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Preface

A differentiable manifold M?"*! is said to have a contact structure or
to be a contact manifold if there exists a 1-form 7 over M?"*! such that
n A (dn)™ # 0. The condition n A (dn)™ # 0 means that a contact manifold is
orientable. It is known that a smooth hypersurface satisfying some conditions
has a contact structure. As a special case S?"*! is a contact manifold. When
a contact form 7 is given on M?"*1 there exists a system (&, ¢, g) of a vector
field &, a tensor field ¢ of type (1,1) and a Riemannian metric g, which called
a contact metric structure.

On the other hand the notion of almost contact metric structures is a
generalization of the notion of contact metric structures. An almost contact
metric structure does not assume the condition nA(dn)™ # 0. From the point
of view of the Riemannian geometry of contact metric manifolds we consider
K-contact structures.

This paper consists of three chapters. In Chapter 1 we mention the
notion of an almost contact metric structure (p,&,n,9) on M?"™! and give
its examples. Next we show that on an almost contact metric manifold M?7+1
we can construct a useful orthonormal basis called p-basis. And we explain
that on the almost contact metric manifold R?"*! the sectional curvature of
a vector X orthogonal to £ and ¢ X is equal to —3. Finally we show that on
the Heisenberg group Hg identified with R? left translation preserves n and
g is a left invariant metric.

Chapter 2 we mention the notion of a contact metric structure (¢, &, 1, g)
and give its examples. Remark that for a contact form 7, £ is unique but g and
¢ are not necessarily unique. Next we show that in Hopf’s mapping 7 : S% —
S?% the value of dn(€) is equal to 0. Moreower we mention the notion of K-
contact structure. We consider the sectional curvature of K-contact manifold
M?*1 Finally we check that the almost contact metric structure on M?2"
x R is not a contact metric structure.



CONTENTS

It is known that every compact orientable 3-dimensional manifold has a
contact structure. In Chapter 3 we consider 3-dimensional contact manifolds,
especially S%, R3 and 7. We give a typical contact form 7 on S3, R3 and T°
respectively. Then we completely determine their contact metric structures.
Next, we check that such contact metric structures are n-Einstein or not. If
M3 =53 (¢,&,n,9) is n-Einstein if and only if ¢ is the standard metric. If
M3 = R3, all (p,&,1n,9) are n-Einstein. If M3 = T3, one parameter family
of (p,&,1n,9) are n-Einstein. We check that such contact metric structures
are Sasakian or not. If M3 = S3, (¢, &,n, g) is Sasakian if and only if g is the
standard metric. If M3 = R3, all (¢,&,n,g) are Sasakian. If M3 = T2 all
(p,&,m,g) are not Sasakian. We check that such contact metric structures
are K-contact or not. If M3 = 53 (¢,&,n,g) is K-contact if and only if g is
the standard metric. If M3 = R3, all (¢, &, 7, g) are K-contact. If M3 = T3
all (¢,&,n,g) are not K-contact.



Chapter 1

Almost contact metric
manifolds

1.1 almost contact manifolds

We say M?"*1 has an almost contact structure or sometimes (¢, £, )-structure
if it admits a tensor field ¢ of type (1, 1), a vector field £ and a 1-form 7
satisfying

(1.1) nE) = 1,

(1.2) P(X) = =X +n(X),

for X € X(M2+1h).

Theorem 1.1.1. (cf.[3]) Suppose M?" ! has a (¢, &, n)-structure. Then we
have

(1.3) p(€) = 0,
noy =0,
(1.5) rank ¢ = 2n.

Proof First by substituting X = ¢ into (1.2), from (1.1) we get

p(p€) = 0. (1)

Now we assume

@& # 0. (2)
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We again substitute X = ¢¢ into (1.2) and get

P*(0€) = —p& + n(pE)E.
In the left side of (3) we get from (1)

p*(0€) =0
and hence
©§ = n(p€)§.
From (2) we get
n(gs) # 0.

On the other hand using (4) we get from (5)

o(p€) = p(n(p)E) = {n(&)}*¢ # 0,

that is
p(p€) # 0.

This is a contradiction. Thus, p& = 0.
Next by substituting ¢ X into (1.2), we get

N(eX)E = ¢*(pX) + pX.
Using (1.2) we compute the right side of (6)
P(PX)+ X = (X)) + X
= (X)gt.
Since ¢ = 0, we get from (6)
n(eX)§ =0

and hence n(¢X) = 0. Thus, no ¢ = 0.
Finally for X € Ker(yp) we get

0’ X =0.
By substituting X into (1.2), from (7) we get X = n(X)¢ and hence
dim(Ker(y¢)) =1
Thus, rank ¢ =2n+1—1 = 2n.

(3)
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Example

Proposition 1.1.2. (cf.[3]) Let n be the 1-form, £ the characteristic vector
field and ¢ the tensor field on R?***! defined by

1 —~
(1.6) n = §(d2—;ydaf),
1. = 2—
7 ¢ - 22
0 6, 0
0 4 0

respectively. Then (R?*"*! £ n) is an almost contact manifold.

Proof First using (1.6), (1.7) we get
(© = b= Yy 2 =1
&)= 3 — Y 0z

9o ... 90 48 .. 0 9 ; 2n+1
Next let 57, ) Bam > Byl ) By B2 be natural basis on R .

Using (1.8), we get

0 0 0 .0
2 _ _ - _ i
0 0 1 i O 0 ; 0
and
0 0 .0 0 - 0
2 _ i Yy i) = —
sO(ay,) w(axi yaz) o Y0 oy
0 0 1 0 0
-1 ) = —+-(0-02—=——
(108050 = —5r+50-025 =50
where 2 =1,--- ,n.
Moreover we get
0
2 —_— ey —=
P = wl0)=0,
0 0 0
(I+n®&(5) = —5-+5-=0.
Therefore (1.1) and (1.2) hold. O
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1.2 almost contact metric manifolds

Definition 1.2.1. If a manifold M?*"*' with an a almost contact structure
(p,&,m) admits a Riemannian metric satisfying

(1.9) g(pX,pY) = g(X,Y) = n(X)n(Y),

then g is called a compatible metric and (¢,&,n, g) is called an almost contact
metric structure on M,

Proposition 1.2.1. (cf.[3]) On an almost contact metric manifold (M2 . € n, g),

(1.10) n(X) = g(X,§)
hold.

Proof By substituting Y = ¢ into (1.9), from (1.1), (1.3) we get

0= g(pX,p8) = g(X,&) —n(X)n(§) = 9(X, &) — n(X)

and hence (1.10). O

Proposition 1.2.2. (cf.[3]) M?"! is an almost contact metric manifold with
(p,€,m,9). Uis alocal coordinate neighborhood on M?"1.

(1) If X7 is a unit vector field on U orthogonal to &, then ¢ X is a unit vector
field orthogonal to both £ and X;.

(2) If X5 is a unit vector field on U orthogonal to &, X; and ¢ X7, then ¢ X5
is a unit vector field orthogonal to &, Xy, X5 and ¢X.

(3) We proceed in the same way as (1), (2). Then we can obtain a orthonor-
mal basis {X1, -+, X, X1, , 90X, £} on U.

Proof (1) First by substituting ¢ X; into (1.10), from (1.4) we get

9(¢X1,8) = n(pX1) = 0.

Next from (1.2) and the above equation we get

9@ X1, 0X1) = g(—X1+n(X1)E, 0X1)
= —g(X1,0X1) +n(X1)9(§, 0 X1)
= —g(X1,0X1).
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The other hand from (1.9), (1.4) we get

9(9* X1, 0X1) = g(pX1, X1) — n(eX1)n(X1) = g(eX1, X1).
And hence
g(pX1,Xy) =0.

Finally computing g(p X1, ¢X7) by (1.9), from the assumption and (1.10) we
get

9(pX1,0X1) = g(X1, X1) —n(X1)n(Xy) = g(Xy, X1) — 9(X1,8)9(Xy,§) = 1.

(2) Similarly we can see that ¢ X5 is a unit vector field orthogonal to &, X,
and X,. We shall prove g(¢ X5, pX1) = 0. From (1.9) and the assumption
we get

(X2, X7) = g(Xs, X1) — n(X2)n(X;) = 0.

(3) Suppose that {Xi, -, X, X1, -+, pXg, &} is an orthonormal frame
and X1 is a unit vector field orthogonal to X1, -, Xi, 0 Xy, -+, pX} and
€. Similarly we can see that ¢Xj,; is a unit vector field orthogonal to
X1, Xiy Xig1, X1, 0 X5, €. O

Definition 1.2.2. We call { X1, , X, X1, -+, X, €} a p-basis on M*" 1.

Example

Proposition 1.2.3. (cf.[3]) Let R***! be an almost contact manifold with
(p,&,n) satistying (1.6), (1.7) and (1.8). Let g be the Riemannian metric on
R?"*! defined by

I, .
(1.11) g=n@n+7> (') +(dy')?)
i=1
and the matrix of components of g, namely
L (Gityy 00—y
(1.12) 1 0 dij 0
_yj 0 1

Then R2**! is an almost contact metric manifold.
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Before the proof of this proposition, we prepare the following Lemma.

0 0 0
L 1.2.4. F :1 tXZIQ—,Xn 1:2 - t—
emma or i LN, DU Dy (axZ +y (‘92) on

R* . Then {Xi, Xoyi, €Yzt n forms a p-basis on R*"1.
Proof Using (1.12) we have

g 0 g 0
o720y = oy o) =0
0 0,0 ;0

= 6¢j+?f'y'+y( y)+y(—y)+yiyj=5ij,

9(Xi, X;) = g¢(2

(7 5 .0 .
Xi7 n+j = j_ = 7 =Y,
8 5’
X,L' - 2 2 5

§EX) = o(2an 2 =0

a 0 0 A .
X .. — — i\ i— 0.
Hence {X;, X,14,&}iz1,.. » is an orthonormal basis on R?"™'. Moreover
9 9 o 0

Therefore we can denote {X;, Xy yi, &tz by { X, 0(Xi), EF izt - O

Now we prove Proposition 1.2.3.
Proof We can easily get

(1.13) n(Xi) = n(Xnwi) =0,
(1.14) e(Xi) = Xosi,

(1.15) P(Xnyi) = =X,
where i =1,--- . n.

In proposition 1.1.2 we proved that the R?"*! is an almost contact manifold.
And then by using above equations and a ¢-basis {X;, ¢(X;), £}, we shall
verify (1.9).

(1) For X = XZ,Y = Xj,

90X, 0X;) = g(Xngi, Xnyj) = 035,
Q(Xian) - W(Xi)U(Xj) = 055 — 0-0=10.
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(2) For X = Xi7 Y = Xn-i—j;
90X, 0Xnyj) = 9(Xppi, —X;) =0,
9(Xi, Xnvj) = n(Xi)n(Xney) = 0-0-0=0.
(3) For X = XY =¢,
9(Xi,§) —n(Xin(§) = 0-0-1=0.
(4) FOI' X = XnJri’ Y = XnJrj,
9P Xnri, 0 Xnyy) = g(—=Xi, —Xj) = 0y,
9(Xnvir Xnyj) = n(Xnpi)(Xngy) = 045 —0-0=dy.
(5) For X = Xn+’i7Y = ga
9(Xnti, &) —n(Xppi)n(€) = 0-0-1=0.
(6) For X =¢,Y = ¢,
9(p€,9€) = ¢(0,0) =0,
9(& & —nn§) = 1-1-1=0.

Thus
g X, pY) = g(X,Y) = n(X)n(Y)
holds for X, Y € X(R*"*).
Hence the R?"*! is an almost contact metric manifold. O

Moreover we can easily obtain the following equations about the ¢-basis
{Xi, o(Xi), E i1, s

(1.16) (X, Xt j] = 20;;¢, others are equal to 0.

Proposition 1.2.5. (cf.[3]) Let R*"™! be the almost contact metric manifold

defined in Proposition 1.2.3. Then the sectional curvature of a plane section
spanned by a vector X orthogonal to £ and ¢ X is equal to —3.



CHAPTER 1. ALMOST CONTACT METRIC MANIFOLDS

Proof Let {Xy, -, X,, Xy, - ,0X,,&} be a p-basis. Using (1.7)
and (1.16) we get

VXin =0, VXan—l—j = 5ij§> iné = —Anitg
vXn-‘rin = _51'2'57 vXn+an+j =0, VXn+i§ = X
VeXj=—Xnyj, VX =X;, Vel =0

Then we get

R(XH XJ)Xk - 07 R<X17 X])Xn—l-k = - ijn—H + 5ian+j7
R(Xi, Xy )Xo = 03j Xpgi + 203 X, R(XG, Xt j) X = — 00X — 2045 X5,
R(Xn-i-ia Xn+j)Xk = _6k’in + 5kin> R(Xn—i-ia Xn-i-j)Xn-‘rk = 0.

For X orthogonal to &, we can put

(117) X = ZahXh + Zﬂth_,_h an, Bn € OOO(RQn—H),

h=1 h=1

and put Y = i ahXh, Z = iﬁth+h'

h=1 h=1
Then we have

R(Y,oY)pY = — Z ;o (05X + 20;;Xy),

1;7j7k:1

R(Y,¢Y)pZ = — Z ;i By (0k; Xvi + 2055 X 1),

ij k=1
R(Y,pZ)pY = — Z i Bjou (=0, Xnti + 0k Xnts),

1,5,k=1

R(Y,pZ)pZ =0,

10
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R(Z,¢Y)pY = 0,

R(Z,oY)pZ = — Y BioiBe(—0kXi + 00 X;),
i,9,k=1

R(Z,pZ)pY = — Z BiBjou (86X + 205 Xy),
i,5,k=1

R(Z,0Z)0Z = = Y BiBiBu(6riXnij + 26 Xnin).
i,9,k=1

Now we compute g(R(X, pX)pX, X) as follows:

g(R(X, 9 X)pX, X)
=g(R(Y,pY)pY)Y + Z)
+9(R(Y, oY )pZ)Y + Z)
+9(R(Y, pZ)eY,Y + Z)
+9(R(Z, oY) Z Y + Z)
+9(R(Z,0Z)pY,Y + Z)
+9(R(Z,02)pZ,)Y + Z)

— 3% a2 g_aiagﬁf—siﬁfﬁf

i,j=1 i,j=1 1,j=1

30> af+ > p7)
=1 =1
= —39(X, X)*.

Next we compute g(X, X)g(¢X, pX) — g(X, 9X)?. Since X is orthogonal to
€, g(X,pX) = 0. Hence by using (1.13) we get

9(X, X)g(pX, pX) — g(X, pX)?
= g(X, X){g9(X, X) = n(X)n(X)}
= g(X,X)Z.
Therefore
9(R(X, pX)pX, X) = =3{g(X, X)g(¢X, pX) — g(X, pX)?}. O

11
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Proposition 1.2.6. (cf.[3]) Let R? be the almost contact metric manifold
defined in Proposition 1.2.3. We can identify R?® with the Heisenberg group

1 y =z
HR:{OlfL'

0 01

x,y,zER}.

And then the followings hold
(1) Left translation preserves 7,
(2) g is a left invariant metric on Hg.

Proof Let A, ) € Hgr be the elements

1 b ¢ 1y =z
A=10 1 aland @ = [0 1 x|, respectively.
001 001

Then the left translation on Hr by A is denoted by

1 y+b z4+bx+c
AQ=10 1 r+a

0 0 1
And then we define the map ¢ : R® — R? such that
(1.18) (z,y,2) = (r+a,y+b,z+bx+c).

From (1.6) 1 is denoted as follows:
1
(1.19) n = §(dz—ydx).

For p € R?, we take a local coordinate (,y, z). From (1.18) we get a Jacobian
matrix of ¢ at p as follows :

1 00

010

b 0 1

Hence we get

(1.21) <dw>p<(§y)p> _ (a%)w(p),
(1.22) <dw>p<(%)p> - (%)w(p).

12
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First we shall prove (1). We check the equation
M) © (d)p(X) =np(X)  for X € T,(R?).

From (1.20), (
into 7y o (di

Case 1: X:(g).
8xp

M(p) © (di))y (%)p = %{(dz)w(p) =y () (dz)ym H (%)w(p) +0 (%)w(p)}

1 1

= SOy = 5o~ h) =5

w(5r) = 3t —vonnd (57) = 50000 = 5

1.21) and (1.22), using (1.19) we substitute (Z),, (a%)p, (2),
)p and 7, respectively.

M) © (), (%) = %{(dmcp)—y(@b(p))(dx)w(p)}(aﬁ)w):%,

"l (%)p = %{(dZ)p —y(p)(dz),} (%)p _ %

Thus ¥*n = n holds.
Next we shall prove (2). Let p be a point on R®. From (1.18) the

13
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Riemannian metric g, and gy, are

(1+y2 0 y) (1+(y+b)2 0 (y+b))
(123) go={( 0 1 0], gylp)= 0 1 0 :

-y 0 1 —(y+0b) 0 1
respectively.
Now we check the equation
(1.24) 9p(X,Y) = gu ((dv),(X), (diy)(Y))  for X,Y € T,(R®).

(»)
We substitute (), (8y)p’ (£), into the both side of (1.24). Using (1.23),
from (1.20), (1. 21) and (1.22) we get

Case 1 X = ( > (82) '
()
> v ( (%)W) 0 (%Lm ’ <3%)¢<p>>

0+0=0.

Case 2': X = (g) Y = (2)
' 8:Bp 8zp

gp((%)p,(%)p) = -
s (@500 500 = swn(35) 40 (5) (50) )

= —(y+b)+b=—y.

)= (
gp((%l(%)p) = 1+
2

2)) = 1+ (y+b)*—b(y+0b) —b(y+b)+ b

= 1+~

14
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Case 4: X = (3> Y = <3>
Ay ), 0z ),

Therefore (1.24) holds.

15



Chapter 2

Contact metric manifolds

2.1 contact manifolds

Remark that, in this paper, the exterior differentiation dn of a 1-form 7 is
defined by

X, Y) = S (Xn(Y) = Yi(X) = (X, V])),

for X,Y € X(M).

2n+1

In terms of a local coordinates x!,--- , 22! of M2 FL if n = Z nidax’,
=1
then dn is expressed as

2n+1
_ - j i
dn—2 axjdx A dx’.

i,5=1

Definition 2.1.1. A (2n + 1)-dimensional C* manifold M is said to be a
contact manifold if it carries a 1-form n such that

(2.1) n A (dn)" # 0.

The 1-form 7 is called a contact form on M. It is well known that there
exists the unique vector field ¢ satisfying

16
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for X,Y € X(M).
The pair (M,n) is called a contact manifold and the vector field ¢ is called
the characteristic vector field of 7.

Example

Proposition 2.1.1. (cf.[3]) If 5 is the 1-form defined by (1.6) on R***!, then
the pair (R*"*1 n) is a contact manifold.

1, 4 , . 4
Proof Since dn = ~1 ZdyZ A dx', if we put dy* A dz' = W',
i=1

n

dn:—z w'.

i=1
Clearly
WA w =w AW

Then we have

n 1 i 1 i 1 i
(@) = (—3 D) A (=g D) A A (=7 Do)
1 , : A
= (—Z)”' Z | WIAW2A- - Aw™
i1 F#i2F Fin
1
= (—Z)”n! W AWEA AW
Hence

1 L 1
nA(dn)" = G(dz =Y ylda’) A=)l Wt AW A A"
=1

1.1
= 5(1)"n' dz AW AwW? A AW"

1.1
— 5(Z—L)”n' dz A dy* Adxt Ady? Ada® Ao A dy™ A da”
£ 0.

Therefore (2.1) holds. d

The following theorem was proved by J.Gray.

17



2.1. CONTACT MANIFOLDS

Theorem 2.1.2. (see[2]) Let ¢ : M*"*1 — R?"™2 be a smooth hypersurface
immersed in R?"*2. If no tangent space of M?"*! contains the origin of R*"*2,
then M?"™! has a contact structure. That is, let (z',--- , 2°""2) be cartesian
coordinates on R?*"*2. And we consider the 1-form o defined by

o = l’ld.IQ _ ZL‘2dl'1 R .I2n+1dl'2n+2 o I‘2n+2dl’2n+17
then n = +*«v is a contact form.
Corollary 1. (cf.[2]) S*"*! is a contact manifold.

Using the above results we will show that the real projective space P?"1
is a contact manifold. We consider a system of coordinate neighborhoods

{(UF 00, (U747 Yzt 2042 on ST such that

Ut ={(z", - &', 2?2 € §21 | 2 > 0},
U- = {(xlj... ot ,x2n+2) c g2ntl | 4o 0,
Ot a2 = (2t 2P,
St ) = (2 22T,

Lemma 2.1.3. Let n be the 1-form given in Theorem 2.1.2. We define the
map F . S+l — g2t by

(2.4) F(p)=—p forpeS¥tt
Then F*n =n holds.

Proof  First we consider ¢ : U;" — R**2. We set the local co-
ordinate of R*"*2 (2! ...  22""2) And we set the local coordinate of U;"
(!, , a2y,

For X, € T,(U;")(p € U;"), we put

0 0
Xp = (51@ +-t §2n+1W>IJ'

Since ¢(p) = p, we get
(2.5)

(21’ ... ,Zi_l,zi,ziﬂ, .. 722n+2> — (x17 e 7xi—1’ /1_ H T H2’xi’ . ’$2n+1)’

18
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where (z1)% + - + (22?2 =|| 2 ||

We put e = A and hence get
1=z

(db>p(Xp) = (Elﬁ +o A+ &'71% — )\(flxl + -4+ §2n+1$2n+1)@ +
9 0
ng 4.+ f2n+1w)b(p).

Moreover we put p = &at + -+ + &gyt

p(Xp) = (Va)p(Xy)) = ab(p)((db)p(Xp»L(p)
_ (2’le2 2050 g Ly g2 Z2n+2d22n+1)b(p)

9 ) ) ) 0
(flﬁ + o+ &71% — )\,u% + @W + e+ §2n+1W>L(1’).

and get

When i =2k—-1 (ke {l,--- ,n+1}),

77p<Xp)
S (MR g 2RI Bl g g 2 k2 ey
0 0 0 0 0
(g g+ = Mgy T &g T &gy St g 5o )
= &' = Gt T A G P — = 62T

From (2.5) we get

1 — n
p(Xp) = 52961 — -t §2k71X + )\szk 14 52k+1$2lC — = 52n$2 L

When i =2k (k€ {1,--- ,n+ 1}), similarly

- 1 -
np(Xp) = §2x1 - )\H$2k T &k—lx + §2k+1$2k - §2nx2 i

Next we put the local coordinates of F(U;") (y!,--- ,y** ™) and get
(2.6) (yl’_“ ,y2n+1) — (—1‘1,”- ,_x2n+1>
We put (dF),(X,) = Yr@) and get

0 0
Vi) = (—fla—yl T f2n+1W)F<P)‘

19
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We consider the mapping ¢ : U, — R*"*2 and get

(2.7)
i—1 i i+l 2n+2)

(217...’2 ,Z,Z ’...72 2n+1)

:(yla"'vyi_17_ 1—- ||y||2aylaay

where (y')? + -+ (1) =[| y ||*.

We put ——— = X" and hence get
1=y |?
(de) p( (YF<p>)
8
= (f1$ — =& 951 Ny +---+ 52"+1y2n+1)8z’ - glﬁz’“ -
0
= §2n+1W)L(F(p))-
Moreover we put p/ = &yt + -+ + &y p1y®™ L, then
(F"0)p(Xp) = 1r) (dF) (X))
= () p(p) ((dF)p (X, )) = aur ) () reE) (Yrp)
( le 2dZ + + 22n+1d22n+2 2n+2dz2n+1)L(F(p))
8 0
(<bip g = =&y — N a PG T St g )
When i =2k—-1 (ke {l,--- ,n+1}),
(F7n)p(Xp)
_ (2,’le2 e ZQk—leQk o ZdeZ2k—l + Z2k+ld22k+2 L 22n+2dz2n+1>L(F(p))
0 0 0 0
(—51% — = /\’M'W —&h-1g gy TSy g T §2n+1—822n+2)L(F(p))

= &2 4 s T = Gt T N = G 2T 4 62T

Then from (2.7)

(F*n)p(Xp) = =&y + - +En—sy™ *+Ean1 ,+>\/ Y Gy A Gy

A
From (2.6)

(F*n)p(Xp) — 521.1_. . '_€2k_3$ +€2k’ 1)\/ )\/ / 2k 1+€2k’+1x2k_' . ‘_€2nl,2n+2.

20



CHAPTER 2. CONTACT METRIC MANIFOLDS
Since N =\, ¢/ = p,

1
(F*n)p(X,) = &' — - — &y gz 2+ €2k—1X + Az g7 — - — o2
Up(Xp)'

When i =2k (k€ {1,--- ,n+ 1}), similarly

1
(F*'n)p(Xp) = St — - — )\/w%f1 - £2k71X + £2k+1372k — o= Gt
= 7p(Xp).
Therefore we get F*n =n. U

Next we consider a natural projection 7 : R**2 — {0} — P?"*!. We define
a open set W; of R**2 — {0} and the open set V; of P?"™! such that

(2.8) Wi = {(z1,-+ @, Bonga) |z # 0},
(2.9) Vi = (W),
for i=1,---,2n+ 2.

Moreover we define the homeomorphism o; : V; — R?*"*! and then get the
following Lemma.

Lemma 2.1.4. Let {(Vi,0:)}iz1... 2nt2 be a system of coordinate neighbor-
hood on P?"*'. Then in the natural projection w : S*"*1 — P>l the fol-
lowings hold.

(2.10) 7 U = Viis a C™diffeomorphism,
(2.11) w U~ —V;is a C™diffeomorphism,
(2.12) m(x) = w(—z) forxzeU.

Theorem 2.1.5. (cf.[9]) P> is a contact manifold.
Proof For z € U;" we put n(z) = [ and then from (2.12) get
(2.13) m(x) =m(—x) =1

Since (2.10) and (2.11) hold, forX; € T;(V;) there exists a unique Y, € T,(U;")
and a unique Y_, € T_,(U;") such that

1

(2.14) (dr)a(Y,) = (dr)_o(Y_s) = X.
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2.1. CONTACT MANIFOLDS

From (2.13) the following equation holds
(2.15) mT=molF.
And then from (2.14) and (2.15) we get

X = (dm)u(Ye) = d(mo F),(Y:) = (d7) pa) (dF ) (Yz))
= (dm)_o((dF).(Yz)).

Hence also from (2.14)

(dm)—o(Yoz) = (dm) o ((dF)x(Yz)).
Since (dm)_, : T_.(U;7) — T1(V;) is an injection, we get
(2.16) Y., = (dF),(Y,).
From Lemma 2.1.3 the following equation holds
(2.17) (F'n).(Yy) =n.(Y,) for x e (U).
On the other hand from (2.16) we get

(F")2(Ya) = np@) (dF)e(Ye)) = 1-2(Ys)-
And then from (2.17) we get
N-o(Yoz) = 10a(Yz).

Hence we can define the 1-form 7 on P?"*! such that for [ € P>+l X, ¢
TVZ(P2n+1)

1(X1) = 12(Ya),

where w(z) =1, z € ™) (dn).(Y:) = X.
Thus, P?"*! is a contact manifold. O

The value of dr(§) in Hopf’s mapping 7

The following lemma is well known.
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Lemma 2.1.6. Let 53 = {(z 2?) € C? |22 + |2 = 1} and S* =
{(z,y,2) € R® |#* +y* + 2% = 1}. Then in Hopf’s mapping 7 : 5 — S°
the following equations hold

r=2Re(z- 2%, y=2m(2'-2?), z=2] ">~

Proposition 2.1.7. We consider Hopf s mapping m : S° — S%. When we
put § = =252 + 2t 5% — 2t % + 2352, dn(€) = 0 holds.

Proof For p € S3, let the local coordinates of p (z',2?) such that

2=t fix? 22 =23 4 it

We consider the C*curve c(t) on S? defined by
c(t) = ("2t e"2*) (t€R)
Then we get
c(t) = (v cost —a?sint,x' sint + 2% cost, z° cost — x* sint, 2° sint + 2 cos t).

Hence we get

d_c —_28+ i_ 4i+ 3i—£
dt li=0 ozl 0x? v ox3 v ort

Next we put the local coordinates of S? (z,y, 2). Since w(c(t)) = m(e2!, e2?),

from Lemma 2.1.6 we get

z = 2Re(eitz!-e"2?) = 2Re(2! - 2?),
_ ZIm(e“ zt 2) (_1 22)7
> ‘ezt 2|2 |ezt 1‘2 |Z2|2 o ‘Zl|2.

And then we get
m(e(t)) = (2Re(21 - 2%), 2Im(21 - 22), [2°* — |1 ).

Therefore
d(moc) B
dt =0

that is dm(§) = 0. O
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2.2. CONTACT METRIC MANIFOLDS

2.2 contact metric manifolds

Let 1 be a contact form on M. A Riemannian metric g is said to be an
associated metric if there exists a tensor field ¢ of type (1,1) satisfying

(2'18) dn(XvY) = g(XﬂOY%
(2.19) nX) = g(X,9),
(2.20) = —I+n®¢.

Definition 2.2.1. The structure (¢,§,n, g) satisfying (2.1),(2.18),(2.19) and
(2.20) is called a contact metric structure and a manifold M*" ™' with a
contact metric structure (p,&,n,g) is said to be a contact metric manifold.

Theorem 2.2.1. (cf.[4]) The following equations hold on a contact metric
structure (p,&,1,g)

(2.21) ot = 0,
(2.22) noe = 0,
(2.23) 9(pX, YY) = g(X,Y) = n(X)n(Y).
Proof First for X € X(M?*'*1), using (2.18) and (2.3) we get
9(X, ) = dn(X,¢) =0. (1)
Substituting X = ¢ into (1), we get
9(8,98) =0

and hence p¢ = 0.
Next using (2.19), (2.18), and (2.3) we get

nowp(X) =g eX)=dn¢ X)=0

. Thus o ¢ = 0. Finally using (2.18), (2.20) and (2.19) we get

\_/A

9(@X,0Y) = —dn(Y,pX)=—g(Y,¢’X) = —g(Y, =X 4+ n(X)¢)
= g(X,Y) —n(X)g(Y;§)
= g(X,Y) —n(X)n(Y)
Thus, g(¢X, Y) = g(X,Y) = n(X)n(Y). O
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CHAPTER 2. CONTACT METRIC MANIFOLDS

Example

Proposition 2.2.2. (cf.[3]) Let R*™! be the almost contact metric manifold
defined in Proposition 1.2.3. Then R?"™ is a contact metric manifold.

Proof We already proved that the R*"*! satisfies (2.1), (1,10) i.e.(2.19)
and (2.20). And then we must prove that (2.18) holds on it. Using (1.13),(1.14),(1.15)
and (1.16) we compute as follows :

1) X=X,Y =X,
LX) — Xn(x) — (X X)) = 0

2
9( X, 0 X;) = g(X;, Xnyy) =0

L (Xit(Xe) = X0 = (X X)) = —850(6) = b
9(Xi,0X;) = 9(Xi,—X;) = =6,
(3) X=X,Y=¢
L (Xin(€) — En(X) — (X, €)= 0
9(Xi,9€) = 9(X;,0)=0

(4) X =Xoui,Y = Xy

1
_(Xn+in<Xn+j) - Xn-‘rjn(Xn—I—i) - n([Xn—‘rz;Xn-‘r]])) =0

2
I Xngis 0Xnys) = 9(Xpgi, —Xj)

%(X"er(g) —&n(Xnti) = n([Xnri,€])) = 0

9(Xnri,08) = 9(Xnyi,0) =0
6) X=¢6Y =¢
Sen(e) —en(©) —n(le. ) = 0

9(&,98) = 9(£,0)=0
Therefore (2.18) holds. O
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2.2. CONTACT METRIC MANIFOLDS

Definition 2.2.2. On a contact metric manifold (M*""', , &, n, g) we define
the operators | and h by

(2.24) IX = R(X,0¢, h= %Eégp.

Clearly the (1,1)-type tensors h and [ are symmetric.

Proposition 2.2.3. (cf.[4]) h and | satisfy the following equations
(2.25) h&E=0,1E=0, Trh=0, Trhe =0 and hp = —ph.

Proof From (2.21) we get

hE = 3 (Lep)(€) = 5 w] - ol €]) =

and
1§ =R(£§E=
We will prove Trh = 0. Let {e; = &, ea,--+ , 9,41} be the orthonormal
2n+1
basis on M?"*!. Fori € {1,2,--- ,2n+1} we put h(e;) = Zaijej and hence
j=1
get a; = g(h(e;), e:).
Using (2.18) we compute Trh as follows:
2n+1 2n+1 2n+1
(1) Trh = Za” = Zg(h(ei),ez Zg (Lew)(ei), e)
i=1 i=1
2n+1 1

- Zﬁg([g,goei] —l¢, e, )
- 12n+1 2n+1

- —{Zg ([€, peil, e +Zg (€, el pei)}-

Now we take another orthonormal basis {€],e5, -+ ,e5, 1} such that e} =
€, el = pe; fori € {2,3,---,2n+1}. Similarly using (2.19),(2.20) we compute
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CHAPTER 2. CONTACT METRIC MANIFOLDS

2n+1 2n+1

_{Zg 5@6 ) z +Zg gv z goe
2n+1 2n+1
—{Zg ([€, i, ei) +Zg &, peil, o)}
2n+1 2n+1

__{Zg 59062 61 +Zg 561 9061>}

Since (1) = (2), we have Trh = 0.
Next we will prove Trhy = 0. For i € {1,2,---,2n + 1} we put hp(e;) =

Z bije;. Using (2.18), (2.19) we compute T'rhy as follows:

(3) Trhy

2n+1 2n+1

Zbu - Zg hQO 61 67, Zg 'Cﬁ(p 4P€z 61)
2n+l

—Z{ g([& el ei) + g([& n(e)é], ei) + g([€, wei], pei) }

2n+1

_Z{ g fez eﬁ—i—g([f 9061] 90€%>}

Similarly using (2.19), (2.20) we compute

2n+1

—Z{ (€, €], €h) + g([€, wel], el }
—%Z{—gua, peil e + g€, e, e}

__Z{ g([&, €], €) + g([&, pei], wei)}

Since (3) = (4), we have Trhy = 0.
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2.2. CONTACT METRIC MANIFOLDS
Finally we prove hp = —ph. Now,using (2.2), (2.1) we get

(€. X) = SEm() ~ X(n(©) ~ n(le, X]))
= LX) — n(le, XD} =0

and hence
(X)) = n([¢, X) ()
We compute hp(X), —ph(X) respectively.

ho(X) = S(Le)(eX) = 56, 9*X] — plé, X))
= (6 —X +n(X) — ole oX))
_ _%([g,X] + ole, pX] — (€n(X))€)
~oh(X) = —p(5(Lep)(X)) = ~5(elE 0X] - PlE, X))
_ _%([5,)(] + ol€, o X] = (€, X))€)
From (5) we get he = —ph. -

The following formulas are known. (cf. [2], [5]).

(2.26) Vx&=—pX —phX (and hence V£ =0),
(2.27) Vep =0,

(2.28) Trl = g(Q¢,€) = 2n — Trh?,

(2.29) ol — 1 = 2(p* + h?),

(2.30) Veh = ¢ — pl — ph?,

where () is the Ricci operator and V the Riemannian connection of g.
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CHAPTER 2. CONTACT METRIC MANIFOLDS

2.3 K-contact structures

Definition 2.3.1. A wvector field X on a Riemannian manifold M***1 is
called a Killing vector field if X satisfies Lxg = 0,that is,

Lx(Y,Z)=9(VyX,Z)+g(VzX,Y) =0

for any vector fields Y and Z on M?*"*1, where Lx denotes the Lie differen-
tiation with respect to X.

Definition 2.3.2. Let M*"*! be a contact metric manifold with (o, &, n, g). If €
is a Killing vector field, then we call the (p, &, 1, g) a K-contact structure.

Proposition 2.3.1. (cf.[2]) If a contact metric manifold M?" ™ with (o, &, 7, g)
is a K-contact manifold, then the following equation holds.
(2.31) Vx€ =—pX.

Proof For XY € X(M?*"™!) using (2.18) we get
GX.GY) = d(X.¥) = S{Xn(Y) = Yn(X) — (X, Y])}
= J{Xn(Y) —n(VxY) ~ Yn(X) 4 n(Vy X))
= SIX0(Y.6) — g(VxY.6) = Yo(X.) + g(Vr X))

= LoV, + 4(Y, VxE) — g(VY.0)
—g(VyX,6) — g(X,Vy&) + g(Vy X, &)}
- %{g(Y, Vx§) — 9(X, Vy&)}

= %{g(Y, Vx€)+g9(Y,Vx&)} (since ¢ is Killing)

Then we get g(X, ¢Y) = g(Y, Vx&) and hence g(Y, Vx&) + g(Y, pX) = 0.
Thus

(2.32) g(VxE+ X, Y)=0
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2.3. K-CONTACT STRUCTURES

By substituting Y = Vx& + ¢ X into the above equation, we get

V€ = -

Example

Proposition 2.3.2. (see [3]) Let R*"™! be the contact metric manifold de-
fined in Proposition 2.2.2. Then R*! is a K-contact manifold.

Proof We must prove that L¢g is equal to 0. Since L¢g is symmetric,
using (2.16) we compute as follows:

Leg(Xi, X;) = —g([€, Xil], X;5) — (X5, [§, X5])

2) X =X,,Y = X,p;

Leg(Xiy Xngy) = —9([& Xi], Xnyj) — 9(Xi, [€, Xngj])

(3) X = Xn+l'7 Y = Xn+]
Eég(Xn+iaXn+j) = _9([§7Xn+i]a Xn+j) - g<XTL+i7 [fa Xn+j])
= _g(O>Xn+j) - g(Xn-i-ia 0) =0

Leg(€, Xi) = —g([€,€], Xi) - (5[ Xi)
= —9(0,X;) —¢(£,0)

(5) X =&Y = Xnyi

ﬁgg(é,XnH) = —g([&,&],XnH) (
= _9(07Xn+i)_g< 0

)
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Leg&,€) = —g(l§,
= —9(0,¢

m

1,6) —g(&, €, ])
—g(&,0)

v

Therefore L¢g is equal to 0. O

Proposition 2.3.3. (cf.[2]) Let M*"*! be a K-contact manifold with struc-
ture tensors (v,&€,1m,9). Then the sectional curvature of any plane section
containing & 1s equal to 1.

Proof Let X be aunit vector field orthogonal to £&. Then

R(§ X)§ = VeVx{—VxVel — Viexié

—VeoX + [, X] ( from (2.31) and (2.26) )
= —VepX + (VX —Vx&) ( since TV = 0)
—pVx€ ( from (2.27))

0’ X ( from (2.31))

= —X+nX)f=-X+g(X, )¢ =-X

and hence

U

Corollary 2. On R*™! defined in Proposition 2.5.2, the sectional curvature
of any plane section containing & is equal to 1.

Remark that we shall show that there exist some almost contact metric

structures which are not contact metric structure.

Example

Proposition 2.3.4. (cf.[3]) Let (M?",J,G) be an almost Hermitian mani-
folds with local coordinates z',--- ,x?" and let t be the coordinate on R. We
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2.3. K-CONTACT STRUCTURES

define 0, €, g, on the M** x R as follows :

(2.33) n = fdt, where f is some non- vanishing function,
10

2.34 = ——=

235) g = G+non,

(2.36) @& = 0, X =JX for X orthogonal to&.

Then (p,&,m,g) is an almost contact metric structure which is not a contact
metric structure.

Proof We can see that the following equations hold

o 0
(2.37) 9(%7§) = 0,
0
(2.38) g(faj(ﬁxi)) = 0.
Because from (2.35)
o 0 0 0
g(&t“a) - (8xl+00+8t)
= G0+ n(0) 02y =0
= gy T gy =

Zoz ——, then from (2.27)

Therefore J(—=— 0 is orthogonal to &.
ox'
X

(1) n(§) =1
From (2.33),(2.34)

0O = il ) =1
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I+n®E

2n

0

9,
For X € X(M*" x R) we put X = Zai— + B and get
— ot

And then

Pi(X) =

oxt

9 0 0
n(X) = U(;ai% + ﬁa) = U(ﬁa)

Plo(Yains + B0y = oD ielar) + Bo( o))

P ()t = (i (o) = (Yol T ()

2n
0 ?
2 .
;aﬂ (8x1> (because J(_axi> is orthogonal to &)

2n
0
— E Qi (because (M?",J,G) is an almost Hermitian manifolds)
xl
i=1

P 0
—X 4B ==X+ [BE ==X + ()¢
=X +n(X)E.

Therefore p? = —I + 1 ® £ holds.
(3) 9(pX, ¢Y) = g(X,Y) = n(X)n(Y)

For X, Y € X(M?" x R) we put

X=X'+X"Y=Y+Y" ,where X' Y' € X(M*), X" Y" € X(R).

And then

(X, ¢Y)

= gp(X'+X"), (Y +Y")) = g(oX" + X", oY + pY")) = g(pX', pY”)
= g(JX',JY") (because X' Y’ € X(M*")

— QX JY")

= G(X',Y') (because (M?",J,G) is an almost Hermitian manifold)

= g(X,Y) = n(X")n(Y") = g(X,Y) = n(X)n(Y).
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Therefore g(¢ X, pY) = g(X,Y) —n(X)n(Y) holds.
(4) n A (dn)"

1 1
Since from (2.33) dn = §df Adt, n A (dn) = §fdt ANdf Ndt = 0.

Thus
n A (dn)" = 0.

Therefore (¢, £, n,g) is not a contact metric structure.
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Chapter 3

3-dimensional contact metric
manifolds

We denote by V the Riemannian connection of g and by R the Riemannian
curvature tensor, which is defined by

R(X,Y)Z =VxVyZ - VyVxZ — Vixy|Z,

for X, Y € X(M*"+1).
The Ricci tensor Ric(X,Y) is defied by

(3.1) Ric(X,)Y) = i g(R(X;, X)Y, X;),

i=1
for X, Y € X(M?" ™), where X1, -+, Xo,,1 is a local orthonormal frame field
of M2nt1
The Ricci operator () is defined by
Rice(X,Y) = g(QX,Y),
for X,Y € X(M>*"1).

Definition 3.0.3. A contact metric structure is said to be n-Einstein if

Q=pl+q®¢

holds, where p,q are some smooth functions on M?*"+1.
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Remark that the above equation is equivalent to
for X,Y € X(M>"*1).

Definition 3.0.4. A contact metric manifold (M*"* p,£,n,g) is said to be
Sasakian if M satisfies

(3.3) R(X,Y) = n(Y)X — g(X)Y.

for X,V € X(M*"*1).
From Definition 2.3.1. and Definition 2.3.2. (M?*"*1 ¢ £ n,g) is K-contact
manifold if and only if the following equation holds

(3.4) 9(X,Vy&) +g(Vx¢&,Y) =0,

for X,V € X(M>"*1).

3.1 S° with the contact form 7

Let (x',---,2?"2) be Cartesian coordinates on the (2n+2)-dimensional Eu-
clidean space R?"™2. We consider the 1-form « on R?"*? defined by

(3.5) a = otde® — 2idat + - 4 2T e - R
and the inclusion mapping
(3.6) L S RER2

From Theorem 2.1.2., n = 1*« is a contact form on S i.e., nA(dn)™ # 0
holds on S§?"*!. By using (3.5) we get

(3.7) do = dot A da? + da® A da® + - - 4 do® T A da?

Throughout this section, we consider this contact form 1 on S3. Then
from (2.2) and (2.3), the characteristic vector field £ is determined by

28+x18 x4a+x3a

du(g) =~ ox! ox2  Ox3 ozrd’
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We take the independent vector fields X, X5, X3 = € on S® such that

0 0 0 0
(3.8) du(Xy) = —x?’—axl + x4_8:v2 + xl_@x?’ — x2—6$4,

0 0 0 0
(3.9) d(Xy) = —alan—wiastetystaiay,

(3.10) du(X3) = —2"=—+ux

g and ¢ of S

Let g be a Riemannian metric on (5% 7) which satisfies (2.19). We put
9ij = 9(Xi, Xj) and a = g11, b= g1a = ga1, ¢ = gaa.
By using n = (*«, from (2.19) we get

g13 = Q(Xh X3) = U(Xl) =0,
923 = 9(X27X3) = 77(X2) 0

and from (2.2) get
g33 = 9(X3, X3) = n(X3) = 1.
Then, the 3 x 3 matrix (g;;) is of the form

a b 0
0 01

where a,b,c € C>(S?).

Since det(g;;) > 0, we get ac — b* > 0. Moreover, since X; # 0, Xy # 0,
we get a = g(X1, X1) > 0,c= g(Xs, Xs) > 0.

Conversely, let g be a tensor field of type (0,2) defined by (3.11). If
a>0,c> 0 and ac — b* > 0 holds, then g is a Riemannian metric satisfying
(2.19).

Thus we have the following.

Proposition 3.1.1. If a Riemannian metric g on (S®,n) satisfies (2.19),
then (3.11) and the following hold

(3.12) a>0,c>0 and ac—b*>0.

Conversely, let g be a tensor field of type (0,2) on (S®,n) defined by (3.11).
If g satisfies (3.12), then g is a Riemannian metric on (S®,n) and satisfies
(2.19).
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Next, let ¢ be a tensor field of type (1,1) satisfying (2.18). Then, we have

b —a
Xy) = X1+ —=X
P(X) Py Ch v
() = — x4 —"_x
LA v - b L

p(X3) = 0,

where a > 0,¢ > 0,ac — b* > 0.
Because, by using 7 = ¢*« from (3.7) we get

dn(X;, X;) = (dz' Ada? + da® A da)(du(X5), du(X;)).
And then from (3.8), (3.9), (3.10) we have
dn(X1, Xs) =1, dn(Xs, X1) = —1, others are equal to 0.

3
Now, we put ¢(X;) = Zgoijk (j = 1,2,3). Since g(X;, ¢X;) =
k=1

3
Zgiktpkj, from (2.18) we get

k=1
0 10
(9:)(pi) = [ =1 0 0
0 0 0
Thus
P11 P12 P13 1 b c 0
(313) g021 (,022 @23 = —a —b 0

2
Y31 P32 P33 ac 0O 0 0
where a > 0,¢ > 0,ac — b* > 0.

Proposition 3.1.2. Let (p,&,n,g) be given by (3.11), (3.12) and (3.13) on
S3. If (p,€,m,9) is a contact metric structure, then the following equation
holds

(3.14) ac —b* = 1.

Conversely, if (3.14) holds, then (p,&,n,¢g) is a contact metric structure on
S3.
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Proof. From (3.13) we get

1
b2 —ac

1
(3.15) (0i)* = 0
0

o = O
o O O

By putting ¢ = —1 + 7 ® &, we get the following equation
W(X;) ==X +0(X;)Xs (1 =1,2,3).

By substituting 7 = 1, 2, 3 into the above equation, we get

P(X1) = —Xi+n(X)Xs =X,
P(Xz) = —Xo+n(Xp) Xz = —Xo,
P(X3) = —X3+1(X3)Xs =

Now, we put
3
Y(X;) = Y1 X + e Xo + 3 X3 = Z Pi X
i=1

By substituting j = 1,2, 3 into the above equation, from the above result
we get

Y Y2 Yis -1 0 0
(3.16) o1 oy Yoz =1 0 -1 0
P31 P 33 0 0 0

If (¢, &, 7, g) is a contact metric structure, by using (3.15) and (3.16) from
(2.20) we get (3.14).
Conversely, if (3.14) holds, we can get (2.20). O

Corollary 3. ¢ is denoted by the following matriz

Y11 P12 P13 b ¢ 0
Vo1 a2 P3| =|—-a —b 0] a>0,c>0, ac—b*=1.
P31 P32 P33 0O 0 0
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Curvature tensors

In this section, we assume a, b, ¢ are constant. By using (g;;) which satisfies
(3.11),(3.12) and (3.14), from the basis X, X, X3 = £, we can generate the
orthonormal basis Y}, Y5, Y3 on (S3, g), that is

1 ab
Yi=X3 Yo=—7X;, V3= _\/_TXl +vaXo.

Vva

And then we get

b 1
X3 =Y, Xi =aYs, X2:%YQ+%YE%-

By computing [X;, X;] from (3.8), (3.9), (3.10) and the above equations, we
have

[X1, Xo] = =2X5, [Xo, X5] = —2X,, [X5, X4] = —2X,
and

2b 2 2(a* +b? 2b

From the above results, we get

4b

29 VYQS/%}/l - _%7 29 VYS}/?HYi a’
2(a?+b%—a+1)
4b

( ) ( )
( ) = S 29(Vr Y3, Ya)
29(Vy, Yy, V1) = 20l - 90(T,, Y4, Ys)
( ) ( )
( ) ( )

)
I~
)
Q
M
|
S8
[
-
N
)

a Y

2(VyYi, V5) = 2, 2g(VyY,, ¥y) = At
29(Vy,Y1,Y3) = =, 29(Vy, Y2, Y1) = w’

others are equal to 0.

And then we have

VYIK - O, VY1Y2 — a—a —b2 1}/37
Vy, Y3 = %y&’ Vy,Y: = sz i %#HY
Vy, Ys = —2Y7, Vy,Vs = w+a—+621y
Vy, Y1 = %Yg _ %byé’ Vy, Vs = a+a22b2 ly,,
VYJ}/V?) _ ZbY'l
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Next, we put
(3.17) a = l—a—cg,
2b
3.18 = =
(319 g =2
2
(3.19) Yy = a+-—.
a

By using the above equations and (3.14), we have

and

vYli/v]. - 07 VYI}/Q = OZYE’,, VY1}/E“) = _ai/'?7
Vy, Y1 = BYs + Y3, Vy, Yo = =Y, Vy, Y3 = —7Y7,
VYgifl = (7_2)}/2_63/37 VYg}/Z = _(7_2>§/17 VYg}/?»:/B}/l

Hence we have

R(Y1,Y2)Yi = (o —2ya —4)Ys + 2a3Ys,

)
RV, Y2)Ys = (—a®+2va+4)Y;,
R(V1,Y2)Ys = —2aBY,
R(V1,Y3)Y1 = 2a8Ys+ (o 4 2ya — 4o — 4)Y5,
R(Y1,Y3)Y, = —2a8Y,
R(Y1,Y3)Ys = (—a® —2ya +4da+4)Y;,
R(Y2,Y3)Y1 = 0,
R(Y5,Y3)Ys = (—a®+4a+4)Ys,

R(Y2,Y3)Ys = (o —da —4)Ys.

From the above result, by using (3.1) we get

—20” +4a + 8 0 0
(3.20) (Ric(Y;,Y;)) = 0 2va —da —2af3
0 —2af8 2y«
—2(a+c)*+10 0 0
2 4b
_ 0 2(a+c—1)(a+c+1—a) ;(a—i—c—l)
4b 2
0 E(a—l—c—l) —2(a+c—1)(a+c—1—a)
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Proposition 3.1.3. Let (S3,p,&,n,g) be the contact metric manifold deter-
mianed by Proposition 3.1.2. and we assume that a,b,c are constant.
(1) (S3,p,€,m,9) is n-Einstein if and only if b=0,a = c =1,
that is, (S3,n,€, g,9) is the standard 3-dimensional sphere.
(2) (S3,0,€,m,9) is Sasakian if and only if b= 0,a = c =1,
that is, (S, p,&,n,g) is the standard 3-dimensional sphere.
(3) (S3,0,€,m,9) is K-contact if and only if b=0,a = c=1,
that is, (S3,¢,&,m,g) is the standard 3-dimensional sphere.

Proof. (1)If S? is n-Einstein, by substituting (V;,Y;) = (Y1, Y1), (Y2, Y2)
into (3.2), from (3.20) we get

(321)  Ric(Y;,Y;) = 2a(y—2)g(Yi,Y))
+2(—a® — ya +da +4)g(V1, Yi)g(11, V).

Moreover, we substitute (Y;,Y;) = (Y1,Y2), (Y1, Y3), (Y2,Y3), (Y3,Y3) into
(3.21) and hence get

a#0, =0 ie,b=0, a=c=1.
Conversely, if b =0, a=c=1, (3.21) holds.

(2) If S3 is Sasakian, by substituting (X,Y") = (Y1, Y3), (Y1, Y3) into (3.3) we
get

af = 0,
o —2ya—4 = —1,
o +2yva—4a—4 = —1.

Therefore, we get
a#0, =0 ie,b=0, a=c=1.

Conversely, if b =0, a=c¢ =1, (3.3) holds.
(3) If S? is K-contact, by substituting (X,Y) = (V;,Y;) into (3.4), we get

» 7]

4b

— = 0,

a
2(—a* —b* +1) _ 0

a

42
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And then we have
b=0, a=c=1.

Conversely, if b =0, a = c =1, (3.4) holds. O

Remark. If (S3,g) is a contact metric manifold which does not satisfy
b=0, a=c=1,then (S3, g) is neither n-Einstein nor Sasakian, K-contact.

3.2 R’ with the contact form 7

Let n be the 1-form on R? defined by

1
(3.22) n= §(dx3 — z?dx").
Then we get
Lo 2 3
(3.23) 77/\d77:§(dx Adz® A dz®) # 0,

i.e.,  is a contact form on R3.
And from (2.2), (2.3) we get

0
(3.24) £ = 2?.
g and ¢ of R?
Let g be a Riemannian metric on (R? 7) which satisfies (2.19). We put
Jg 0 :

Gij = 9(@7 %) and a = g11, b = g12 = g1, ¢ = ga2. By using (3.22) and
(3.24), from (2.19) we have the following matrix

a b —;1112

o
where a,b,c € C*(R?).
Since det(g;;) > 0, we get
1

(3.26) (a — Z(xQ)Q)c — b > 0.
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. 0 0 o 0
Mo;eoveg since - # 0 and Eye # 0, we get a = g(%,%) > 0,¢c =

953 g2) >0

Conversely, let g be a tensor field of type (0,2) defined by (3.25). If
a > 0,c¢> 0 and (3.26) hold, then we get g1 > 0, g2 > 0,det(g;;) > 0 and
hence

(3.27) ac —b* > 0.

And then g is a Riemannian metric satisfying (2.19).
Because, let A be an eigenvalue of (g;;), A satisfies the following equation
(3.28)  16A* — 4(4a + 4c + 1)\ + (4a + 4c + 16ac — 166* — (22)*)\
+ c(2?)? — 4(ac — b*) = 0.

We put the left side of (3.28) by f(A). Then from (3.26) we have
(3.29) f(0) = c(z*)? — 4(ac — b*) < 0.
The differential of f(\) is
f'(\) = 48X\ — 8(4a + 4c + D)X + (4a + 4c + 16ac — 16b* — (22)?).
On the other hand by using (3.26) and (3.27) we get

4(ac — b?)

(3.30) 4a + 4c + 16ac — 16b* >
C

> (22)2.

Therefore, if a discriminant of the quadratic equation f’(A) = 0 of A
is non-negative, from (3.30) f'(A) = 0 has a positive number. And hence
from (3.29), A is a positive number. Also, if a discriminant of f/(A) = 0 is
negative, from (3.29) A is a positive number. Moreover, we can see that g
satisfies (2.19).

Thus we have the following.

Proposition 3.2.1. If a Riemannian metric g on (R3,n) satisfies (2.19),
then (3.25) and the following holds

1
(3.31) a>0,¢>0, (a— Z—L(ZEQ)Q)C — b > 0.
Conversely, let g be a tensor field of type (0,2) on (R3,n) defined by (3.25).

If g satisfies (3.31), then g is a Riemannian metric on (R3,n) and satisfies
(2.19).
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Next, we denote the left side of (3.26) by G, i.e.,
1
(3.32) (a — Z(.rg)z)c - =G.

Let ¢ be a tensor field of type (1,1) satisfying (2.18). We put

3
(917] Z k]a k (.7: 17273)

Corollary 4. If (g;;) defined by (3.25) satisfies (3.31), then

Y11 P12 P13 1 b c 0

(3.33) po1 w2 a3 | == [ —a+i(@*)? —b 0O
4G 9 2

P31 P32 P33 b zoc 0

holds, where a >0, ¢ >0, (a — 3(2%)%)c —b* > 0.

0 0
Proof. By substituting X = —, ¥ = — into (2.18), we get

Ozt O’
a b —a? P11 P2 P13 0 3 0
b ¢ 0 ©n a2 | =|—3 0 0
—il‘z 0 i P31 P32 P33 0 00
Since det(g;;) > 0, we get (3.33). O

Proposition 3.2.2. (p,&,n,9) is defined by (3.25), (3.31) and (3.33) on
R3. If (p,€,1m,9) is a contact metric structure, then

1
16°

holds. Conversely, if (3.34) holds, then (p,&,m,q) is a contact metric struc-
ture on R3.

(3.34) G =

Proof. If (p,&,n,g) is a contact metric structure, then (2.20) holds. By
substituting (3.33), (3.22) and (3.24) into (2.20), we get

2

1 b c 0 —1 0 0
17,212

s|—a+3@%)° b 0 = 0 —-10

16G 2p z%c 0 -2 0 0
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CHAPTER 3. 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

Then we have (3.34).
Conversely, if (3.34) holds, we can get (2.20). This completes the proof.
U

Corollary 5. ¢ is denoted by the following matriz

Y11 P12 P13 b c 0
P21 P22 a3 | =4 | —a+ }1@2)2 -b 0],
P31 P32 P33 %b x%c 0

where a >0, ¢ >0, (a— }(2?)%)c—b* = 1.

Curvature tensors
In this section, we assume that b and ¢ > 0 are constant, and a is given by

1

1
a = —(1’2>2 + E(bQ + E)

4

We put X; =¢, X, = %, X3 = % on (R3,g). By using g that satisfies

(3.25), (3.31) and (3.34), from the basis X;, X5, X3 we can generate the
orthonormal basis Y1, Y5, Y3 on (R3, g), that is

0 0 0 0 1 0 0
Vi=2—, Vo=a(— +2°—), Vs =4(—ab— + —— — abz’*—
! 93’ ? a(&cl e (9953)’ s =4 abaxl + a Oz2 abz 83:3)’
where a = 4—\/6 Then we get
1662 + 1

Then we may see that

2g<vY1§/27}/:°>) = 27 2g<VY1}/:37 }/2) = _27 2g(VY2}/17 }/:3)

=2,
29(Vy,Y3,Y1) = =2, 29(Vy,Y1,Y2) = =2, 29(Vy,Ys, Y1) = 2,

and the others are equal to 0. Therefore, we have

VY1Y1 = 07 VY1YVQ = Y37 leyé = _}/27 VYQE/V:L = Y37 VY2}/2 = 07
VyYs ==Y, VyYi=-Y; VyYo=Y, VyY;=0.
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Hence we get
R(Y1,Y3)Y1 = =Y3,  R(Y1,Y3)Y2 =0, R(V1,Y3)Ys =11,
R(Ys,Y3)Y1 =0, R(Ys,Y3)Ys = 3Y;,  R(Y2,Y3)Y; = —3Ya.

Using (3.1) we have
2

(3.35) (Ric(Y;,Y;))=(0 —2 0
0

Proposition 3.2.3. (R3, g) is n-Einstein, Sasakian and K-contact.

Proof. Substituting (Y;,Y;) = (Y1, Y1), (Y2, Ys) into (3.2), from (3.35)
we get
Ric(Y;,Y;) = =29(Y;, Y)) + 4g(Y1, Yi)g(Y1,Y)).

Moreover, we can see that if (Y;,Y;) = (Y1,Y2),(Y1,Y5), (Y2, Y3) and
(Y3,Y3), then the above equation holds. Therefore, (R?, g) is n-Einstein.
Next, we shall check whether (R3, g) satisfies (3.3), i.e.,

for 4,5 = 1,2,3. From values R(Y;,Y;)Y} of the curvature tensor, we may see

that the above equation holds. Therefore, (R?, g) is Sasakian.
Finally, we shall check whether (R?, g) satisfies (3.4), i.e.,

From the calculation of 2¢(Vy,Y;,Y,) we may see that the above equation
holds. Therefore, (R?, g) is K-contact. O

3.3 T° with the contact form 7

Let n be the 1-form on T? defined by

(3.36) n = cosnz’dr’ + sinnr’dz®  n €N,
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Then we get
1
(3.37) nAdn= —Qndxl A dx? A dx® #0,

i.e, n is a contact form on T3.
From (2.2), (2.3) we get

0 0
_ 3 3

(3.38) § = cosnx pys) + sinnx pel

Let g be a Riemannian metric on (7%,7) which sarisfies (2.19). We put

o 0

9ij = 9(%7 %) and a = g11,b = g12 = ga1, ¢ = go2.

By using (3.36) and (3.38), from (2.19) we get
(3.39) acosnz® + bsinnaz® = cosna?
(3.40) beosnz® + csinna® = sinna’
(3.41) g1 cosnaz® + gsosinnz® = 0.

Proposition 3.3.1. (3.39), (3.40) and (3.41) hold if and only if there exist
B, v, gs3 € C=(T®) which satisfy the following matriz (g;;)

3 3

Bsin?na® +1  —fFsinna® cosnz

—asinnx
(3.42)  (gij) = [ —Bsinnazdcosnz®  PBeos?nad +1 a cos na?
—asinna® acosnxd g33

Proof. If (3.39) and (3.40) hold, there exist [, k € R which satisfy the
following equations

(3.43) a—1 = k(—sinnz?),
(3.44) b = kcosna®,
(3.45) b = I(—sinna?),
(3.46) c—1 = lcosna®.

From (3.44) and (3.45) we get
kcosnz® = [(— sinna?).
When cos na® # 0 and sinnz?® # 0 hold, we get
k l

—sinnx3  cosnz3
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k [
By putting f = ——— = 5, from (3.41) we get (3.42). Moreover,
—sinnx®  cosnx

(3.42) includes the case that either cosna® = 0 or sinnz® = 0 holds.
Conversely, we can see that (g;;) satisfies (3.39), (3.40) and (3.41). O

g and ¢ of T3
We define the matrix B
Bsinnad + 1 —Bsinnz? cosna® —asinna®
(3.47) B = | —Bsinnz®cosnz®  Bcos’na® +1 a cos na?
—asinna? a cos na? g3

Proposition 3.3.2. Let g be the tensor field of type (0,2) on (T3, n) defined

Oz’ @) and B = (gi;).
g is a Riemannian metric satisfying (2.19) if and only if the following
conditions hold

by the matriz B, where g;; = g(

(348) (1 + 6)933 —a?>0 , g3z > 0.

Proof. From Proposition 3.3.1, g satisfies (2.19). If g is a Riemannian
metric, since det(g;;) > 0,we get

det(B) = (1+ B)gss — a* > 0.

Next, we put an eigenvalue of B = X and g(\) = det(B — AI). Then, we
get
g(A) = (1 = ){N = (1 + B+ gs3)A + (1 + Bgss — o’}

One of solution in g(A) = 0 is equal to 1. The other solutions are in the
following equation

(3.49) N — (14 B8+ gs)A+ (14 B)gss — o =0.
By putting a discriminant of the above equation = D, we get
D={gss— (1+8)} +4a*> > 0.

Since A are positive definite, from (3.49) we get gs3 > 0.
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Conversely if (3.48) holds, we can see that g1; > 0, gao > 0, det(B) > 0
and an eigenvalue of B are positive definite. O

Next, let ¢ a tensor field of type (1,1) satisfying (2.18). We put

Sl -1
@ax] _k:180k]axk J=1,4

Corollary 6. If (gi;) defined by the matriz B satisfies (3.48), then the fol-
lowing equation holds.

$11 P12 P13
(3.50) P21 P22 P23
V31 P32 P33
" —asin®nz®  asinna®cosna®  gg3sinna®
=55 | sinnzdcosna®  —acos’nz®  —gszcosnad |,
|B] —(1+ B)sinnz® (1 + B)cosnz? a
where (1 +ﬁ>933 —a?>0 , g33 > 0.
Proof.  Since det(g;;) > 0, from (2.18) we get (3.50). O
We put
(3.51) p=det(B) = (14 B)gss — a’.

Proposition 3.3.3. (p,£,1,9) is given by (3.47), (3.48) and (3.50) on T°.
If (p,&,1m,9) is a contact metric structure, then

(3.52) n? = 4p.

holds. Conversely, if (3.52) holds, then (¢,&,n,q) is a contact metric struc-
ture on T3.

Proof. If (y,&, 1, g) is a contact metric structure, by substituting (3.50),
(3.36) and (3.38) into (2.20) we get

2 —sin®na®  sinnzdcosna® 0 —sin?na®  sinnazdcosna® 0
v sin na? cos na® — cos® nxd 0 = | sinnz? cosna? — cos® nx? 0
P 0 0 ~1 0 0 ~1
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Hence we get (3.52).
Conversely, if (3.52) holds, we can get (2.20). This completes the proof.

O
Corollary 7. ¢ is denoted by the following matriz
Y11 P12 P13 9 —asin® na® asinna® cosna®  gs3sinna?
©o1 a2 a3 | = = | asinnzdcosna®  —acos’nzd  —gszcosna® |,
©31 P32 P33 " \—(1+pB)sinna® (1+ B)cosna’ a

2

where (14 B)gs3 — a? = T g3z > 0.

Curvature tensors

In this section we assume [, «, g3z are constant. We take the following basis
on (1%, g),

0 0 0
X, =& =cosnx %%—smnw g2 Xy = —sinnx @4—60577,;15 g2’ X3 = pret
By using ¢ that satisfies (3.47),(3.48) and (3.52), from the above basis we
get the following orthonormal basis Y3, Y5, Y3 on (T3, g),

Yi=¢= COSMJ?’% + Sinn:zz:368 7 Yo =v(— sinm;3% + coSs n:1:3%),
Y3 = p(Asinnz® 5% — A cos na® ai + %),
where
1

(3.53) = |

vV1+p
(3.54) A = A,

2
3.5 - =
(3.55) 1 =

For simplicity we put
(3.56) —— =a.

Then we get
[Y1,Ya] =0, [V, V3] = 2aYs, [Ya, V3] = 2V).
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We have

29(Vy Yo, Ys) = —2a— 2, 29(Vy,Ya,Ya) =2a+2,  29(Vy,Y,Y3) = —2a — 2,
29(Vy,Ya, Vi) = 2a+2,  29(Vy,Y1,Y2) = —2a+2, 29(Vy, Y2, Y1) = 2a — 2,

the others are equal to 0.

Thus, we get
VYl}/l - 07 VY1Y2 - —(CL + ]-)Y?n vY1Y3 - (a’ + 1))/27
VY1 =—(a+1)Ys, VyY;=0, Vy, Y3 = (a+1)Y1,
ViYi=—(a—1)Ys, VyYs=(a—1)Y, VyYs=0.
Hence we have
R(Yl, Y9)Y1 = —(a +1)Ys, R(Y1, Y)Y, = (a4 1)°Y7,
(Yl,Yz,)YQ—O, R(Y1,Y3)Y3 = —(a+1)(3a — 1)Y7,
(Yz, 3)Y3 = (a+1)(a — 3)Ya.

From the above result, by using (3.1), (3.56) and (3.53) we get
—2-0 0 0
(3.57) (Ric(X;, X;)) =28 0 245 0
0 0 -8

Proposition 3.3.4. (1) (T3, g) is n-Einstein if and only if 3 = 0 holds.
(2) (T3, 9) is not Sasakian.
(3) (T3, g) is not K-contact.

Proof. (1)If (73, g) is n-Einstein, then from (3.2) the following equation
holds for any 7,7 =1,2,3

(3.58) Ric(Y;,Y;) = pg(Yi, Y;) + qg(Y1, Yi)g(Y1, ).
By substituting (Y;,Y;) = (Y1, Y2), (Y2, Y2) into (3.58), from (3.57) we get
(3.59)  Ric(Y;,Y)) = 282+ B)g(Ys, Y;) — 48(2+ 8)g(Y1, Yi)g (Y1, Yj).

Moreover, we substitute (Y;,Y;) = (Y3, Y3s) into (3.59) and get

—28% =262+ B).

52



3.3. T? WITH THE CONTACT FORM n

Since (5.13) implies 1 + 8 # 0, 8 = 0 holds.

Conversely, if § =0, (3.59) holds.
(2) If (T3, g) is Sasakian, then from (3.3) and (2.19) the following equation
holds for any 4,5 = 1,2,3

By substituting (Y;,Y;) = (Y1, Ys), (Y3, Y3) into (3.60), we get
(3.61) a=0.

But since (3.56) implies a < 0, (3.61) does not hold. Therefore, (77, g) is
not Sasakian.
(3) If (T3, g) is K-contact, then from (3.4) the following equation holds for
any i,k =1,2,3

(3.62) 2g<Yk, VYZYD + QQ(VYICYL Y;) =0.
By substituting (Y, Y;) = (Y3, Y2) into (3.62), we get
(3.63) a=0.

Similarly, since a < 0, (3.63) does not hold. Therefore, (T3, g) is not
K-contact. U
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