Contact metric structures on 3-dimensional manifolds

理工学教育部

数理・ヒューマンシステム科学

山本 明夫

Contents

Preface			1	
1	Aln 1.1 1.2	almost contact metric manifolds almost contact manifolds		
2	2.1 2.2	contact metric manifolds contact manifolds	24	
3	3.1 3.2	imensional contact metric manifolds S^3 with the contact form η	43	

Preface

A differentiable manifold M^{2n+1} is said to have a contact structure or to be a contact manifold if there exists a 1-form η over M^{2n+1} such that $\eta \wedge (d\eta)^n \neq 0$. The condition $\eta \wedge (d\eta)^n \neq 0$ means that a contact manifold is orientable. It is known that a smooth hypersurface satisfying some conditions has a contact structure. As a special case S^{2n+1} is a contact manifold. When a contact form η is given on M^{2n+1} , there exists a system (ξ, φ, g) of a vector field ξ , a tensor field φ of type (1,1) and a Riemannian metric g, which called a contact metric structure.

On the other hand the notion of almost contact metric structures is a generalization of the notion of contact metric structures. An almost contact metric structure does not assume the condition $\eta \wedge (d\eta)^n \neq 0$. From the point of view of the Riemannian geometry of contact metric manifolds we consider K-contact structures.

This paper consists of three chapters. In Chapter 1 we mention the notion of an almost contact metric structure (φ, ξ, η, g) on M^{2n+1} and give its examples. Next we show that on an almost contact metric manifold M^{2n+1} we can construct a useful orthonormal basis called φ -basis. And we explain that on the almost contact metric manifold \mathbf{R}^{2n+1} the sectional curvature of a vector X orthogonal to ξ and φX is equal to -3. Finally we show that on the Heisenberg group $H_{\mathbf{R}}$ identified with \mathbf{R}^3 left translation preserves η and g is a left invariant metric.

Chapter 2 we mention the notion of a contact metric structure (φ, ξ, η, g) and give its examples. Remark that for a contact form η, ξ is unique but g and φ are not necessarily unique. Next we show that in Hopf's mapping $\pi: S^3 \longrightarrow S^2$ the value of $d\pi(\xi)$ is equal to 0. Moreover we mention the notion of K-contact structure. We consider the sectional curvature of K-contact manifold M^{2n+1} . Finally we check that the almost contact metric structure on M^{2n} × \mathbf{R} is not a contact metric structure.

It is known that every compact orientable 3-dimensional manifold has a contact structure. In Chapter 3 we consider 3-dimensional contact manifolds, especially S^3 , \mathbf{R}^3 and T^3 . We give a typical contact form η on S^3 , \mathbf{R}^3 and T^3 respectively. Then we completely determine their contact metric structures. Next, we check that such contact metric structures are η -Einstein or not. If $M^3 = S^3$, (φ, ξ, η, g) is η -Einstein if and only if g is the standard metric. If $M^3 = \mathbf{R}^3$, all (φ, ξ, η, g) are η -Einstein. If $M^3 = T^3$, one parameter family of (φ, ξ, η, g) are η -Einstein. We check that such contact metric structures are Sasakian or not. If $M^3 = S^3$, (φ, ξ, η, g) is Sasakian if and only if g is the standard metric. If $M^3 = \mathbf{R}^3$, all (φ, ξ, η, g) are Sasakian. If $M^3 = T^3$, all (φ, ξ, η, g) are not Sasakian. We check that such contact metric structures are K-contact or not. If $M^3 = S^3$, (φ, ξ, η, g) is K-contact if and only if g is the standard metric. If $M^3 = \mathbf{R}^3$, all (φ, ξ, η, g) are K-contact. If $M^3 = T^3$, all (φ, ξ, η, g) are not K-contact.

Chapter 1

Almost contact metric manifolds

1.1 almost contact manifolds

We say M^{2n+1} has an almost contact structure or sometimes (φ, ξ, η) -structure if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η satisfying

$$\eta(\xi) = 1,$$

(1.2)
$$\varphi^2(X) = -X + \eta(X)\xi,$$

for $X \in \mathfrak{X}(M^{2n+1})$.

Theorem 1.1.1. (cf.[3]) Suppose M^{2n+1} has a (φ, ξ, η) -structure. Then we have

$$(1.3) \varphi(\xi) = 0,$$

$$\eta \circ \varphi = 0,$$

$$(1.5) rank \varphi = 2n.$$

Proof First by substituting $X = \xi$ into (1.2), from (1.1) we get

$$\varphi(\varphi\xi) = 0. \tag{1}$$

Now we assume

$$\varphi\xi \neq 0. \tag{2}$$

CHAPTER 1. ALMOST CONTACT METRIC MANIFOLDS

We again substitute $X = \varphi \xi$ into (1.2) and get

$$\varphi^2(\varphi\xi) = -\varphi\xi + \eta(\varphi\xi)\xi. \tag{3}$$

In the left side of (3) we get from (1)

$$\varphi^2(\varphi\xi) = 0$$

and hence

$$\varphi \xi = \eta(\varphi \xi) \xi. \tag{4}$$

From (2) we get

$$\eta(\varphi\xi) \neq 0. \tag{5}$$

On the other hand using (4) we get from (5)

$$\varphi(\varphi\xi) = \varphi(\eta(\varphi\xi)\xi) = {\{\eta(\varphi\xi)\}}^2 \xi \neq 0,$$

that is

$$\varphi(\varphi\xi) \neq 0.$$

This is a contradiction. Thus, $\varphi \xi = 0$.

Next by substituting φX into (1.2), we get

$$\eta(\varphi X)\xi = \varphi^2(\varphi X) + \varphi X. \tag{6}$$

Using (1.2) we compute the right side of (6)

$$\varphi^{2}(\varphi X) + \varphi X = \varphi(\varphi^{2} X) + \varphi X$$
$$= \eta(X)\varphi \xi.$$

Since $\varphi \xi = 0$, we get from (6)

$$\eta(\varphi X)\xi = 0$$

and hence $\eta(\varphi X) = 0$. Thus, $\eta \circ \varphi = 0$.

Finally for $X \in \text{Ker}(\varphi)$ we get

$$\varphi^2 X = 0. (7)$$

By substituting X into (1.2), from (7) we get $X = \eta(X)\xi$ and hence

$$\dim(\operatorname{Ker}(\varphi)) = 1$$

Thus, rank
$$\varphi = 2n + 1 - 1 = 2n$$
.

1.1. ALMOST CONTACT MANIFOLDS

Example

Proposition 1.1.2. (cf.[3]) Let η be the 1-form, ξ the characteristic vector field and φ the tensor field on \mathbf{R}^{2n+1} defined by

(1.6)
$$\eta = \frac{1}{2}(dz - \sum_{i=1}^{n} y^{i} dx^{i}),$$

$$\xi = 2\frac{\partial}{\partial z},$$

(1.8)
$$\varphi = \begin{pmatrix} 0 & \delta_{ij} & 0 \\ -\delta_{ij} & 0 & 0 \\ 0 & y^j & 0 \end{pmatrix},$$

respectively. Then $(\mathbf{R}^{2n+1}, \varphi, \xi, \eta)$ is an almost contact manifold.

Proof First using (1.6), (1.7) we get

$$\eta(\xi) = \frac{1}{2} (dz - \sum_{i=1}^{n} y^{i} dx^{i}) (2\frac{\partial}{\partial z}) = 1.$$

Next let $\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}, \frac{\partial}{\partial y^1}, \dots, \frac{\partial}{\partial y^n}, \frac{\partial}{\partial z}$ be natural basis on \mathbf{R}^{2n+1} . Using (1.8), we get

$$\begin{split} \varphi^2(\frac{\partial}{\partial x^i}) &= \varphi(-\frac{\partial}{\partial y^i}) = -\frac{\partial}{\partial x^i} - y^i \frac{\partial}{\partial z}, \\ (-I + \eta \otimes \xi)(\frac{\partial}{\partial x^i}) &= -\frac{\partial}{\partial x^i} + \frac{1}{2}(0 - y^i)2\frac{\partial}{\partial z} = -\frac{\partial}{\partial x^i} - y^i \frac{\partial}{\partial z}, \end{split}$$

and

$$\begin{split} \varphi^2(\frac{\partial}{\partial y^i}) &= \varphi(\frac{\partial}{\partial x^i} + y^i \frac{\partial}{\partial z}) = -\frac{\partial}{\partial y^i} + y^i \cdot 0 = -\frac{\partial}{\partial y^i}, \\ (-I + \eta \otimes \xi)(\frac{\partial}{\partial y^i}) &= -\frac{\partial}{\partial y^i} + \frac{1}{2}(0 - 0)2\frac{\partial}{\partial z} = -\frac{\partial}{\partial y^i}, \end{split}$$

where $i = 1, \dots, n$.

Moreover we get

$$\varphi^{2}(\frac{\partial}{\partial z}) = \varphi(0) = 0,$$

$$(-I + \eta \otimes \xi)(\frac{\partial}{\partial z}) = -\frac{\partial}{\partial z} + \frac{\partial}{\partial z} = 0.$$

Therefore (1.1) and (1.2) hold.

1.2 almost contact metric manifolds

Definition 1.2.1. If a manifold M^{2n+1} with an a almost contact structure (φ, ξ, η) admits a Riemannian metric satisfying

(1.9)
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

then g is called a compatible metric and (φ, ξ, η, g) is called an almost contact metric structure on M^{2n+1} .

Proposition 1.2.1. (cf.[3]) On an almost contact metric manifold $(M^{2n+1}, \varphi, \xi, \eta, g)$,

(1.10)
$$\eta(X) = g(X, \xi)$$

hold.

Proof By substituting $Y = \xi$ into (1.9), from (1.1), (1.3) we get

$$0 = q(\varphi X, \varphi \xi) = q(X, \xi) - \eta(X)\eta(\xi) = q(X, \xi) - \eta(X)$$

and hence (1.10).

Proposition 1.2.2. (cf.[3]) M^{2n+1} is an almost contact metric manifold with (φ, ξ, η, g) . U is a local coordinate neighborhood on M^{2n+1} .

- (1) If X_1 is a unit vector field on U orthogonal to ξ , then φX_1 is a unit vector field orthogonal to both ξ and X_1 .
- (2) If X_2 is a unit vector field on U orthogonal to ξ, X_1 and φX_1 , then φX_2 is a unit vector field orthogonal to ξ, X_1, X_2 and φX_1 .
- (3) We proceed in the same way as (1), (2). Then we can obtain a orthonormal basis $\{X_1, \dots, X_n, \varphi X_1, \dots, \varphi X_n, \xi\}$ on U.

Proof (1) First by substituting φX_1 into (1.10), from (1.4) we get

$$q(\varphi X_1, \xi) = \eta(\varphi X_1) = 0.$$

Next from (1.2) and the above equation we get

$$g(\varphi^{2}X_{1}, \varphi X_{1}) = g(-X_{1} + \eta(X_{1})\xi, \varphi X_{1})$$

= $-g(X_{1}, \varphi X_{1}) + \eta(X_{1})g(\xi, \varphi X_{1})$
= $-g(X_{1}, \varphi X_{1}).$

1.2. ALMOST CONTACT METRIC MANIFOLDS

The other hand from (1.9), (1.4) we get

$$g(\varphi^2 X_1, \varphi X_1) = g(\varphi X_1, X_1) - \eta(\varphi X_1) \eta(X_1) = g(\varphi X_1, X_1).$$

And hence

$$g(\varphi X_1, X_1) = 0.$$

Finally computing $g(\varphi X_1, \varphi X_1)$ by (1.9), from the assumption and (1.10) we get

$$g(\varphi X_1, \varphi X_1) = g(X_1, X_1) - \eta(X_1)\eta(X_1) = g(X_1, X_1) - g(X_1, \xi)g(X_1, \xi) = 1.$$

(2) Similarly we can see that φX_2 is a unit vector field orthogonal to ξ, X_1 and X_2 . We shall prove $g(\varphi X_2, \varphi X_1) = 0$. From (1.9) and the assumption we get

$$g(\varphi X_2, \varphi X_1) = g(X_2, X_1) - \eta(X_2)\eta(X_1) = 0.$$

(3) Suppose that $\{X_1, \dots, X_k, \varphi X_1, \dots, \varphi X_k, \xi\}$ is an orthonormal frame and X_{k+1} is a unit vector field orthogonal to $X_1, \dots, X_k, \varphi X_1, \dots, \varphi X_k$ and ξ . Similarly we can see that φX_{k+1} is a unit vector field orthogonal to $X_1, \dots, X_k, X_{k+1}, \varphi X_1, \dots, \varphi X_k, \xi$.

Definition 1.2.2. We call $\{X_1, \dots, X_n, \varphi X_1, \dots, \varphi X_n, \xi\}$ a φ -basis on M^{2n+1} .

Example

Proposition 1.2.3. (cf.[3]) Let \mathbf{R}^{2n+1} be an almost contact manifold with (φ, ξ, η) satisfying (1.6), (1.7) and (1.8). Let g be the Riemannian metric on \mathbf{R}^{2n+1} defined by

(1.11)
$$g = \eta \otimes \eta + \frac{1}{4} \sum_{i=1}^{n} ((dx^{i})^{2} + (dy^{i})^{2})$$

and the matrix of components of g, namely

(1.12)
$$\frac{1}{4} \begin{pmatrix} \delta_{ij} + y^i y^j & 0 & -y^i \\ 0 & \delta_{ij} & 0 \\ -y^j & 0 & 1 \end{pmatrix}.$$

Then \mathbf{R}^{2n+1} is an almost contact metric manifold.

CHAPTER 1. ALMOST CONTACT METRIC MANIFOLDS

Before the proof of this proposition, we prepare the following Lemma.

Lemma 1.2.4. For $i = 1, \dots, n$, put $X_i = 2\frac{\partial}{\partial y^i}, X_{n+i} = 2(\frac{\partial}{\partial x^i} + y^i \frac{\partial}{\partial z})$ on \mathbf{R}^{2n+1} . Then $\{X_i, X_{n+i}, \xi\}_{i=1,\dots,n}$ forms a φ -basis on \mathbf{R}^{2n+1} .

Proof Using (1.12) we have

$$g(X_{i}, X_{j}) = g(2\frac{\partial}{\partial y^{i}}, 2\frac{\partial}{\partial y^{j}}) = 4g(\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{j}}) = \delta_{ij},$$

$$g(X_{n+i}, X_{n+j}) = g(2(\frac{\partial}{\partial x^{i}} + y^{i}\frac{\partial}{\partial z}), 2(\frac{\partial}{\partial x^{j}} + y^{j}\frac{\partial}{\partial z}))$$

$$= \delta_{ij} + y^{i}y^{j} + y^{j}(-y^{i}) + y^{i}(-y^{j}) + y^{i}y^{j} = \delta_{ij},$$

$$g(X_{i}, X_{n+j}) = g(2\frac{\partial}{\partial y^{i}}, 2(\frac{\partial}{\partial x^{j}} + y^{j}\frac{\partial}{\partial z})) = 0 + y^{j} \cdot 0 = 0,$$

$$g(\xi, X_{i}) = g(2\frac{\partial}{\partial z}, 2\frac{\partial}{\partial y^{i}}) = 0,$$

$$g(\xi, X_{n+i}) = g(2\frac{\partial}{\partial z}, 2(\frac{\partial}{\partial x^{i}} + y^{i}\frac{\partial}{\partial z})) = -y^{i} + y^{i} = 0.$$

Hence $\{X_i, X_{n+i}, \xi\}_{i=1,\dots,n}$ is an orthonormal basis on \mathbb{R}^{2n+1} . Moreover

$$\varphi(X_i) = \varphi(2\frac{\partial}{\partial y^i}) = 2\varphi(\frac{\partial}{\partial y^i}) = 2(\frac{\partial}{\partial x^i} + y^i \frac{\partial}{\partial z}) = X_{n+i}.$$

Therefore we can denote $\{X_i, X_{n+i}, \xi\}_{i=1,\dots,n}$ by $\{X_i, \varphi(X_i), \xi\}_{i=1,\dots,n}$.

Now we prove Proposition 1.2.3.

Proof We can easily get

(1.13)
$$\eta(X_i) = \eta(X_{n+i}) = 0,$$

$$(1.14) \varphi(X_i) = X_{n+i},$$

$$(1.15) \varphi(X_{n+i}) = -X_i,$$

where $i = 1, \dots, n$.

In proposition 1.1.2 we proved that the \mathbf{R}^{2n+1} is an almost contact manifold. And then by using above equations and a φ -basis $\{X_i, \varphi(X_i), \xi\}$, we shall verify (1.9).

(1) For
$$X = X_i, Y = X_j$$
,

$$g(\varphi X_i, \varphi X_j) = g(X_{n+i}, X_{n+j}) = \delta_{ij},$$

$$g(X_i, X_j) - \eta(X_i)\eta(X_j) = \delta_{ij} - 0 \cdot 0 = \delta_{ij}.$$

1.2. ALMOST CONTACT METRIC MANIFOLDS

(2) For
$$X = X_i, Y = X_{n+j}$$
,

$$g(\varphi X_i, \varphi X_{n+j}) = g(X_{n+i}, -X_j) = 0,$$

 $g(X_i, X_{n+j}) - \eta(X_i)\eta(X_{n+j}) = 0 - 0 \cdot 0 = 0.$

(3) For $X = X_i, Y = \xi$,

$$g(\varphi X_i, \varphi \xi) = g(X_{n+i}, 0) = 0,$$

 $g(X_i, \xi) - \eta(X_i)\eta(\xi) = 0 - 0 \cdot 1 = 0.$

(4) For $X = X_{n+i}, Y = X_{n+i}$,

$$g(\varphi X_{n+i}, \varphi X_{n+j}) = g(-X_i, -X_j) = \delta_{ij},$$

$$g(X_{n+i}, X_{n+j}) - \eta(X_{n+i})\eta(X_{n+j}) = \delta_{ij} - 0 \cdot 0 = \delta_{ij}.$$

(5) For $X = X_{n+i}, Y = \xi$,

$$g(\varphi X_{n+i}, \varphi \xi) = g(-X_i, 0) = 0,$$

 $g(X_{n+i}, \xi) - \eta(X_{n+i})\eta(\xi) = 0 - 0 \cdot 1 = 0.$

(6) For $X = \xi, Y = \xi$,

$$g(\varphi \xi, \varphi \xi) = g(0,0) = 0,$$

 $g(\xi, \xi) - \eta(\xi)\eta(\xi) = 1 - 1 \cdot 1 = 0.$

Thus

$$q(\varphi X, \varphi Y) = q(X, Y) - \eta(X)\eta(Y)$$

holds for $X, Y \in \mathfrak{X}(\mathbf{R}^{2n+1})$.

Hence the \mathbf{R}^{2n+1} is an almost contact metric manifold.

Moreover we can easily obtain the following equations about the φ -basis $\{X_i, \varphi(X_i), \xi\}_{i=1,\dots,n}$,

(1.16)
$$[X_i, X_{n+j}] = 2\delta_{ij}\xi, \text{ others are equal to } 0.$$

Proposition 1.2.5. (cf.[3]) Let \mathbf{R}^{2n+1} be the almost contact metric manifold defined in Proposition 1.2.3. Then the sectional curvature of a plane section spanned by a vector X orthogonal to ξ and φX is equal to -3.

CHAPTER 1. ALMOST CONTACT METRIC MANIFOLDS

Proof Let $\{X_1, \dots, X_n, \varphi X_1, \dots, \varphi X_n, \xi\}$ be a φ -basis. Using (1.7) and (1.16) we get

$$\begin{array}{ll} \nabla_{X_i}X_j=0, & \nabla_{X_i}X_{n+j}=\delta_{ij}\xi, & \nabla_{X_i}\xi=-X_{n+i}\\ \nabla_{X_{n+i}}X_j=-\delta_{ji}\xi, & \nabla_{X_{n+i}}X_{n+j}=0, & \nabla_{X_{n+i}}\xi=X_i\\ \nabla_\xi X_j=-X_{n+j}, & \nabla_\xi X_{n+j}=X_j, & \nabla_\xi \xi=0 \end{array}$$

Then we get

$$R(X_{i}, X_{j})X_{k} = 0, R(X_{i}, X_{j})X_{n+k} = -\delta_{jk}X_{n+i} + \delta_{ik}X_{n+j}, R(X_{i}, X_{n+j})X_{k} = \delta_{kj}X_{n+i} + 2\delta_{ij}X_{n+k}, R(X_{i}, X_{n+j})X_{n+k} = -\delta_{jk}X_{j} - 2\delta_{ij}X_{k}, R(X_{n+i}, X_{n+j})X_{k} = -\delta_{kj}X_{i} + \delta_{ki}X_{j}, R(X_{n+i}, X_{n+j})X_{n+k} = 0.$$

For X orthogonal to ξ , we can put

(1.17)
$$X = \sum_{h=1}^{n} \alpha_h X_h + \sum_{h=1}^{n} \beta_h X_{n+h} \quad \alpha_h, \beta_h \in C^{\infty}(\mathbf{R}^{2n+1}),$$

and put
$$Y = \sum_{h=1}^{n} \alpha_h X_h, Z = \sum_{h=1}^{n} \beta_h X_{n+h}.$$

Then we have

$$R(Y, \varphi Y)\varphi Y = -\sum_{i,j,k=1}^{n} \alpha_{i}\alpha_{j}\alpha_{k}(\delta_{ik}X_{j} + 2\delta_{ij}X_{k}),$$

$$R(Y, \varphi Y)\varphi Z = -\sum_{i,j,k=1}^{n} \alpha_{i}\alpha_{j}\beta_{k}(\delta_{kj}X_{n+i} + 2\delta_{ij}X_{n+k}),$$

$$R(Y, \varphi Z)\varphi Y = -\sum_{i,j,k=1}^{n} \alpha_{i}\beta_{j}\alpha_{k}(-\delta_{jk}X_{n+i} + \delta_{ik}X_{n+j}),$$

$$R(Y, \varphi Z)\varphi Z = 0,$$

1.2. ALMOST CONTACT METRIC MANIFOLDS

$$R(Z, \varphi Y)\varphi Y = 0,$$

$$R(Z, \varphi Y)\varphi Z = -\sum_{i,j,k=1}^{n} \beta_{i}\alpha_{j}\beta_{k}(-\delta_{kj}X_{i} + \delta_{ki}X_{j}),$$

$$R(Z, \varphi Z)\varphi Y = -\sum_{i,j,k=1}^{n} \beta_{i}\beta_{j}\alpha_{k}(\delta_{jk}X_{i} + 2\delta_{ji}X_{k}),$$

$$R(Z, \varphi Z)\varphi Z = -\sum_{i,j,k=1}^{n} \beta_{i}\beta_{j}\beta_{k}(\delta_{ki}X_{n+j} + 2\delta_{ji}X_{n+k}).$$

Now we compute $g(R(X, \varphi X)\varphi X, X)$ as follows:

$$\begin{split} g(R(X,\varphi X)\varphi X,X) &= g(R(Y,\varphi Y)\varphi Y,Y+Z) \\ &+ g(R(Y,\varphi Y)\varphi Z,Y+Z) \\ &+ g(R(Y,\varphi Z)\varphi Y,Y+Z) \\ &+ g(R(Z,\varphi Y)\varphi Z,Y+Z) \\ &+ g(R(Z,\varphi Z)\varphi Y,Y+Z) \\ &+ g(R(Z,\varphi Z)\varphi Z,Y+Z) \\ &= -3\sum_{i,j=1}^{n}\alpha_{i}^{2}\alpha_{j}^{2} - 6\sum_{i,j=1}^{n}\alpha_{i}^{2}\beta_{j}^{2} - 3\sum_{i,j=1}^{n}\beta_{i}^{2}\beta_{j}^{2} \\ &= -3(\sum_{i=1}^{n}\alpha_{i}^{2} + \sum_{i=1}^{n}\beta_{i}^{2})^{2} \\ &= -3g(X,X)^{2}. \end{split}$$

Next we compute $g(X, X)g(\varphi X, \varphi X) - g(X, \varphi X)^2$. Since X is orthogonal to ξ , $g(X, \varphi X) = 0$. Hence by using (1.13) we get

$$g(X,X)g(\varphi X,\varphi X) - g(X,\varphi X)^{2}$$

$$= g(X,X)\{g(X,X) - \eta(X)\eta(X)\}$$

$$= g(X,X)^{2}.$$

Therefore

$$g(R(X,\varphi X)\varphi X,X) = -3\{g(X,X)g(\varphi X,\varphi X) - g(X,\varphi X)^2\}.$$

Proposition 1.2.6. (cf.[3]) Let \mathbb{R}^3 be the almost contact metric manifold defined in Proposition 1.2.3. We can identify \mathbb{R}^3 with the Heisenberg group

$$\mathbf{H}_{\mathbf{R}} = \left\{ \begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} \middle| x, y, z \in \mathbf{R} \right\}.$$

And then the followings hold

- (1) Left translation preserves η ,
- (2) g is a left invariant metric on $\mathbf{H}_{\mathbf{R}}$.

Proof Let $A, Q \in \mathbf{H_R}$ be the elements

$$A = \begin{pmatrix} 1 & b & c \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \text{ and } Q = \begin{pmatrix} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix}, \text{ respectively.}$$

Then the left translation on $\mathbf{H}_{\mathbf{R}}$ by A is denoted by

$$AQ = \begin{pmatrix} 1 & y+b & z+bx+c \\ 0 & 1 & x+a \\ 0 & 0 & 1 \end{pmatrix}.$$

And then we define the map $\psi: \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ such that

(1.18)
$$\psi(x, y, z) = (x + a, y + b, z + bx + c).$$

From (1.6) η is denoted as follows:

(1.19)
$$\eta = \frac{1}{2}(dz - ydx).$$

For $p \in \mathbf{R}^3$, we take a local coordinate (x, y, z). From (1.18) we get a Jacobian matrix of ψ at p as follows:

$$(J\psi)_p = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b & 0 & 1 \end{pmatrix}.$$

Hence we get

$$(1.20) (d\psi)_p(\left(\frac{\partial}{\partial x}\right)_p) = \left(\frac{\partial}{\partial x}\right)_{\psi(p)} + b\left(\frac{\partial}{\partial z}\right)_{\psi(p)},$$

$$(1.21) (d\psi)_p(\left(\frac{\partial}{\partial y}\right)_p) = \left(\frac{\partial}{\partial y}\right)_{\psi(p)},$$

$$(1.22) (d\psi)_p(\left(\frac{\partial}{\partial z}\right)_p) = \left(\frac{\partial}{\partial z}\right)_{\psi(p)}.$$

1.2. ALMOST CONTACT METRIC MANIFOLDS

First we shall prove (1). We check the equation

$$\eta_{\psi(p)} \circ (d\psi)_p(X) = \eta_p(X) \text{ for } X \in T_p(\mathbf{R}^3).$$

From (1.20), (1.21) and (1.22), using (1.19) we substitute $(\frac{\partial}{\partial x})_p, (\frac{\partial}{\partial y})_p, (\frac{\partial}{\partial z})_p$ into $\eta_{\psi(p)} \circ (d\psi)_p$ and η_p respectively.

Case 1:
$$X = \left(\frac{\partial}{\partial x}\right)_p$$
.

$$\eta_{\psi(p)} \circ (d\psi)_{p} \left(\frac{\partial}{\partial x}\right)_{p} = \frac{1}{2} \{(dz)_{\psi(p)} - y(\psi(p))(dx)_{\psi(p)}\} \{\left(\frac{\partial}{\partial x}\right)_{\psi(p)} + b\left(\frac{\partial}{\partial z}\right)_{\psi(p)}\}
= \frac{1}{2} (b - y(\psi(p))) = \frac{1}{2} \{b - (y + b)\} = -\frac{1}{2} y,
\eta_{p} \left(\frac{\partial}{\partial x}\right)_{p} = \frac{1}{2} \{(dz)_{p} - y(p)(dx)_{p}\} \left(\frac{\partial}{\partial x}\right)_{p} = \frac{1}{2} (-y(p)) = -\frac{1}{2} y.$$

Case 2:
$$X = \left(\frac{\partial}{\partial y}\right)_p$$
.

$$\eta_{\psi(p)} \circ (d\psi)_p \left(\frac{\partial}{\partial y}\right)_p = \frac{1}{2} \{ (dz)_{\psi(p)} - y(\psi(p))(dx)_{\psi(p)} \} \left(\frac{\partial}{\partial y}\right)_{\psi(p)} = 0,$$

$$\eta_p \left(\frac{\partial}{\partial y}\right)_p = \frac{1}{2} \{ (dz)_p - y(p)(dx)_p \} \left(\frac{\partial}{\partial y}\right)_p = 0.$$

Case 3:
$$X = \left(\frac{\partial}{\partial z}\right)_p$$
.

$$\eta_{\psi(p)} \circ (d\psi)_p \left(\frac{\partial}{\partial z}\right)_p = \frac{1}{2} \{ (dz)_{\psi(p)} - y(\psi(p))(dx)_{\psi(p)} \} \left(\frac{\partial}{\partial z}\right)_{\psi(p)} = \frac{1}{2},$$

$$\eta_p \left(\frac{\partial}{\partial z}\right)_p = \frac{1}{2} \{ (dz)_p - y(p)(dx)_p \} \left(\frac{\partial}{\partial z}\right)_p = \frac{1}{2}.$$

Thus $\psi^* \eta = \eta$ holds.

Next we shall prove (2). Let p be a point on \mathbb{R}^3 . From (1.18) the

CHAPTER 1. ALMOST CONTACT METRIC MANIFOLDS

Riemannian metric g_p and $g_{\psi(p)}$ are

$$(1.23) \quad g_p = \begin{pmatrix} 1+y^2 & 0 & -y \\ 0 & 1 & 0 \\ -y & 0 & 1 \end{pmatrix}, \quad g_{\psi}(p) = \begin{pmatrix} 1+(y+b)^2 & 0 & -(y+b) \\ 0 & 1 & 0 \\ -(y+b) & 0 & 1 \end{pmatrix},$$

respectively.

Now we check the equation

(1.24)
$$g_p(X,Y) = g_{\psi(p)}((d\psi)_p(X), (d\psi_p)(Y)) \text{ for } X, Y \in T_p(\mathbf{R}^3).$$

We substitute $(\frac{\partial}{\partial x})_p$, $(\frac{\partial}{\partial y})_p$, $(\frac{\partial}{\partial z})_p$ into the both side of (1.24). Using (1.23), from (1.20), (1.21) and (1.22) we get

$$\begin{aligned} \operatorname{Case} \ & 1' \colon X = \left(\frac{\partial}{\partial x}\right)_p, Y = \left(\frac{\partial}{\partial y}\right)_p. \\ & g_p(\left(\frac{\partial}{\partial x}\right)_p, \left(\frac{\partial}{\partial y}\right)_p) \ = \ 0, \\ & g_{\psi(p)}(\left(\frac{\partial}{\partial x}\right)_p, (d\psi)_p(\left(\frac{\partial}{\partial y}\right)_p) \ = \ g_{\psi(p)}(\left(\frac{\partial}{\partial x}\right)_{\psi(p)} + b\left(\frac{\partial}{\partial z}\right)_{\psi(p)}, \left(\frac{\partial}{\partial y}\right)_{\psi(p)}) \\ & = \ 0 + 0 = 0. \end{aligned}$$

$$\operatorname{Case} \ & 2' \colon X = \left(\frac{\partial}{\partial x}\right)_p, Y = \left(\frac{\partial}{\partial z}\right)_p \\ & \cdot \\ & g_p(\left(\frac{\partial}{\partial x}\right)_p, \left(\frac{\partial}{\partial z}\right)_p) \ = \ -y, \\ & g_{\psi(p)}((d\psi)_p((\frac{\partial}{\partial x})_p), (d\psi)_p((\frac{\partial}{\partial z})_p)) \ = \ g_{\psi(p)}(\left(\frac{\partial}{\partial x}\right)_{\psi(p)} + b\left(\frac{\partial}{\partial z}\right)_{\psi(p)}, \left(\frac{\partial}{\partial z}\right)_{\psi(p)} \\ & = \ -(y + b) + b = -y. \end{aligned}$$

$$\operatorname{Case} \ & 3' \colon X = \left(\frac{\partial}{\partial x}\right)_p, Y = \left(\frac{\partial}{\partial x}\right)_p \\ & \cdot \\ & \cdot \\ & g_p(\left(\frac{\partial}{\partial x}\right)_p, \left(\frac{\partial}{\partial x}\right)_p) \ = \ 1 + y^2, \\ & g_{\psi(p)}(\left(\frac{\partial}{\partial x}\right)_p, (d\psi)_p(\left(\frac{\partial}{\partial x}\right)_p) \ = \ 1 + (y + b)^2 - b(y + b) - b(y + b) + b^2 \\ & = \ 1 + y^2. \end{aligned}$$

1.2. ALMOST CONTACT METRIC MANIFOLDS

Therefore (1.24) holds.

$$\begin{aligned} \operatorname{Case} \ 4' &: X = \left(\frac{\partial}{\partial y}\right)_p, Y = \left(\frac{\partial}{\partial z}\right)_p \\ &: g_p(\left(\frac{\partial}{\partial y}\right)_p, \left(\frac{\partial}{\partial z}\right)_p) \ = \ 0, \\ &: g_{\psi(p)}((d\psi)_p(\left(\frac{\partial}{\partial y}\right)_p, (d\psi)_p(\left(\frac{\partial}{\partial z}\right)_p) \ = \ g_{\psi(p)}(\left(\frac{\partial}{\partial y}\right)_{\psi(p)}, \left(\frac{\partial}{\partial z}\right)_{\psi(p)}) \\ &= \ 0. \end{aligned}$$

$$\operatorname{Case} \ 5' &: X = \left(\frac{\partial}{\partial y}\right)_p, Y = \left(\frac{\partial}{\partial y}\right)_p \\ &: g_p(\left(\frac{\partial}{\partial y}\right)_p, \left(\frac{\partial}{\partial y}\right)_p) \ = \ 1, \\ &: g_{\psi(p)}((d\psi)_p(\left(\frac{\partial}{\partial y}\right)_p, (d\psi)_p(\left(\frac{\partial}{\partial y}\right)_p) \ = \ g_{\psi(p)}(\left(\frac{\partial}{\partial y}\right)_{\psi(p)}, \left(\frac{\partial}{\partial y}\right)_{\psi(p)}) \\ &= \ 1. \end{aligned}$$

$$\operatorname{Case} \ 6' &: X = \left(\frac{\partial}{\partial z}\right)_p, Y = \left(\frac{\partial}{\partial z}\right)_p \\ &: g_p(\left(\frac{\partial}{\partial z}\right)_p, \left(\frac{\partial}{\partial z}\right)_p) \ = \ 1, \\ &: g_{\psi(p)}((d\psi)_p(\left(\frac{\partial}{\partial z}\right)_p, (d\psi)_p(\left(\frac{\partial}{\partial z}\right)_p) \ = \ 1, \\ &: g_{\psi(p)}((d\psi)_p(\left(\frac{\partial}{\partial z}\right)_p, (d\psi)_p(\left(\frac{\partial}{\partial z}\right)_p) \ = \ g_{\psi(p)}(\left(\frac{\partial}{\partial z}\right)_{\psi(p)}, \left(\frac{\partial}{\partial z}\right)_{\psi(p)}) \end{aligned}$$

15

Chapter 2

Contact metric manifolds

2.1 contact manifolds

Remark that, in this paper, the exterior differentiation $d\eta$ of a 1-form η is defined by

$$d\eta(X,Y) = \frac{1}{2}(X\eta(Y) - Y\eta(X) - \eta([X,Y])),$$

for $X, Y \in \mathfrak{X}(M)$.

In terms of a local coordinates x^1, \dots, x^{2n+1} of M^{2n+1} , if $\eta = \sum_{i=1}^{2n+1} \eta_i dx^i$, then $d\eta$ is expressed as

$$d\eta = \frac{1}{2} \sum_{i,j=1}^{2n+1} \frac{\partial \eta_i}{\partial x^j} dx^j \wedge dx^i.$$

Definition 2.1.1. A (2n+1)-dimensional C^{∞} manifold M is said to be a contact manifold if it carries a 1-form η such that

$$(2.1) \eta \wedge (d\eta)^n \neq 0.$$

The 1-form η is called a contact form on M. It is well known that there exists the unique vector field ξ satisfying

$$(2.2) \eta(\xi) = 1,$$

$$(2.3) d\eta(\xi, X) = 0,$$

for $X, Y \in \mathfrak{X}(M)$.

The pair (M, η) is called a contact manifold and the vector field ξ is called the characteristic vector field of η .

Example

Proposition 2.1.1. (cf.[3]) If η is the 1-form defined by (1.6) on \mathbf{R}^{2n+1} , then the pair $(\mathbf{R}^{2n+1}, \eta)$ is a contact manifold.

Proof Since
$$d\eta = -\frac{1}{4} \sum_{i=1}^{n} dy^{i} \wedge dx^{i}$$
, if we put $dy^{i} \wedge dx^{i} = \omega^{i}$,
$$d\eta = -\frac{1}{4} \sum_{i=1}^{n} \omega^{i}.$$

Clearly

$$\omega^i \wedge \omega^j = \omega^j \wedge \omega^i$$
.

Then we have

$$(d\eta)^n = \left(-\frac{1}{4} \sum_{i=1}^n \omega^i \right) \wedge \left(-\frac{1}{4} \sum_{i=1}^n \omega^i \right) \wedge \dots \wedge \left(-\frac{1}{4} \sum_{i=1}^n \omega^i \right)$$

$$= \left(-\frac{1}{4} \right)^n \sum_{i_1 \neq i_2 \neq \dots \neq i_n} \omega^{i_1} \wedge \omega^{i_2} \wedge \dots \wedge \omega^{i_n}$$

$$= \left(-\frac{1}{4} \right)^n n! \ \omega^1 \wedge \omega^2 \wedge \dots \wedge \omega^n.$$

Hence

$$\eta \wedge (d\eta)^n = \frac{1}{2} (dz - \sum_{i=1}^n y^i dx^i) \wedge (-\frac{1}{4})^n n! \ \omega^1 \wedge \omega^2 \wedge \dots \wedge \omega^n
= \frac{1}{2} (\frac{1}{4})^n n! \ dz \wedge \omega^1 \wedge \omega^2 \wedge \dots \wedge \omega^n
= \frac{1}{2} (\frac{1}{4})^n n! \ dz \wedge dy^1 \wedge dx^1 \wedge dy^2 \wedge dx^2 \wedge \dots \wedge dy^n \wedge dx^n
\neq 0.$$

Therefore (2.1) holds.

The following theorem was proved by J.Gray.

2.1. CONTACT MANIFOLDS

Theorem 2.1.2. (see[2]) Let $\iota: M^{2n+1} \longrightarrow \mathbf{R}^{2n+2}$ be a smooth hypersurface immersed in \mathbf{R}^{2n+2} . If no tangent space of M^{2n+1} contains the origin of \mathbf{R}^{2n+2} , then M^{2n+1} has a contact structure. That is, let (x^1, \dots, x^{2n+2}) be cartesian coordinates on \mathbf{R}^{2n+2} . And we consider the 1-form α defined by

$$\alpha = x^{1}dx^{2} - x^{2}dx^{1} + \dots + x^{2n+1}dx^{2n+2} - x^{2n+2}dx^{2n+1}.$$

then $\eta = \iota^* \alpha$ is a contact form.

Corollary 1. (cf.[2]) S^{2n+1} is a contact manifold.

Using the above results we will show that the real projective space P^{2n+1} is a contact manifold. We consider a system of coordinate neighborhoods $\{(U_i^+, \psi_i^+), (U_i^-, \psi_i^-)\}_{i=1,\dots,2n+2}$ on S^{2n+1} such that

$$U_i^+ = \{ (x^1, \dots, x^i, \dots, x^{2n+2}) \in S^{2n+1} \mid x^i > 0 \},$$

$$U_i^- = \{ (x^1, \dots, x^i, \dots, x^{2n+2}) \in S^{2n+1} \mid x^i < 0 \},$$

$$\psi_i^+(x^1, \dots, x^i, \dots, x^{2n+2}) = (x^1, \dots, \hat{x^i}, \dots, x^{2n+2}),$$

$$\hat{\psi}_i^-(x^1, \dots, x^i, \dots, x^{2n+2}) = (x^1, \dots, \hat{x^i}, \dots, x^{2n+2}).$$

Lemma 2.1.3. Let η be the 1-form given in Theorem 2.1.2. We define the map $F: S^{2n+1} \longrightarrow S^{2n+1}$ by

$$(2.4) F(p) = -p for p \in S^{2n+1}$$

Then $F^*\eta = \eta$ holds.

Proof First we consider $\iota: U_i^+ \longrightarrow \mathbf{R}^{2n+2}$. We set the local coordinate of \mathbf{R}^{2n+2} (z^1, \dots, z^{2n+2}) . And we set the local coordinate of U_i^+ (x^1, \dots, x^{2n+1}) .

For $X_p \in T_p(U_i^+) (p \in U_i^+)$, we put

$$X_p = (\xi_1 \frac{\partial}{\partial x^1} + \dots + \xi_{2n+1} \frac{\partial}{\partial x^{2n+1}})_p.$$

Since $\iota(p) = p$, we get (2.5)

$$(z^1, \cdots, z^{i-1}, z^i, z^{i+1}, \cdots, z^{2n+2}) = (x^1, \cdots, x^{i-1}, \sqrt{1-\parallel x \parallel^2}, x^i, \cdots, x^{2n+1}),$$

CHAPTER 2. CONTACT METRIC MANIFOLDS

where
$$(x^1)^2 + \dots + (x^{2n+1})^2 = ||x||^2$$
.
We put $\frac{1}{\sqrt{1 - ||x||^2}} = \lambda$ and hence get

$$(d\iota)_{p}(X_{p}) = (\xi_{1}\frac{\partial}{\partial z^{1}} + \dots + \xi_{i-1}\frac{\partial}{\partial z^{i-1}} - \lambda(\xi_{1}x^{1} + \dots + \xi_{2n+1}x^{2n+1})\frac{\partial}{\partial z^{i}} + \xi_{i}\frac{\partial}{\partial z^{i+1}} + \dots + \xi_{2n+1}\frac{\partial}{\partial z^{2n+2}})_{\iota(p)}.$$

Moreover we put $\mu = \xi_1 x^1 + \dots + \xi_{2n+1} x^{2n+1}$ and get

$$\eta_{p}(X_{p}) = (\iota^{*}\alpha)_{p}(X_{p}) = \alpha_{\iota(p)}((d\iota)_{p}(X_{p}))_{\iota(p)}
= (z^{1}dz^{2} - z^{2}dz^{1} + \dots + z^{2n+1}dz^{2n+2} - z^{2n+2}dz^{2n+1})_{\iota(p)}
(\xi_{1}\frac{\partial}{\partial z^{1}} + \dots + \xi_{i-1}\frac{\partial}{\partial z^{i-1}} - \lambda\mu\frac{\partial}{\partial z^{i}} + \xi_{i}\frac{\partial}{\partial z^{i+1}} + \dots + \xi_{2n+1}\frac{\partial}{\partial z^{2n+2}})_{\iota(p)}.$$

When i = 2k - 1 $(k \in \{1, \dots, n+1\}),$

$$\eta_{p}(X_{p}) = (z^{1}dz^{2} - \dots + z^{2k-1}dz^{2k} - z^{2k}dz^{2k-1} + z^{2k+1}dz^{2k+2} - \dots - z^{2n+2}dz^{2n+1})_{\iota(p)}
(\xi_{1}\frac{\partial}{\partial z^{1}} + \dots - \lambda\mu\frac{\partial}{\partial z^{2k-1}} + \xi_{2k-1}\frac{\partial}{\partial z^{2k}} + \xi_{2k}\frac{\partial}{\partial z^{2k+1}} \dots + \xi_{2n+1}\frac{\partial}{\partial z^{2n+2}})_{\iota(p)}
= \xi_{2}z^{1} - \dots + \xi_{2k-1}z^{2k-1} + \lambda\mu z^{2k} + \xi_{2k+1}z^{2k+1} - \dots - \xi_{2n}z^{2n+2}.$$

From (2.5) we get

$$\eta_p(X_p) = \xi_2 x^1 - \dots + \xi_{2k-1} \frac{1}{\lambda} + \lambda \mu x^{2k-1} + \xi_{2k+1} x^{2k} - \dots - \xi_{2n} x^{2n+1}.$$

When i = 2k $(k \in \{1, \dots, n+1\})$, similarly

$$\eta_p(X_p) = \xi_2 x^1 - \dots - \lambda \mu x^{2k-1} - \xi_{2k-1} \frac{1}{\lambda} + \xi_{2k+1} x^{2k} - \dots - \xi_{2n} x^{2n+1}.$$

Next we put the local coordinates of $F(U_i^+)$ (y^1, \dots, y^{2n+1}) and get

(2.6)
$$(y^1, \dots, y^{2n+1}) = (-x^1, \dots, -x^{2n+1})$$

We put $(dF)_p(X_p) = Y_{F(p)}$ and get

$$Y_{F(p)} = \left(-\xi_1 \frac{\partial}{\partial y^1} - \dots - \xi_{2n+1} \frac{\partial}{\partial y^{2n+1}}\right)_{F(p)}.$$

2.1. CONTACT MANIFOLDS

We consider the mapping $\iota: U_i^- \longrightarrow \mathbf{R}^{2n+2}$ and get (2.7)

$$(z^{1}, \cdots, z^{i-1}, z^{i}, z^{i+1}, \cdots, z^{2n+2}) = (y^{1}, \cdots, y^{i-1}, -\sqrt{1 - \|y\|^{2}}, y^{i}, \cdots, y^{2n+1}),$$

where $(y^1)^2 + \cdots + (y^{2n+1})^2 = ||y||^2$.

We put $\frac{1}{\sqrt{1-\parallel y \parallel^2}} = \lambda'$ and hence get

$$(d\iota)_{F(p)}(Y_{F(p)})$$

$$= (\xi_1 \frac{\partial}{\partial z^1} - \dots - \xi_{i-1} \frac{\partial}{\partial z^{i-1}} - \lambda'(\xi_1 y^1 + \dots + \xi_{2n+1} y^{2n+1}) \frac{\partial}{\partial z^i} - \xi_i \frac{\partial}{\partial z^{i+1}} - \dots - \xi_{2n+1} \frac{\partial}{\partial z^{2n+2}})_{\iota(F(p))}.$$

Moreover we put $\mu' = \xi_1 y^1 + \dots + \xi_{2n+1} y^{2n+1}$, then

$$(F^*\eta)_p(X_p) = \eta_{F(p)}((dF)_p(X_p))$$

$$= (\iota^*\alpha)_{F(p)}((dF)_p(X_p)) = \alpha_{\iota(F(p))}((d\iota)_{F(p)}(Y_{F(p)})$$

$$= (z^1dz^2 - z^2dz^1 + \dots + z^{2n+1}dz^{2n+2} - z^{2n+2}dz^{2n+1})_{\iota(F(p))}$$

$$(-\xi_1\frac{\partial}{\partial z^1} - \dots - \xi_{i-1}\frac{\partial}{\partial z^{i-1}} - \lambda'\mu'\frac{\partial}{\partial z^i} - \xi_i\frac{\partial}{\partial z^{i+1}} - \dots - \xi_{2n+1}\frac{\partial}{\partial z^{2n+2}})_{\iota(F(p))}.$$

When i = 2k - 1 $(k \in \{1, \dots, n+1\}),$

$$\begin{split} &(F^*\eta)_p(X_p)\\ &=(z^1dz^2-\dots+z^{2k-1}dz^{2k}-z^{2k}dz^{2k-1}+z^{2k+1}dz^{2k+2}-\dots-z^{2n+2}dz^{2n+1})_{\iota(F(p))}\\ &(-\xi_1\frac{\partial}{\partial z^1}-\dots-\lambda'\mu'\frac{\partial}{\partial z^{2k-1}}-\xi_{2k-1}\frac{\partial}{\partial z^{2k}}-\xi_{2k}\frac{\partial}{\partial z^{2k+1}}-\dots-\xi_{2n+1}\frac{\partial}{\partial z^{2n+2}})_{\iota(F(p))}\\ &=-\xi_2z^1+\dots+\xi_{2k-3}z^{2k-2}-\xi_{2k-1}z^{2k-1}+\lambda'\mu'z^{2k}-\xi_{2k+1}z^{2k+1}+\dots+\xi_{2n}z^{2n+2}. \end{split}$$

Then from (2.7)

$$(F^*\eta)_p(X_p) = -\xi_2 y^1 + \dots + \xi_{2k-3} y^{2k-2} + \xi_{2k-1} \frac{1}{\lambda'} + \lambda' \mu' y^{2k-1} - \xi_{2k+1} y^{2k} + \dots + \xi_{2n} y^{2n+2}.$$

From (2.6)

$$(F^*\eta)_p(X_p) = \xi_2 x^1 - \dots - \xi_{2k-3} x^{2k-2} + \xi_{2k-1} \frac{1}{\lambda'} - \lambda' \mu' x^{2k-1} + \xi_{2k+1} x^{2k} - \dots - \xi_{2n} x^{2n+2}.$$

Since $\lambda' = \lambda, \mu' = \mu$,

$$(F^*\eta)_p(X_p) = \xi_2 x^1 - \dots - \xi_{2k-3} x^{2k-2} + \xi_{2k-1} \frac{1}{\lambda} + \lambda \mu x^{2k-1} + \xi_{2k+1} x^{2k} - \dots - \xi_{2n} x^{2n+2}$$
$$= \eta_p(X_p).$$

When i = 2k $(k \in \{1, \dots, n+1\})$, similarly

$$(F^*\eta)_p(X_p) = \xi_2 x^1 - \dots - \lambda \mu x^{2k-1} - \xi_{2k-1} \frac{1}{\lambda} + \xi_{2k+1} x^{2k} - \dots - \xi_{2n} x^{2n+1}$$
$$= \eta_p(X_p).$$

Therefore we get $F^*\eta = \eta$.

Next we consider a natural projection $\pi: \mathbf{R}^{2n+2} - \{\mathbf{0}\} \longrightarrow P^{2n+1}$. We define a open set W_i of $\mathbf{R}^{2n+2} - \{\mathbf{0}\}$ and the open set V_i of P^{2n+1} such that

$$(2.8) W_i = \{(x_1, \dots, x_i, \dots, x_{2n+2}) | x_i \neq 0\},\$$

$$(2.9) V_i = \pi(W_i),$$

for $i = 1, \dots, 2n + 2$.

Moreover we define the homeomorphism $\sigma_i: V_i \to \mathbf{R}^{2n+1}$ and then get the following Lemma.

Lemma 2.1.4. Let $\{(V_i, \sigma_i)\}_{i=1,\dots,2n+2}$ be a system of coordinate neighborhood on P^{2n+1} . Then in the natural projection $\pi: S^{2n+1} \to P^{2n+1}$ the followings hold.

(2.10)
$$\pi: U_i^+ \to V_i \text{ is a } C^\infty \text{ diffeomorphism},$$

(2.11)
$$\pi: U_i^- \to V_i \text{ is a } C^\infty \text{ diffeomorphism},$$

(2.12)
$$\pi(x) = \pi(-x) \text{ for } x \in U_i^+.$$

Theorem 2.1.5. (cf.[9]) P^{2n+1} is a contact manifold.

Proof For $x \in U_i^+$ we put $\pi(x) = l$ and then from (2.12) get

$$\pi(x) = \pi(-x) = l$$

Since (2.10) and (2.11) hold, for $X_l \in T_l(V_i)$ there exists a unique $Y_x \in T_x(U_i^+)$ and a unique $Y_{-x} \in T_{-x}(U_i^-)$ such that

$$(2.14) (d\pi)_x(Y_x) = (d\pi)_{-x}(Y_{-x}) = X_l.$$

2.1. CONTACT MANIFOLDS

From (2.13) the following equation holds

$$(2.15) \pi = \pi \circ F.$$

And then from (2.14) and (2.15) we get

$$X_{l} = (d\pi)_{x}(Y_{x}) = d(\pi \circ F)_{x}(Y_{x}) = (d\pi)_{F(x)}((dF)_{x}(Y_{x}))$$
$$= (d\pi)_{-x}((dF)_{x}(Y_{x})).$$

Hence also from (2.14)

$$(d\pi)_{-x}(Y_{-x}) = (d\pi)_{-x}((dF)_x(Y_x)).$$

Since $(d\pi)_{-x}:T_{-x}(U_i^-)\to T_l(V_i)$ is an injection, we get

$$(2.16) Y_{-x} = (dF)_x(Y_x).$$

From Lemma 2.1.3 the following equation holds

$$(2.17) (F^*\eta)_x(Y_x) = \eta_x(Y_x) for x \in (U_i^+).$$

On the other hand from (2.16) we get

$$(F^*\eta)_x(Y_x) = \eta_{F(x)}((dF)_x(Y_x)) = \eta_{-x}(Y_{-x}).$$

And then from (2.17) we get

$$\eta_{-x}(Y_{-x}) = \eta_x(Y_x).$$

Hence we can define the 1-form $\bar{\eta}$ on P^{2n+1} such that for $l \in P^{2n+1}$, $X_l \in T_l(P^{2n+1})$

$$\bar{\eta}(X_l) = \eta_x(Y_x),$$

where $\pi(x) = l$, $x \in S^{2n+1}$, $(d\pi)_x(Y_x) = X_l$. Thus, P^{2n+1} is a contact manifold.

The value of $d\pi(\xi)$ in Hopf's mapping π

The following lemma is well known.

Lemma 2.1.6. Let $S^3 = \{(z^1, z^2) \in \mathbb{C}^2 \mid |z^1|^2 + |z^2|^2 = 1\}$ and $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$. Then in Hopf's mapping $\pi : S^3 \longrightarrow S^2$ the following equations hold

$$x = 2\text{Re}(\overline{z^1} \cdot z^2), \quad y = 2\text{Im}(\overline{z^1} \cdot z^2), \quad z = |z^2|^2 - |z^1|^2.$$

Proposition 2.1.7. We consider Hopf's mapping $\pi: S^3 \longrightarrow S^2$. When we put $\xi = -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} - x^4 \frac{\partial}{\partial x^3} + x^3 \frac{\partial}{\partial x^4}$, $d\pi(\xi) = 0$ holds.

Proof For $p \in S^3$, let the local coordinates of $p(z^1, z^2)$ such that $z^1 = x^1 + ix^2$, $z^2 = x^3 + iz^4$.

We consider the C^{∞} curve c(t) on S^3 defined by

$$c(t) = (e^{it}z^1, e^{it}z^2) \quad (t \in \mathbf{R})$$

Then we get

$$c(t) = (x^{1}\cos t - x^{2}\sin t, x^{1}\sin t + x^{2}\cos t, x^{3}\cos t - x^{4}\sin t, x^{3}\sin t + x^{4}\cos t).$$

Hence we get

$$\left. \frac{dc}{dt} \right|_{t=0} = -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} - x^4 \frac{\partial}{\partial x^3} + x^3 \frac{\partial}{\partial x^4} = \xi$$

Next we put the local coordinates of S^2 (x, y, z). Since $\pi(c(t)) = \pi(e^{it}z^1, e^{it}z^2)$, from Lemma 2.1.6 we get

$$x = 2\operatorname{Re}(\overline{e^{it}z^{1}} \cdot e^{it}z^{2}) = 2\operatorname{Re}(\overline{z^{1}} \cdot z^{2}),$$

$$y = 2\operatorname{Im}(\overline{e^{it}z^{1}} \cdot e^{it}z^{2}) = 2\operatorname{Im}(\overline{z^{1}} \cdot z^{2}),$$

$$z = |e^{it}z^{2}|^{2} - |e^{it}z^{1}|^{2} = |z^{2}|^{2} - |z^{1}|^{2}.$$

And then we get

$$\pi(c(t)) = (2\operatorname{Re}(\overline{z^1} \cdot z^2), 2\operatorname{Im}(\overline{z^1} \cdot z^2), |z^2|^2 - |z^1|^2).$$

Therefore

$$\frac{d(\pi \circ c)}{dt}\Big|_{t=0} = (0,0,0),$$

that is $d\pi(\xi) = 0$.

2.2. CONTACT METRIC MANIFOLDS

2.2 contact metric manifolds

Let η be a contact form on M. A Riemannian metric g is said to be an associated metric if there exists a tensor field φ of type (1,1) satisfying

$$(2.18) d\eta(X,Y) = g(X,\varphi Y),$$

$$(2.19) \eta(X) = g(X, \xi),$$

Definition 2.2.1. The structure (φ, ξ, η, g) satisfying (2.1), (2.18), (2.19) and (2.20) is called a contact metric structure and a manifold M^{2n+1} with a contact metric structure (φ, ξ, η, g) is said to be a contact metric manifold.

Theorem 2.2.1. (cf.[4]) The following equations hold on a contact metric structure (φ, ξ, η, g)

$$(2.22) \eta \circ \varphi = 0,$$

$$(2.23) g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y).$$

Proof First for $X \in \mathfrak{X}(M^{2n+1})$, using (2.18) and (2.3) we get

$$g(X, \varphi \xi) = d\eta(X, \xi) = 0. \tag{1}$$

Substituting $X = \varphi \xi$ into (1), we get

$$q(\varphi\xi,\varphi\xi)=0$$

and hence $\varphi \xi = 0$.

Next using (2.19), (2.18), and (2.3) we get

$$\eta \circ \varphi(X) = q(\xi, \varphi X) = d\eta(\xi, X) = 0$$

. Thus $\eta \circ \varphi = 0$. Finally using (2.18), (2.20) and (2.19) we get

$$g(\varphi X, \varphi Y) = -d\eta(Y, \varphi X) = -g(Y, \varphi^2 X) = -g(Y, -X + \eta(X)\xi)$$
$$= g(X, Y) - \eta(X)g(Y, \xi)$$
$$= g(X, Y) - \eta(X)\eta(Y)$$

Thus,
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$
.

Example

Proposition 2.2.2. (cf.[3]) Let \mathbb{R}^{2n+1} be the almost contact metric manifold defined in Proposition 1.2.3. Then \mathbb{R}^{2n+1} is a contact metric manifold.

Proof We already proved that the \mathbf{R}^{2n+1} satisfies (2.1), (1,10) i.e.(2.19) and (2.20). And then we must prove that (2.18) holds on it. Using (1.13),(1.14),(1.15) and (1.16) we compute as follows:

(1)
$$X = X_i, Y = X_j$$

$$\frac{1}{2}(X_i\eta(X_j) - X_j\eta(X_i) - \eta([X_i, X_j])) = 0$$

$$g(X_i, \varphi X_j) = g(X_i, X_{n+j}) = 0$$
(2) $X = X_i, Y = X_{n+j}$

$$\frac{1}{2}(X_i\eta(X_{n+j}) - X_{n+j}\eta(X_i) - \eta([X_i, X_{n+j}])) = -\delta_{ij}\eta(\xi) = -\delta_{ij}$$

$$g(X_{i}, \varphi X_{j}) = g(X_{i}, -X_{j}) = -\delta_{ij}$$
(3) $X = X_{i}, Y = \xi$

$$\frac{1}{2}(X_{i}\eta(\xi) - \xi \eta(X_{i}) - \eta([X_{i}, \xi])) = 0$$

$$g(X_i, \varphi \xi) = g(X_i, 0) = 0$$
(4) $X = X_{n+i}, Y = X_{n+i}$

$$\frac{1}{2}(X_{n+i}\eta(X_{n+j}) - X_{n+j}\eta(X_{n+i}) - \eta([X_{n+i}, X_{n+j}])) = 0$$

$$q(X_{n+i}, \varphi X_{n+i}) = q(X_{n+i}, -X_{i})$$

$$g(X_{n+i}, \varphi X_{n+j}) = g(X_{n+i}, -X_j)$$

$$= 0$$

$$(5) \quad X = X_{n+i}, Y = \xi$$

$$\frac{1}{2}(X_{n+i}\eta(\xi) - \xi\eta(X_{n+i}) - \eta([X_{n+i}, \xi])) = 0$$

$$g(X_{n+i}, \varphi\xi) = g(X_{n+i}, 0) = 0$$

(6)
$$X = \xi, Y = \xi$$

$$\frac{1}{2}(\xi \eta(\xi) - \xi \eta(\xi) - \eta([\xi, \xi])) = 0$$

$$g(\xi, \varphi \xi) = g(\xi, 0) = 0$$

Therefore (2.18) holds.

2.2. CONTACT METRIC MANIFOLDS

Definition 2.2.2. On a contact metric manifold $(M^{2n+1}, \varphi, \xi, \eta, g)$ we define the operators l and h by

(2.24)
$$lX = R(X,\xi)\xi, \quad h = \frac{1}{2}\mathcal{L}_{\xi}\varphi.$$

Clearly the (1,1)-type tensors h and l are symmetric.

Proposition 2.2.3. (cf.[4]) h and l satisfy the following equations

(2.25)
$$h\xi = 0$$
, $l\xi = 0$, $Trh = 0$, $Trh\varphi = 0$ and $h\varphi = -\varphi h$.

Proof From (2.21) we get

$$h\xi = \frac{1}{2}(\mathcal{L}_{\xi}\varphi)(\xi) = \frac{1}{2}([\xi, \varphi\xi] - \varphi[\xi, \xi]) = 0$$

and

$$l\xi = R(\xi, \xi)\xi = 0.$$

We will prove Trh = 0. Let $\{e_1 = \xi, e_2, \dots, e_{2n+1}\}$ be the orthonormal basis on M^{2n+1} . For $i \in \{1, 2, \dots, 2n+1\}$ we put $h(e_i) = \sum_{j=1}^{2n+1} a_{ij}e_j$ and hence get $a_{ii} = g(h(e_i), e_i)$.

Using (2.18) we compute Trh as follows:

(1)
$$Trh = \sum_{i=1}^{2n+1} a_{ii} = \sum_{i=1}^{2n+1} g(h(e_i), e_i) = \sum_{i=1}^{2n+1} g(\frac{1}{2}(\mathcal{L}_{\xi}\varphi)(e_i), e_i)$$

$$= \sum_{i=1}^{2n+1} \frac{1}{2} g([\xi, \varphi e_i] - \varphi[\xi, e_i], e_i)$$

$$= \frac{1}{2} \{ \sum_{i=1}^{2n+1} g([\xi, \varphi e_i], e_i) + \sum_{i=1}^{2n+1} g([\xi, e_i], \varphi e_i) \}.$$

Now we take another orthonormal basis $\{e'_1, e'_2, \cdots, e'_{2n+1}\}$ such that $e'_1 = \xi, e'_i = \varphi e_i$ for $i \in \{2, 3, \cdots, 2n+1\}$. Similarly using (2.19),(2.20) we compute

Trh

$$(2) Trh = \frac{1}{2} \{ \sum_{i=1}^{2n+1} g([\xi, \varphi e'_i], e'_i) + \sum_{i=1}^{2n+1} g([\xi, e'_i], \varphi e'_i) \}$$

$$= \frac{1}{2} \{ \sum_{i=1}^{2n+1} g([\xi, \varphi^2 e_i], \varphi e_i) + \sum_{i=1}^{2n+1} g([\xi, \varphi e_i], \varphi^2 e_i) \}$$

$$= -\frac{1}{2} \{ \sum_{i=1}^{2n+1} g([\xi, \varphi e_i], e_i) + \sum_{i=1}^{2n+1} g([\xi, e_i], \varphi e_i) \}.$$

Since (1) = (2), we have Trh = 0. Next we will prove $Trh\varphi = 0$. For $i \in \{1, 2, \dots, 2n + 1\}$ we put $h\varphi(e_i) = \sum_{i=1}^{2n+1} b_{ij}e_j$. Using (2.18), (2.19) we compute $Trh\varphi$ as follows:

(3)
$$Trh\varphi = \sum_{i=1}^{2n+1} b_{ii} = \sum_{i=1}^{2n+1} g(h\varphi(e_i), e_i) = \sum_{i=1}^{2n+1} g(\frac{1}{2}(\mathcal{L}_{\xi}\varphi)(\varphi e_i), e_i)$$

$$= \frac{1}{2} \sum_{i=1}^{2n+1} \{-g([\xi, e_i], e_i) + g([\xi, \eta(e_i)\xi], e_i) + g([\xi, \varphi e_i], \varphi e_i)\}$$

$$= \frac{1}{2} \sum_{i=1}^{2n+1} \{-g([\xi, e_i], e_i) + g([\xi, \varphi e_i], \varphi e_i)\}$$

Similarly using (2.19), (2.20) we compute

$$(4) Trh\varphi = \frac{1}{2} \sum_{i=1}^{2n+1} \{-g([\xi, e'_i], e'_i) + g([\xi, \varphi e'_i], \varphi e'_i)\}$$

$$= -\frac{1}{2} \sum_{i=1}^{2n+1} \{-g([\xi, \varphi e_i], \varphi e_i) + g([\xi, \varphi^2 e_i], \varphi^2 e_i)\}$$

$$= -\frac{1}{2} \sum_{i=1}^{2n+1} \{-g([\xi, e_i], e_i) + g([\xi, \varphi e_i], \varphi e_i)\}$$

Since (3) = (4), we have $Trh\varphi = 0$.

2.2. CONTACT METRIC MANIFOLDS

Finally we prove $h\varphi = -\varphi h$. Now, using (2.2), (2.1) we get

$$d\eta(\xi, X) = \frac{1}{2} \{ \xi(\eta(X)) - X(\eta(\xi)) - \eta([\xi, X]) \}$$
$$= \frac{1}{2} \{ \xi(\eta(X)) - \eta([\xi, X]) \} = 0$$

and hence

$$\xi(\eta(X)) = \eta([\xi, X]) \tag{5}$$

We compute $h\varphi(X), -\varphi h(X)$ respectively.

$$h\varphi(X) = \frac{1}{2}(\mathcal{L}_{\xi}\varphi)(\varphi X) = \frac{1}{2}([\xi, \varphi^2 X] - \varphi[\xi, \varphi X])$$
$$= \frac{1}{2}([\xi, -X + \eta(X)\xi] - \varphi[\xi, \varphi X])$$
$$= -\frac{1}{2}([\xi, X] + \varphi[\xi, \varphi X] - (\xi \eta(X))\xi)$$

$$-\varphi h(X) = -\varphi(\frac{1}{2}(\mathcal{L}_{\xi}\varphi)(X)) = -\frac{1}{2}(\varphi[\xi,\varphi X] - \varphi^{2}[\xi,X])$$
$$= -\frac{1}{2}([\xi,X] + \varphi[\xi,\varphi X] - \eta([\xi,X])\xi)$$

From (5) we get $h\varphi = -\varphi h$.

The following formulas are known. (cf. [2], [5]).

(2.26)
$$\nabla_X \xi = -\varphi X - \varphi h X \text{ (and hence } \nabla_\xi \xi = 0),$$

$$(2.27) \nabla_{\varepsilon} \varphi = 0,$$

$$(2.28) Trl = g(Q\xi, \xi) = 2n - Trh^2,$$

$$(2.29) \varphi l\varphi - l = 2(\varphi^2 + h^2),$$

(2.30)
$$\nabla_{\xi} h = \varphi - \varphi l - \varphi h^2,$$

where Q is the Ricci operator and ∇ the Riemannian connection of g.

2.3 K-contact structures

Definition 2.3.1. A vector field X on a Riemannian manifold M^{2n+1} is called a Killing vector field if X satisfies $\mathcal{L}_X q = 0$, that is,

$$\mathcal{L}_X(Y,Z) = g(\nabla_Y X, Z) + g(\nabla_Z X, Y) = 0$$

for any vector fields Y and Z on M^{2n+1} , where \mathcal{L}_X denotes the Lie differentiation with respect to X.

Definition 2.3.2. Let M^{2n+1} be a contact metric manifold with (φ, ξ, η, g) . If ξ is a Killing vector field, then we call the (φ, ξ, η, g) a K-contact structure.

Proposition 2.3.1. (cf.[2]) If a contact metric manifold M^{2n+1} with (φ, ξ, η, g) is a K-contact manifold, then the following equation holds.

$$(2.31) \nabla_X \xi = -\varphi X.$$

Proof For $X, Y \in \mathfrak{X}(M^{2n+1})$ using (2.18) we get

$$g(X, \varphi Y) = d\eta(X, Y) = \frac{1}{2} \{ X \eta(Y) - Y \eta(X) - \eta([X, Y]) \}$$

$$= \frac{1}{2} \{ X \eta(Y) - \eta(\nabla_X Y) - Y \eta(X) + \eta(\nabla_Y X) \}$$

$$= \frac{1}{2} \{ X g(Y, \xi) - g(\nabla_X Y, \xi) - Y g(X, \xi) + g(\nabla_Y X, \xi) \}$$

$$= \frac{1}{2} \{ g(\nabla_X Y, \xi) + g(Y, \nabla_X \xi) - g(\nabla_X Y, \xi) - g(\nabla_Y X, \xi) \}$$

$$= \frac{1}{2} \{ g(Y, \nabla_X \xi) - g(X, \nabla_Y \xi) + g(\nabla_Y X, \xi) \}$$

$$= \frac{1}{2} \{ g(Y, \nabla_X \xi) - g(X, \nabla_Y \xi) \}$$

$$= \frac{1}{2} \{ g(Y, \nabla_X \xi) + g(Y, \nabla_X \xi) \} \quad \text{(since } \xi \text{ is Killing)}$$

$$= g(Y, \nabla_X \xi).$$

Then we get $g(X, \varphi Y) = g(Y, \nabla_X \xi)$ and hence $g(Y, \nabla_X \xi) + g(Y, \varphi X) = 0$. Thus

$$(2.32) g(\nabla_X \xi + \varphi X, Y) = 0$$

2.3. K-CONTACT STRUCTURES

By substituting $Y = \nabla_X \xi + \varphi X$ into the above equation, we get

$$\nabla_X \xi = -\varphi X.$$

Example

Proposition 2.3.2. (see [3]) Let \mathbf{R}^{2n+1} be the contact metric manifold defined in Proposition 2.2.2. Then \mathbf{R}^{2n+1} is a K-contact manifold.

Proof We must prove that $\mathcal{L}_{\xi}g$ is equal to 0. Since $\mathcal{L}_{\xi}g$ is symmetric, using (2.16) we compute as follows:

(1)
$$X = X_i, Y = X_j$$

$$C_i a(X_i, X_i) = -a([i])$$

$$\mathcal{L}_{\xi}g(X_i, X_j) = -g([\xi, X_i], X_j) - g(X_i, [\xi, X_j])$$

= $-g(0, X_j) - g(X_i, 0) = 0$

(2)
$$X = X_i, Y = X_{n+j}$$

$$\mathcal{L}_{\xi}g(X_{i}, X_{n+j}) = -g([\xi, X_{i}], X_{n+j}) - g(X_{i}, [\xi, X_{n+j}])$$

= $-g(0, X_{n+j}) - g(X_{i}, 0) = 0$

(3)
$$X = X_{n+i}, Y = X_{n+j}$$

$$\mathcal{L}_{\xi}g(X_{n+i}, X_{n+j}) = -g([\xi, X_{n+i}], X_{n+j}) - g(X_{n+i}, [\xi, X_{n+j}])$$

= $-g(0, X_{n+j}) - g(X_{n+i}, 0) = 0$

$$(4) X = \xi, Y = X_i$$

$$\mathcal{L}_{\xi}g(\xi, X_i) = -g([\xi, \xi], X_i) - g(\xi, [\xi, X_i])$$

= $-g(0, X_i) - g(\xi, 0) = 0$

(5)
$$X = \xi, Y = X_{n+i}$$

$$\mathcal{L}_{\xi}g(\xi, X_{n+i}) = -g([\xi, \xi], X_{n+i}) - g(\xi, [\xi, X_{n+i}])$$

= $-g(0, X_{n+i}) - g(\xi, 0) = 0$

(6)
$$X = \xi, Y = \xi$$

$$\mathcal{L}_{\xi}g(\xi, \xi) = -g([\xi, \xi], \xi) - g(\xi, [\xi, \xi])$$

$$= -g(0, \xi) - g(\xi, 0) = 0$$

Therefore $\mathcal{L}_{\xi}g$ is equal to 0.

Proposition 2.3.3. (cf.[2]) Let M^{2n+1} be a K-contact manifold with structure tensors (φ, ξ, η, g) . Then the sectional curvature of any plane section containing ξ is equal to 1.

Proof Let X be a unit vector field orthogonal to ξ . Then

$$R(\xi, X)\xi = \nabla_{\xi}\nabla_{X}\xi - \nabla_{X}\nabla_{\xi}\xi - \nabla_{[\xi, X]}\xi$$

$$= -\nabla_{\xi}\varphi X + \varphi[\xi, X] \quad (from (2.31) \ and (2.26))$$

$$= -\nabla_{\xi}\varphi X + \varphi(\nabla_{\xi}X - \nabla_{X}\xi) \quad (since \ T^{\nabla} = 0)$$

$$= -\varphi\nabla_{X}\xi \quad (from (2.27))$$

$$= \varphi^{2}X \quad (from (2.31))$$

$$= -X + \eta(X)\xi = -X + q(X, \xi)\xi = -X$$

and hence

$$g(R(\xi, X)X, \xi) = -g(R(\xi, X)\xi, X)$$

= $-g(-X, X) = g(X, X) = 1.$

Corollary 2. On \mathbb{R}^{2n+1} defined in Proposition 2.3.2, the sectional curvature of any plane section containing ξ is equal to 1.

Remark that we shall show that there exist some almost contact metric structures which are not contact metric structure.

Example

Proposition 2.3.4. (cf.[3]) Let (M^{2n}, J, G) be an almost Hermitian manifolds with local coordinates x^1, \dots, x^{2n} and let t be the coordinate on \mathbf{R} . We

2.3. K-CONTACT STRUCTURES

define η, ξ, g, φ on the $M^{2n} \times \mathbf{R}$ as follows:

(2.33) $\eta = f dt$, where f is some non-vanishing function,

$$(2.34) \xi = \frac{1}{f} \frac{\partial}{\partial t},$$

$$(2.35) g = G + \eta \otimes \eta,$$

(2.36)
$$\varphi \xi = 0$$
, $\varphi X = JX$ for X orthogonal to ξ .

Then (φ, ξ, η, g) is an almost contact metric structure which is not a contact metric structure.

Proof We can see that the following equations hold

$$(2.37) g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial t}) = 0,$$

$$(2.38) g(\xi, J(\frac{\partial}{\partial x^i})) = 0.$$

Because from (2.35)

$$\begin{split} g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial t}) &= g(\frac{\partial}{\partial x^i} + 0, 0 + \frac{\partial}{\partial t}) \\ &= G(\frac{\partial}{\partial x^i}, 0) + \eta(0) \cdot \eta(\frac{\partial}{\partial t}) = 0. \end{split}$$

And we put $J(\frac{\partial}{\partial x^i}) = \sum_{j=1}^{2n} \alpha_i^j \frac{\partial}{\partial x^j}$, then from (2.27)

$$g(J(\frac{\partial}{\partial x^i}),\xi) = g(\sum_{j=1}^{2n} \alpha_i^j \frac{\partial}{\partial x^j}, \frac{1}{f} \frac{\partial}{\partial t}) = \frac{1}{f} \sum_{j=1}^{2n} \alpha_i^j g(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial t}) = 0.$$

Therefore $J(\frac{\partial}{\partial x^i})$ is orthogonal to ξ .

(1) $\eta(\xi) = 1$

From (2.33),(2.34)

$$\eta(\xi) = fdt(\frac{1}{f}\frac{\partial}{\partial t}) = 1$$

CHAPTER 2. CONTACT METRIC MANIFOLDS

(2)
$$\varphi^2 = -I + \eta \otimes \xi$$

For $X \in \mathfrak{X}(M^{2n} \times \mathbf{R})$ we put $X = \sum_{i=1}^{2n} \alpha_i \frac{\partial}{\partial x^i} + \beta \frac{\partial}{\partial t}$ and get
$$\eta(X) = \eta(\sum_{i=1}^{2n} \alpha_i \frac{\partial}{\partial x^i} + \beta \frac{\partial}{\partial t}) = \eta(\beta \frac{\partial}{\partial t})$$

And then

$$\varphi^{2}(X) = \varphi\{\varphi(\sum_{i=1}^{2n} \alpha_{i} \frac{\partial}{\partial x^{i}} + \beta \frac{\partial}{\partial t})\} = \varphi\{(\sum_{i=1}^{2n} \alpha_{i} \varphi(\frac{\partial}{\partial x^{i}}) + \beta \varphi(\frac{\partial}{\partial t}))\}$$

$$= \varphi\{(\sum_{i=1}^{2n} \alpha_{i} \varphi(\frac{\partial}{\partial x^{i}}))\} = \varphi\{(\sum_{i=1}^{2n} \alpha_{i} J(\frac{\partial}{\partial x^{i}}))\} = \{(\sum_{i=1}^{2n} \alpha_{i} \varphi(J(\frac{\partial}{\partial x^{i}})))\}$$

$$= \sum_{i=1}^{2n} \alpha_{i} J^{2}(\frac{\partial}{\partial x^{i}}) \quad \text{(because } J(\frac{\partial}{\partial x^{i}}) \text{ is orthogonal to } \xi)$$

$$= -\sum_{i=1}^{2n} \alpha_{i} \frac{\partial}{\partial x^{i}} \quad \text{(because } (M^{2n}, J, G) \text{ is an almost Hermitian manifolds)}$$

$$= -X + \beta \frac{\partial}{\partial t} = -X + f\beta \xi = -X + \eta(\beta \frac{\partial}{\partial t}) \xi$$

$$= -X + \eta(X) \xi.$$

Therefore $\varphi^2 = -I + \eta \otimes \xi$ holds.

(3)
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$$

For $X, Y \in \mathfrak{X}(M^{2n} \times \mathbf{R})$ we put

$$X = X' + X'', Y = Y' + Y''$$
, where $X', Y' \in \mathfrak{X}(M^{2n}), X'', Y'' \in \mathfrak{X}(\mathbf{R})$.

And then

$$\begin{split} g(\varphi X,\varphi Y) &=& g(\varphi(X'+X''),\varphi(Y'+Y'')) = g(\varphi X'+\varphi X'',\varphi Y'+\varphi Y'')) = g(\varphi X',\varphi Y') \\ &=& g(JX',JY') \quad \text{(because } X',Y'\in\mathfrak{X}(M^{2n}) \\ &=& G(JX',JY') \\ &=& G(X',Y') \quad \text{(because } (M^{2n},J,G) \text{ is an almost Hermitian manifold)} \\ &=& g(X,Y)-\eta(X'')\eta(Y'') = g(X,Y)-\eta(X)\eta(Y). \end{split}$$

2.3. K-CONTACT STRUCTURES

Therefore $g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)$ holds. (4) $\eta \wedge (d\eta)^n$

Since from (2.33)
$$d\eta=\frac{1}{2}df\wedge dt,\,\eta\wedge(d\eta)=\frac{1}{2}fdt\wedge df\wedge dt=0.$$
 Thus

$$\eta \wedge (d\eta)^n \equiv 0.$$

Therefore (φ, ξ, η, g) is not a contact metric structure.

Chapter 3

3-dimensional contact metric manifolds

We denote by ∇ the Riemannian connection of g and by R the Riemannian curvature tensor, which is defined by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

for $X, Y \in \mathfrak{X}(M^{2n+1})$.

The Ricci tensor Ric(X,Y) is defied by

(3.1)
$$Ric(X,Y) = \sum_{i=1}^{2n+1} g(R(X_i,X)Y,X_i),$$

for $X,Y\in\mathfrak{X}(M^{2n+1}),$ where X_1,\cdots,X_{2n+1} is a local orthonormal frame field of $M^{2n+1}.$

The Ricci operator Q is defined by

$$Ric(X,Y) = g(QX,Y),$$

for $X, Y \in \mathfrak{X}(M^{2n+1})$.

Definition 3.0.3. A contact metric structure is said to be η -Einstein if

$$Q = pI + q\eta \otimes \xi$$

holds, where p, q are some smooth functions on M^{2n+1} .

Remark that the above equation is equivalent to

$$(3.2) Ric(X,Y) = pg(X,Y) + qg(\xi,X)g(\xi,Y),$$

for $X, Y \in \mathfrak{X}(M^{2n+1})$.

Definition 3.0.4. A contact metric manifold $(M^{2n+1}, \varphi, \xi, \eta, g)$ is said to be Sasakian if M^{2n+1} satisfies

$$(3.3) R(X,Y)\xi = \eta(Y)X - \eta(X)Y.$$

for $X, Y \in \mathfrak{X}(M^{2n+1})$.

From Definition 2.3.1. and Definition 2.3.2. $(M^{2n+1}, \varphi, \xi, \eta, g)$ is K-contact manifold if and only if the following equation holds

$$(3.4) g(X, \nabla_Y \xi) + g(\nabla_X \xi, Y) = 0,$$

for $X, Y \in \mathfrak{X}(M^{2n+1})$.

3.1 S^3 with the contact form η

Let (x^1, \dots, x^{2n+2}) be Cartesian coordinates on the (2n+2)-dimensional Euclidean space \mathbf{R}^{2n+2} . We consider the 1-form α on \mathbf{R}^{2n+2} defined by

$$(3.5) \alpha = x^1 dx^2 - x^2 dx^1 + \dots + x^{2n+1} dx^{2n+2} - x^{2n+2} dx^{2n+1}$$

and the inclusion mapping

$$(3.6) \iota: S^{2n+1} \to \mathbf{R}^{2n+2}.$$

From Theorem 2.1.2., $\eta = \iota^* \alpha$ is a contact form on S^{2n+1} , i.e., $\eta \wedge (d\eta)^n \neq 0$ holds on S^{2n+1} . By using (3.5) we get

(3.7)
$$d\alpha = dx^{1} \wedge dx^{2} + dx^{3} \wedge dx^{4} + \dots + dx^{2n+1} \wedge dx^{2n+2}.$$

Throughout this section, we consider this contact form η on S^3 . Then from (2.2) and (2.3), the characteristic vector field ξ is determined by

$$d\iota(\xi) = -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} - x^4 \frac{\partial}{\partial x^3} + x^3 \frac{\partial}{\partial x^4}.$$

3.1. S^3 WITH THE CONTACT FORM η

We take the independent vector fields $X_1, X_2, X_3 = \xi$ on S^3 such that

(3.8)
$$d\iota(X_1) = -x^3 \frac{\partial}{\partial x^1} + x^4 \frac{\partial}{\partial x^2} + x^1 \frac{\partial}{\partial x^3} - x^2 \frac{\partial}{\partial x^4},$$

(3.9)
$$d\iota(X_2) = -x^4 \frac{\partial}{\partial x^1} - x^3 \frac{\partial}{\partial x^2} + x^2 \frac{\partial}{\partial x^3} + x^1 \frac{\partial}{\partial x^4},$$

(3.10)
$$d\iota(X_3) = -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} - x^4 \frac{\partial}{\partial x^3} + x^3 \frac{\partial}{\partial x^4}.$$

g and φ of S^3

Let g be a Riemannian metric on (S^3, η) which satisfies (2.19). We put $g_{ij} = g(X_i, X_j)$ and $a = g_{11}, b = g_{12} = g_{21}, c = g_{22}$.

By using $\eta = \iota^* \alpha$, from (2.19) we get

$$g_{13} = g(X_1, X_3) = \eta(X_1) = 0,$$

$$g_{23} = g(X_2, X_3) = \eta(X_2) = 0$$

and from (2.2) get

$$g_{33} = g(X_3, X_3) = \eta(X_3) = 1.$$

Then, the 3×3 matrix (g_{ij}) is of the form

(3.11)
$$(g_{ij}) = \begin{pmatrix} a & b & 0 \\ b & c & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where $a, b, c \in C^{\infty}(S^3)$.

Since $\det(g_{ij}) > 0$, we get $ac - b^2 > 0$. Moreover, since $X_1 \neq 0, X_2 \neq 0$, we get $a = g(X_1, X_1) > 0, c = g(X_2, X_2) > 0$.

Conversely, let g be a tensor field of type (0,2) defined by (3.11). If a > 0, c > 0 and $ac - b^2 > 0$ holds, then g is a Riemannian metric satisfying (2.19).

Thus we have the following.

Proposition 3.1.1. If a Riemannian metric g on (S^3, η) satisfies (2.19), then (3.11) and the following hold

(3.12)
$$a > 0, c > 0 \quad and \quad ac - b^2 > 0.$$

Conversely, let g be a tensor field of type (0,2) on (S^3, η) defined by (3.11). If g satisfies (3.12), then g is a Riemannian metric on (S^3, η) and satisfies (2.19).

Next, let φ be a tensor field of type (1,1) satisfying (2.18). Then, we have

$$\varphi(X_1) = \frac{b}{ac - b^2} X_1 + \frac{-a}{ac - b^2} X_2,
\varphi(X_2) = \frac{c}{ac - b^2} X_1 + \frac{-b}{ac - b^2} X_2,
\varphi(X_3) = 0,$$

where $a > 0, c > 0, ac - b^2 > 0$.

Because, by using $\eta = \iota^* \alpha$ from (3.7) we get

$$d\eta(X_i, X_i) = (dx^1 \wedge dx^2 + dx^3 \wedge dx^4)(d\iota(X_i), d\iota(X_i)).$$

And then from (3.8), (3.9), (3.10) we have

$$d\eta(X_1, X_2) = 1$$
, $d\eta(X_2, X_1) = -1$, others are equal to 0.

Now, we put
$$\varphi(X_j) = \sum_{k=1}^{3} \varphi_{kj} X_k$$
 $(j = 1, 2, 3)$. Since $g(X_i, \varphi X_j) =$

 $\sum_{k=1}^{3} g_{ik} \varphi_{kj}, \text{ from (2.18) we get}$

$$(g_{ij})(\varphi_{ij}) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus

(3.13)
$$\begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} \end{pmatrix} = \frac{1}{ac - b^2} \begin{pmatrix} b & c & 0 \\ -a & -b & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where $a > 0, c > 0, ac - b^2 > 0$.

Proposition 3.1.2. Let (φ, ξ, η, g) be given by (3.11), (3.12) and (3.13) on S^3 . If (φ, ξ, η, g) is a contact metric structure, then the following equation holds

$$(3.14) ac - b^2 = 1.$$

Conversely, if (3.14) holds, then (φ, ξ, η, g) is a contact metric structure on S^3 .

3.1. S^3 WITH THE CONTACT FORM η

Proof. From (3.13) we get

(3.15)
$$(\varphi_{ij})^2 = \frac{1}{b^2 - ac} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

By putting $\psi = -I + \eta \otimes \xi$, we get the following equation

$$\psi(X_j) = -X_j + \eta(X_j)X_3 \qquad (j = 1, 2, 3).$$

By substituting j = 1, 2, 3 into the above equation, we get

$$\psi(X_1) = -X_1 + \eta(X_1)X_3 = -X_1,$$

$$\psi(X_2) = -X_2 + \eta(X_2)X_3 = -X_2,$$

$$\psi(X_3) = -X_3 + \eta(X_3)X_3 = 0.$$

Now, we put

$$\psi(X_j) = \psi_{1j}X_1 + \psi_{2j}X_2 + \psi_{3j}X_3 = \sum_{i=1}^{3} \psi_{ij}X_i.$$

By substituting j=1,2,3 into the above equation, from the above result we get

(3.16)
$$\begin{pmatrix} \psi_{11} & \psi_{12} & \psi_{13} \\ \psi_{21} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

If (φ, ξ, η, g) is a contact metric structure, by using (3.15) and (3.16) from (2.20) we get (3.14).

Conversely, if
$$(3.14)$$
 holds, we can get (2.20) .

Corollary 3. φ is denoted by the following matrix

$$\begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} \end{pmatrix} = \begin{pmatrix} b & c & 0 \\ -a & -b & 0 \\ 0 & 0 & 0 \end{pmatrix} \ a > 0, c > 0, \ ac - b^2 = 1.$$

Curvature tensors

In this section, we assume a, b, c are constant. By using (g_{ij}) which satisfies (3.11),(3.12) and (3.14), from the basis $X_1, X_2, X_3 = \xi$, we can generate the orthonormal basis Y_1, Y_2, Y_3 on (S^3, g) , that is

$$Y_1 = X_3, \ Y_2 = \frac{1}{\sqrt{a}}X_1, \ Y_3 = -\frac{\sqrt{ab}}{a}X_1 + \sqrt{a}X_2.$$

And then we get

$$X_3 = Y_1, \ X_1 = \sqrt{a}Y_2, \ X_2 = \frac{b}{\sqrt{a}}Y_2 + \frac{1}{\sqrt{a}}Y_3.$$

By computing $[X_i, X_j]$ from (3.8), (3.9), (3.10) and the above equations, we have

$$[X_1, X_2] = -2X_3, \ [X_2, X_3] = -2X_1, \ [X_3, X_1] = -2X_2$$

and

$$[Y_1, Y_2] = -\frac{2b}{a}Y_2 - \frac{2}{a}Y_3, \ [Y_1, Y_3] = \frac{2(a^2 + b^2)}{a}Y_2 + \frac{2b}{a}Y_3, \ [Y_2, Y_3] = -2Y_1.$$

From the above results, we get

$$\begin{array}{ll} 2g(\nabla_{Y_2}Y_2,Y_1) = -\frac{4b}{a}, & 2g(\nabla_{Y_3}Y_3,Y_1) = \frac{4b}{a}, \\ 2g(\nabla_{Y_1}Y_2,Y_3) = \frac{2(a-a^2-b^2-1)}{a}, & 2g(\nabla_{Y_1}Y_3,Y_2) = \frac{2(a^2+b^2-a+1)}{a}, \\ 2g(\nabla_{Y_2}Y_3,Y_1) = \frac{2(a^2+b^2-a-1)}{a}, & 2g(\nabla_{Y_2}Y_1,Y_2) = \frac{4b}{a}, \\ 2g(\nabla_{Y_2}Y_1,Y_3) = \frac{2(a-a^2-b^2+1)}{a}, & 2g(\nabla_{Y_3}Y_1,Y_2) = \frac{2(1-a-a^2-b^2)}{a}, \\ 2g(\nabla_{Y_3}Y_1,Y_3) = -\frac{4b}{a}, & 2g(\nabla_{Y_3}Y_2,Y_1) = \frac{2(a^2+b^2+a-1)}{a}, \end{array}$$

others are equal to 0.

And then we have

$$\begin{array}{ll} \nabla_{Y_1}Y_1=0, & \nabla_{Y_1}Y_2=\frac{a-a^2-b^2-1}{a}Y_3, \\ \nabla_{Y_1}Y_3=\frac{-a+a^2+b^2+1}{a}Y_2, & \nabla_{Y_2}Y_1=\frac{2b}{a}Y_2+\frac{a-a^2-b^2+1}{a}Y_3, \\ \nabla_{Y_2}Y_2=-\frac{2b}{a}Y_1, & \nabla_{Y_2}Y_3=\frac{-a+a^2+b^2-1}{a}Y_1, \\ \nabla_{Y_3}Y_1=\frac{-a-a^2-b^2+1}{a}Y_2-\frac{2b}{a}Y_3, & \nabla_{Y_3}Y_2=\frac{a+a^2+b^2-1}{a}Y_1, \\ \nabla_{Y_3}Y_3=\frac{2b}{a}Y_1. & \end{array}$$

3.1. S^3 WITH THE CONTACT FORM η

Next, we put

$$(3.17) \qquad \qquad \alpha = 1 - a - c,$$

$$\beta = \frac{2b}{a},$$

(3.18)
$$\beta = \frac{2b}{a},$$
(3.19)
$$\gamma = \alpha + \frac{2}{a}.$$

By using the above equations and (3.14), we have

$$[Y_1, Y_2] = -\beta Y_2 - (\gamma - \alpha)Y_3, \ [Y_1, Y_3] = (2 - \alpha - \gamma)Y_2 + \beta Y_3, \ [Y_2, Y_3] = -2Y_1$$

and

$$\begin{array}{lll} \nabla_{Y_1}Y_1 = 0, & \nabla_{Y_1}Y_2 = \alpha Y_3, & \nabla_{Y_1}Y_3 = -\alpha Y_2, \\ \nabla_{Y_2}Y_1 = \beta Y_2 + \gamma Y_3, & \nabla_{Y_2}Y_2 = -\beta Y_1, & \nabla_{Y_2}Y_3 = -\gamma Y_1, \\ \nabla_{Y_3}Y_1 = (\gamma - 2)Y_2 - \beta Y_3, & \nabla_{Y_3}Y_2 = -(\gamma - 2)Y_1, & \nabla_{Y_3}Y_3 = \beta Y_1. \end{array}$$

Hence we have

$$R(Y_1, Y_2)Y_1 = (\alpha^2 - 2\gamma\alpha - 4)Y_2 + 2\alpha\beta Y_3,$$

$$R(Y_1, Y_2)Y_2 = (-\alpha^2 + 2\gamma\alpha + 4)Y_1,$$

$$R(Y_1, Y_2)Y_3 = -2\alpha\beta Y_1,$$

$$R(Y_1, Y_3)Y_1 = 2\alpha\beta Y_2 + (\alpha^2 + 2\gamma\alpha - 4\alpha - 4)Y_3,$$

$$R(Y_1, Y_3)Y_2 = -2\alpha\beta Y_1,$$

$$R(Y_1, Y_3)Y_3 = (-\alpha^2 - 2\gamma\alpha + 4\alpha + 4)Y_1,$$

$$R(Y_2, Y_3)Y_1 = 0,$$

$$R(Y_2, Y_3)Y_2 = (-\alpha^2 + 4\alpha + 4)Y_3,$$

$$R(Y_2, Y_3)Y_3 = (\alpha^2 - 4\alpha - 4)Y_2.$$

From the above result, by using (3.1) we get

(3.20)
$$\left(Ric(Y_i, Y_j)\right) = \begin{pmatrix} -2\alpha^2 + 4\alpha + 8 & 0 & 0\\ 0 & 2\gamma\alpha - 4\alpha & -2\alpha\beta\\ 0 & -2\alpha\beta & -2\gamma\alpha \end{pmatrix}$$

$$= \begin{pmatrix} -2(a+c)^2 + 10 & 0 & 0 \\ 0 & 2(a+c-1)(a+c+1-\frac{2}{a}) & \frac{4b}{a}(a+c-1) \\ 0 & \frac{4b}{a}(a+c-1) & -2(a+c-1)(a+c-1-\frac{2}{a}) \end{pmatrix}$$

Proposition 3.1.3. Let $(S^3, \varphi, \xi, \eta, g)$ be the contact metric manifold determined by Proposition 3.1.2. and we assume that a, b, c are constant.

- (1) $(S^3, \varphi, \xi, \eta, g)$ is η -Einstein if and only if b = 0, a = c = 1, that is, $(S^3, \eta, \xi, g, \varphi)$ is the standard 3-dimensional sphere.
- (2) $(S^3, \varphi, \xi, \eta, g)$ is Sasakian if and only if b = 0, a = c = 1, that is, $(S^3, \varphi, \xi, \eta, g)$ is the standard 3-dimensional sphere.
- (3) $(S^3, \varphi, \xi, \eta, g)$ is K-contact if and only if b = 0, a = c = 1, that is, $(S^3, \varphi, \xi, \eta, g)$ is the standard 3-dimensional sphere.

Proof. (1) If S^3 is η -Einstein, by substituting $(Y_i, Y_j) = (Y_1, Y_1), (Y_2, Y_2)$ into (3.2), from (3.20) we get

(3.21)
$$Ric(Y_i, Y_j) = 2\alpha(\gamma - 2)g(Y_i, Y_j) + 2(-\alpha^2 - \gamma\alpha + 4\alpha + 4)g(Y_1, Y_i)g(Y_1, Y_j).$$

Moreover, we substitute $(Y_i, Y_j) = (Y_1, Y_2), (Y_1, Y_3), (Y_2, Y_3), (Y_3, Y_3)$ into (3.21) and hence get

$$\alpha \neq 0$$
, $\beta = 0$, i.e., $b = 0$, $a = c = 1$.

Conversely, if b = 0, a = c = 1, (3.21) holds.

(2) If S^3 is Sasakian, by substituting $(X,Y) = (Y_1,Y_2), (Y_1,Y_3)$ into (3.3) we get

$$\alpha\beta = 0,$$

$$\alpha^2 - 2\gamma\alpha - 4 = -1,$$

$$\alpha^2 + 2\gamma\alpha - 4\alpha - 4 = -1.$$

Therefore, we get

$$\alpha \neq 0$$
, $\beta = 0$, i.e., $b = 0$, $a = c = 1$.

Conversely, if b = 0, a = c = 1, (3.3) holds.

(3) If S^3 is K-contact, by substituting $(X,Y)=(Y_i,Y_i)$ into (3.4), we get

$$\frac{4b}{a} = 0,$$

$$\frac{2(-a^2 - b^2 + 1)}{a} = 0.$$

3.2. \mathbb{R}^3 WITH THE CONTACT FORM η

And then we have

$$b = 0$$
, $a = c = 1$.

Conversely, if b = 0, a = c = 1, (3.4) holds.

Remark. If (S^3, g) is a contact metric manifold which does not satisfy b = 0, a = c = 1, then (S^3, g) is neither η -Einstein nor Sasakian, K-contact.

3.2 \mathbb{R}^3 with the contact form η

Let η be the 1-form on \mathbf{R}^3 defined by

(3.22)
$$\eta = \frac{1}{2}(dx^3 - x^2 dx^1).$$

Then we get

(3.23)
$$\eta \wedge d\eta = \frac{1}{8} (dx^1 \wedge dx^2 \wedge dx^3) \neq 0,$$

i.e., η is a contact form on \mathbb{R}^3 .

And from (2.2), (2.3) we get

$$\xi = 2\frac{\partial}{\partial x^3}.$$

g and φ of \mathbf{R}^3

Let g be a Riemannian metric on (\mathbf{R}^3, η) which satisfies (2.19). We put $g_{ij} = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j})$ and $a = g_{11}, b = g_{12} = g_{21}, c = g_{22}$. By using (3.22) and (3.24), from (2.19) we have the following matrix

(3.25)
$$(g_{ij}) = \begin{pmatrix} a & b & -\frac{1}{4}x^2 \\ b & c & 0 \\ -\frac{1}{4}x^2 & 0 & \frac{1}{4} \end{pmatrix},$$

where $a, b, c \in C^{\infty}(\mathbf{R}^3)$.

Since $det(g_{ij}) > 0$, we get

(3.26)
$$(a - \frac{1}{4}(x^2)^2)c - b^2 > 0.$$

Moreover, since $\frac{\partial}{\partial x^1} \neq 0$ and $\frac{\partial}{\partial x^2} \neq 0$, we get $a = g(\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^1}) > 0, c = g(\frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^2}) > 0$.

Conversely, let g be a tensor field of type (0,2) defined by (3.25). If a > 0, c > 0 and (3.26) hold, then we get $g_{11} > 0, g_{22} > 0, \det(g_{ij}) > 0$ and hence

$$(3.27) ac - b^2 > 0.$$

And then g is a Riemannian metric satisfying (2.19).

Because, let λ be an eigenvalue of (g_{ij}) , λ satisfies the following equation

$$(3.28) 16\lambda^3 - 4(4a + 4c + 1)\lambda^2 + (4a + 4c + 16ac - 16b^2 - (x^2)^2)\lambda + c(x^2)^2 - 4(ac - b^2) = 0.$$

We put the left side of (3.28) by $f(\lambda)$. Then from (3.26) we have

$$(3.29) f(0) = c(x^2)^2 - 4(ac - b^2) < 0.$$

The differential of $f(\lambda)$ is

$$f'(\lambda) = 48\lambda^2 - 8(4a + 4c + 1)\lambda + (4a + 4c + 16ac - 16b^2 - (x^2)^2).$$

On the other hand by using (3.26) and (3.27) we get

(3.30)
$$4a + 4c + 16ac - 16b^2 > \frac{4(ac - b^2)}{c} > (x^2)^2.$$

Therefore, if a discriminant of the quadratic equation $f'(\lambda) = 0$ of λ is non-negative, from (3.30) $f'(\lambda) = 0$ has a positive number. And hence from (3.29), λ is a positive number. Also, if a discriminant of $f'(\lambda) = 0$ is negative, from (3.29) λ is a positive number. Moreover, we can see that g satisfies (2.19).

Thus we have the following.

Proposition 3.2.1. If a Riemannian metric g on (\mathbf{R}^3, η) satisfies (2.19), then (3.25) and the following holds

(3.31)
$$a > 0, c > 0, (a - \frac{1}{4}(x^2)^2)c - b^2 > 0.$$

Conversely, let g be a tensor field of type (0,2) on (\mathbf{R}^3, η) defined by (3.25). If g satisfies (3.31), then g is a Riemannian metric on (\mathbf{R}^3, η) and satisfies (2.19).

3.2. \mathbb{R}^3 WITH THE CONTACT FORM η

Next, we denote the left side of (3.26) by G, i.e.,

(3.32)
$$(a - \frac{1}{4}(x^2)^2)c - b^2 = G.$$

Let φ be a tensor field of type (1,1) satisfying (2.18). We put

$$\varphi(\frac{\partial}{\partial x^j}) = \sum_{k=1}^{3} \varphi_{kj} \frac{\partial}{\partial x^k} \quad (j=1,2,3)$$

Corollary 4. If (g_{ij}) defined by (3.25) satisfies (3.31), then

(3.33)
$$\begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} \end{pmatrix} = \frac{1}{4G} \begin{pmatrix} b & c & 0 \\ -a + \frac{1}{4}(x^2)^2 & -b & 0 \\ x^2b & x^2c & 0 \end{pmatrix}$$

holds, where a > 0, c > 0, $\left(a - \frac{1}{4}(x^2)^2\right)c - b^2 > 0$.

Proof. By substituting $X = \frac{\partial}{\partial x^i}$, $Y = \frac{\partial}{\partial x^j}$ into (2.18), we get

$$\begin{pmatrix} a & b & -\frac{1}{4}x^2 \\ b & c & 0 \\ -\frac{1}{4}x^2 & 0 & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{4} & 0 \\ -\frac{1}{4} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Since $det(g_{ij}) > 0$, we get (3.33).

Proposition 3.2.2. (φ, ξ, η, g) is defined by (3.25), (3.31) and (3.33) on \mathbb{R}^3 . If (φ, ξ, η, g) is a contact metric structure, then

$$(3.34) G = \frac{1}{16}.$$

holds. Conversely, if (3.34) holds, then (φ, ξ, η, g) is a contact metric structure on \mathbb{R}^3 .

Proof. If (φ, ξ, η, g) is a contact metric structure, then (2.20) holds. By substituting (3.33), (3.22) and (3.24) into (2.20), we get

$$\frac{1}{16G^2} \begin{pmatrix} b & c & 0 \\ -a + \frac{1}{4}(x^2)^2 & -b & 0 \\ x^2b & x^2c & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ -x^2 & 0 & 0 \end{pmatrix}.$$

Then we have (3.34).

Conversely, if (3.34) holds, we can get (2.20). This completes the proof.

Corollary 5. φ is denoted by the following matrix

$$\begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} \end{pmatrix} = 4 \begin{pmatrix} b & c & 0 \\ -a + \frac{1}{4}(x^2)^2 & -b & 0 \\ x^2 b & x^2 c & 0 \end{pmatrix},$$

where a > 0, c > 0, $\left(a - \frac{1}{4}(x^2)^2\right)c - b^2 = \frac{1}{16}$.

Curvature tensors

In this section, we assume that b and c > 0 are constant, and a is given by

$$a = \frac{1}{4}(x^2)^2 + \frac{1}{c}(b^2 + \frac{1}{16}).$$

We put $X_1 = \xi$, $X_2 = \frac{\partial}{\partial x^1}$, $X_3 = \frac{\partial}{\partial x^2}$ on (\mathbf{R}^3, g) . By using g that satisfies (3.25), (3.31) and (3.34), from the basis X_1, X_2, X_3 we can generate the orthonormal basis Y_1, Y_2, Y_3 on (\mathbf{R}^3, g) , that is

$$Y_1 = 2\frac{\partial}{\partial x^3}, \ Y_2 = \alpha(\frac{\partial}{\partial x^1} + x^2 \frac{\partial}{\partial x^3}), \ Y_3 = 4(-\alpha b \frac{\partial}{\partial x^1} + \frac{1}{\alpha} \frac{\partial}{\partial x^2} - \alpha b x^2 \frac{\partial}{\partial x^3}),$$

where $\alpha = \frac{4\sqrt{c}}{\sqrt{16b^2 + 1}}$. Then we get

$$[Y_1, Y_2] = 0, [Y_2, Y_3] = -2Y_1, [Y_1, Y_3] = 0.$$

Then we may see that

$$2g(\nabla_{Y_1}Y_2, Y_3) = 2, 2g(\nabla_{Y_1}Y_3, Y_2) = -2, 2g(\nabla_{Y_2}Y_1, Y_3) = 2, 2g(\nabla_{Y_2}Y_3, Y_1) = -2, 2g(\nabla_{Y_3}Y_1, Y_2) = -2, 2g(\nabla_{Y_3}Y_2, Y_1) = 2,$$

and the others are equal to 0. Therefore, we have

$$\begin{array}{lll} \nabla_{Y_1}Y_1=0, & \nabla_{Y_1}Y_2=Y_3, & \nabla_{Y_1}Y_3=-Y_2, & \nabla_{Y_2}Y_1=Y_3, & \nabla_{Y_2}Y_2=0, \\ \nabla_{Y_2}Y_3=-Y_1, & \nabla_{Y_3}Y_1=-Y_2, & \nabla_{Y_3}Y_2=Y_1, & \nabla_{Y_3}Y_3=0. \end{array}$$

3.3. T^3 WITH THE CONTACT FORM η

Hence we get

$$\begin{array}{ll} R(Y_1,Y_2)Y_1=-Y_2, & R(Y_1,Y_2)Y_2=Y_1, & R(Y_1,Y_2)Y_3=0, \\ R(Y_1,Y_3)Y_1=-Y_3, & R(Y_1,Y_3)Y_2=0, & R(Y_1,Y_3)Y_3=Y_1, \\ R(Y_2,Y_3)Y_1=0, & R(Y_2,Y_3)Y_2=3Y_3, & R(Y_2,Y_3)Y_3=-3Y_2. \end{array}$$

Using (3.1) we have

(3.35)
$$\left(Ric(Y_i, Y_j) \right) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Proposition 3.2.3. (\mathbb{R}^3 , g) is η -Einstein, Sasakian and K-contact.

Proof. Substituting $(Y_i, Y_j) = (Y_1, Y_1), (Y_2, Y_2)$ into (3.2), from (3.35) we get

$$Ric(Y_i, Y_j) = -2g(Y_i, Y_j) + 4g(Y_1, Y_i)g(Y_1, Y_j).$$

Moreover, we can see that if $(Y_i, Y_j) = (Y_1, Y_2), (Y_1, Y_3), (Y_2, Y_3)$ and (Y_3, Y_3) , then the above equation holds. Therefore, (\mathbf{R}^3, g) is η -Einstein. Next, we shall check whether (\mathbf{R}^3, g) satisfies (3.3), i.e.,

$$R(Y_i, Y_j)Y_1 = g(Y_1, Y_j)Y_i - g(Y_1, Y_i)Y_j.$$

for i, j = 1, 2, 3. From values $R(Y_i, Y_j)Y_k$ of the curvature tensor, we may see that the above equation holds. Therefore, (\mathbf{R}^3, g) is Sasakian.

Finally, we shall check whether (\mathbf{R}^3, g) satisfies (3.4), i.e.,

$$2g(Y_i, \nabla_{Y_i}Y_1) + 2g(\nabla_{Y_i}Y_1, Y_j) = 0 \quad (i, j = 1, 2, 3).$$

From the calculation of $2g(\nabla_{Y_i}Y_j, Y_k)$ we may see that the above equation holds. Therefore, (\mathbf{R}^3, g) is K-contact.

3.3 T^3 with the contact form η

Let η be the 1-form on T^3 defined by

$$(3.36) \eta = \cos nx^3 dx^1 + \sin nx^3 dx^2 n \in \mathbf{N}.$$

Then we get

(3.37)
$$\eta \wedge d\eta = -\frac{1}{2}ndx^1 \wedge dx^2 \wedge dx^3 \neq 0,$$

i.e, η is a contact form on T^3 . From (2.2), (2.3) we get

(3.38)
$$\xi = \cos nx^3 \frac{\partial}{\partial x^1} + \sin nx^3 \frac{\partial}{\partial x^2}.$$

Let g be a Riemannian metric on (T^3, η) which sarisfies (2.19). We put $g_{ij} = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j})$ and $a = g_{11}, b = g_{12} = g_{21}, c = g_{22}$. By using (3.36) and (3.38), from (2.19) we get

$$a\cos nx^3 + b\sin nx^3 = \cos nx^3$$

$$(3.40) b\cos nx^3 + c\sin nx^3 = \sin nx^3$$

$$(3.41) g_{31}\cos nx^3 + g_{32}\sin nx^3 = 0.$$

Proposition 3.3.1. (3.39), (3.40) and (3.41) hold if and only if there exist $\beta, \alpha, g_{33} \in C^{\infty}(T^3)$ which satisfy the following matrix (g_{ij})

(3.42)
$$(g_{ij}) = \begin{pmatrix} \beta \sin^2 nx^3 + 1 & -\beta \sin nx^3 \cos nx^3 & -\alpha \sin nx^3 \\ -\beta \sin nx^3 \cos nx^3 & \beta \cos^2 nx^3 + 1 & \alpha \cos nx^3 \\ -\alpha \sin nx^3 & \alpha \cos nx^3 & g_{33} \end{pmatrix}.$$

Proof. If (3.39) and (3.40) hold, there exist $l, k \in \mathbf{R}$ which satisfy the following equations

$$(3.43) a - 1 = k(-\sin nx^3)$$

(3.44)
$$b = k \cos nx^3,$$

(3.45) $b = l(-\sin nx^3),$

$$(3.45) b = l(-\sin nx^3)$$

$$(3.46) c - 1 = l \cos nx^3.$$

From (3.44) and (3.45) we get

$$k\cos nx^3 = l(-\sin nx^3).$$

When $\cos nx^3 \neq 0$ and $\sin nx^3 \neq 0$ hold, we get

$$\frac{k}{-\sin nx^3} = \frac{l}{\cos nx^3}.$$

3.3. T^3 WITH THE CONTACT FORM η

By putting $\beta = \frac{k}{-\sin nx^3} = \frac{l}{\cos nx^3}$, from (3.41) we get (3.42). Moreover, (3.42) includes the case that either $\cos nx^3 = 0$ or $\sin nx^3 = 0$ holds. Conversely, we can see that (g_{ij}) satisfies (3.39), (3.40) and (3.41).

q and φ of T^3

We define the matrix B

(3.47)
$$B = \begin{pmatrix} \beta \sin^2 nx^3 + 1 & -\beta \sin nx^3 \cos nx^3 & -\alpha \sin nx^3 \\ -\beta \sin nx^3 \cos nx^3 & \beta \cos^2 nx^3 + 1 & \alpha \cos nx^3 \\ -\alpha \sin nx^3 & \alpha \cos nx^3 & g_{33} \end{pmatrix}.$$

Proposition 3.3.2. Let g be the tensor field of type (0,2) on (T^3, η) defined by the matrix B, where $g_{ij} = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j})$ and $B = (g_{ij})$.

g is a Riemannian metric satisfying (2.19) if and only if the following conditions hold

$$(3.48) (1+\beta)g_{33} - \alpha^2 > 0 , g_{33} > 0.$$

Proof. From Proposition 3.3.1, g satisfies (2.19). If g is a Riemannian metric, since $det(g_{ij}) > 0$, we get

$$\det(B) = (1 + \beta)g_{33} - \alpha^2 > 0.$$

Next, we put an eigenvalue of $B = \lambda$ and $g(\lambda) = \det(B - \lambda I)$. Then, we get

$$g(\lambda) = (1 - \lambda) \{ \lambda^2 - (1 + \beta + g_{33})\lambda + (1 + \beta)g_{33} - \alpha^2 \}.$$

One of solution in $g(\lambda) = 0$ is equal to 1. The other solutions are in the following equation

(3.49)
$$\lambda^2 - (1 + \beta + g_{33})\lambda + (1 + \beta)g_{33} - \alpha^2 = 0.$$

By putting a discriminant of the above equation = D, we get

$$D = \{g_{33} - (1+\beta)\}^2 + 4\alpha^2 \ge 0.$$

Since λ are positive definite, from (3.49) we get $g_{33} > 0$.

Conversely if (3.48) holds, we can see that $g_{11} > 0$, $g_{22} > 0$, $\det(B) > 0$ and an eigenvalue of B are positive definite.

Next, let φ a tensor field of type (1,1) satisfying (2.18). We put

$$\varphi(\frac{\partial}{\partial x^j}) = \sum_{k=1}^{3} \varphi_{kj} \frac{\partial}{\partial x^k} \quad (j = 1, 2, 3)$$

.

Corollary 6. If (g_{ij}) defined by the matrix B satisfies (3.48), then the following equation holds.

(3.50)
$$\begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} \end{pmatrix}$$

$$= \frac{n}{2|B|} \begin{pmatrix} -\alpha \sin^2 nx^3 & \alpha \sin nx^3 \cos nx^3 & g_{33} \sin nx^3 \\ \alpha \sin nx^3 \cos nx^3 & -\alpha \cos^2 nx^3 & -g_{33} \cos nx^3 \\ -(1+\beta)\sin nx^3 & (1+\beta)\cos nx^3 & \alpha \end{pmatrix},$$
where $(1+\beta)g_{33} - \alpha^2 > 0$, $g_{33} > 0$.

Proof. Since $det(g_{ij}) > 0$, from (2.18) we get (3.50).

We put

(3.51)
$$\rho = \det(B) = (1 + \beta)g_{33} - \alpha^2.$$

Proposition 3.3.3. (φ, ξ, η, g) is given by (3.47), (3.48) and (3.50) on T^3 . If (φ, ξ, η, g) is a contact metric structure, then

$$(3.52) n^2 = 4\rho.$$

holds. Conversely, if (3.52) holds, then (φ, ξ, η, g) is a contact metric structure on T^3 .

Proof. If (φ, ξ, η, g) is a contact metric structure, by substituting (3.50), (3.36) and (3.38) into (2.20) we get

$$\frac{n^2}{4\rho} \begin{pmatrix} -\sin^2 nx^3 & \sin nx^3 \cos nx^3 & 0\\ \sin nx^3 \cos nx^3 & -\cos^2 nx^3 & 0\\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} -\sin^2 nx^3 & \sin nx^3 \cos nx^3 & 0\\ \sin nx^3 \cos nx^3 & -\cos^2 nx^3 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

3.3. T^3 WITH THE CONTACT FORM η

Hence we get (3.52).

Conversely, if (3.52) holds, we can get (2.20). This completes the proof.

Corollary 7. φ is denoted by the following matrix

$$\begin{pmatrix} \varphi_{11} & \varphi_{12} & \varphi_{13} \\ \varphi_{21} & \varphi_{22} & \varphi_{23} \\ \varphi_{31} & \varphi_{32} & \varphi_{33} \end{pmatrix} = \frac{2}{n} \begin{pmatrix} -\alpha \sin^2 nx^3 & \alpha \sin nx^3 \cos nx^3 & g_{33} \sin nx^3 \\ \alpha \sin nx^3 \cos nx^3 & -\alpha \cos^2 nx^3 & -g_{33} \cos nx^3 \\ -(1+\beta)\sin nx^3 & (1+\beta)\cos nx^3 & \alpha \end{pmatrix},$$

$$where \quad (1+\beta)g_{33} - \alpha^2 = \frac{n^2}{4}, \quad g_{33} > 0.$$

Curvature tensors

In this section we assume β , α , g_{33} are constant. We take the following basis on (T^3, q) ,

$$X_1 = \xi = \cos nx^3 \frac{\partial}{\partial x^1} + \sin nx^3 \frac{\partial}{\partial x^2}, \ X_2 = -\sin nx^3 \frac{\partial}{\partial x^1} + \cos nx^3 \frac{\partial}{\partial x^2}, \ X_3 = \frac{\partial}{\partial x^3}.$$

By using g that satisfies (3.47),(3.48) and (3.52), from the above basis we get the following orthonormal basis Y_1, Y_2, Y_3 on (T^3, g) ,

$$Y_1 = \xi = \cos nx^3 \frac{\partial}{\partial x^1} + \sin nx^3 \frac{\partial}{\partial x^2}, Y_3 = \mu(\lambda \sin nx^3 \frac{\partial}{\partial x^1} - \lambda \cos nx^3 \frac{\partial}{\partial x^2} + \frac{\partial}{\partial x^3}),$$
$$Y_2 = \gamma(-\sin nx^3 \frac{\partial}{\partial x^1} + \cos nx^3 \frac{\partial}{\partial x^2}),$$

where

$$(3.53) \gamma = \frac{1}{\sqrt{1+\beta}},$$

$$\lambda = \gamma^2 \alpha,$$

$$\mu = \frac{2}{n\gamma}.$$

For simplicity we put

$$(3.56) -\frac{1}{\gamma^2} = a.$$

Then we get

$$[Y_1, Y_2] = 0, \ [Y_1, Y_3] = 2aY_2, \ [Y_2, Y_3] = 2Y_1.$$

We have

$$2g(\nabla_{Y_1}Y_2, Y_3) = -2a - 2,$$
 $2g(\nabla_{Y_1}Y_3, Y_2) = 2a + 2,$ $2g(\nabla_{Y_2}Y_1, Y_3) = -2a - 2,$ $2g(\nabla_{Y_2}Y_3, Y_1) = 2a + 2,$ $2g(\nabla_{Y_3}Y_1, Y_2) = -2a + 2,$ $2g(\nabla_{Y_3}Y_2, Y_1) = 2a - 2,$

the others are equal to 0.

Thus, we get

$$\begin{array}{lll} \nabla_{Y_1}Y_1=0, & \nabla_{Y_1}Y_2=-(a+1)Y_3, & \nabla_{Y_1}Y_3=(a+1)Y_2, \\ \nabla_{Y_2}Y_1=-(a+1)Y_3, & \nabla_{Y_2}Y_2=0, & \nabla_{Y_2}Y_3=(a+1)Y_1, \\ \nabla_{Y_3}Y_1=-(a-1)Y_2, & \nabla_{Y_3}Y_2=(a-1)Y_1, & \nabla_{Y_3}Y_3=0. \end{array}$$

Hence we have

$$\begin{array}{ll} R(Y_1,Y_2)Y_1=-(a+1)^2Y_2, & R(Y_1,Y_2)Y_2=(a+1)^2Y_1, \\ R(Y_1,Y_2)Y_3=0, & R(Y_1,Y_3)Y_1=(a+1)(3a-1)Y_3, \\ R(Y_1,Y_3)Y_2=0, & R(Y_1,Y_3)Y_3=-(a+1)(3a-1)Y_1, \\ R(Y_2,Y_3)Y_1=0, & R(Y_2,Y_3)Y_2=-(a+1)(a-3)Y_3, \\ R(Y_2,Y_3)Y_3=(a+1)(a-3)Y_2. \end{array}$$

From the above result, by using (3.1), (3.56) and (3.53) we get

(3.57)
$$(Ric(X_i, X_j)) = 2\beta \begin{pmatrix} -2 - \beta & 0 & 0 \\ 0 & 2 + \beta & 0 \\ 0 & 0 & -\beta \end{pmatrix}.$$

Proposition 3.3.4. (1) (T^3, g) is η -Einstein if and only if $\beta = 0$ holds.

- (2) (T^3, g) is not Sasakian.
- (3) (T^3, g) is not K-contact.

Proof. (1) If (T^3, g) is η -Einstein, then from (3.2) the following equation holds for any i, j = 1, 2, 3

(3.58)
$$Ric(Y_i, Y_j) = pg(Y_i, Y_j) + qg(Y_1, Y_i)g(Y_1, Y_j).$$

By substituting $(Y_i, Y_i) = (Y_1, Y_2), (Y_2, Y_2)$ into (3.58), from (3.57) we get

(3.59)
$$Ric(Y_i, Y_j) = 2\beta(2+\beta)g(Y_i, Y_j) - 4\beta(2+\beta)g(Y_1, Y_i)g(Y_1, Y_j).$$

Moreover, we substitute $(Y_i, Y_i) = (Y_3, Y_3)$ into (3.59) and get

$$-2\beta^2 = 2\beta(2+\beta).$$

3.3. T^3 WITH THE CONTACT FORM η

Since (5.13) implies $1 + \beta \neq 0$, $\beta = 0$ holds.

Conversely, if $\beta = 0$, (3.59) holds.

(2) If (T^3, g) is Sasakian, then from (3.3) and (2.19) the following equation holds for any i, j = 1, 2, 3

$$(3.60) R(Y_i, Y_j)Y_1 = g(Y_1, Y_j)Y_i - g(Y_1, Y_i)Y_j.$$

By substituting $(Y_i, Y_j) = (Y_1, Y_2), (Y_1, Y_3)$ into (3.60), we get

(3.61)
$$a = 0.$$

But since (3.56) implies a < 0, (3.61) does not hold. Therefore, (T^3, g) is not Sasakian.

(3) If (T^3, g) is K-contact, then from (3.4) the following equation holds for any i, k = 1, 2, 3

$$(3.62) 2g(Y_k, \nabla_{Y_i} Y_1) + 2g(\nabla_{Y_k} Y_1, Y_i) = 0.$$

By substituting $(Y_k, Y_i) = (Y_3, Y_2)$ into (3.62), we get

$$(3.63)$$
 $a = 0.$

Similarly, since a<0, (3.63) does not hold. Therefore, (T^3,g) is not K-contact. \Box

Bibliography

- [1] A.L. Besse, *Einstein Manifolds*, Ergeb. Math. Crenzbeb. 3. Foge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
- [2] D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
- [3] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics 203 Birkhäuser, Boston, Basel, Berlin 2001.
- [4] D.E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q\varphi = \varphi Q$, Kodai Math. J., $\mathbf{13}(1990)$, 391-401.
- [5] D.E. Blair and J.N. Patnaik, Contact manifolds with characteristic vector field annihilated by the curvature, Bull. Inst. Math. Acad. Sinica, 9(1981), 533-545.
- [6] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17(1982), 255-306.
- [7] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Tôhoku Math. J., 14(1962), 398-412.
- [8] B. O'Neill, The fundamental equations of a submersion, Michigan Math.J., 13(1966), 459-469.
- [9] S. Sasaki, M. Awata and S. Kyo, Contact structure and Almost contact structure, Mathematics, 16(1964), 27-41.
- [10] F. Torralbo, Compact minimal surfaces in Berger spheres, Ann. Gob. Anal. Geom., 41(2012), 391-405.

BIBLIOGRAPHY

- [11] A. Yamammoto, Contact metric structures with the typical contact form on the 3-dimensional manifold, Toyama Math. J., 41(2020), 61-81.
- [12] K. Yano and M. Kon, *CR Submanifolds of Kaehlerinan and Sasakian Manifolds*, Progress in Mathematics 30, Birkhäuser, Boston, Basel, Stuttgart, 1983.