on the remaining 7 problems. The results indicate

that SFCS can solve real-world problems better than CS and CS variants.

The comparison results are provided in Table 5.19. The SFCS achieves the best

performance on 12 problems, and the DE, FPA, GA, GSA and SMS have the best

performance on 5, 2, 0, 1 and 1 problems, respectively. Moreover, the statistical

results suggest that the SFCS is significantly superior on 15 problems and similar

on 1 problem compared with the DE. In contrast, with FPA, the SFCS has better

results on 15 problems and worse results on 1 problem. Compared with the GA, the

number of the problems on which the SFCS has distinctly better results is 19, and a

worse result on only 1. For the GSA, the SFCS behaves better on 15 problems and

similarly on 2 problems. The SFCS obviously outperforms the SMS on 20 problems,

and the FCEC20112 problem is the only exception in which SMS has more satisfactory

performance than SFCS. Therefore, SFCS is an excellent and effective algorithm for
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solving real-world tasks, which verifies that the scale-free network architecture design

enhances the searching ability of SFCS for engineering applications effectively.

5.6.3 Extension

Additionally the SFIPSO is employed to compare with the scale-free architecture

design [90]. From Table 5.20 and Table 5.21, SFCS performs better than the SFIPSO

on 53 (out of 58) 10-dimensional functions from CEC’2013 and CEC’2017 in terms

of Average and Std. In the experiments of 30 and 50 dimensional functions, the

SFCS obtains better solutions on 54 and 53 (out of 58) functions, respectively. The

statistical analysis also shows that SFCS obviously outperforms the SFIPSO on 50, 51

and 51 (out of 58) functions, separately. In addition, the computational complexity

of the PSO in the worst case is O(T ∗ (2N) + 2N), while that of the SFIPSO is

O(T ∗ (2N ∗ log (N) + 2N) + 2N). The simplified results are O(T ∗N) and O(T ∗N ∗

log (N)). The computational complexity of SFIPSO is obviously larger than that of

the PSO, which means that the SFIPSO costs more computational resources to solve

the same problem. Our proposed scale-free population topology method is capable of

improving the searching ability of the SFCS without broadening the computational

complexity owing to its simplified structure.

Furthermore, the influence of the scale-free population topology on other population-

based algorithms is also considered. Therefore, we introduce the scale-free population

topology into the DE and FA [135] and propose the DE with scale-free population

topology (SFDE) and FA with scale-free population topology (SFFA). In contrast to

the original DE and FA, the individuals are updated by using the following search

strategy:

X t+1
i = X t

i + rand(0, 1)(X t
neighbor −X t

i ). (5.1)

Eq. (5.1) is similar to Eq. (3.3). Note that the population have to be ranked according

to their fitness in each iteration. As shown in Table 5.22 and Table 5.23, although

the SFDE achieves 18 (out of 58) better results than the DE in the experiments on

10-dimensional functions from CEC’2013 and CEC’2017, it outperforms the DE on
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43 (out of 58) 30-dimensional functions and 48 (out of 58) 50-dimensional functions.

The statistical analysis shows that the SFDE is clearly better than DE on 9, 34 and 45

(out of 58) functions, respectively. In the experiments on low-dimensional benchmark

functions, the SFDE can not achieve the ideal performance. As the dimension of the

functions increases, the ability of the SFDE can be gradually exerted. The comparison

results of FA and SFFA are provided in Table 5.24 and Table 5.25, SFFA obtains

better results than the FA on most functions and the only exception can be found

that the performance of the SFFA is only slightly inferior to the FA in terms of

Average while the SFFA achieves a better result than the FA in terms of Std on

FCEC201321. Moreover, the SFFA significantly outperforms the FA on most cases. The

only exception is that the SFFA and FA perform similar on 1 30-dimensional function

from CEC’2017. Thus, scale-free population topology architecture design can not only

improve the performance of CS but also be beneficial to other algorithms. We can

believe that the scale-free population topology might be a promising mechanism in

enhancing the search ability of population-based algorithms.



90

T
ab

le
5.

16
:

C
om

p
ar

is
on

of
th

e
S
F

C
S

w
it

h
d
iff

er
en

t
va

lu
es

of
M

0
on

th
e

b
en

ch
m

ar
k

fu
n
ct

io
n
s

fr
om

C
E

C
’2

01
3

F
u

n
ct

io
n

M
0

=
4

M
0

=
5

M
0

=
6

M
0

=
7

M
0

=
8

M
0

=
9

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
3
1

-1
.4

0
e+

0
3
±

7
.7

2
e-

0
3

-1
.4

0
e+

0
3
±

8
.5

5
e-

0
3

-1
.4

0
e+

0
3
±

8
.8

5
e-

0
3

-1
.4

0
e+

0
3
±

8
.8

6
e-

0
3

-1
.4
0
e
+
0
3
±
8
.2
4
e
-0

3
-1

.4
0
e+

0
3
±

9
.8

9
e-

0
3

F
C
E
C
2
0
1
3
2

9
.8

2
e+

0
6
±

2
.8

0
e+

0
6

1
.0

6
e+

0
7
±

2
.8

8
e+

0
6

9
.7
2
e
+
0
6
±
2
.6
7
e
+
0
6

1
.0

1
e+

0
7
±

2
.9

0
e+

0
6

1
.0

1
e+

0
7
±

2
.7

0
e+

0
6

1
.0

5
e+

0
7
±

3
.3

6
e+

0
6

F
C
E
C
2
0
1
3
3

1
.9

4
e+

0
9
±

9
.9

3
e+

0
8

1
.6
5
e
+
0
9
±
8
.3
5
e
+
0
8

1
.7

8
e+

0
9
±

7
.1

9
e+

0
8

1
.7

5
e+

0
9
±

5
.8

0
e+

0
8

2
.0

1
e+

0
9
±

7
.3

8
e+

0
8

2
.2

1
e+

0
9
±

1
.0

5
e+

0
9

F
C
E
C
2
0
1
3
4

6
.9

5
e+

0
4
±

1
.1

6
e+

0
4

6
.7

3
e+

0
4
±

9
.2

4
e+

0
3

6
.7

1
e+

0
4
±

1
.0

6
e+

0
4

6
.6
4
e
+
0
4
±
9
.3
8
e
+
0
3

6
.9

7
e+

0
4
±

1
.2

5
e+

0
4

6
.9

3
e+

0
4
±

1
.0

6
e+

0
4

F
C
E
C
2
0
1
3
5

-1
.0
0
e
+
0
3
±
1
.1
1
e
-0

1
-1

.0
0
e+

0
3
±

1
.3

4
e-

0
1

-1
.0

0
e+

0
3
±

1
.0

6
e-

0
1

-1
.0

0
e+

0
3
±

1
.8

2
e-

0
1

-1
.0

0
e+

0
3
±

1
.5

4
e-

0
1

-1
.0

0
e+

0
3
±

1
.3

0
e-

0
1

F
C
E
C
2
0
1
3
6

-8
.6

4
e+

0
2
±

1
.5

5
e+

0
1

-8
.6

7
e+

0
2
±

1
.3

7
e+

0
1

-8
.6
9
e
+
0
2
±
1
.7
6
e
+
0
1

-8
.6

6
e+

0
2
±

1
.4

6
e+

0
1

-8
.6

8
e+

0
2
±

1
.3

4
e+

0
1

-8
.6

6
e+

0
2
±

1
.6

2
e+

0
1

F
C
E
C
2
0
1
3
7

-6
.9

7
e+

0
2
±

1
.4

3
e+

0
1

-6
.9

5
e+

0
2
±

9
.9

2
e+

0
0

-6
.9

6
e+

0
2
±

1
.3

5
e+

0
1

-6
.9

6
e+

0
2
±

1
.7

1
e+

0
1

-6
.9

3
e+

0
2
±

1
.4

6
e+

0
1

-6
.9
7
e
+
0
2
±
1
.3
3
e
+
0
1

F
C
E
C
2
0
1
3
8

-6
.7

9
e+

0
2
±

4
.8

6
e-

0
2

-6
.7

9
e+

0
2
±

4
.7

9
e-

0
2

-6
.7

9
e+

0
2
±

4
.7

7
e-

0
2

-6
.7

9
e+

0
2
±

4
.6

9
e-

0
2

-6
.7

9
e+

0
2
±

3
.8

8
e-

0
2

-6
.7
9
e
+
0
2
±
4
.5
8
e
-0

2
F
C
E
C
2
0
1
3
9

-5
.6

9
e+

0
2
±

1
.7

6
e+

0
0

-5
.6

9
e+

0
2
±

1
.8

9
e+

0
0

-5
.6

9
e+

0
2
±

1
.8

8
e+

0
0

-5
.6

9
e+

0
2
±

2
.1

8
e+

0
0

-5
.6

9
e+

0
2
±

1
.4

9
e+

0
0

-5
.6
9
e
+
0
2
±
1
.9
2
e
+
0
0

F
C
E
C
2
0
1
3
1
0

-4
.9

8
e+

0
2
±

2
.0

1
e-

0
1

-4
.9

8
e+

0
2
±

2
.2

0
e-

0
1

-4
.9

8
e+

0
2
±

3
.1

9
e-

0
1

-4
.9

8
e+

0
2
±

3
.0

6
e-

0
1

-4
.9
8
e
+
0
2
±
2
.6
7
e
-0

1
-4

.9
8
e+

0
2
±

3
.2

9
e-

0
1

F
C
E
C
2
0
1
3
1
1

-2
.8

1
e+

0
2
±

2
.2

2
e+

0
1

-2
.8
3
e
+
0
2
±
2
.0
4
e
+
0
1

-2
.7

9
e+

0
2
±

1
.9

1
e+

0
1

-2
.6

9
e+

0
2
±

1
.6

9
e+

0
1

-2
.8

2
e+

0
2
±

1
.5

8
e+

0
1

-2
.8

1
e+

0
2
±

1
.7

4
e+

0
1

F
C
E
C
2
0
1
3
1
2

-1
.0

1
e+

0
2
±

2
.4

6
e+

0
1

-1
.1
6
e
+
0
2
±
3
.1
6
e
+
0
1

-1
.0

9
e+

0
2
±

3
.2

8
e+

0
1

-9
.6

6
e+

0
1
±

2
.9

0
e+

0
1

-1
.1

4
e+

0
2
±

3
.1

3
e+

0
1

-1
.0

8
e+

0
2
±

2
.5

9
e+

0
1

F
C
E
C
2
0
1
3
1
3

2
.3
4
e
+
0
1
±
3
.0
1
e
+
0
1

2
.6

6
e+

0
1
±

2
.3

1
e+

0
1

3
.2

5
e+

0
1
±

2
.9

2
e+

0
1

2
.8

9
e+

0
1
±

3
.2

7
e+

0
1

3
.8

5
e+

0
1
±

2
.7

3
e+

0
1

3
.4

9
e+

0
1
±

2
.4

3
e+

0
1

F
C
E
C
2
0
1
3
1
4

2
.8
6
e
+
0
3
±
2
.9
4
e
+
0
2

2
.9

1
e+

0
3
±

2
.9

1
e+

0
2

2
.8

9
e+

0
3
±

2
.9

4
e+

0
2

3
.0

5
e+

0
3
±

3
.6

7
e+

0
2

2
.9

8
e+

0
3
±

3
.0

9
e+

0
2

2
.9

5
e+

0
3
±

3
.4

9
e+

0
2

F
C
E
C
2
0
1
3
1
5

4
.4

6
e+

0
3
±

3
.5

9
e+

0
2

4
.3

7
e+

0
3
±

2
.7

0
e+

0
2

4
.5

4
e+

0
3
±

3
.1

5
e+

0
2

4
.4

6
e+

0
3
±

2
.7

2
e+

0
2

4
.4

2
e+

0
3
±

3
.6

6
e+

0
2

4
.3
2
e
+
0
3
±
3
.2
5
e
+
0
2

F
C
E
C
2
0
1
3
1
6

2
.0

3
e+

0
2
±

3
.5

0
e-

0
1

2
.0
2
e
+
0
2
±
2
.9
8
e
-0

1
2
.0

2
e+

0
2
±

3
.2

2
e-

0
1

2
.0

2
e+

0
2
±

3
.2

3
e-

0
1

2
.0

2
e+

0
2
±

2
.8

5
e-

0
1

2
.0

2
e+

0
2
±

3
.0

8
e-

0
1

F
C
E
C
2
0
1
3
1
7

4
.6

8
e+

0
2
±

1
.6

4
e+

0
1

4
.7

3
e+

0
2
±

1
.8

2
e+

0
1

4
.7

0
e+

0
2
±

1
.8

5
e+

0
1

4
.6
3
e
+
0
2
±
1
.7
9
e
+
0
1

4
.6

6
e+

0
2
±

1
.8

0
e+

0
1

4
.7

2
e+

0
2
±

1
.6

2
e+

0
1

F
C
E
C
2
0
1
3
1
8

6
.1
5
e
+
0
2
±
2
.1
6
e
+
0
1

6
.1

8
e+

0
2
±

2
.2

4
e+

0
1

6
.1

8
e+

0
2
±

2
.0

7
e+

0
1

6
.2

3
e+

0
2
±

2
.5

0
e+

0
1

6
.2

0
e+

0
2
±

2
.3

5
e+

0
1

6
.1

9
e+

0
2
±

2
.2

9
e+

0
1

F
C
E
C
2
0
1
3
1
9

5
.1

2
e+

0
2
±

2
.1

3
e+

0
0

5
.1

2
e+

0
2
±

2
.1

5
e+

0
0

5
.1

2
e+

0
2
±

1
.9

0
e+

0
0

5
.1

2
e+

0
2
±

1
.8

7
e+

0
0

5
.1

2
e+

0
2
±

2
.1

9
e+

0
0

5
.1
2
e
+
0
2
±
1
.8
5
e
+
0
0

F
C
E
C
2
0
1
3
2
0

6
.1

4
e+

0
2
±

3
.4

1
e-

0
1

6
.1
4
e
+
0
2
±
6
.1
1
e
-0

1
6
.1

4
e+

0
2
±

4
.0

3
e-

0
1

6
.1

4
e+

0
2
±

2
.4

4
e-

0
1

6
.1

4
e+

0
2
±

3
.5

7
e-

0
1

6
.1

4
e+

0
2
±

2
.9

0
e-

0
1

F
C
E
C
2
0
1
3
2
1

9
.4

8
e+

0
2
±

2
.8

2
e+

0
1

9
.4

4
e+

0
2
±

3
.0

1
e+

0
1

9
.3
4
e
+
0
2
±
2
.8
3
e
+
0
1

9
.3

7
e+

0
2
±

1
.4

7
e+

0
1

9
.3

8
e+

0
2
±

2
.5

4
e+

0
1

9
.3

6
e+

0
2
±

1
.3

2
e+

0
1

F
C
E
C
2
0
1
3
2
2

4
.4

6
e+

0
3
±

3
.7

0
e+

0
2

4
.4

3
e+

0
3
±

3
.8

7
e+

0
2

4
.5

6
e+

0
3
±

4
.0

4
e+

0
2

4
.3
1
e
+
0
3
±
3
.5
4
e
+
0
2

4
.4

9
e+

0
3
±

3
.4

8
e+

0
2

4
.5

3
e+

0
3
±

4
.6

2
e+

0
2

F
C
E
C
2
0
1
3
2
3

6
.1

1
e+

0
3
±

3
.3

0
e+

0
2

5
.8

9
e+

0
3
±

4
.3

6
e+

0
2

6
.0

0
e+

0
3
±

3
.9

0
e+

0
2

5
.8
4
e
+
0
3
±
4
.9
5
e
+
0
2

6
.1

1
e+

0
3
±

3
.6

1
e+

0
2

5
.9

3
e+

0
3
±

3
.6

8
e+

0
2

F
C
E
C
2
0
1
3
2
4

1
.2

8
e+

0
3
±

8
.9

5
e+

0
0

1
.2
8
e
+
0
3
±
8
.0
1
e
+
0
0

1
.2

8
e+

0
3
±

7
.0

2
e+

0
0

1
.2

8
e+

0
3
±

7
.5

6
e+

0
0

1
.2

8
e+

0
3
±

6
.7

0
e+

0
0

1
.2

8
e+

0
3
±

8
.1

8
e+

0
0

F
C
E
C
2
0
1
3
2
5

1
.4

3
e+

0
3
±

6
.4

4
e+

0
0

1
.4
3
e
+
0
3
±
9
.3
2
e
+
0
0

1
.4

3
e+

0
3
±

7
.4

5
e+

0
0

1
.4

3
e+

0
3
±

8
.6

0
e+

0
0

1
.4

3
e+

0
3
±

7
.4

2
e+

0
0

1
.4

3
e+

0
3
±

8
.5

4
e+

0
0

F
C
E
C
2
0
1
3
2
6

1
.4

0
e+

0
3
±

2
.3

7
e-

0
1

1
.4

0
e+

0
3
±

2
.1

9
e-

0
1

1
.4

0
e+

0
3
±

2
.0

0
e-

0
1

1
.4

0
e+

0
3
±

2
.3

1
e-

0
1

1
.4
0
e
+
0
3
±
1
.5
4
e
-0

1
1
.4

0
e+

0
3
±

2
.0

7
e-

0
1

F
C
E
C
2
0
1
3
2
7

2
.4
7
e
+
0
3
±
5
.0
4
e
+
0
1

2
.4

9
e+

0
3
±

5
.9

3
e+

0
1

2
.5

0
e+

0
3
±

6
.2

0
e+

0
1

2
.4

9
e+

0
3
±

6
.6

2
e+

0
1

2
.4

8
e+

0
3
±

6
.6

6
e+

0
1

2
.4

8
e+

0
3
±

4
.5

8
e+

0
1

F
C
E
C
2
0
1
3
2
8

1
.8

8
e+

0
3
±

8
.7

1
e+

0
1

1
.8

8
e+

0
3
±

6
.0

2
e+

0
1

1
.8

8
e+

0
3
±

5
.9

0
e+

0
1

1
.8
6
e
+
0
3
±
7
.9
9
e
+
0
1

1
.8

8
e+

0
3
±

6
.1

6
e+

0
1

1
.8

8
e+

0
3
±

7
.3

7
e+

0
1



91

T
ab

le
5.

17
:

C
om

p
ar

is
on

of
th

e
S
F

C
S

w
it

h
d
iff

er
en

t
va

lu
es

of
M

0
on

th
e

b
en

ch
m

ar
k

fu
n
ct

io
n
s

fr
om

C
E

C
’2

01
7

F
u

n
ct

io
n

M
0

=
4

M
0

=
5

M
0

=
6

M
0

=
7

M
0

=
8

M
0

=
9

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
7
1

3
.2

6
e+

0
5
±

1
.1

5
e+

0
5

4
.2

6
e+

0
5
±

1
.9

6
e+

0
5

3
.1
5
e
+
0
5
±
1
.0
5
e
+
0
5

3
.1

9
e+

0
5
±

9
.0

5
e+

0
4

4
.1

1
e+

0
5
±

1
.7

8
e+

0
5

3
.7

9
e+

0
5
±

1
.8

7
e+

0
5

F
C
E
C
2
0
1
7
2

9
.0

1
e+

1
6
±

2
.0

4
e+

1
7

2
.8
5
e
+
1
6
±
3
.0
8
e
+
1
6

3
.9

7
e+

1
6
±

5
.4

4
e+

1
6

7
.9

8
e+

1
6
±

1
.1

3
e+

1
7

9
.4

2
e+

1
6
±

2
.0

8
e+

1
7

1
.0

6
e+

1
7
±

1
.8

8
e+

1
7

F
C
E
C
2
0
1
7
3

7
.7

4
e+

0
4
±

1
.1

8
e+

0
4

8
.0

2
e+

0
4
±

1
.2

7
e+

0
4

7
.8

8
e+

0
4
±

1
.4

5
e+

0
4

8
.0

8
e+

0
4
±

1
.2

4
e+

0
4

8
.2

8
e+

0
4
±

1
.2

0
e+

0
4

7
.6
1
e
+
0
4
±
1
.2
0
e
+
0
4

F
C
E
C
2
0
1
7
4

4
.7

7
e+

0
2
±

1
.2

2
e+

0
1

4
.7

5
e+

0
2
±

1
.9

1
e+

0
1

4
.7

7
e+

0
2
±

2
.0

1
e+

0
1

4
.7

5
e+

0
2
±

1
.5

5
e+

0
1

4
.7

9
e+

0
2
±

1
.7

1
e+

0
1

4
.7
1
e
+
0
2
±
1
.7
2
e
+
0
1

F
C
E
C
2
0
1
7
5

6
.4

5
e+

0
2
±

2
.0

1
e+

0
1

6
.3
7
e
+
0
2
±
2
.4
3
e
+
0
1

6
.4

0
e+

0
2
±

2
.4

3
e+

0
1

6
.5

0
e+

0
2
±

2
.6

7
e+

0
1

6
.5

1
e+

0
2
±

2
.1

1
e+

0
1

6
.3

8
e+

0
2
±

2
.4

0
e+

0
1

F
C
E
C
2
0
1
7
6

6
.4
3
e
+
0
2
±
6
.8
0
e
+
0
0

6
.4

5
e+

0
2
±

7
.2

6
e+

0
0

6
.4

4
e+

0
2
±

6
.5

3
e+

0
0

6
.4

4
e+

0
2
±

6
.1

1
e+

0
0

6
.4

4
e+

0
2
±

4
.3

9
e+

0
0

6
.4

5
e+

0
2
±

6
.0

0
e+

0
0

F
C
E
C
2
0
1
7
7

8
.7

0
e+

0
2
±

2
.4

3
e+

0
1

8
.6

9
e+

0
2
±

2
.5

7
e+

0
1

8
.6

8
e+

0
2
±

2
.4

3
e+

0
1

8
.6
3
e
+
0
2
±
2
.5
6
e
+
0
1

8
.6

8
e+

0
2
±

1
.9

5
e+

0
1

8
.6

9
e+

0
2
±

2
.3

9
e+

0
1

F
C
E
C
2
0
1
7
8

9
.2

7
e+

0
2
±

1
.6

4
e+

0
1

9
.3

1
e+

0
2
±

2
.6

6
e+

0
1

9
.2

9
e+

0
2
±

1
.6

9
e+

0
1

9
.2

3
e+

0
2
±

2
.0

8
e+

0
1

9
.2
2
e
+
0
2
±
2
.3
1
e
+
0
1

9
.3

2
e+

0
2
±

2
.3

2
e+

0
1

F
C
E
C
2
0
1
7
9

4
.5
0
e
+
0
3
±
9
.4
7
e
+
0
2

4
.5

0
e+

0
3
±

8
.5

5
e+

0
2

4
.5

8
e+

0
3
±

8
.6

1
e+

0
2

4
.7

8
e+

0
3
±

1
.1

2
e+

0
3

4
.6

9
e+

0
3
±

1
.0

3
e+

0
3

4
.7

3
e+

0
3
±

9
.1

2
e+

0
2

F
C
E
C
2
0
1
7
1
0

4
.5

5
e+

0
3
±

3
.2

3
e+

0
2

4
.5

4
e+

0
3
±

3
.4

9
e+

0
2

4
.5

2
e+

0
3
±

2
.9

7
e+

0
2

4
.4
6
e
+
0
3
±
3
.0
9
e
+
0
2

4
.6

4
e+

0
3
±

2
.5

9
e+

0
2

4
.5

5
e+

0
3
±

2
.9

0
e+

0
2

F
C
E
C
2
0
1
7
1
1

1
.2

2
e+

0
3
±

3
.0

9
e+

0
1

1
.2

2
e+

0
3
±

2
.2

5
e+

0
1

1
.2

2
e+

0
3
±

1
.9

4
e+

0
1

1
.2
2
e
+
0
3
±
1
.9
6
e
+
0
1

1
.2

2
e+

0
3
±

1
.9

6
e+

0
1

1
.2

2
e+

0
3
±

2
.4

3
e+

0
1

F
C
E
C
2
0
1
7
1
2

3
.2

9
e+

0
5
±

1
.6

0
e+

0
5

3
.3

9
e+

0
5
±

1
.3

3
e+

0
5

3
.7

1
e+

0
5
±

1
.6

7
e+

0
5

3
.2
6
e
+
0
5
±
1
.3
6
e
+
0
5

3
.5

7
e+

0
5
±

1
.4

7
e+

0
5

3
.5

4
e+

0
5
±

1
.3

8
e+

0
5

F
C
E
C
2
0
1
7
1
3

1
.2

0
e+

0
4
±

2
.5

4
e+

0
3

1
.1

8
e+

0
4
±

2
.3

8
e+

0
3

1
.1

9
e+

0
4
±

2
.7

2
e+

0
3

1
.2

1
e+

0
4
±

3
.2

3
e+

0
3

1
.1

8
e+

0
4
±

3
.5

0
e+

0
3

1
.1
7
e
+
0
4
±
3
.2
5
e
+
0
3

F
C
E
C
2
0
1
7
1
4

1
.6
2
e
+
0
3
±
3
.9
7
e
+
0
1

1
.6

3
e+

0
3
±

3
.9

7
e+

0
1

1
.6

4
e+

0
3
±

5
.0

4
e+

0
1

1
.6

4
e+

0
3
±

4
.1

6
e+

0
1

1
.6

2
e+

0
3
±

3
.5

6
e+

0
1

1
.6

2
e+

0
3
±

3
.0

1
e+

0
1

F
C
E
C
2
0
1
7
1
5

2
.5
2
e
+
0
3
±
3
.1
7
e
+
0
2

2
.5

5
e+

0
3
±

2
.7

7
e+

0
2

2
.6

0
e+

0
3
±

3
.4

6
e+

0
2

2
.5

5
e+

0
3
±

3
.4

0
e+

0
2

2
.5

4
e+

0
3
±

2
.6

9
e+

0
2

2
.5

5
e+

0
3
±

3
.8

9
e+

0
2

F
C
E
C
2
0
1
7
1
6

2
.6

0
e+

0
3
±

1
.4

1
e+

0
2

2
.6

6
e+

0
3
±

1
.9

2
e+

0
2

2
.6

0
e+

0
3
±

1
.5

4
e+

0
2

2
.6

3
e+

0
3
±

1
.4

5
e+

0
2

2
.6

7
e+

0
3
±

1
.6

1
e+

0
2

2
.5
7
e
+
0
3
±
1
.1
5
e
+
0
2

F
C
E
C
2
0
1
7
1
7

2
.0

0
e+

0
3
±

9
.3

4
e+

0
1

1
.9
9
e
+
0
3
±
9
.9
3
e
+
0
1

2
.0

0
e+

0
3
±

1
.1

0
e+

0
2

1
.9

9
e+

0
3
±

1
.1

0
e+

0
2

2
.0

1
e+

0
3
±

9
.0

8
e+

0
1

2
.0

1
e+

0
3
±

1
.1

8
e+

0
2

F
C
E
C
2
0
1
7
1
8

7
.0

6
e+

0
4
±

2
.3

8
e+

0
4

6
.3

8
e+

0
4
±

2
.4

1
e+

0
4

6
.4

8
e+

0
4
±

1
.6

7
e+

0
4

7
.0

5
e+

0
4
±

2
.5

5
e+

0
4

6
.0
4
e
+
0
4
±
2
.7
8
e
+
0
4

6
.5

1
e+

0
4
±

2
.4

4
e+

0
4

F
C
E
C
2
0
1
7
1
9

2
.1

1
e+

0
3
±

4
.6

5
e+

0
1

2
.1

3
e+

0
3
±

9
.9

9
e+

0
1

2
.1

0
e+

0
3
±

5
.4

4
e+

0
1

2
.1

2
e+

0
3
±

6
.3

4
e+

0
1

2
.1

1
e+

0
3
±

5
.3

4
e+

0
1

2
.0
9
e
+
0
3
±
4
.3
2
e
+
0
1

F
C
E
C
2
0
1
7
2
0

2
.3

9
e+

0
3
±

7
.1

8
e+

0
1

2
.3

7
e+

0
3
±

8
.0

0
e+

0
1

2
.3
6
e
+
0
3
±
9
.6
7
e
+
0
1

2
.4

3
e+

0
3
±

1
.1

9
e+

0
2

2
.3

8
e+

0
3
±

9
.8

2
e+

0
1

2
.4

1
e+

0
3
±

8
.0

9
e+

0
1

F
C
E
C
2
0
1
7
2
1

2
.4
2
e
+
0
3
±
4
.9
3
e
+
0
1

2
.4

3
e+

0
3
±

2
.2

9
e+

0
1

2
.4

4
e+

0
3
±

2
.3

3
e+

0
1

2
.4

4
e+

0
3
±

2
.9

7
e+

0
1

2
.4

4
e+

0
3
±

1
.9

8
e+

0
1

2
.4

4
e+

0
3
±

3
.0

9
e+

0
1

F
C
E
C
2
0
1
7
2
2

2
.3

6
e+

0
3
±

3
.7

2
e+

0
1

2
.3
6
e
+
0
3
±
2
.8
7
e
+
0
1

2
.3

7
e+

0
3
±

5
.2

4
e+

0
1

2
.4

9
e+

0
3
±

7
.4

4
e+

0
2

2
.3

6
e+

0
3
±

3
.9

3
e+

0
1

2
.3

9
e+

0
3
±

1
.4

3
e+

0
2

F
C
E
C
2
0
1
7
2
3

2
.8

6
e+

0
3
±

4
.2

1
e+

0
1

2
.8

6
e+

0
3
±

3
.1

7
e+

0
1

2
.8

6
e+

0
3
±

3
.1

6
e+

0
1

2
.8

6
e+

0
3
±

3
.6

6
e+

0
1

2
.8
5
e
+
0
3
±
4
.7
7
e
+
0
1

2
.8

6
e+

0
3
±

3
.0

9
e+

0
1

F
C
E
C
2
0
1
7
2
4

2
.9
8
e
+
0
3
±
2
.5
4
e
+
0
1

2
.9

9
e+

0
3
±

3
.3

7
e+

0
1

3
.0

0
e+

0
3
±

3
.1

7
e+

0
1

2
.9

9
e+

0
3
±

2
.6

9
e+

0
1

2
.9

8
e+

0
3
±

3
.5

8
e+

0
1

3
.0

0
e+

0
3
±

3
.3

1
e+

0
1

F
C
E
C
2
0
1
7
2
5

2
.8

9
e+

0
3
±

1
.0

4
e+

0
0

2
.8

9
e+

0
3
±

7
.4

2
e-

0
1

2
.8

9
e+

0
3
±

1
.3

8
e+

0
0

2
.8
9
e
+
0
3
±
9
.0
9
e
-0

1
2
.8

9
e+

0
3
±

1
.1

7
e+

0
0

2
.8

9
e+

0
3
±

1
.3

1
e+

0
0

F
C
E
C
2
0
1
7
2
6

3
.5

1
e+

0
3
±

6
.4

6
e+

0
2

3
.4

4
e+

0
3
±

4
.5

9
e+

0
2

3
.6

0
e+

0
3
±

8
.6

8
e+

0
2

3
.5

4
e+

0
3
±

7
.4

7
e+

0
2

3
.6

8
e+

0
3
±

8
.3

0
e+

0
2

3
.4
4
e
+
0
3
±
3
.4
4
e
+
0
2

F
C
E
C
2
0
1
7
2
7

3
.3

2
e+

0
3
±

2
.4

6
e+

0
1

3
.3
1
e
+
0
3
±
2
.3
1
e
+
0
1

3
.3

1
e+

0
3
±

2
.1

9
e+

0
1

3
.3

2
e+

0
3
±

2
.4

7
e+

0
1

3
.3

1
e+

0
3
±

2
.1

6
e+

0
1

3
.3

2
e+

0
3
±

1
.7

6
e+

0
1

F
C
E
C
2
0
1
7
2
8

3
.2

2
e+

0
3
±

7
.6

1
e+

0
0

3
.2

2
e+

0
3
±

1
.1

4
e+

0
1

3
.2

2
e+

0
3
±

7
.9

4
e+

0
0

3
.2

2
e+

0
3
±

8
.9

2
e+

0
0

3
.2
2
e
+
0
3
±
7
.1
1
e
+
0
0

3
.2

2
e+

0
3
±

1
.2

1
e+

0
1

F
C
E
C
2
0
1
7
2
9

3
.9
6
e
+
0
3
±
1
.3
8
e
+
0
2

4
.0

2
e+

0
3
±

1
.4

2
e+

0
2

4
.0

6
e+

0
3
±

1
.3

0
e+

0
2

3
.9

7
e+

0
3
±

1
.3

7
e+

0
2

3
.9

9
e+

0
3
±

1
.1

8
e+

0
2

3
.9

7
e+

0
3
±

1
.1

8
e+

0
2

F
C
E
C
2
0
1
7
3
0

6
.7

1
e+

0
4
±

2
.1

2
e+

0
4

5
.9
8
e
+
0
4
±
2
.2
6
e
+
0
4

6
.7

9
e+

0
4
±

1
.9

4
e+

0
4

6
.1

2
e+

0
4
±

1
.8

2
e+

0
4

6
.7

1
e+

0
4
±

2
.1

8
e+

0
4

6
.8

7
e+

0
4
±

3
.5

4
e+

0
4



92

T
ab

le
5.

18
:

C
om

p
ar

is
on

w
it

h
th

e
C

S
s

on
th

e
b

en
ch

m
ar

k
fu

n
ct

io
n
s

fr
om

C
E

C
’2

01
1

F
u

n
ct

io
n

C
S

P
S

O
C

S
M

C
S

S
F

C
S

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
1
1

9
.6

8
e+

0
0
±

4
.0

5
e+

0
0

2
.3

2
e+

0
1
±

2
.3

8
e+

0
0

2
.1

8
e+

0
1
±

4
.7

4
e+

0
0

6
.4
4
e
+
0
0
±
5
.5
4
e
+
0
0

F
C
E
C
2
0
1
1
2

-8
.9

3
e+

0
0
±

8
.2

1
e-

0
1

-4
.3

8
e+

0
0
±

9
.0

3
e-

0
1

-1
.5
3
e
+
0
1
±
3
.2
9
e
+
0
0

-1
.0

7
e+

0
1
±

1
.4

5
e+

0
0

F
C
E
C
2
0
1
1
3

1
.1

5
e-

0
5
±

1
.4

4
e-

1
9

1
.1

5
e-

0
5
±

4
.3

5
e-

1
4

1
.1

5
e-

0
5
±

5
.8

5
e-

1
9

1
.1
5
e
-0

5
±
1
.6
3
e
-1

9
F
C
E
C
2
0
1
1
4

1
.4

0
e+

0
1
±

3
.0

3
e-

0
1

1
.4

6
e+

0
1
±

7
.2

8
e-

0
1

1
.9

2
e+

0
1
±

2
.5

9
e+

0
0

1
.3
9
e
+
0
1
±
2
.0
8
e
-0

1
F
C
E
C
2
0
1
1
5

-3
.0

8
e+

0
1
±

1
.7

4
e+

0
0

-1
.8

9
e+

0
1
±

1
.9

8
e+

0
0

-3
.0

4
e+

0
1
±

3
.2

7
e+

0
0

-3
.3
0
e
+
0
1
±
1
.5
6
e
+
0
0

F
C
E
C
2
0
1
1
6

-2
.4

8
e+

0
1
±

1
.9

0
e+

0
0

-1
.1

1
e+

0
1
±

1
.7

7
e+

0
0

-2
.2

9
e+

0
1
±

3
.2

0
e+

0
0

-2
.5
4
e
+
0
1
±
2
.1
5
e
+
0
0

F
C
E
C
2
0
1
1
7

1
.2

2
e+

0
0
±

6
.6

6
e-

0
2

1
.9

1
e+

0
0
±

1
.4

2
e-

0
1

1
.3

8
e+

0
0
±

1
.6

2
e-

0
1

1
.1
2
e
+
0
0
±
9
.9
9
e
-0

2
F
C
E
C
2
0
1
1
8

2
.2

0
e+

0
2
±

0
.0

0
e+

0
0

2
.4

2
e+

0
2
±

1
.5

6
e+

0
1

2
.4

2
e+

0
2
±

4
.5

5
e+

0
1

2
.2
0
e
+
0
2
±
0
.0
0
e
+
0
0

F
C
E
C
2
0
1
1
9

7
.2

0
e+

0
5
±

4
.1

1
e+

0
4

2
.6

4
e+

0
6
±

1
.0

6
e+

0
5

2
.8
5
e
+
0
5
±
4
.2
5
e
+
0
4

6
.6

9
e+

0
5
±

4
.3

7
e+

0
4

F
C
E
C
2
0
1
1
1
0

-1
.9

0
e+

0
1
±

1
.1

8
e+

0
0

-8
.4

6
e+

0
0
±

1
.1

5
e+

0
0

-1
.4

4
e+

0
1
±

2
.7

4
e+

0
0

-2
.0
1
e
+
0
1
±
1
.2
5
e
+
0
0

F
C
E
C
2
0
1
1
1
1

5
.8

7
e+

0
5
±

1
.0

8
e+

0
5

2
.6

5
e+

0
6
±

6
.5

4
e+

0
5

7
.8
4
e
+
0
4
±
1
.4
9
e
+
0
4

4
.6

5
e+

0
5
±

1
.0

5
e+

0
5

F
C
E
C
2
0
1
1
1
2

1
.6

1
e+

0
7
±

6
.5

7
e+

0
5

4
.9

7
e+

0
7
±

7
.9

2
e+

0
5

2
.5

6
e+

0
7
±

3
.7

4
e+

0
5

1
.5
3
e
+
0
7
±
4
.8
5
e
+
0
5

F
C
E
C
2
0
1
1
1
3

1
.5

4
e+

0
4
±

1
.6

3
e+

0
0

1
.6

0
e+

0
4
±

7
.1

0
e+

0
2

1
.5

5
e+

0
4
±

2
.7

8
e+

0
1

1
.5
4
e
+
0
4
±
1
.3
9
e
+
0
0

F
C
E
C
2
0
1
1
1
4

1
.8
9
e
+
0
4
±
8
.1
8
e
+
0
1

2
.0

2
e+

0
4
±

1
.3

2
e+

0
3

1
.9

2
e+

0
4
±

2
.1

6
e+

0
2

1
.9

0
e+

0
4
±

9
.8

2
e+

0
1

F
C
E
C
2
0
1
1
1
5

3
.3
0
e
+
0
4
±
4
.5
5
e
+
0
1

2
.2

5
e+

0
5
±

5
.9

6
e+

0
4

3
.3

1
e+

0
4
±

7
.0

1
e+

0
1

3
.3

0
e+

0
4
±

4
.2

5
e+

0
1

F
C
E
C
2
0
1
1
1
6

2
.1

4
e+

0
5
±

5
.5

4
e+

0
4

3
.5

4
e+

0
6
±

7
.1

1
e+

0
6

1
.4
4
e
+
0
5
±
5
.1
6
e
+
0
3

2
.1

2
e+

0
5
±

4
.5

7
e+

0
4

F
C
E
C
2
0
1
1
1
7

5
.9

1
e+

0
6
±

1
.0

1
e+

0
7

8
.5

2
e+

0
9
±

1
.3

7
e+

0
9

2
.7

5
e+

0
6
±

5
.4

4
e+

0
5

2
.5
2
e
+
0
6
±
8
.4
5
e
+
0
5

F
C
E
C
2
0
1
1
1
8

1
.5

2
e+

0
6
±

3
.1

0
e+

0
5

8
.6

5
e+

0
7
±

1
.2

1
e+

0
7

1
.2
5
e
+
0
6
±
4
.7
3
e
+
0
5

1
.4

1
e+

0
6
±

1
.1

1
e+

0
5

F
C
E
C
2
0
1
1
1
9

2
.2

7
e+

0
6
±

3
.2

9
e+

0
5

8
.3

8
e+

0
7
±

1
.4

6
e+

0
7

1
.9
4
e
+
0
6
±
3
.1
7
e
+
0
5

2
.1

4
e+

0
6
±

1
.8

9
e+

0
5

F
C
E
C
2
0
1
1
2
0

1
.4

9
e+

0
6
±

1
.5

6
e+

0
5

8
.8

3
e+

0
7
±

1
.1

2
e+

0
7

1
.1
8
e
+
0
6
±
3
.3
6
e
+
0
5

1
.3

8
e+

0
6
±

1
.2

5
e+

0
5

F
C
E
C
2
0
1
1
2
1

2
.3

3
e+

0
1
±

2
.3

1
e+

0
0

4
.8

6
e+

0
1
±

5
.9

6
e+

0
0

2
.1

7
e+

0
1
±

3
.5

8
e+

0
0

1
.9
6
e
+
0
1
±
2
.4
1
e
+
0
0

w
/
t/
l

1
1
/
1
0
/
0

2
1
/
0
/
0

1
4
/
0
/
7

-



93

T
ab

le
5.

19
:

C
om

p
ar

is
on

of
S
F

C
S

w
it

h
th

e
fi
ve

m
et

ah
eu

ri
st

ic
al

go
ri

th
m

s
on

th
e

b
en

ch
m

ar
k

fu
n
ct

io
n
s

fr
om

C
E

C
’2

01
1

F
u

n
ct

io
n

D
E

F
P

A
G

A
G

S
A

S
M

S
S

F
C

S
A

v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
1
1

1
.6
6
e
+
0
0
±
4
.3
9
e
+
0
0

1
.5

5
e+

0
1
±

2
.7

2
e+

0
0

1
.9

7
e+

0
1
±

3
.4

8
e+

0
0

2
.5

0
e+

0
1
±

1
.6

2
e+

0
0

2
.2

7
e+

0
1
±

4
.5

7
e+

0
0

6
.4

4
e+

0
0
±

5
.5

4
e+

0
0

F
C
E
C
2
0
1
1
2

-4
.1

3
e+

0
0
±

5
.2

8
e-

0
1

-8
.0

9
e+

0
0
±

1
.0

5
e+

0
0

-1
.0

0
e+

0
1
±

2
.0

9
e+

0
0

-1
.4

4
e+

0
1
±

3
.7

6
e+

0
0

-2
.4
8
e
+
0
1
±
1
.7
4
e
+
0
0

-1
.0

7
e+

0
1
±

1
.4

5
e+

0
0

F
C
E
C
2
0
1
1
3

1
.1

5
e-

0
5
±

2
.4

0
e-

1
9

1
.1

5
e-

0
5
±

1
.3

7
e-

1
9

1
.1

5
e-

0
5
±

2
.2

4
e-

1
2

1
.1

5
e-

0
5
±

2
.8

2
e-

1
9

1
.1

5
e-

0
5
±

4
.1

8
e-

1
5

1
.1
5
e
-0

5
±
1
.6
3
e
-1

9
F
C
E
C
2
0
1
1
4

1
.8

5
e+

0
1
±

3
.2

4
e+

0
0

1
.3
8
e
+
0
1
±
1
.3
9
e
-0

2
1
.6

1
e+

0
1
±

2
.1

4
e+

0
0

1
.5

1
e+

0
1
±

1
.2

5
e+

0
0

1
.3

9
e+

0
1
±

9
.6

6
e-

0
2

1
.3

9
e+

0
1
±

2
.0

8
e-

0
1

F
C
E
C
2
0
1
1
5

-1
.8

2
e+

0
1
±

1
.2

2
e+

0
0

-2
.9

0
e+

0
1
±

1
.9

5
e+

0
0

-2
.7

4
e+

0
1
±

2
.6

9
e+

0
0

-2
.8

8
e+

0
1
±

3
.7

9
e+

0
0

-3
.0

1
e+

0
1
±

2
.9

5
e+

0
0

-3
.3
0
e
+
0
1
±
1
.5
6
e
+
0
0

F
C
E
C
2
0
1
1
6

-1
.3

2
e+

0
1
±

1
.9

1
e+

0
0

-2
.3

1
e+

0
1
±

8
.4

3
e-

0
1

-2
.0

8
e+

0
1
±

3
.0

3
e+

0
0

-1
.8

2
e+

0
1
±

3
.0

4
e+

0
0

-2
.1

2
e+

0
1
±

3
.3

5
e+

0
0

-2
.5
4
e
+
0
1
±
2
.1
5
e
+
0
0

F
C
E
C
2
0
1
1
7

1
.7

9
e+

0
0
±

1
.2

1
e-

0
1

1
.3

3
e+

0
0
±

5
.3

2
e-

0
2

1
.5

8
e+

0
0
±

1
.9

4
e-

0
1

9
.6
6
e
-0

1
±
1
.8
3
e
-0

1
1
.4

0
e+

0
0
±

2
.1

8
e-

0
1

1
.1

2
e+

0
0
±

9
.9

9
e-

0
2

F
C
E
C
2
0
1
1
8

2
.2

0
e+

0
2
±

0
.0

0
e+

0
0

2
.2

0
e+

0
2
±

0
.0

0
e+

0
0

2
.2

7
e+

0
2
±

2
.3

4
e+

0
1

2
.6

4
e+

0
2
±

3
.5

2
e+

0
1

2
.8

7
e+

0
3
±

1
.2

8
e+

0
3

2
.2
0
e
+
0
2
±
0
.0
0
e
+
0
0

F
C
E
C
2
0
1
1
9

2
.5

1
e+

0
6
±

8
.8

6
e+

0
4

1
.8

7
e+

0
6
±

4
.6

8
e+

0
4

1
.0

5
e+

0
6
±

8
.1

5
e+

0
4

9
.8

8
e+

0
5
±

1
.1

1
e+

0
5

2
.3

5
e+

0
6
±

1
.2

4
e+

0
5

6
.6
9
e
+
0
5
±
4
.3
7
e
+
0
4

F
C
E
C
2
0
1
1
1
0

-2
.1
7
e
+
0
1
±
1
.0
8
e
-0

1
-1

.7
9
e+

0
1
±

1
.8

3
e+

0
0

-1
.1

6
e+

0
1
±

2
.5

9
e+

0
0

-1
.4

0
e+

0
1
±

2
.7

5
e-

0
1

-1
.0

5
e+

0
1
±

3
.1

3
e-

0
1

-2
.0

1
e+

0
1
±

1
.2

5
e+

0
0

F
C
E
C
2
0
1
1
1
1

2
.0

9
e+

0
8
±

1
.3

5
e+

0
7

1
.3

8
e+

0
6
±

1
.3

8
e+

0
5

4
.7

2
e+

0
7
±

1
.0

8
e+

0
7

7
.6

3
e+

0
5
±

1
.2

0
e+

0
5

1
.0

0
e+

0
8
±

0
.0

0
e+

0
0

4
.6
5
e
+
0
5
±
1
.0
5
e
+
0
5

F
C
E
C
2
0
1
1
1
2

5
.2

9
e+

0
7
±

7
.9

6
e+

0
5

3
.5

5
e+

0
7
±

7
.9

2
e+

0
5

3
.7

2
e+

0
7
±

1
.0

1
e+

0
6

4
.4

2
e+

0
7
±

5
.7

2
e+

0
5

5
.4

2
e+

0
7
±

8
.0

6
e+

0
5

1
.5
3
e
+
0
7
±
4
.8
5
e
+
0
5

F
C
E
C
2
0
1
1
1
3

1
.5
4
e
+
0
4
±
1
.8
3
e
-0

5
1
.5

4
e+

0
4
±

1
.3

6
e+

0
0

1
.5

6
e+

0
4
±

8
.5

8
e+

0
1

1
.3

8
e+

0
5
±

6
.2

6
e+

0
4

1
.6

0
e+

0
4
±

5
.6

1
e+

0
2

1
.5

4
e+

0
4
±

1
.3

9
e+

0
0

F
C
E
C
2
0
1
1
1
4

1
.8
5
e
+
0
4
±
1
.2
8
e
+
0
2

1
.9

0
e+

0
4
±

1
.5

0
e+

0
2

2
.2

1
e+

0
4
±

2
.4

1
e+

0
3

1
.9

2
e+

0
4
±

1
.4

3
e+

0
2

2
.9

0
e+

0
5
±

2
.3

2
e+

0
5

1
.9

0
e+

0
4
±

9
.8

2
e+

0
1

F
C
E
C
2
0
1
1
1
5

3
.2
9
e
+
0
4
±
4
.2
3
e
+
0
1

3
.3

0
e+

0
4
±

4
.6

6
e+

0
1

3
.3

6
e+

0
4
±

1
.5

8
e+

0
3

1
.5

1
e+

0
5
±

4
.6

6
e+

0
4

2
.1

2
e+

0
5
±

5
.8

9
e+

0
4

3
.3

0
e+

0
4
±

4
.2

5
e+

0
1

F
C
E
C
2
0
1
1
1
6

1
.8

3
e+

0
6
±

1
.3

8
e+

0
6

1
.4
2
e
+
0
5
±
5
.5
4
e
+
0
3

1
.5

8
e+

0
5
±

1
.1

6
e+

0
4

1
.7

6
e+

0
5
±

3
.4

1
e+

0
4

9
.1

7
e+

0
6
±

4
.9

5
e+

0
6

2
.1

2
e+

0
5
±

4
.5

7
e+

0
4

F
C
E
C
2
0
1
1
1
7

6
.0

0
e+

0
9
±

9
.9

9
e+

0
8

7
.0

2
e+

0
6
±

2
.3

1
e+

0
7

5
.1

9
e+

0
8
±

3
.3

3
e+

0
8

1
.3

3
e+

0
9
±

7
.6

0
e+

0
8

1
.0

0
e+

0
8
±

0
.0

0
e+

0
0

2
.5
2
e
+
0
6
±
8
.4
5
e
+
0
5

F
C
E
C
2
0
1
1
1
8

8
.2

7
e+

0
7
±

6
.7

3
e+

0
6

1
.6

3
e+

0
7
±

5
.4

5
e+

0
6

1
.5

4
e+

0
7
±

5
.5

0
e+

0
6

1
.8

4
e+

0
6
±

1
.4

3
e+

0
6

9
.4

5
e+

0
7
±

5
.5

2
e+

0
6

1
.4
1
e
+
0
6
±
1
.1
1
e
+
0
5

F
C
E
C
2
0
1
1
1
9

8
.7

3
e+

0
7
±

5
.9

6
e+

0
6

1
.7

2
e+

0
7
±

6
.0

6
e+

0
6

1
.5

9
e+

0
7
±

5
.1

8
e+

0
6

3
.7

1
e+

0
6
±

2
.4

2
e+

0
6

9
.5

6
e+

0
7
±

6
.3

4
e+

0
6

2
.1
4
e
+
0
6
±
1
.8
9
e
+
0
5

F
C
E
C
2
0
1
1
2
0

8
.3

8
e+

0
7
±

6
.6

2
e+

0
6

1
.4

8
e+

0
7
±

5
.2

7
e+

0
6

1
.8

2
e+

0
7
±

4
.5

4
e+

0
6

2
.2

9
e+

0
6
±

1
.7

5
e+

0
6

9
.5

5
e+

0
7
±

7
.0

9
e+

0
6

1
.3
8
e
+
0
6
±
1
.2
5
e
+
0
5

F
C
E
C
2
0
1
1
2
1

4
.1

3
e+

0
1
±

5
.6

2
e+

0
0

2
.6

9
e+

0
1
±

2
.6

4
e+

0
0

3
.4

5
e+

0
1
±

8
.4

1
e+

0
0

4
.8

0
e+

0
1
±

5
.5

9
e+

0
0

4
.4

2
e+

0
1
±

7
.0

7
e+

0
0

1
.9
6
e
+
0
1
±
2
.4
1
e
+
0
0

w
/
t/
l

1
5
/
1
/
5

1
5
/
5
/
1

1
9
/
1
/
1

1
5
/
2
/
4

2
0
/
0
/
1

-



94

T
ab

le
5.

20
:

C
om

p
ar

is
on

of
S
F

C
S

w
it

h
th

e
S
F

IP
S
O

on
C

E
C

’2
01

3

F
u

n
ct

io
n

D
=

1
0

D
=

3
0

D
=

5
0

S
F

IP
S

O
S

F
C

S
S

F
IP

S
O

S
F

C
S

S
F

IP
S

O
S

F
C

S
A

v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
3
1

-1
.3

9
e+

0
3
±

9
.5

1
e+

0
0

-1
.4
0
e
+
0
3
±
1
.0
3
e
-1

3
1
.7

9
e+

0
3
±

9
.8

9
e+

0
2

-1
.4
0
e
+
0
3
±
5
.9
5
e
-0

3
8
.8

8
e+

0
3
±

2
.1

0
e+

0
3

-1
.4
0
e
+
0
3
±
1
.5
6
e
+
0
0

F
C
E
C
2
0
1
3
2

2
.9

5
e+

0
5
±

2
.6

5
e+

0
5

3
.8
1
e
+
0
3
±
2
.9
3
e
+
0
3

4
.4

9
e+

0
7
±

1
.4

3
e+

0
7

8
.8
7
e
+
0
6
±
2
.3
7
e
+
0
6

8
.5

3
e+

0
7
±

1
.8

9
e+

0
7

2
.7
9
e
+
0
7
±
5
.1
1
e
+
0
6

F
C
E
C
2
0
1
3
3

3
.2

9
e+

0
8
±

1
.9

0
e+

0
8

7
.4
9
e
+
0
4
±
1
.0
0
e
+
0
5

3
.2

1
e+

1
0
±

8
.5

5
e+

0
9

1
.4
7
e
+
0
9
±
6
.2
0
e
+
0
8

4
.1

5
e+

1
0
±

9
.7

8
e+

0
9

1
.2
7
e
+
1
0
±
3
.9
2
e
+
0
9

F
C
E
C
2
0
1
3
4

-4
.4
2
e
+
0
2
±
5
.4
0
e
+
0
2

-3
.1

8
e+

0
2
±

2
.9

3
e+

0
2

2
.5
8
e
+
0
4
±
5
.5
6
e
+
0
3

6
.3

8
e+

0
4
±

8
.1

5
e+

0
3

4
.7
0
e
+
0
4
±
7
.0
9
e
+
0
3

1
.1

3
e+

0
5
±

1
.2

3
e+

0
4

F
C
E
C
2
0
1
3
5

-9
.9

3
e+

0
2
±

6
.7

6
e+

0
0

-1
.0
0
e
+
0
3
±
3
.9
9
e
-0

9
-3

.8
8
e+

0
1
±

1
.5

0
e+

0
2

-1
.0
0
e
+
0
3
±
3
.2
9
e
-0

2
1
.6

2
e+

0
2
±

1
.9

9
e+

0
2

-9
.9
3
e
+
0
2
±
1
.7
8
e
+
0
0

F
C
E
C
2
0
1
3
6

-8
.5

4
e+

0
2
±

1
.4

0
e+

0
1

-9
.0
0
e
+
0
2
±
7
.6
3
e
-0

2
-3

.6
1
e+

0
2
±

1
.3

0
e+

0
2

-8
.6
7
e
+
0
2
±
1
.4
7
e
+
0
1

-3
.4

6
e+

0
2
±

9
.7

2
e+

0
1

-8
.5
0
e
+
0
2
±
2
.5
3
e
+
0
0

F
C
E
C
2
0
1
3
7

-7
.5

7
e+

0
2
±

1
.0

7
e+

0
1

-7
.7
7
e
+
0
2
±
5
.8
2
e
+
0
0

-6
.3

7
e+

0
2
±

2
.3

0
e+

0
1

-7
.0
0
e
+
0
2
±
1
.3
3
e
+
0
1

-6
.7

2
e+

0
2
±

1
.3

7
e+

0
1

-6
.7
4
e
+
0
2
±
1
.3
2
e
+
0
1

F
C
E
C
2
0
1
3
8

-6
.8

0
e+

0
2
±

6
.1

7
e-

0
2

-6
.8
0
e
+
0
2
±
7
.7
6
e
-0

2
-6

.7
9
e+

0
2
±

4
.8

9
e-

0
2

-6
.7
9
e
+
0
2
±
4
.1
0
e
-0

2
-6

.7
9
e
+
0
2
±
3
.7
0
e
-0

2
-6

.7
9
e+

0
2
±

3
.7

4
e-

0
2

F
C
E
C
2
0
1
3
9

-5
.9

5
e+

0
2
±

1
.0

0
e+

0
0

-5
.9
5
e
+
0
2
±
6
.1
8
e
-0

1
-5

.6
0
e+

0
2
±

2
.3

0
e+

0
0

-5
.6
9
e
+
0
2
±
1
.9
2
e
+
0
0

-5
.3

1
e+

0
2
±

4
.0

1
e+

0
0

-5
.4
0
e
+
0
2
±
2
.1
5
e
+
0
0

F
C
E
C
2
0
1
3
1
0

-4
.9

8
e+

0
2
±

1
.8

3
e+

0
0

-5
.0
0
e
+
0
2
±
2
.3
6
e
-0

2
4
.2

2
e+

0
1
±

1
.5

2
e+

0
2

-4
.9
9
e
+
0
2
±
2
.2
4
e
-0

1
9
.7

7
e+

0
2
±

2
.9

0
e+

0
2

-4
.6
6
e
+
0
2
±
1
.0
7
e
+
0
1

F
C
E
C
2
0
1
3
1
1

-3
.8

4
e+

0
2
±

6
.9

2
e+

0
0

-3
.9
4
e
+
0
2
±
2
.1
8
e
+
0
0

-1
.6

8
e+

0
2
±

3
.2

4
e+

0
1

-3
.0
1
e
+
0
2
±
1
.9
2
e
+
0
1

9
.4

2
e+

0
1
±

3
.1

1
e+

0
1

-1
.3
9
e
+
0
2
±
2
.2
0
e
+
0
1

F
C
E
C
2
0
1
3
1
2

-2
.8

2
e+

0
2
±

6
.8

1
e+

0
0

-2
.8
3
e
+
0
2
±
4
.7
2
e
+
0
0

-5
.9

6
e+

0
1
±

3
.1

3
e+

0
1

-1
.2
1
e
+
0
2
±
2
.8
1
e
+
0
1

2
.0

1
e+

0
2
±

3
.5

0
e+

0
1

1
.1
5
e
+
0
2
±
4
.6
0
e
+
0
1

F
C
E
C
2
0
1
3
1
3

-1
.7

8
e+

0
2
±

6
.0

9
e+

0
0

-1
.8
0
e
+
0
2
±
7
.4
7
e
+
0
0

6
.1

2
e+

0
1
±

1
.8

1
e+

0
1

1
.0
6
e
+
0
1
±
3
.1
4
e
+
0
1

3
.3

9
e+

0
2
±

2
.6

6
e+

0
1

2
.7
4
e
+
0
2
±
3
.7
9
e
+
0
1

F
C
E
C
2
0
1
3
1
4

8
.4

1
e+

0
2
±

1
.7

9
e+

0
2

1
.0
7
e
+
0
2
±
6
.2
1
e
+
0
1

6
.2

8
e+

0
3
±

4
.3

9
e+

0
2

2
.6
8
e
+
0
3
±
3
.6
1
e
+
0
2

1
.2

7
e+

0
4
±

7
.6

4
e+

0
2

6
.6
2
e
+
0
3
±
5
.5
1
e
+
0
2

F
C
E
C
2
0
1
3
1
5

1
.3

7
e+

0
3
±

2
.2

3
e+

0
2

6
.7
5
e
+
0
2
±
1
.4
9
e
+
0
2

7
.6

3
e+

0
3
±

3
.4

0
e+

0
2

4
.4
3
e
+
0
3
±
3
.2
1
e
+
0
2

1
.4

8
e+

0
4
±

4
.0

2
e+

0
2

9
.7
9
e
+
0
3
±
4
.7
4
e
+
0
2

F
C
E
C
2
0
1
3
1
6

2
.0

1
e+

0
2
±

2
.3

1
e-

0
1

2
.0
1
e
+
0
2
±
1
.3
7
e
-0

1
2
.0

3
e+

0
2
±

3
.2

2
e-

0
1

2
.0
2
e
+
0
2
±
3
.5
3
e
-0

1
2
.0

4
e+

0
2
±

3
.0

6
e-

0
1

2
.0
4
e
+
0
2
±
3
.1
9
e
-0

1
F
C
E
C
2
0
1
3
1
7

3
.2

4
e+

0
2
±

2
.9

7
e+

0
0

3
.2
1
e
+
0
2
±
4
.0
8
e
+
0
0

5
.2

6
e+

0
2
±

2
.8

0
e+

0
1

4
.7
0
e
+
0
2
±
1
.7
2
e
+
0
1

8
.3

7
e+

0
2
±

4
.4

1
e+

0
1

7
.1
6
e
+
0
2
±
3
.4
2
e
+
0
1

F
C
E
C
2
0
1
3
1
8

4
.2
7
e
+
0
2
±
4
.9
8
e
+
0
0

4
.2

9
e+

0
2
±

5
.1

3
e+

0
0

6
.3

8
e+

0
2
±

1
.7

6
e+

0
1

6
.1
6
e
+
0
2
±
1
.9
4
e
+
0
1

9
.4

9
e+

0
2
±

4
.9

4
e+

0
1

9
.0
2
e
+
0
2
±
3
.8
2
e
+
0
1

F
C
E
C
2
0
1
3
1
9

5
.0

1
e+

0
2
±

3
.6

6
e-

0
1

5
.0
1
e
+
0
2
±
2
.5
0
e
-0

1
8
.4

8
e+

0
2
±

1
.8

4
e+

0
2

5
.1
2
e
+
0
2
±
1
.7
4
e
+
0
0

3
.6

4
e+

0
3
±

1
.5

2
e+

0
3

5
.4
0
e
+
0
2
±
5
.2
7
e
+
0
0

F
C
E
C
2
0
1
3
2
0

6
.0

4
e+

0
2
±

1
.8

8
e-

0
1

6
.0
3
e
+
0
2
±
2
.4
1
e
-0

1
6
.1

5
e+

0
2
±

9
.7

6
e-

0
2

6
.1
4
e
+
0
2
±
4
.5
6
e
-0

1
6
.2

4
e+

0
2
±

4
.4

2
e-

0
1

6
.2
4
e
+
0
2
±
4
.5
4
e
-0

1
F
C
E
C
2
0
1
3
2
1

1
.1

0
e+

0
3
±

2
.7

2
e-

0
4

8
.4
3
e
+
0
2
±
5
.6
8
e
+
0
1

1
.9

1
e+

0
3
±

2
.0

0
e+

0
2

9
.3
1
e
+
0
2
±
1
.7
9
e
+
0
1

3
.7

7
e+

0
3
±

2
.1

3
e+

0
2

1
.1
6
e
+
0
3
±
1
.2
7
e
+
0
2

F
C
E
C
2
0
1
3
2
2

2
.2

7
e+

0
3
±

2
.6

1
e+

0
2

1
.1
7
e
+
0
3
±
9
.6
9
e
+
0
1

7
.7

8
e+

0
3
±

6
.7

0
e+

0
2

4
.0
8
e
+
0
3
±
4
.1
6
e
+
0
2

1
.5

2
e+

0
4
±

7
.5

7
e+

0
2

9
.0
6
e
+
0
3
±
5
.7
7
e
+
0
2

F
C
E
C
2
0
1
3
2
3

2
.4

9
e+

0
3
±

2
.4

3
e+

0
2

1
.8
2
e
+
0
3
±
1
.9
4
e
+
0
2

9
.0

2
e+

0
3
±

3
.4

2
e+

0
2

6
.0
3
e
+
0
3
±
3
.5
6
e
+
0
2

1
.6

7
e+

0
4
±

3
.7

0
e+

0
2

1
.2
5
e
+
0
4
±
5
.8
7
e
+
0
2

F
C
E
C
2
0
1
3
2
4

1
.2

2
e+

0
3
±

1
.2

0
e+

0
1

1
.1
4
e
+
0
3
±
1
.4
0
e
+
0
1

1
.3

1
e+

0
3
±

9
.7

3
e+

0
0

1
.2
8
e
+
0
3
±
8
.5
3
e
+
0
0

1
.4

1
e+

0
3
±

1
.9

9
e+

0
1

1
.3
5
e
+
0
3
±
1
.0
8
e
+
0
1

F
C
E
C
2
0
1
3
2
5

1
.3

0
e+

0
3
±

1
.4

2
e+

0
1

1
.2
8
e
+
0
3
±
2
.9
5
e
+
0
1

1
.4

6
e+

0
3
±

6
.1

9
e+

0
0

1
.4
2
e
+
0
3
±
5
.9
6
e
+
0
0

1
.6

3
e+

0
3
±

8
.7

8
e+

0
0

1
.5
5
e
+
0
3
±
1
.0
3
e
+
0
1

F
C
E
C
2
0
1
3
2
6

1
.3

7
e+

0
3
±

1
.9

7
e+

0
1

1
.3
2
e
+
0
3
±
7
.2
7
e
+
0
0

1
.4

0
e+

0
3
±

9
.7

8
e-

0
1

1
.4
0
e
+
0
3
±
1
.8
1
e
-0

1
1
.5

6
e+

0
3
±

8
.4

3
e+

0
1

1
.4
0
e
+
0
3
±
7
.2
0
e
-0

1
F
C
E
C
2
0
1
3
2
7

1
.7

2
e+

0
3
±

2
.9

1
e+

0
1

1
.6
8
e
+
0
3
±
2
.2
3
e
+
0
1

2
.4

8
e+

0
3
±

8
.9

8
e+

0
1

2
.4
0
e
+
0
3
±
1
.9
6
e
+
0
2

3
.4

9
e+

0
3
±

1
.2

4
e+

0
2

3
.3
3
e
+
0
3
±
7
.1
9
e
+
0
1

F
C
E
C
2
0
1
3
2
8

1
.7

9
e+

0
3
±

4
.4

1
e+

0
1

1
.5
2
e
+
0
3
±
6
.1
0
e
+
0
1

3
.4

9
e+

0
3
±

2
.2

0
e+

0
2

1
.8
0
e
+
0
3
±
4
.5
7
e
+
0
1

6
.1

1
e+

0
3
±

3
.2

8
e+

0
2

1
.8
5
e
+
0
3
±
1
.0
7
e
+
0
1

w
/
t/
l

2
3
/
4
/
1

-
2
5
/
2
/
1

-
2
4
/
3
/
1

-



95

T
ab

le
5.

21
:

C
om

p
ar

is
on

of
S
F

C
S

w
it

h
th

e
S
F

IP
S
O

on
C

E
C

’2
01

7

F
u

n
ct

io
n

D
=

1
0

D
=

3
0

D
=

5
0

S
F

IP
S

O
S

F
C

S
S

F
IP

S
O

S
F

C
S

S
F

IP
S

O
S

F
C

S
A

v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
7
1

5
.7

1
e+

0
7
±

5
.5

4
e+

0
7

1
.0
1
e
+
0
2
±
4
.5
4
e
-0

1
3
.2

8
e+

0
9
±

9
.6

1
e+

0
8

2
.4
2
e
+
0
5
±
1
.0
4
e
+
0
5

1
.3

7
e+

1
0
±

3
.6

3
e+

0
9

1
.9
3
e
+
0
7
±
9
.1
0
e
+
0
6

F
C
E
C
2
0
1
7
2

4
.1

9
e+

0
3
±

5
.9

2
e+

0
3

2
.0
0
e
+
0
2
±
3
.0
2
e
-0

7
2
.1

5
e+

3
0
±

5
.7

6
e+

3
0

2
.6
5
e
+
1
6
±
6
.5
0
e
+
1
6

3
.6

2
e+

5
5
±

1
.7

5
e+

5
6

3
.8
4
e
+
4
1
±
9
.6
6
e
+
4
1

F
C
E
C
2
0
1
7
3

3
.0

3
e+

0
2
±

4
.1

2
e+

0
0

3
.0
0
e
+
0
2
±
1
.7
1
e
-0

3
2
.3
5
e
+
0
4
±
5
.4
5
e
+
0
3

6
.9

1
e+

0
4
±

1
.1

1
e+

0
4

1
.0
6
e
+
0
5
±
1
.5
5
e
+
0
4

2
.0

5
e+

0
5
±

2
.2

6
e+

0
4

F
C
E
C
2
0
1
7
4

4
.2

2
e+

0
2
±

9
.0

7
e+

0
0

4
.0
0
e
+
0
2
±
1
.1
6
e
-0

1
1
.2

3
e+

0
3
±

2
.3

0
e+

0
2

4
.7
3
e
+
0
2
±
1
.9
7
e
+
0
1

3
.1

8
e+

0
3
±

5
.0

5
e+

0
2

5
.8
4
e
+
0
2
±
3
.3
5
e
+
0
1

F
C
E
C
2
0
1
7
5

5
.2

7
e+

0
2
±

7
.0

9
e+

0
0

5
.1
3
e
+
0
2
±
4
.0
7
e
+
0
0

6
.7

0
e+

0
2
±

2
.0

5
e+

0
1

6
.3
5
e
+
0
2
±
1
.7
1
e
+
0
1

8
.7

1
e+

0
2
±

2
.8

9
e+

0
1

8
.0
5
e
+
0
2
±
2
.9
6
e
+
0
1

F
C
E
C
2
0
1
7
6

6
.0

4
e+

0
2
±

1
.0

8
e+

0
0

6
.0
3
e
+
0
2
±
1
.5
1
e
+
0
0

6
.2
9
e
+
0
2
±
4
.4
1
e
+
0
0

6
.3

8
e+

0
2
±

6
.0

6
e+

0
0

6
.4
5
e
+
0
2
±
3
.7
4
e
+
0
0

6
.5

5
e+

0
2
±

5
.9

4
e+

0
0

F
C
E
C
2
0
1
7
7

7
.2
2
e
+
0
2
±
4
.9
8
e
+
0
0

7
.2

6
e+

0
2
±

4
.1

1
e+

0
0

9
.2

0
e+

0
2
±

2
.7

7
e+

0
1

8
.6
4
e
+
0
2
±
2
.4
2
e
+
0
1

1
.2

3
e+

0
3
±

4
.7

6
e+

0
1

1
.1
2
e
+
0
3
±
4
.1
0
e
+
0
1

F
C
E
C
2
0
1
7
8

8
.0
9
e
+
0
2
±
3
.3
0
e
+
0
0

8
.1

3
e+

0
2
±

3
.2

8
e+

0
0

9
.4

9
e+

0
2
±

1
.2

1
e+

0
1

9
.1
9
e
+
0
2
±
1
.5
4
e
+
0
1

1
.1

8
e+

0
3
±

2
.3

8
e+

0
1

1
.1
0
e
+
0
3
±
3
.7
5
e
+
0
1

F
C
E
C
2
0
1
7
9

9
.0
3
e
+
0
2
±
2
.8
8
e
+
0
0

9
.1

7
e+

0
2
±

1
.1

4
e+

0
1

1
.8
8
e
+
0
3
±
3
.1
8
e
+
0
2

4
.4

0
e+

0
3
±

9
.3

0
e+

0
2

1
.0
3
e
+
0
4
±
1
.6
3
e
+
0
3

1
.7

8
e+

0
4
±

3
.0

7
e+

0
3

F
C
E
C
2
0
1
7
1
0

2
.1

4
e+

0
3
±

2
.0

1
e+

0
2

1
.4
9
e
+
0
3
±
1
.1
6
e
+
0
2

8
.2

6
e+

0
3
±

4
.0

5
e+

0
2

4
.4
1
e
+
0
3
±
3
.2
4
e
+
0
2

1
.4

7
e+

0
4
±

3
.9

9
e+

0
2

8
.1
7
e
+
0
3
±
5
.1
8
e
+
0
2

F
C
E
C
2
0
1
7
1
1

1
.1

1
e+

0
3
±

4
.9

6
e+

0
0

1
.1
0
e
+
0
3
±
1
.1
0
e
+
0
0

1
.4

2
e+

0
3
±

6
.3

1
e+

0
1

1
.2
0
e
+
0
3
±
1
.9
3
e
+
0
1

3
.1

6
e+

0
3
±

5
.6

1
e+

0
2

1
.4
1
e
+
0
3
±
3
.1
5
e
+
0
1

F
C
E
C
2
0
1
7
1
2

8
.3

3
e+

0
3
±

8
.8

1
e+

0
3

1
.4
5
e
+
0
3
±
7
.9
4
e
+
0
1

1
.1

8
e+

0
8
±

4
.7

8
e+

0
7

3
.2
1
e
+
0
5
±
1
.3
8
e
+
0
5

4
.2

7
e+

0
9
±

1
.2

0
e+

0
9

6
.9
9
e
+
0
6
±
2
.3
4
e
+
0
6

F
C
E
C
2
0
1
7
1
3

1
.4

2
e+

0
3
±

8
.5

1
e+

0
1

1
.3
1
e
+
0
3
±
3
.0
5
e
+
0
0

4
.4

9
e+

0
6
±

7
.6

3
e+

0
6

6
.4
5
e
+
0
3
±
1
.1
9
e
+
0
3

5
.9

9
e+

0
8
±

3
.6

9
e+

0
8

6
.7
2
e
+
0
4
±
2
.1
9
e
+
0
4

F
C
E
C
2
0
1
7
1
4

1
.4

3
e+

0
3
±

7
.9

1
e+

0
0

1
.4
0
e
+
0
3
±
2
.0
5
e
+
0
0

9
.4

1
e+

0
3
±

2
.0

8
e+

0
4

1
.5
0
e
+
0
3
±
1
.3
2
e
+
0
1

7
.0

5
e+

0
5
±

7
.5

9
e+

0
5

6
.3
2
e
+
0
3
±
1
.7
6
e
+
0
3

F
C
E
C
2
0
1
7
1
5

1
.5

2
e+

0
3
±

8
.1

9
e+

0
0

1
.5
0
e
+
0
3
±
6
.2
9
e
-0

1
4
.7

2
e+

0
3
±

2
.8

9
e+

0
3

1
.8
3
e
+
0
3
±
6
.8
2
e
+
0
1

3
.7

3
e+

0
5
±

6
.4

9
e+

0
5

6
.6
0
e
+
0
3
±
1
.2
0
e
+
0
3

F
C
E
C
2
0
1
7
1
6

1
.6

8
e+

0
3
±

4
.2

2
e+

0
1

1
.6
0
e
+
0
3
±
1
.1
6
e
+
0
0

3
.7

0
e+

0
3
±

2
.7

3
e+

0
2

2
.5
0
e
+
0
3
±
1
.3
9
e
+
0
2

4
.8

3
e+

0
3
±

5
.5

7
e+

0
2

3
.3
6
e
+
0
3
±
2
.8
1
e
+
0
2

F
C
E
C
2
0
1
7
1
7

1
.7

4
e+

0
3
±

6
.4

2
e+

0
0

1
.7
2
e
+
0
3
±
7
.0
3
e
+
0
0

2
.2

9
e+

0
3
±

1
.5

0
e+

0
2

1
.9
3
e
+
0
3
±
9
.6
2
e
+
0
1

3
.2

2
e+

0
3
±

2
.6

2
e+

0
2

2
.9
4
e
+
0
3
±
1
.2
9
e
+
0
2

F
C
E
C
2
0
1
7
1
8

8
.5

3
e+

0
3
±

2
.3

0
e+

0
4

1
.8
0
e
+
0
3
±
1
.8
8
e
+
0
0

5
.6

0
e+

0
4
±

3
.6

3
e+

0
4

4
.2
5
e
+
0
4
±
1
.2
4
e
+
0
4

2
.3

0
e+

0
6
±

1
.4

3
e+

0
6

6
.2
8
e
+
0
5
±
2
.5
3
e
+
0
5

F
C
E
C
2
0
1
7
1
9

1
.9

2
e+

0
3
±

1
.4

3
e+

0
1

1
.9
0
e
+
0
3
±
4
.3
1
e
-0

1
5
.4

1
e+

0
3
±

7
.0

0
e+

0
3

1
.9
8
e
+
0
3
±
1
.3
5
e
+
0
1

1
.1

9
e+

0
5
±

2
.0

1
e+

0
5

6
.4
6
e
+
0
3
±
2
.0
1
e
+
0
3

F
C
E
C
2
0
1
7
2
0

2
.0

6
e+

0
3
±

1
.2

8
e+

0
1

2
.0
1
e
+
0
3
±
7
.7
8
e
+
0
0

2
.5

1
e+

0
3
±

1
.3

3
e+

0
2

2
.3
7
e
+
0
3
±
9
.8
5
e
+
0
1

3
.7

3
e+

0
3
±

2
.9

5
e+

0
2

3
.0
2
e
+
0
3
±
1
.6
9
e
+
0
2

F
C
E
C
2
0
1
7
2
1

2
.2

0
e+

0
3
±

2
.4

0
e+

0
0

2
.2
0
e
+
0
3
±
1
.1
9
e
+
0
0

2
.4

9
e+

0
3
±

2
.0

0
e+

0
1

2
.4
2
e
+
0
3
±
3
.9
4
e
+
0
1

2
.6

9
e+

0
3
±

3
.2

2
e+

0
1

2
.5
9
e
+
0
3
±
3
.7
8
e
+
0
1

F
C
E
C
2
0
1
7
2
2

2
.3

1
e+

0
3
±

6
.9

8
e+

0
0

2
.2
6
e
+
0
3
±
3
.2
7
e
+
0
1

2
.8

9
e+

0
3
±

1
.1

7
e+

0
2

2
.3
3
e
+
0
3
±
1
.0
4
e
+
0
1

1
.5

3
e+

0
4
±

2
.0

6
e+

0
3

9
.8
6
e
+
0
3
±
4
.6
2
e
+
0
2

F
C
E
C
2
0
1
7
2
3

2
.6

6
e+

0
3
±

3
.1

5
e+

0
1

2
.6
2
e
+
0
3
±
5
.2
9
e
+
0
0

3
.1

1
e+

0
3
±

4
.4

5
e+

0
1

2
.8
3
e
+
0
3
±
3
.6
3
e
+
0
1

3
.7

2
e+

0
3
±

8
.7

3
e+

0
1

3
.1
8
e
+
0
3
±
6
.2
5
e
+
0
1

F
C
E
C
2
0
1
7
2
4

2
.6

2
e+

0
3
±

5
.6

4
e+

0
1

2
.4
9
e
+
0
3
±
2
.8
5
e
+
0
1

3
.2

6
e+

0
3
±

5
.8

7
e+

0
1

2
.9
5
e
+
0
3
±
9
.0
8
e
+
0
1

3
.8

7
e+

0
3
±

1
.0

6
e+

0
2

3
.3
0
e
+
0
3
±
6
.0
1
e
+
0
1

F
C
E
C
2
0
1
7
2
5

2
.9

3
e+

0
3
±

1
.8

1
e+

0
1

2
.7
9
e
+
0
3
±
1
.2
5
e
+
0
2

3
.0

6
e+

0
3
±

3
.4

5
e+

0
1

2
.8
9
e
+
0
3
±
7
.4
0
e
-0

1
4
.5

5
e+

0
3
±

2
.7

2
e+

0
2

3
.0
8
e
+
0
3
±
2
.2
5
e
+
0
1

F
C
E
C
2
0
1
7
2
6

3
.0

1
e+

0
3
±

3
.7

1
e+

0
1

2
.6
7
e
+
0
3
±
9
.5
9
e
+
0
1

6
.6

6
e+

0
3
±

7
.0

5
e+

0
2

3
.1
3
e
+
0
3
±
2
.1
0
e
+
0
2

1
.0

5
e+

0
4
±

5
.2

3
e+

0
2

6
.4
2
e
+
0
3
±
1
.4
0
e
+
0
3

F
C
E
C
2
0
1
7
2
7

3
.1

3
e+

0
3
±

7
.3

2
e+

0
0

3
.0
9
e
+
0
3
±
2
.2
6
e
+
0
0

3
.6

9
e+

0
3
±

7
.1

4
e+

0
1

3
.2
9
e
+
0
3
±
2
.1
9
e
+
0
1

5
.2

7
e+

0
3
±

1
.7

6
e+

0
2

3
.9
0
e
+
0
3
±
8
.9
3
e
+
0
1

F
C
E
C
2
0
1
7
2
8

3
.1

8
e+

0
3
±

5
.8

3
e+

0
1

3
.0
4
e
+
0
3
±
1
.1
9
e
+
0
2

3
.6

7
e+

0
3
±

7
.7

8
e+

0
1

3
.2
2
e
+
0
3
±
7
.6
6
e
+
0
0

5
.4

6
e+

0
3
±

2
.0

6
e+

0
2

3
.3
7
e
+
0
3
±
3
.5
4
e
+
0
1

F
C
E
C
2
0
1
7
2
9

3
.2

1
e+

0
3
±

1
.6

0
e+

0
1

3
.1
7
e
+
0
3
±
1
.2
1
e
+
0
1

4
.4

4
e+

0
3
±

2
.1

6
e+

0
2

3
.8
8
e
+
0
3
±
9
.4
8
e
+
0
1

6
.9

5
e+

0
3
±

4
.5

9
e+

0
2

4
.7
2
e
+
0
3
±
1
.8
9
e
+
0
2

F
C
E
C
2
0
1
7
3
0

2
.7

4
e+

0
5
±

2
.7

9
e+

0
5

4
.5
1
e
+
0
3
±
7
.4
9
e
+
0
2

1
.2

1
e+

0
6
±

1
.1

3
e+

0
6

5
.1
5
e
+
0
4
±
1
.5
0
e
+
0
4

9
.7

5
e+

0
7
±

3
.0

4
e+

0
7

9
.8
9
e
+
0
6
±
1
.0
4
e
+
0
6

w
/
t/
l

2
7
/
0
/
3

-
2
6
/
1
/
3

-
2
7
/
0
/
3

-



96

T
ab

le
5.

22
:

C
om

p
ar

is
on

of
S
F

D
E

w
it

h
th

e
D

E
on

C
E

C
’2

01
3

F
u

n
ct

io
n

D
=

1
0

D
=

3
0

D
=

5
0

D
E

S
F

D
E

D
E

S
F

D
E

D
E

S
F

D
E

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
3
1

-1
.4

0
e+

0
3
±

0
.0

0
e+

0
0

-1
.4
0
e
+
0
3
±
0
.0
0
e
+
0
0

-1
.4

0
e+

0
3
±

3
.7

1
e-

0
4

-1
.4
0
e
+
0
3
±
8
.4
4
e
-1

4
-1

.4
0
e+

0
3
±

9
.0

9
e-

0
1

-1
.4
0
e
+
0
3
±
6
.3
3
e
-0

9
F
C
E
C
2
0
1
3
2

-1
.3
0
e
+
0
3
±
2
.6
4
e
-0

9
1
.6

2
e+

0
5
±

5
.9

9
e+

0
4

2
.1
9
e
+
0
7
±
1
.6
7
e
+
0
7

4
.7

4
e+

0
7
±

1
.9

1
e+

0
7

3
.2

1
e+

0
8
±

1
.4

1
e+

0
8

1
.9
3
e
+
0
8
±
4
.9
0
e
+
0
7

F
C
E
C
2
0
1
3
3

-1
.2
0
e
+
0
3
±
8
.3
9
e
-0

2
-1

.2
0
e+

0
3
±

1
.6

7
e+

0
0

3
.4

0
e+

0
9
±

2
.7

7
e+

0
9

9
.3
4
e
+
0
3
±
2
.3
0
e
+
0
4

5
.3

1
e+

1
0
±

2
.4

6
e+

1
0

3
.4
5
e
+
0
8
±
3
.4
1
e
+
0
8

F
C
E
C
2
0
1
3
4

-1
.1
0
e
+
0
3
±
2
.3
0
e
-1

1
8
.1

4
e+

0
2
±

9
.7

7
e+

0
2

1
.0

1
e+

0
5
±

1
.1

6
e+

0
4

6
.9
8
e
+
0
4
±
1
.1
2
e
+
0
4

1
.9

3
e+

0
5
±

2
.2

1
e+

0
4

1
.4
9
e
+
0
5
±
1
.4
3
e
+
0
4

F
C
E
C
2
0
1
3
5

-1
.0

0
e+

0
3
±

0
.0

0
e+

0
0

-1
.0
0
e
+
0
3
±
0
.0
0
e
+
0
0

-1
.0

0
e+

0
3
±

3
.8

8
e-

0
3

-1
.0
0
e
+
0
3
±
4
.4
8
e
-1

2
-9

.9
7
e+

0
2
±

8
.3

7
e-

0
1

-1
.0
0
e
+
0
3
±
2
.2
2
e
-0

5
F
C
E
C
2
0
1
3
6

-8
.9
4
e
+
0
2
±
4
.0
3
e
+
0
0

-8
.9

2
e+

0
2
±

1
.5

6
e-

0
4

-8
.6

8
e+

0
2
±

1
.8

5
e+

0
1

-8
.8
0
e
+
0
2
±
1
.0
6
e
+
0
1

-8
.5

2
e+

0
2
±

1
.2

9
e+

0
0

-8
.5
5
e
+
0
2
±
1
.2
4
e
+
0
0

F
C
E
C
2
0
1
3
7

-8
.0

0
e+

0
2
±

4
.9

1
e-

0
3

-8
.0
0
e
+
0
2
±
4
.5
2
e
-0

6
-6

.9
5
e+

0
2
±

3
.1

1
e+

0
1

-7
.9
4
e
+
0
2
±
3
.2
6
e
+
0
0

-6
.2

6
e+

0
2
±

4
.0

7
e+

0
1

-7
.5
1
e
+
0
2
±
9
.9
7
e
+
0
0

F
C
E
C
2
0
1
3
8

-6
.8
0
e
+
0
2
±
7
.9
8
e
-0

2
-6

.8
0
e+

0
2
±

9
.3

9
e-

0
2

-6
.7

9
e+

0
2
±

3
.9

0
e-

0
2

-6
.7
9
e
+
0
2
±
4
.7
8
e
-0

2
-6

.7
9
e+

0
2
±

3
.2

4
e-

0
2

-6
.7
9
e
+
0
2
±
3
.8
7
e
-0

2
F
C
E
C
2
0
1
3
9

-5
.9

2
e+

0
2
±

2
.4

6
e+

0
0

-5
.9
3
e
+
0
2
±
3
.3
4
e
+
0
0

-5
.6
0
e
+
0
2
±
1
.3
2
e
+
0
0

-5
.6

0
e+

0
2
±

1
.2

1
e+

0
0

-5
.2
5
e
+
0
2
±
1
.7
6
e
+
0
0

-5
.2

5
e+

0
2
±

1
.4

5
e+

0
0

F
C
E
C
2
0
1
3
1
0

-5
.0
0
e
+
0
2
±
1
.8
9
e
-0

1
-4

.9
9
e+

0
2
±

7
.5

9
e-

0
2

-4
.9

9
e+

0
2
±

2
.1

4
e-

0
1

-5
.0
0
e
+
0
2
±
9
.5
9
e
-0

3
-4

.2
9
e+

0
2
±

2
.7

2
e+

0
1

-4
.9
9
e
+
0
2
±
2
.8
1
e
-0

1
F
C
E
C
2
0
1
3
1
1
-3

.9
3
e
+
0
2
±
7
.1
2
e
+
0
0

-3
.8

1
e+

0
2
±

3
.9

3
e+

0
0

-2
.2
2
e
+
0
2
±
2
.3
5
e
+
0
1

-2
.1

7
e+

0
2
±

1
.0

2
e+

0
1

-1
.3

6
e+

0
1
±

3
.1

3
e+

0
1

-2
.7
3
e
+
0
1
±
1
.6
6
e
+
0
1

F
C
E
C
2
0
1
3
1
2
-2

.7
7
e
+
0
2
±
1
.0
4
e
+
0
1

-2
.7

5
e+

0
2
±

4
.7

5
e+

0
0

-8
.2

3
e+

0
1
±

1
.4

9
e+

0
1

-1
.0
2
e
+
0
2
±
1
.1
6
e
+
0
1

1
.4

4
e+

0
2
±

1
.7

6
e+

0
1

1
.0
1
e
+
0
2
±
1
.5
4
e
+
0
1

F
C
E
C
2
0
1
3
1
3
-1

.7
9
e
+
0
2
±
1
.0
1
e
+
0
1

-1
.7

3
e+

0
2
±

4
.4

8
e+

0
0

1
.9

5
e+

0
1
±

1
.4

5
e+

0
1

2
.2
0
e
+
0
0
±
9
.3
1
e
+
0
0

2
.4

6
e+

0
2
±

1
.9

2
e+

0
1

2
.0
6
e
+
0
2
±
1
.5
2
e
+
0
1

F
C
E
C
2
0
1
3
1
4

8
.8
0
e
+
0
2
±
2
.7
8
e
+
0
2

1
.0

6
e+

0
3
±

1
.2

5
e+

0
2

6
.9

7
e+

0
3
±

2
.4

7
e+

0
2

6
.8
6
e
+
0
3
±
3
.2
3
e
+
0
2

1
.3

2
e+

0
4
±

4
.1

7
e+

0
2

1
.3
1
e
+
0
4
±
3
.1
8
e
+
0
2

F
C
E
C
2
0
1
3
1
5

1
.5

9
e+

0
3
±

2
.2

6
e+

0
2

1
.5
4
e
+
0
3
±
1
.2
6
e
+
0
2

7
.9

3
e+

0
3
±

2
.8

7
e+

0
2

7
.9
0
e
+
0
3
±
2
.2
5
e
+
0
2

1
.4

9
e+

0
4
±

3
.3

2
e+

0
2

1
.4
8
e
+
0
4
±
3
.7
6
e
+
0
2

F
C
E
C
2
0
1
3
1
6

2
.0
1
e
+
0
2
±
1
.7
3
e
-0

1
2
.0

1
e+

0
2
±

1
.8

6
e-

0
1

2
.0
3
e
+
0
2
±
4
.0
1
e
-0

1
2
.0

3
e+

0
2
±

3
.3

1
e-

0
1

2
.0

4
e+

0
2
±

3
.2

9
e-

0
1

2
.0
4
e
+
0
2
±
3
.2
6
e
-0

1
F
C
E
C
2
0
1
3
1
7

3
.2
4
e
+
0
2
±
8
.6
1
e
+
0
0

3
.3

2
e+

0
2
±

3
.5

2
e+

0
0

5
.2

1
e+

0
2
±

2
.3

1
e+

0
1

5
.1
7
e
+
0
2
±
1
.1
0
e
+
0
1

7
.5

2
e+

0
2
±

2
.7

1
e+

0
1

7
.3
3
e
+
0
2
±
1
.4
8
e
+
0
1

F
C
E
C
2
0
1
3
1
8

4
.3

9
e+

0
2
±

5
.1

0
e+

0
0

4
.3
7
e
+
0
2
±
4
.5
9
e
+
0
0

6
.5

0
e+

0
2
±

1
.3

4
e+

0
1

6
.3
0
e
+
0
2
±
1
.1
1
e
+
0
1

8
.8

8
e+

0
2
±

1
.9

0
e+

0
1

8
.5
1
e
+
0
2
±
1
.4
4
e
+
0
1

F
C
E
C
2
0
1
3
1
9

5
.0
1
e
+
0
2
±
7
.9
5
e
-0

1
5
.0

2
e+

0
2
±

3
.3

0
e-

0
1

5
.1

8
e+

0
2
±

1
.1

8
e+

0
0

5
.1
7
e
+
0
2
±
7
.1
0
e
-0

1
5
.4

1
e+

0
2
±

4
.0

4
e+

0
0

5
.3
4
e
+
0
2
±
1
.4
3
e
+
0
0

F
C
E
C
2
0
1
3
2
0

6
.0

3
e+

0
2
±

3
.1

2
e-

0
1

6
.0
2
e
+
0
2
±
2
.1
3
e
-0

1
6
.1

4
e+

0
2
±

2
.8

2
e-

0
1

6
.1
3
e
+
0
2
±
2
.7
7
e
-0

1
6
.2

5
e+

0
2
±

1
.2

0
e-

0
1

6
.2
3
e
+
0
2
±
2
.9
0
e
-0

1
F
C
E
C
2
0
1
3
2
1

1
.0
9
e
+
0
3
±
5
.0
8
e
+
0
1

1
.1

0
e+

0
3
±

4
.6

3
e-

1
3

1
.0

7
e+

0
3
±

8
.8

2
e+

0
1

1
.0
5
e
+
0
3
±
9
.3
9
e
+
0
1

1
.2
2
e
+
0
3
±
4
.1
6
e
+
0
2

1
.2

7
e+

0
3
±

4
.5

9
e+

0
2

F
C
E
C
2
0
1
3
2
2

2
.0
2
e
+
0
3
±
2
.9
0
e
+
0
2

2
.0

7
e+

0
3
±

1
.5

0
e+

0
2

8
.3

8
e+

0
3
±

3
.1

6
e+

0
2

8
.2
7
e
+
0
3
±
3
.2
1
e
+
0
2

1
.5

1
e+

0
4
±

3
.8

8
e+

0
2

1
.4
7
e
+
0
4
±
4
.8
6
e
+
0
2

F
C
E
C
2
0
1
3
2
3

2
.5
5
e
+
0
3
±
1
.7
6
e
+
0
2

2
.6

1
e+

0
3
±

1
.3

9
e+

0
2

9
.1

9
e+

0
3
±

3
.1

1
e+

0
2

9
.1
6
e
+
0
3
±
2
.6
8
e
+
0
2

1
.6

2
e+

0
4
±

4
.1

8
e+

0
2

1
.6
1
e
+
0
4
±
3
.8
4
e
+
0
2

F
C
E
C
2
0
1
3
2
4

1
.2

1
e+

0
3
±

1
.0

1
e+

0
1

1
.2
1
e
+
0
3
±
1
.0
3
e
+
0
1

1
.3

2
e+

0
3
±

3
.9

4
e+

0
0

1
.3
1
e
+
0
3
±
2
.7
9
e
+
0
0

1
.4

1
e+

0
3
±

5
.1

6
e+

0
0

1
.4
1
e
+
0
3
±
5
.4
7
e
+
0
0

F
C
E
C
2
0
1
3
2
5

1
.3

2
e+

0
3
±

3
.0

9
e+

0
0

1
.3
2
e
+
0
3
±
4
.8
7
e
+
0
0

1
.4

2
e+

0
3
±

3
.9

0
e+

0
0

1
.4
2
e
+
0
3
±
3
.2
9
e
+
0
0

1
.5

3
e+

0
3
±

5
.7

9
e+

0
0

1
.5
2
e
+
0
3
±
5
.2
6
e
+
0
0

F
C
E
C
2
0
1
3
2
6

1
.3
2
e
+
0
3
±
7
.5
8
e
+
0
0

1
.3

3
e+

0
3
±

1
.4

1
e+

0
1

1
.4

0
e+

0
3
±

2
.5

0
e+

0
0

1
.4
0
e
+
0
3
±
1
.1
3
e
+
0
0

1
.6
8
e
+
0
3
±
3
.4
3
e
+
0
1

1
.6

9
e+

0
3
±

1
.9

9
e+

0
1

F
C
E
C
2
0
1
3
2
7

1
.6

0
e+

0
3
±

2
.2

9
e-

0
3

1
.6
0
e
+
0
3
±
0
.0
0
e
+
0
0

2
.7

0
e+

0
3
±

2
.5

9
e+

0
1

2
.6
4
e
+
0
3
±
4
.2
5
e
+
0
1

3
.6

4
e+

0
3
±

6
.0

3
e+

0
1

3
.5
9
e
+
0
3
±
4
.8
2
e
+
0
1

F
C
E
C
2
0
1
3
2
8

1
.6
9
e
+
0
3
±
5
.0
7
e
+
0
1

1
.7

0
e+

0
3
±

0
.0

0
e+

0
0

1
.7

0
e+

0
3
±

1
.0

7
e+

0
0

1
.7
0
e
+
0
3
±
1
.1
8
e
-0

7
1
.8

2
e+

0
3
±

6
.4

2
e+

0
0

1
.8
0
e
+
0
3
±
6
.6
7
e
-0

4
w
/
t/
l

6
/
1
3
/
9

-
1
6
/
1
1
/
1

-
2
2
/
6
/
0

-



97

T
ab

le
5.

23
:

C
om

p
ar

is
on

of
S
F

D
E

w
it

h
th

e
D

E
on

C
E

C
’2

01
7

F
u

n
ct

io
n

D
=

1
0

D
=

3
0

D
=

5
0

D
E

S
F

D
E

D
E

S
F

D
E

D
E

S
F

D
E

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
7
1

1
.0
0
e
+
0
2
±
0
.0
0
e
+
0
0

2
.0

2
e+

0
3
±

1
.2

2
e+

0
3

2
.1

4
e+

0
4
±

1
.5

5
e+

0
4

4
.7
2
e
+
0
3
±
5
.1
7
e
+
0
3

5
.3

5
e+

0
6
±

3
.3

6
e+

0
6

4
.3
6
e
+
0
3
±
4
.1
4
e
+
0
3

F
C
E
C
2
0
1
7
2

2
.0
0
e
+
0
2
±
0
.0
0
e
+
0
0

2
.0

0
e+

0
2
±

4
.4

8
e-

0
6

5
.1
1
e
+
2
3
±
1
.9
1
e
+
2
4

7
.3

2
e+

2
3
±

1
.8

8
e+

2
4

1
.5

9
e+

6
4
±

8
.7

0
e+

6
4

1
.6
2
e
+
5
7
±
8
.5
9
e
+
5
7

F
C
E
C
2
0
1
7
3

3
.0

0
e+

0
2
±

0
.0

0
e+

0
0

3
.0
0
e
+
0
2
±
0
.0
0
e
+
0
0

1
.4

0
e+

0
5
±

2
.0

4
e+

0
4

8
.3
6
e
+
0
4
±
1
.9
2
e
+
0
4

3
.5

5
e+

0
5
±

3
.6

4
e+

0
4

2
.7
7
e
+
0
5
±
3
.7
2
e
+
0
4

F
C
E
C
2
0
1
7
4

4
.0
0
e
+
0
2
±
0
.0
0
e
+
0
0

4
.0

0
e+

0
2
±

6
.5

1
e-

0
8

4
.9

3
e+

0
2
±

1
.7

5
e+

0
1

4
.6
6
e
+
0
2
±
1
.7
3
e
+
0
1

6
.1

9
e+

0
2
±

3
.3

5
e+

0
1

5
.4
6
e
+
0
2
±
5
.3
3
e
+
0
1

F
C
E
C
2
0
1
7
5

5
.1
5
e
+
0
2
±
1
.0
6
e
+
0
1

5
.2

5
e+

0
2
±

4
.5

0
e+

0
0

7
.1

7
e+

0
2
±

1
.1

7
e+

0
1

6
.9
5
e
+
0
2
±
1
.0
7
e
+
0
1

9
.4

0
e+

0
2
±

2
.0

7
e+

0
1

9
.0
2
e
+
0
2
±
1
.4
4
e
+
0
1

F
C
E
C
2
0
1
7
6

6
.0

0
e+

0
2
±

1
.5

5
e-

1
0

6
.0
0
e
+
0
2
±
0
.0
0
e
+
0
0

6
.0

1
e+

0
2
±

3
.1

2
e-

0
1

6
.0
0
e
+
0
2
±
5
.8
8
e
-0

5
6
.0

7
e+

0
2
±

1
.9

0
e+

0
0

6
.0
0
e
+
0
2
±
9
.4
5
e
-0

3
F
C
E
C
2
0
1
7
7

7
.2
8
e
+
0
2
±
9
.3
9
e
+
0
0

7
.3

6
e+

0
2
±

3
.5

3
e+

0
0

9
.5

3
e+

0
2
±

1
.0

5
e+

0
1

9
.2
7
e
+
0
2
±
1
.1
3
e
+
0
1

1
.1

9
e+

0
3
±

1
.6

2
e+

0
1

1
.1
5
e
+
0
3
±
1
.6
9
e
+
0
1

F
C
E
C
2
0
1
7
8

8
.1
9
e
+
0
2
±
9
.1
6
e
+
0
0

8
.2

5
e+

0
2
±

4
.9

0
e+

0
0

1
.0

2
e+

0
3
±

1
.4

8
e+

0
1

1
.0
0
e
+
0
3
±
1
.1
7
e
+
0
1

1
.2

5
e+

0
3
±

2
.0

0
e+

0
1

1
.2
0
e
+
0
3
±
1
.7
7
e
+
0
1

F
C
E
C
2
0
1
7
9

9
.0

0
e+

0
2
±

0
.0

0
e+

0
0

9
.0
0
e
+
0
2
±
0
.0
0
e
+
0
0

9
.0

2
e+

0
2
±

1
.1

4
e+

0
0

9
.0
0
e
+
0
2
±
2
.0
9
e
-1

2
1
.3

8
e+

0
3
±

2
.8

3
e+

0
2

9
.0
0
e
+
0
2
±
1
.5
9
e
-0

1
F
C
E
C
2
0
1
7
1
0

2
.2

3
e+

0
3
±

1
.6

5
e+

0
2

2
.2
1
e
+
0
3
±
1
.2
7
e
+
0
2

8
.5
6
e
+
0
3
±
3
.4
7
e
+
0
2

8
.5

9
e+

0
3
±

2
.3

4
e+

0
2

1
.5

2
e+

0
4
±

3
.8

0
e+

0
2

1
.5
0
e
+
0
4
±
3
.1
8
e
+
0
2

F
C
E
C
2
0
1
7
1
1

1
.1
0
e
+
0
3
±
7
.8
7
e
-0

1
1
.1

0
e+

0
3
±

2
.2

4
e+

0
0

1
.2

0
e+

0
3
±

2
.5

0
e+

0
1

1
.1
9
e
+
0
3
±
3
.0
3
e
+
0
1

1
.3

6
e+

0
3
±

2
.8

3
e+

0
1

1
.3
4
e
+
0
3
±
1
.9
9
e
+
0
1

F
C
E
C
2
0
1
7
1
2

1
.2
0
e
+
0
3
±
3
.3
3
e
+
0
0

2
.4

9
e+

0
4
±

1
.7

7
e+

0
4

2
.9
3
e
+
0
5
±
2
.7
6
e
+
0
5

3
.7

9
e+

0
6
±

2
.9

9
e+

0
6

1
.3
6
e
+
0
7
±
6
.5
1
e
+
0
6

1
.5

4
e+

0
7
±

7
.0

3
e+

0
6

F
C
E
C
2
0
1
7
1
3

1
.3
0
e
+
0
3
±
2
.3
9
e
+
0
0

1
.3

4
e+

0
3
±

9
.3

5
e+

0
0

1
.5
7
e
+
0
3
±
5
.8
2
e
+
0
1

1
.3

0
e+

0
5
±

5
.3

3
e+

0
4

2
.1
9
e
+
0
4
±
6
.7
8
e
+
0
3

4
.1

1
e+

0
5
±

4
.1

1
e+

0
5

F
C
E
C
2
0
1
7
1
4

1
.4
0
e
+
0
3
±
7
.2
4
e
-0

1
1
.4

3
e+

0
3
±

2
.8

3
e+

0
0

1
.4
8
e
+
0
3
±
6
.8
3
e
+
0
0

2
.6

9
e+

0
3
±

7
.1

4
e+

0
2

1
.6
0
e
+
0
3
±
1
.6
0
e
+
0
1

1
.0

6
e+

0
5
±

4
.4

4
e+

0
4

F
C
E
C
2
0
1
7
1
5

1
.5
0
e
+
0
3
±
5
.2
2
e
-0

1
1
.5

1
e+

0
3
±

2
.2

0
e+

0
0

1
.5
7
e
+
0
3
±
1
.3
0
e
+
0
1

1
.8

9
e+

0
4
±

8
.0

2
e+

0
3

2
.0
0
e
+
0
3
±
9
.6
0
e
+
0
1

1
.2

0
e+

0
5
±

6
.7

3
e+

0
4

F
C
E
C
2
0
1
7
1
6

1
.6
0
e
+
0
3
±
2
.3
4
e
-0

1
1
.6

0
e+

0
3
±

3
.1

5
e-

0
1

3
.4

0
e+

0
3
±

1
.2

7
e+

0
2

3
.2
0
e
+
0
3
±
1
.4
3
e
+
0
2

5
.4

0
e+

0
3
±

2
.3

8
e+

0
2

5
.1
1
e
+
0
3
±
1
.7
7
e
+
0
2

F
C
E
C
2
0
1
7
1
7

1
.7
0
e
+
0
3
±
2
.9
8
e
+
0
0

1
.7

2
e+

0
3
±

9
.7

0
e+

0
0

2
.1
4
e
+
0
3
±
2
.2
3
e
+
0
2

2
.2

8
e+

0
3
±

9
.0

3
e+

0
1

4
.1

5
e+

0
3
±

2
.1

7
e+

0
2

3
.9
5
e
+
0
3
±
1
.7
0
e
+
0
2

F
C
E
C
2
0
1
7
1
8

1
.8
0
e
+
0
3
±
3
.8
3
e
-0

1
1
.8

9
e+

0
3
±

3
.6

7
e+

0
1

1
.8
8
e
+
0
3
±
1
.4
5
e
+
0
1

9
.1

4
e+

0
5
±

4
.5

1
e+

0
5

6
.3
9
e
+
0
4
±
5
.4
2
e
+
0
4

6
.7

7
e+

0
6
±

4
.1

2
e+

0
6

F
C
E
C
2
0
1
7
1
9

1
.9
0
e
+
0
3
±
2
.5
2
e
-0

1
1
.9

1
e+

0
3
±

1
.2

3
e+

0
0

1
.9
4
e
+
0
3
±
5
.5
0
e
+
0
0

2
.4

3
e+

0
4
±

1
.5

5
e+

0
4

2
.0
3
e
+
0
3
±
1
.5
3
e
+
0
1

6
.5

5
e+

0
4
±

3
.6

6
e+

0
4

F
C
E
C
2
0
1
7
2
0

2
.0

0
e+

0
3
±

3
.8

2
e-

0
1

2
.0
0
e
+
0
3
±
2
.2
4
e
-0

1
2
.6
6
e
+
0
3
±
2
.3
2
e
+
0
2

2
.6

8
e+

0
3
±

1
.3

5
e+

0
2

4
.2

4
e+

0
3
±

1
.8

8
e+

0
2

4
.0
8
e
+
0
3
±
1
.8
3
e
+
0
2

F
C
E
C
2
0
1
7
2
1

2
.3
1
e
+
0
3
±
3
.7
2
e
+
0
1

2
.3

2
e+

0
3
±

3
.9

2
e+

0
1

2
.5

2
e+

0
3
±

1
.3

7
e+

0
1

2
.4
9
e
+
0
3
±
1
.3
0
e
+
0
1

2
.7

4
e+

0
3
±

1
.8

7
e+

0
1

2
.7
0
e
+
0
3
±
1
.9
9
e
+
0
1

F
C
E
C
2
0
1
7
2
2

2
.2
8
e
+
0
3
±
3
.8
4
e
+
0
1

2
.3

0
e+

0
3
±

1
.8

7
e+

0
1

8
.5

1
e+

0
3
±

2
.6

4
e+

0
3

7
.6
1
e
+
0
3
±
3
.3
0
e
+
0
3

1
.6

4
e+

0
4
±

3
.3

4
e+

0
2

1
.6
2
e
+
0
4
±
4
.3
7
e
+
0
2

F
C
E
C
2
0
1
7
2
3

2
.6
1
e
+
0
3
±
5
.6
5
e
+
0
0

2
.6

2
e+

0
3
±

8
.9

7
e+

0
0

2
.8

8
e+

0
3
±

1
.8

3
e+

0
1

2
.8
5
e
+
0
3
±
1
.2
1
e
+
0
1

3
.2

7
e+

0
3
±

3
.2

8
e+

0
1

3
.1
5
e
+
0
3
±
2
.1
4
e
+
0
1

F
C
E
C
2
0
1
7
2
4

2
.7
2
e
+
0
3
±
7
.3
6
e
+
0
1

2
.7

5
e+

0
3
±

1
.1

3
e+

0
1

3
.0

6
e+

0
3
±

2
.0

3
e+

0
1

3
.0
2
e
+
0
3
±
1
.0
7
e
+
0
1

3
.4

9
e+

0
3
±

5
.1

8
e+

0
1

3
.3
1
e
+
0
3
±
1
.9
2
e
+
0
1

F
C
E
C
2
0
1
7
2
5

2
.9
0
e
+
0
3
±
1
.1
5
e
+
0
1

2
.9

1
e+

0
3
±

2
.1

9
e+

0
1

2
.8

8
e+

0
3
±

1
.0

1
e+

0
0

2
.8
8
e
+
0
3
±
5
.1
6
e
-0

2
3
.1

3
e+

0
3
±

4
.4

7
e+

0
1

2
.9
9
e
+
0
3
±
1
.8
0
e
+
0
1

F
C
E
C
2
0
1
7
2
6

2
.9

0
e+

0
3
±

0
.0

0
e+

0
0

2
.9
0
e
+
0
3
±
0
.0
0
e
+
0
0

5
.6

8
e+

0
3
±

1
.5

5
e+

0
2

5
.3
9
e
+
0
3
±
1
.4
7
e
+
0
2

8
.4

0
e+

0
3
±

2
.2

4
e+

0
2

7
.5
6
e
+
0
3
±
1
.7
0
e
+
0
2

F
C
E
C
2
0
1
7
2
7

3
.0

8
e+

0
3
±

3
.4

9
e-

0
1

3
.0
8
e
+
0
3
±
2
.3
5
e
-0

1
3
.3

0
e+

0
3
±

1
.8

1
e+

0
1

3
.2
6
e
+
0
3
±
1
.5
3
e
+
0
1

4
.1

6
e+

0
3
±

1
.2

1
e+

0
2

3
.9
3
e
+
0
3
±
8
.9
4
e
+
0
1

F
C
E
C
2
0
1
7
2
8

3
.3

2
e+

0
3
±

4
.2

6
e+

0
0

3
.3
2
e
+
0
3
±
8
.0
1
e
+
0
0

3
.2

2
e+

0
3
±

1
.3

1
e+

0
1

3
.1
6
e
+
0
3
±
5
.7
1
e
+
0
1

3
.4

9
e+

0
3
±

8
.3

0
e+

0
1

3
.2
8
e
+
0
3
±
2
.0
0
e
+
0
1

F
C
E
C
2
0
1
7
2
9

3
.1
3
e
+
0
3
±
6
.4
2
e
+
0
0

3
.1

8
e+

0
3
±

6
.9

0
e+

0
0

4
.4

6
e+

0
3
±

1
.5

9
e+

0
2

4
.2
6
e
+
0
3
±
1
.9
0
e
+
0
2

5
.9

6
e+

0
3
±

2
.9

0
e+

0
2

5
.4
8
e
+
0
3
±
2
.0
0
e
+
0
2

F
C
E
C
2
0
1
7
3
0

3
.9
5
e
+
0
3
±
3
.9
6
e
+
0
2

1
.4

1
e+

0
4
±

8
.7

5
e+

0
3

3
.4
7
e
+
0
4
±
1
.8
4
e
+
0
4

3
.1

2
e+

0
5
±

1
.6

1
e+

0
5

6
.8
1
e
+
0
6
±
1
.7
4
e
+
0
6

2
.3

9
e+

0
7
±

6
.4

2
e+

0
6

w
/
t/
l

3
/
6
/
2
1

-
1
8
/
3
/
9

-
2
3
/
1
/
6

-



98

T
ab

le
5.

24
:

C
om

p
ar

is
on

of
S
F

F
A

w
it

h
th

e
F
A

on
C

E
C

’2
01

3

F
u

n
ct

io
n

D
=

1
0

D
=

3
0

D
=

5
0

F
A

S
F

F
A

F
A

S
F

F
A

F
A

S
F

F
A

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
3
1

-1
.3

0
e+

0
3
±

5
.5

8
e+

0
2

-1
.4
0
e
+
0
3
±
6
.1
8
e
-0

9
3
.5

3
e+

0
4
±

3
.6

8
e+

0
4

-1
.4
0
e
+
0
3
±
2
.4
6
e
-1

3
1
.3

0
e+

0
5
±

4
.0

1
e+

0
4

-1
.4
0
e
+
0
3
±
1
.2
2
e
-1

2
F
C
E
C
2
0
1
3
2

2
.3

5
e+

0
7
±

2
.2

5
e+

0
7

4
.2
3
e
+
0
4
±
3
.8
8
e
+
0
4

9
.7

7
e+

0
8
±

6
.7

8
e+

0
8

1
.8
3
e
+
0
6
±
8
.0
3
e
+
0
5

3
.7

4
e+

0
9
±

1
.3

4
e+

0
9

5
.4
7
e
+
0
6
±
2
.0
9
e
+
0
6

F
C
E
C
2
0
1
3
3

3
.9

0
e+

0
9
±

6
.4

2
e+

0
9

4
.4
2
e
+
0
6
±
9
.3
5
e
+
0
6

4
.6

9
e+

1
8
±

2
.0

8
e+

1
9

1
.5
5
e
+
0
8
±
2
.4
0
e
+
0
8

6
.2

1
e+

1
7
±

1
.4

4
e+

1
8

6
.5
6
e
+
0
8
±
4
.1
6
e
+
0
8

F
C
E
C
2
0
1
3
4

9
.1

0
e+

0
4
±

8
.7

3
e+

0
4

3
.8
3
e
+
0
2
±
8
.4
3
e
+
0
2

2
.1

8
e+

0
5
±

1
.2

1
e+

0
5

2
.9
3
e
+
0
4
±
1
.0
7
e
+
0
4

3
.2

3
e+

0
5
±

1
.0

9
e+

0
5

6
.2
5
e
+
0
4
±
1
.7
2
e
+
0
4

F
C
E
C
2
0
1
3
5

-9
.4

3
e+

0
2
±

1
.7

8
e+

0
2

-1
.0
0
e
+
0
3
±
2
.1
7
e
-0

9
1
.7

7
e+

0
4
±

1
.7

6
e+

0
4

-1
.0
0
e
+
0
3
±
1
.5
4
e
-1

2
5
.4

6
e+

0
4
±

2
.3

6
e+

0
4

-1
.0
0
e
+
0
3
±
8
.2
8
e
-0

6
F
C
E
C
2
0
1
3
6

-8
.6

3
e+

0
2
±

6
.8

0
e+

0
1

-8
.9
5
e
+
0
2
±
4
.9
1
e
+
0
0

5
.8

4
e+

0
3
±

6
.7

6
e+

0
3

-8
.6
8
e
+
0
2
±
2
.6
7
e
+
0
1

1
.7

7
e+

0
4
±

1
.0

6
e+

0
4

-8
.4
1
e
+
0
2
±
2
.1
9
e
+
0
1

F
C
E
C
2
0
1
3
7

-6
.8

4
e+

0
2
±

5
.6

0
e+

0
1

-7
.9
9
e
+
0
2
±
1
.7
2
e
+
0
0

1
.5

3
e+

0
6
±

4
.7

2
e+

0
6

-7
.4
9
e
+
0
2
±
2
.4
9
e
+
0
1

5
.6

2
e+

0
5
±

6
.8

7
e+

0
5

-7
.2
4
e
+
0
2
±
2
.0
2
e
+
0
1

F
C
E
C
2
0
1
3
8

-6
.7

9
e+

0
2
±

1
.3

8
e-

0
1

-6
.8
0
e
+
0
2
±
8
.0
4
e
-0

2
-6

.7
9
e+

0
2
±

7
.5

3
e-

0
2

-6
.7
9
e
+
0
2
±
5
.6
1
e
-0

2
-6

.7
9
e+

0
2
±

5
.4

4
e-

0
2

-6
.7
9
e
+
0
2
±
3
.0
0
e
-0

2
F
C
E
C
2
0
1
3
9

-5
.9

0
e+

0
2
±

2
.5

9
e+

0
0

-5
.9
7
e
+
0
2
±
1
.7
5
e
+
0
0

-5
.5

3
e+

0
2
±

1
.6

1
e+

0
0

-5
.6
3
e
+
0
2
±
7
.6
9
e
+
0
0

-5
.1

7
e+

0
2
±

1
.9

9
e+

0
0

-5
.3
0
e
+
0
2
±
1
.0
1
e
+
0
1

F
C
E
C
2
0
1
3
1
0

-4
.6

8
e+

0
2
±

1
.4

6
e+

0
2

-5
.0
0
e
+
0
2
±
1
.8
2
e
-0

1
5
.1

2
e+

0
3
±

4
.9

6
e+

0
3

-5
.0
0
e
+
0
2
±
1
.2
3
e
-0

1
1
.8

0
e+

0
4
±

7
.5

8
e+

0
3

-4
.9
9
e
+
0
2
±
5
.9
8
e
-0

1
F
C
E
C
2
0
1
3
1
1

-3
.5

2
e+

0
2
±

2
.6

1
e+

0
1

-3
.9
1
e
+
0
2
±
4
.3
6
e
+
0
0

2
.1

3
e+

0
2
±

4
.0

2
e+

0
2

-3
.2
6
e
+
0
2
±
3
.2
3
e
+
0
1

1
.6

5
e+

0
3
±

6
.1

1
e+

0
2

-1
.3
2
e
+
0
2
±
7
.6
5
e
+
0
1

F
C
E
C
2
0
1
3
1
2

-2
.2

9
e+

0
2
±

2
.4

5
e+

0
1

-2
.9
1
e
+
0
2
±
6
.7
3
e
+
0
0

3
.8

5
e+

0
2
±

3
.5

0
e+

0
2

-2
.2
2
e
+
0
2
±
5
.1
0
e
+
0
1

1
.7

1
e+

0
3
±

2
.8

7
e+

0
2

-7
.4
7
e
+
0
1
±
1
.0
7
e
+
0
2

F
C
E
C
2
0
1
3
1
3

-1
.3

6
e+

0
2
±

1
.3

5
e+

0
1

-1
.8
1
e
+
0
2
±
8
.4
0
e
+
0
0

4
.8

3
e+

0
2
±

3
.1

2
e+

0
2

-3
.9
2
e
+
0
1
±
4
.1
5
e
+
0
1

1
.7

9
e+

0
3
±

3
.3

1
e+

0
2

1
.7
8
e
+
0
2
±
9
.2
7
e
+
0
1

F
C
E
C
2
0
1
3
1
4

1
.9

0
e+

0
3
±

6
.0

1
e+

0
2

3
.0
8
e
+
0
2
±
3
.1
6
e
+
0
2

9
.0

9
e+

0
3
±

4
.1

3
e+

0
2

3
.7
8
e
+
0
3
±
2
.6
3
e
+
0
3

1
.6

3
e+

0
4
±

5
.2

9
e+

0
2

7
.5
2
e
+
0
3
±
5
.0
2
e
+
0
3

F
C
E
C
2
0
1
3
1
5

2
.3

6
e+

0
3
±

2
.1

2
e+

0
2

1
.5
1
e
+
0
3
±
3
.0
1
e
+
0
2

9
.2

5
e+

0
3
±

4
.1

6
e+

0
2

7
.8
1
e
+
0
3
±
2
.4
4
e
+
0
2

1
.6

8
e+

0
4
±

5
.5

5
e+

0
2

1
.4
8
e
+
0
4
±
3
.2
3
e
+
0
2

F
C
E
C
2
0
1
3
1
6

2
.0

3
e+

0
2
±

7
.2

9
e-

0
1

2
.0
1
e
+
0
2
±
2
.1
0
e
-0

1
2
.0

5
e+

0
2
±

8
.6

3
e-

0
1

2
.0
3
e
+
0
2
±
3
.2
4
e
-0

1
2
.0

6
e+

0
2
±

6
.4

4
e-

0
1

2
.0
4
e
+
0
2
±
3
.1
8
e
-0

1
F
C
E
C
2
0
1
3
1
7

3
.7

6
e+

0
2
±

1
.6

4
e+

0
1

3
.1
7
e
+
0
2
±
3
.8
3
e
+
0
0

1
.1

8
e+

0
3
±

6
.6

3
e+

0
2

3
.9
3
e
+
0
2
±
2
.6
9
e
+
0
1

3
.5

6
e+

0
3
±

1
.6

7
e+

0
3

5
.2
5
e
+
0
2
±
6
.8
8
e
+
0
1

F
C
E
C
2
0
1
3
1
8

4
.7

8
e+

0
2
±

2
.2

0
e+

0
1

4
.3
4
e
+
0
2
±
3
.0
7
e
+
0
0

1
.2

6
e+

0
3
±

6
.2

4
e+

0
2

6
.2
2
e
+
0
2
±
1
.1
8
e
+
0
1

3
.8

6
e+

0
3
±

1
.5

0
e+

0
3

8
.5
0
e
+
0
2
±
2
.2
4
e
+
0
1

F
C
E
C
2
0
1
3
1
9

6
.8

5
e+

0
2
±

6
.8

5
e+

0
2

5
.0
1
e
+
0
2
±
5
.4
6
e
-0

1
1
.5

5
e+

0
6
±

1
.7

4
e+

0
6

5
.0
6
e
+
0
2
±
2
.2
0
e
+
0
0

1
.2

9
e+

0
7
±

6
.1

4
e+

0
6

5
.2
1
e
+
0
2
±
8
.7
5
e
+
0
0

F
C
E
C
2
0
1
3
2
0

6
.0

4
e+

0
2
±

3
.5

7
e-

0
1

6
.0
2
e
+
0
2
±
6
.4
4
e
-0

1
6
.1

5
e+

0
2
±

1
.6

1
e-

0
1

6
.1
2
e
+
0
2
±
6
.8
1
e
-0

1
6
.2

5
e+

0
2
±

1
.3

1
e-

0
8

6
.2
2
e
+
0
2
±
8
.8
7
e
-0

1
F
C
E
C
2
0
1
3
2
1

1
.0
9
e
+
0
3
±
4
.8
8
e
+
0
1

1
.1

0
e+

0
3
±

1
.8

3
e+

0
1

3
.1

4
e+

0
3
±

2
.1

7
e+

0
3

1
.0
2
e
+
0
3
±
7
.3
7
e
+
0
1

8
.9

2
e+

0
3
±

4
.2

9
e+

0
3

1
.6
1
e
+
0
3
±
3
.7
1
e
+
0
2

F
C
E
C
2
0
1
3
2
2

3
.2

3
e+

0
3
±

4
.7

0
e+

0
2

1
.1
9
e
+
0
3
±
2
.3
2
e
+
0
2

1
.0

6
e+

0
4
±

3
.6

0
e+

0
2

3
.9
3
e
+
0
3
±
1
.5
8
e
+
0
3

1
.8

2
e+

0
4
±

4
.0

0
e+

0
2

6
.1
4
e
+
0
3
±
1
.0
5
e
+
0
3

F
C
E
C
2
0
1
3
2
3

3
.5

4
e+

0
3
±

2
.4

8
e+

0
2

1
.6
4
e
+
0
3
±
4
.2
4
e
+
0
2

1
.0

6
e+

0
4
±

3
.8

2
e+

0
2

8
.9
3
e
+
0
3
±
1
.0
4
e
+
0
3

1
.8

6
e+

0
4
±

4
.0

2
e+

0
2

1
.6
6
e
+
0
4
±
7
.9
7
e
+
0
2

F
C
E
C
2
0
1
3
2
4

1
.2

3
e+

0
3
±

1
.0

5
e+

0
1

1
.2
1
e
+
0
3
±
5
.3
4
e
+
0
0

1
.3

8
e+

0
3
±

6
.8

5
e+

0
1

1
.2
6
e
+
0
3
±
1
.1
8
e
+
0
1

1
.7

4
e+

0
3
±

1
.8

2
e+

0
2

1
.3
3
e
+
0
3
±
2
.1
8
e
+
0
1

F
C
E
C
2
0
1
3
2
5

1
.3

2
e+

0
3
±

1
.1

3
e+

0
1

1
.3
0
e
+
0
3
±
4
.3
8
e
+
0
0

1
.4

9
e+

0
3
±

3
.7

1
e+

0
1

1
.3
9
e
+
0
3
±
1
.3
1
e
+
0
1

1
.7

1
e+

0
3
±

3
.0

8
e+

0
1

1
.5
0
e
+
0
3
±
1
.7
1
e
+
0
1

F
C
E
C
2
0
1
3
2
6

1
.4

0
e+

0
3
±

4
.8

6
e+

0
1

1
.3
5
e
+
0
3
±
4
.4
1
e
+
0
1

1
.5

9
e+

0
3
±

7
.2

9
e+

0
1

1
.4
1
e
+
0
3
±
3
.7
1
e
+
0
1

1
.7

4
e+

0
3
±

2
.2

0
e+

0
1

1
.5
9
e
+
0
3
±
8
.6
6
e
+
0
1

F
C
E
C
2
0
1
3
2
7

1
.7

9
e+

0
3
±

1
.2

7
e+

0
2

1
.6
1
e
+
0
3
±
2
.9
8
e
+
0
1

2
.9

0
e+

0
3
±

1
.6

8
e+

0
2

2
.1
9
e
+
0
3
±
8
.0
7
e
+
0
1

4
.3

4
e+

0
3
±

1
.7

4
e+

0
2

2
.9
2
e
+
0
3
±
1
.6
0
e
+
0
2

F
C
E
C
2
0
1
3
2
8

1
.8

9
e+

0
3
±

2
.5

1
e+

0
2

1
.7
4
e
+
0
3
±
1
.0
6
e
+
0
2

7
.5

2
e+

0
3
±

3
.2

1
e+

0
3

1
.9
4
e
+
0
3
±
6
.7
2
e
+
0
2

1
.4

9
e+

0
4
±

1
.7

5
e+

0
3

2
.3
7
e
+
0
3
±
1
.3
1
e
+
0
3

w
/
t/
l

2
8
/
0
/
0

-
2
8
/
0
/
0

-
2
8
/
0
/
0

-



99

T
ab

le
5.

25
:

C
om

p
ar

is
on

of
S
F

F
A

w
it

h
th

e
F
A

on
C

E
C

’2
01

7

F
u

n
ct

io
n

D
=

1
0

D
=

3
0

D
=

5
0

F
A

S
F

F
A

F
A

S
F

F
A

F
A

S
F

F
A

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

A
v
er

a
g
e±

S
td

F
C
E
C
2
0
1
7
1

2
.1

8
e+

0
7
±

1
.1

4
e+

0
8

9
.8
1
e
+
0
2
±
9
.8
6
e
+
0
2

1
.7

3
e+

1
0
±

3
.6

1
e+

1
0

4
.5
4
e
+
0
3
±
4
.6
1
e
+
0
3

1
.4

2
e+

1
1
±

1
.0

4
e+

1
1

2
.4
8
e
+
0
3
±
2
.8
9
e
+
0
3

F
C
E
C
2
0
1
7
2

1
.9

3
e+

1
0
±

6
.2

7
e+

1
0

2
.0
0
e
+
0
2
±
3
.9
1
e
-0

5
1
.4

4
e+

4
8
±

4
.1

8
e+

4
8

2
.2
2
e
+
1
8
±
1
.2
2
e
+
1
9

4
.1

9
e+

8
6
±

1
.8

4
e+

8
7

5
.9
2
e
+
5
6
±
3
.2
4
e
+
5
7

F
C
E
C
2
0
1
7
3

2
.7

9
e+

0
4
±

1
.4

4
e+

0
4

3
.0
0
e
+
0
2
±
9
.2
0
e
-1

4
1
.5

7
e+

0
6
±

6
.2

8
e+

0
6

1
.5
9
e
+
0
4
±
7
.3
6
e
+
0
3

1
.0

6
e+

0
7
±

4
.1

2
e+

0
7

1
.4
7
e
+
0
5
±
1
.9
1
e
+
0
4

F
C
E
C
2
0
1
7
4

4
.4

4
e+

0
2
±

1
.3

4
e+

0
2

4
.0
1
e
+
0
2
±
5
.5
4
e
-0

1
9
.3

1
e+

0
3
±

1
.4

7
e+

0
4

4
.6
8
e
+
0
2
±
3
.8
3
e
+
0
1

7
.0

9
e+

0
4
±

2
.3

5
e+

0
4

5
.3
0
e
+
0
2
±
4
.8
0
e
+
0
1

F
C
E
C
2
0
1
7
5

5
.5

1
e+

0
2
±

2
.3

3
e+

0
1

5
.0
9
e
+
0
2
±
4
.6
7
e
+
0
0

9
.0

8
e+

0
2
±

1
.4

6
e+

0
2

5
.7
4
e
+
0
2
±
2
.9
4
e
+
0
1

1
.5

0
e+

0
3
±

1
.7

7
e+

0
2

7
.0
4
e
+
0
2
±
7
.6
0
e
+
0
1

F
C
E
C
2
0
1
7
6

6
.0

7
e+

0
2
±

1
.0

8
e+

0
1

6
.0
0
e
+
0
2
±
4
.5
1
e
-0

3
6
.9

7
e+

0
2
±

2
.8

5
e+

0
1

6
.0
2
e
+
0
2
±
2
.5
2
e
+
0
0

7
.3

4
e+

0
2
±

1
.3

9
e+

0
1

6
.1
7
e
+
0
2
±
1
.3
2
e
+
0
1

F
C
E
C
2
0
1
7
7

7
.7

4
e+

0
2
±

2
.1

4
e+

0
1

7
.1
7
e
+
0
2
±
3
.0
2
e
+
0
0

1
.6

2
e+

0
3
±

6
.0

8
e+

0
2

7
.9
1
e
+
0
2
±
2
.6
4
e
+
0
1

3
.7

7
e+

0
3
±

1
.6

8
e+

0
3

9
.5
1
e
+
0
2
±
5
.7
7
e
+
0
1

F
C
E
C
2
0
1
7
8

8
.5

0
e+

0
2
±

2
.6

3
e+

0
1

8
.1
0
e
+
0
2
±
4
.5
4
e
+
0
0

1
.1

6
e+

0
3
±

1
.1

2
e+

0
2

8
.6
9
e
+
0
2
±
2
.4
9
e
+
0
1

1
.8

4
e+

0
3
±

1
.2

4
e+

0
2

9
.8
5
e
+
0
2
±
6
.0
0
e
+
0
1

F
C
E
C
2
0
1
7
9

1
.1

0
e+

0
3
±

3
.8

0
e+

0
2

9
.0
0
e
+
0
2
±
1
.9
1
e
+
0
0

2
.1

6
e+

0
4
±

7
.7

7
e+

0
3

9
.5
4
e
+
0
2
±
6
.8
5
e
+
0
1

7
.5

2
e+

0
4
±

1
.4

7
e+

0
4

2
.1
0
e
+
0
3
±
1
.4
2
e
+
0
3

F
C
E
C
2
0
1
7
1
0

3
.1

3
e+

0
3
±

3
.0

7
e+

0
2

1
.6
6
e
+
0
3
±
4
.2
8
e
+
0
2

1
.0

1
e+

0
4
±

4
.1

9
e+

0
2

8
.0
2
e
+
0
3
±
1
.4
1
e
+
0
3

1
.7

1
e+

0
4
±

3
.5

4
e+

0
2

1
.3
8
e
+
0
4
±
2
.9
4
e
+
0
3

F
C
E
C
2
0
1
7
1
1

2
.1

0
e+

0
3
±

1
.7

2
e+

0
3

1
.1
1
e
+
0
3
±
3
.5
3
e
+
0
0

2
.4

6
e+

0
4
±

8
.8

1
e+

0
3

1
.1
5
e
+
0
3
±
3
.0
1
e
+
0
1

6
.6

4
e+

0
4
±

1
.8

8
e+

0
4

1
.2
1
e
+
0
3
±
4
.7
6
e
+
0
1

F
C
E
C
2
0
1
7
1
2

8
.5

7
e+

0
6
±

1
.7

1
e+

0
7

1
.0
5
e
+
0
4
±
5
.8
5
e
+
0
3

8
.2

9
e+

0
9
±

7
.8

4
e+

0
9

3
.4
6
e
+
0
5
±
4
.0
5
e
+
0
5

8
.2

7
e+

1
0
±

3
.8

1
e+

1
0

1
.9
9
e
+
0
6
±
8
.4
2
e
+
0
5

F
C
E
C
2
0
1
7
1
3

2
.0

2
e+

0
5
±

6
.1

0
e+

0
5

7
.5
4
e
+
0
3
±
6
.0
9
e
+
0
3

6
.4

3
e+

0
9
±

7
.5

8
e+

0
9

1
.2
4
e
+
0
4
±
9
.2
3
e
+
0
3

4
.5

8
e+

1
0
±

2
.1

9
e+

1
0

3
.9
9
e
+
0
3
±
2
.9
1
e
+
0
3

F
C
E
C
2
0
1
7
1
4

2
.6

5
e+

0
4
±

8
.6

3
e+

0
4

1
.5
9
e
+
0
3
±
2
.1
0
e
+
0
2

1
.5

5
e+

0
7
±

8
.2

1
e+

0
6

1
.8
2
e
+
0
5
±
1
.8
5
e
+
0
5

1
.2

4
e+

0
8
±

7
.3

4
e+

0
7

1
.0
5
e
+
0
6
±
1
.1
5
e
+
0
6

F
C
E
C
2
0
1
7
1
5

3
.2

8
e+

0
4
±

2
.3

9
e+

0
4

3
.9
7
e
+
0
3
±
4
.3
5
e
+
0
3

1
.1

6
e+

0
9
±

1
.2

6
e+

0
9

9
.2
8
e
+
0
3
±
9
.3
7
e
+
0
3

1
.6

8
e+

1
0
±

7
.8

5
e+

0
9

5
.8
9
e
+
0
3
±
4
.3
9
e
+
0
3

F
C
E
C
2
0
1
7
1
6

2
.0

7
e+

0
3
±

2
.4

6
e+

0
2

1
.6
8
e
+
0
3
±
8
.0
8
e
+
0
1

5
.8

5
e+

0
3
±

1
.0

4
e+

0
3

2
.4
3
e
+
0
3
±
3
.1
4
e
+
0
2

1
.1

0
e+

0
4
±

1
.3

7
e+

0
3

3
.1
8
e
+
0
3
±
3
.9
0
e
+
0
2

F
C
E
C
2
0
1
7
1
7

1
.9

2
e+

0
3
±

1
.3

2
e+

0
2

1
.7
2
e
+
0
3
±
1
.9
8
e
+
0
1

3
.8

7
e+

0
3
±

1
.0

7
e+

0
3

2
.1
3
e
+
0
3
±
2
.9
2
e
+
0
2

1
.6

4
e+

0
5
±

1
.5

3
e+

0
5

2
.9
9
e
+
0
3
±
4
.1
7
e
+
0
2

F
C
E
C
2
0
1
7
1
8

4
.1

8
e+

0
6
±

1
.1

4
e+

0
7

9
.8
5
e
+
0
3
±
8
.3
1
e
+
0
3

2
.1

7
e+

0
8
±

1
.3

7
e+

0
8

1
.0
5
e
+
0
6
±
1
.2
5
e
+
0
6

4
.6

9
e+

0
8
±

1
.9

2
e+

0
8

3
.1
4
e
+
0
6
±
2
.2
6
e
+
0
6

F
C
E
C
2
0
1
7
1
9

7
.7

1
e+

0
5
±

3
.5

9
e+

0
6

5
.7
2
e
+
0
3
±
4
.5
6
e
+
0
3

1
.4

6
e+

0
9
±

1
.6

2
e+

0
9

7
.0
7
e
+
0
3
±
5
.2
3
e
+
0
3

7
.1

0
e+

0
9
±

2
.0

3
e+

0
9

1
.6
3
e
+
0
4
±
1
.0
6
e
+
0
4

F
C
E
C
2
0
1
7
2
0

2
.2

2
e+

0
3
±

1
.2

2
e+

0
2

2
.0
3
e
+
0
3
±
4
.5
0
e
+
0
1

3
.4

7
e+

0
3
±

1
.6

4
e+

0
2

2
.4
7
e
+
0
3
±
2
.6
9
e
+
0
2

5
.0

5
e+

0
3
±

1
.9

7
e+

0
2

3
.6
7
e
+
0
3
±
7
.9
6
e
+
0
2

F
C
E
C
2
0
1
7
2
1

2
.3

3
e+

0
3
±

5
.4

5
e+

0
1

2
.2
2
e
+
0
3
±
3
.8
2
e
+
0
1

2
.7

3
e+

0
3
±

1
.0

8
e+

0
2

2
.3
7
e
+
0
3
±
2
.5
9
e
+
0
1

3
.3

6
e+

0
3
±

1
.3

1
e+

0
2

2
.4
7
e
+
0
3
±
3
.2
8
e
+
0
1

F
C
E
C
2
0
1
7
2
2

2
.3

1
e+

0
3
±

2
.3

8
e+

0
0

2
.3
0
e
+
0
3
±
1
.3
5
e
+
0
1

1
.0

2
e+

0
4
±

2
.7

8
e+

0
3

2
.3
0
e
+
0
3
±
1
.1
8
e
+
0
0

1
.8

7
e+

0
4
±

5
.2

1
e+

0
2

1
.3
3
e
+
0
4
±
5
.2
8
e
+
0
3

F
C
E
C
2
0
1
7
2
3

2
.6

6
e+

0
3
±

2
.5

1
e+

0
1

2
.6
1
e
+
0
3
±
5
.2
8
e
+
0
0

3
.4

3
e+

0
3
±

2
.5

6
e+

0
2

2
.7
7
e
+
0
3
±
4
.6
5
e
+
0
1

4
.6

6
e+

0
3
±

2
.8

9
e+

0
2

3
.0
0
e
+
0
3
±
6
.5
6
e
+
0
1

F
C
E
C
2
0
1
7
2
4

2
.7

7
e+

0
3
±

6
.0

2
e+

0
1

2
.7
0
e
+
0
3
±
8
.1
8
e
+
0
1

3
.7

2
e+

0
3
±

3
.6

9
e+

0
2

2
.9
0
e
+
0
3
±
3
.5
4
e
+
0
1

5
.1

4
e+

0
3
±

3
.8

2
e+

0
2

3
.1
5
e
+
0
3
±
8
.3
9
e
+
0
1

F
C
E
C
2
0
1
7
2
5

2
.9

6
e+

0
3
±

9
.7

7
e+

0
1

2
.9
2
e
+
0
3
±
2
.3
3
e
+
0
1

4
.5

5
e+

0
3
±

3
.2

9
e+

0
3

2
.8
9
e
+
0
3
±
1
.6
6
e
+
0
1

3
.8

4
e+

0
4
±

1
.3

4
e+

0
4

3
.0
7
e
+
0
3
±
3
.0
3
e
+
0
1

F
C
E
C
2
0
1
7
2
6

3
.2

5
e+

0
3
±

5
.3

6
e+

0
2

2
.9
0
e
+
0
3
±
1
.0
1
e
+
0
1

9
.3

5
e+

0
3
±

2
.9

8
e+

0
3

4
.5
5
e
+
0
3
±
7
.3
8
e
+
0
2

2
.4

1
e+

0
4
±

4
.3

3
e+

0
3

7
.0
9
e
+
0
3
±
1
.0
8
e
+
0
3

F
C
E
C
2
0
1
7
2
7

3
.1

3
e+

0
3
±

5
.5

2
e+

0
1

3
.1
0
e
+
0
3
±
5
.3
7
e
+
0
0

4
.4

0
e+

0
3
±

6
.6

7
e+

0
2

3
.2
5
e
+
0
3
±
2
.3
3
e
+
0
1

7
.4

2
e+

0
3
±

5
.4

6
e+

0
2

3
.6
1
e
+
0
3
±
1
.1
9
e
+
0
2

F
C
E
C
2
0
1
7
2
8

3
.4

1
e+

0
3
±

1
.8

9
e+

0
2

3
.1
6
e
+
0
3
±
1
.2
1
e
+
0
2

7
.8

5
e+

0
3
±

3
.2

1
e+

0
3

3
.1
9
e
+
0
3
±
3
.9
6
e
+
0
1

1
.8

8
e+

0
4
±

4
.8

7
e+

0
3

3
.3
2
e
+
0
3
±
3
.1
1
e
+
0
1

F
C
E
C
2
0
1
7
2
9

3
.4

4
e+

0
3
±

1
.5

6
e+

0
2

3
.1
7
e
+
0
3
±
2
.3
1
e
+
0
1

7
.6

5
e+

0
3
±

2
.2

4
e+

0
3

3
.7
9
e
+
0
3
±
2
.6
0
e
+
0
2

1
.9

6
e+

0
5
±

1
.9

2
e+

0
5

4
.3
9
e
+
0
3
±
3
.3
9
e
+
0
2

F
C
E
C
2
0
1
7
3
0

1
.2

4
e+

0
7
±

1
.6

9
e+

0
7

1
.5
9
e
+
0
5
±
3
.9
6
e
+
0
5

7
.9

9
e+

0
8
±

9
.1

9
e+

0
8

8
.5
5
e
+
0
3
±
2
.7
4
e
+
0
3

9
.9

4
e+

0
9
±

4
.6

0
e+

0
9

9
.4
7
e
+
0
5
±
1
.4
9
e
+
0
5

w
/
t/
l

3
0
/
0
/
0

-
2
9
/
1
/
0

-
3
0
/
0
/
0

-



100

Chapter 6

Conclusion

First, a novel dendritic neural model trained by the AIS algorithm, termed the AIS-

DNM, is introduced. To evaluate the performance of the AISDNM, eight classifica-

tion datasets and eight prediction problems are used in the experiments. The Taguchi

method is employed to seek the most suitable user-defined parameter setting for each

problem. The experimental results demonstrate that the AISDNM clearly outper-

forms the MLP, DT, line-SVM, rbf-SVM, poly-SVM and DNM in terms of various

evaluation criteria, which suggests that the powerful search ability can present the

AISDNM from trapping into the local minimum. In addition, it also has been proven

that the AISDNM can remove redundant synaptic layers and useless dendritic layers

to simplify the structural morphology for each classification problem. Then, the sim-

plified structure of the AISDNM can be transformed into an LCC without sacrificing

accuracy. The LCC employs the binary computation, rather than the floating-point

calculation of other machine learning techniques. Thus, it is easy for hardware imple-

mentation and parallel computation. The LCC may have its own advantage to deal

with big data problems due to high computation speed. Applying the AISDNM to

solve more complex real-world problems is also worth investigating.

Second, we focused on the architecture design of scale-free population topology

to enhance the performance of the CS algorithm. Specifically, all individuals of the

population can be regarded as the nodes in the network, and each individual is re-

stricted to exchange information with the other individuals who connect to it. The

low assortativity of the scale-free architecture design can control the influence of
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competent individuals on the entire population, which is beneficial to maintaining

better diversity and supports SFCS architecture design to fight premature conver-

gence. Meanwhile, the power-law distribution of a scale-free population topology

ensures information transmission between the competent individuals and the corrupt

individuals. In other words, corrupt individuals can learn more information from

competent individuals without incurring the cost of random attempts, which guar-

antees the exploitation capability of the SFCS architecture design. The analysis of

computational complexity indicates that the introduction of the scale-free population

topology into CS does not increase the computational cost. In addition, extensive

comparative experiments verify the superiority of the scale-free architecture design. In

our experiments, SFCS architecture design was compared with the CS algorithm, two

CS variants, and five other techniques. The corresponding experimental results and

statistical analysis demonstrated that SFCS architecture design performed the best

on most 58 benchmark functions with 10 ∼ 50 dimensions, which suggests that the

scale-free population topology enables the SFCS algorithm to allow a better trade-off

between exploitation and exploration. Next, the analysis of parameter sensibility im-

plied that the parameter M0 has little effect on SFCS architecture design. To further

validate the effectiveness of the scale-free population topology, the SFCS algorithm

was also applied to 21 real-world optimization problems. Again, the comparison re-

sults showed that the SFCS algorithm can achieve superior performance in most cases

compared with other excellent algorithms. Finally, we prove that our scale-free idea is

more effective despite its simplicity by comparing the SFCS and SFIPSO. The effec-

tiveness of the scale-free population topology on the DE and FA verify that it can be

considered an effective tool for improving the optimization performances of the SFCS

algorithm and can be extended to other excellent population-based optimization al-

gorithms easily owing to its simple population topology structure with the ease of

implementation and high computational efficiency. Furthermore, incorporating other

complex networks into evolutionary algorithms is also worth further investigating.
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[133] Erik Cuevas, Alonso Echavarŕıa, and Marte A Ramı́rez-Ortegón. An optimiza-

tion algorithm inspired by the states of matter that improves the balance be-

tween exploration and exploitation. Applied intelligence, 40(2):256–272, 2014.

[134] Swagatam Das and Ponnuthurai N Suganthan. Problem definitions and eval-

uation criteria for cec 2011 competition on testing evolutionary algorithms on

real world optimization problems. Jadavpur University, Nanyang Technological

University, Kolkata, pages 341–359, 2010.

[135] Xin-She Yang. Firefly algorithm, levy flights and global optimization. In Re-

search and development in intelligent systems XXVI, pages 209–218. Springer,

2010.


