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Abstract 

Trafficking of dendritic cells (DCs) in vivo is essential in maintaining immunological 

homeostasis by orchestrating innate and adaptive immune responses. DCs respond to foreign 

substances and activate immunocytes such as T cells and B cells via migration to inflamed sites 

and lymph nodes (LNs). DCs are mainly divided into 2 subtypes: conventional DCs (cDCs) and 

plasmacytoid DCs (pDCs). pDCs rarely exist in peripheral tissues in the normal state but 

accumulate in infected sites and rapidly secrete massive amounts of type-I interferon (IFN) once 

viral infection occurs. Chemokine (C-C motif) ligand 19 (CCL19) and chemokine (C-C motif) 

ligand 21 (CCL21), as ligands of C-C chemokine receptor type 7 (CCR7) expressed on mature 

pDCs guide pDCs into the LNs.  

Migration of pDCs towards LNs is involved in the pathogenesis of many immune diseases via 

interaction with other immunocytes. Infiltration of pDCs has been found in the skin of systemic 

sclerosis patients. Depletion of B220+ PDCA-1+ pDCs reduces skin thickness in a skin fibrosis 

model. In addition, increase of pDCs has been found in inflamed sites in patients with contact 

dermatitis and atopic dermatitis. Accordingly, pDCs are required for the pathogenic mechanism 

and defense mechanism of skin disorders, such as atopic dermatitis.  

Furthermore, pDCs reportedly play a pivotal role in the onset of inflammatory bowel disease 

(IBD). A large number of pDCs infiltrate in the colonic mucosa of IBD patients. pDCs are 

increased in the inflamed colon of ulcerative colitis (UC) patient and Crohn’s disease patients. 

Also, it is reported that pDCs are decreased in the peripheral blood of UC patients. The population 

of pDCs is increased in the mouse colon in a dextran sulfate sodium (DSS)-induced colitis model, 

and the depletion of pDCs suppresses the inflammation in the colon of DSS-induced colitis mice. 

On the contrary, the depletion of pDCs aggravates severe colitis in a Citrobacter rodentium-

induced colitis model by impairing gut barrier functions. Thus, pDCs are considered to play 

various roles in the pathology of many inflammatory diseases, while the roles of pDCs remain 

unclear. 

To the best of our knowledge, few agents have been found to effectively and potently regulate 

pDC functions, especially pDC migration. Therefore, we utilized traditional Japanese herbal 

medicines as a resource for drug discovery. Traditional Japanese herbal medicines have been 

widely used for various immune diseases, such as rheumatoid arthritis and IBD. Kampo formulas 

or compounds in natural medicines have been used in the study of inflammatory diseases. Our 

study focused on the pDC migration in allergic dermatitis model and DSS-induced colitis model. 

Furthermore, Kampo formulas and compounds in natural medicines were used in the disease 

models to elucidate the effect and role of inhibition of pDC migration in inflammatory diseases. 

 

1. Therapeutic benefit in allergic dermatitis derived from the inhibitory effect of 
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byakkokaninjinto on the migration of plasmacytoid dendritic cells 

pDCs have been reportedly related to inflammatory skin disorders for the increase and 

accumulation in inflamed sites in patients with contact dermatitis. Even pDCs are increased in the 

lesional skin of atopic dermatitis patients. Similarly, pDCs also infiltrate in the skin of systemic 

sclerosis patients and meanwhile, depletion of pDCs reduces skin thickness in a skin fibrosis 

model.  

CCR7-driven migration of pDCs to the lymph nodes is considered play a pivotal role in 

pathogenesis of immune diseases via activating T cells or B cells. Therefore, our study focused 

on the inhibition of pDC migration. We screened 86 kinds of Kampo formulas and examined that 

byakkokaninjinto was the inhibitor of pDC migration by reducing the number of migrated bone 

marrow-derived pDCs (BMpDCs) and suppressing the velocity and directionality of BMpDC 

migration in a chemotaxis assay. Furthermore, Gypsum Fibrosum and Ginseng Radix which are 

the components of byakkokaninjinto, obviously suppressed the velocity of BMpDC migration. 

Gypsum Fibrosum significantly suppressed the directionality of BMpDC migration. Besides, 

byakkokaninjinto had no effect on the expression of CCR7 on BMpDCs. Then the effect of 

byakkokaninjinto on a 1-fluoro-2,4-dinitrobenzene-induced allergic contact dermatitis model was 

investigated. Orally administration of byakkokaninjinto markedly relieved ear swelling in the 

late-phase response of allergic reactions. 

These findings prove that byakkokaninjinto which has an inhibitory effect on pDC migration 

may contribute to ameliorate the occurrence of allergic contact dermatitis. Inhibition of pDC 

migration is anticipated to become a therapeutic agent for pDC-related diseases, such as atopic 

dermatitis. 

 

2. Suppression of plasmacytoid dendritic cell migration to colonic isolated lymphoid follicles 

abrogates the development of colitis 

It has been reported that pDCs participate in the onset of IBD. Infiltration of pDCs is found in 

the colonic mucosa of IBD patients. And highly enrichment of pDCs correlates with disease 

severity of IBD patients. In a DSS-induced colitis model, pDCs is increased in the mouse colon. 

And depletion of pDCs suppresses inflammation in the colon. However, depletion of pDCs also 

impairs gut barrier function and causes heavy colitis in a pathogenic bacterium induced colitis 

model. In another Wiskott-Aldrich syndrome (WAS) disease model, ablating type-I IFN signaling 

in WAS protein null mice rescues colitis and makes pDCs show tolerance to further stimulation. 

On the other hand, pDC has been reported that it does not have a major role in the pathology of 

colitis caused by deficiency in WAS protein. Therefore, these contradictory reports suggest that 

pDCs perform multiple functions in the intestine.  

 Our study targets the inhibition of pDC migration. 80 compounds in natural medicines were 
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searched for inhibitors of pDC migration using BMpDCs. Astragaloside IV (As-IV) and 

oxymatrine (Oxy) suppressed the migration of BMpDC by reducing the number of migrated 

BMpDCs and suppressing the velocity and directionality of BMpDC migration in a chemotaxis 

assay. Meanwhile, As-IV and Oxy had no effect on bone marrow-derived conventional DCs. To 

elucidate the pathogenesis role of pDCs in the intestinal immunity, DSS-induced colitis model 

was established. The number of pDCs was markedly increased in the colonic lamina propria (LP) 

of DSS-induced colitis model. Intraperitoneal injection of As-IV or Oxy reduced symptoms of 

colitis but not affect the number of pDCs in the colonic LP. By the immunohistochemical staining, 

expression of CCL21 was obviously observed in colonic isolated lymphoid follicles (ILFs). As-

IV or Oxy reduced the accumulation of pDCs in colonic ILFs. Furthermore, migration of 

BMpDCs to colonic ILFs was significantly decreased by treatment with As-IV or Oxy in a 

BMpDC adoptive transfer model. 

 These findings prove that accumulation of pDCs in the ILFs is relative to the onset and 

progression of colitis. As-IV and Oxy exert preventive effects on colitis by suppressing pDC 

migration to colonic ILFs. The inhibitor of pDC migration may become a potential therapeutic 

approach for treating colonic inflammatory diseases. 

 

Conclusion 

CCR7-driven migration of pDCs to the lymph nodes leads to activation of T cells or B cells. In 

this study, we discovered inhibitors of pDC migration toward the lymphoid tissues. Our present 

results have demonstrated that the migration of pDCs toward the lymphoid tissues is involved in 

the pathogenesis of immune diseases such as contact dermatitis and colonic inflammation. 

Inhibition of pDC migration contributes to alleviate these diseases. Therefore, the inhibitors of 

pDC migration may have potentials to become the useful lead drugs for immunological diseases. 
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Abbreviations 

As-IV: Astragaloside IV 

Ber: berberine 

BM: bone marrow 

BMcDC: bone marrow-derived cDC 

BMpDC: bone marrow-derived pDC 

CCL19: chemokine (C-C motif) ligand 19 

CCL21: chemokine (C-C motif) ligand 21 

CCL25: chemokine (C-C motif) ligand 25 

CCR7: C-C chemokine receptor type 7 

CCR9: C-C chemokine receptor type 9 

CD: Crohn's disease 

cDC: conventional dendritic cell 

CFSE: carboxyfluorescein diacetate succinimidyl ester  

Cur: curcumin 

CXCL12: Chemokine (C-X-C motif) ligand 12 

CXCR4: C-X-C chemokine receptor type 4 

DAI: disease activity index 

DC: Dendritic cell 

DNFB: 1-fluoro-2,4-dinitrobenzene 

DSS: dextran sulfate sodium 

FBS: fetal bovine serum 

GALT: gut-associated lymphoid tissue 

i.p.: intraperitoneal 

IBD: inflammatory bowel disease 

IFN: interferon 

IL: interleukin 

ILF: isolated lymphoid follicle 

IPA: Ingenuity Pathway Analysis  

IPR: immediate-phase response 

Iso: isofraxidine 

LN: lymph node 

LP: lamina propria 

LPR: late-phase response 

LPS: Lipopolysaccharide 

MLN: mesenteric lymph node 
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ODN: oligodeoxynucleotides 

Oxy: oxymatrine 

pDC: plasmacytoid dendritic cell 

PI: propidium iodide 

SLE: systemic lupus erythematosus 

UC: ulcerative colitis  

vLPR: very-late-phase response 

WAS: Wiskott-Aldrich syndrome 

WASp: Wiskott-Aldrich syndrome protein 

  



6 

 

Introduction 

* Immune functions of plasmacytoid dendritic cells 

There are various immunoreactions in vivo contribute to body homeostasis. Dendritic cells 

(DCs) which are known as the high ability of antigen presenting cells distribute to various tissues 

and organs. DCs are derived from a common myeloid progenitor which is derived from 

hematopoietic stem cells in the bone marrow and migrate to the inflamed sites and lymph nodes 

(LNs) depend on the stimulation of chemokines to regulate the immune responses. DCs are 

defined as the conventional dendritic cells (cDCs) and the plasmacytoid dendritic cells (pDCs). 

pDCs are known for secretion of massive type-I interferon (IFN) in the context of viral infection 

to induce antiviral responses. Besides, migration of pDCs into the LNs and antigen presentation 

to T cells activate the T cells differentiation into Treg cells, Th1 cells, Th2 cells or Th17 cells 

which induces immunoreactions and contributes to maintain immunological homeostasis (Seth et 

al., 2011, McKenna et al., 2005). Thus, pDCs participate the innate immune response and the 

adaptive immune response. Moreover, activation of T cells evoked by pDCs arouses anti-

inflammatory activity or pro-inflammatory activity in vivo (Takagi et al., 2011). Therefore, the 

pathophysiological role of pDCs in the immune diseases is complicated. 

 

* Migration of pDCs 

Migration of pDCs, which is mediated by chemokines, into the LN is important for exerting its 

immune functions. Various types of chemokine receptors are expressed on pDCs and several 

chemokines drive migration to different sites (Tiberio et al., 2018). In the study of mouse pDCs, 

C-C chemokine receptor type 9 (CCR9) was usually used in the study of pDCs in the small 

intestine. CCR9 expressed on pDCs guides pDCs into the small intestine via its ligand chemokine 

(C-C motif) ligand 25 (CCL25) (Wendland et al., 2007). C-X-C chemokine receptor type 3 

(CXCR3) induces pDC precursors migrate to inflamed LNs under bacterial infection (Tiberio et 

al., 2018). C-X-C chemokine receptor type 4 (CXCR4) allows migration of pDCs into splenic 

white pulp (Tiberio et al., 2018). C-C chemokine receptor type 7 (CCR7) expressed on pDCs 

leads pDCs migrate into the LNs. CCR7 drives mature pDCs migrate into T cell areas of the gut-

associated lymphoid tissue (GALT) (Seth et al., 2011). For the human pDCs, CCR7 allows the 

human pDCs recruit to LNs (Tiberio et al., 2018). Therefore, CCR7 is imperative for pDC 

migration to LNs both in mouse and human. In addition, migration of pDC into LNs arouses 

activation of T cells and leads immune regulation. So, trafficking of pDCs driven by CCR7 is 

imperative for pDCs exerting its immune functions in organs and tissues. 

 

* pDCs in immune diseases: skin disorders 

Atopic dermatitis and contact dermatitis as the common skin disorders are caused by the contact 
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of allergen. The hypersensitivity response to the allergen results in the impairment of skin barrier 

(Owen et al., 2018). The symptoms of these skin disorders are usually accompanied with weeping 

eczema, edema, itch and skin thickening (Owen et al., 2018). Prednisolone is used as therapy for 

dermatitis patients; however, side effects of Prednisolone restrict its dosage and administration 

period (Vatti et al., 2014). Therefore, it is hoped that a new therapeutic agent with lower side 

effects or with a different action mechanism of steroids for reducing the dose of steroids is 

developed.  

Recent studies refer to dermatitis have reported the involvement of abnormal distribution of 

pDCs in the lesional skin of dermatitis patients. pDCs are increased in the lesional skin of patients 

with allergic contact dermatitis and psoriasis. Th17 cells activated by pDCs induce the secretion 

of massive interleukin (IL)-17. Hypersecretion of IL-17 aggravates the skin inflammation 

(Garzorz-Stark et al., 2018). Infiltration of pDCs is found in the lesional skin of patients with 

atopic dermatitis (Lebre et al., 2008). Similarly, increased pDCs in the lesional skin of patients 

with atopic dermatitis are proved by interaction with peripheral neural addressin of vascular 

endothelium (Hashizume et al., 2005). Infiltration of pDCs and massive secretion of IFN-α are 

found in the lesional skin of systemic sclerosis patients. Although the aberrant distribution of 

pDCs in atopic dermatitis patients was demonstrated, the pathological role of pDCs involved in 

the pathogenesis of dermatitis is unclear. In a mouse skin fibrosis model, depletion of B220+ 

PDCA-1+ pDCs downregulates the skin thickness (Ah Kioon et al., 2018).  

These studies prove that pDC is involved in the pathogenesis of skin disorders, but the 

pathogenic mechanism of pDCs in the skin disorders still remains unclear. 

 

* pDCs in immune diseases: colonic inflammations 

Inflammatory bowel disease (IBD) has been defined as ulcerative colitis (UC) and Crohn’s 

disease (CD). UC is the inflammation in surface mucosa of rectum. Bloody stool, diarrhea and 

fever as the main symptoms are appeared in UC patients (Zhang and Li, 2014). CD causes the 

ulceration and fibrogenesis of entire gastrointestinal tract. Acute abdomen, chronic diarrhea and 

body weight losses as the main symptoms are appeared in CD patients (Zhang and Li, 2014). 

Th17 cells are considered as the indicator of IBD patients (Geremia et al., 2014). Besides, 

macrophages and DCs are also involved in the progression of IBD because of secreting the 

cytokines which promote Th17 cell proliferation (Geremia et al., 2014). However, the 

pathogenesis of IBD is not identified. Mesalamine and Prednisolone are used as therapies for IBD 

patients. Mesalamine is commonly used in the treatment of mild to moderate IBD patients 

(Solitano et al., 2020). Prednisolone is used as anti-inflammatory agent (Vatti et al., 2014). 

However, the current therapeutic drugs for IBD have insufficient therapeutic effect and cause 

several side effects.  
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Recently, many studies indicated that pDCs play a key role in the pathogenesis of IBD. pDCs 

are increased in the colonic mucosa of both UC patients and CD patients (Baumgart et al., 2011). 

pDCs are markedly increased in the flare of IBD patient’s colonic mucosa, and the up-regulated 

inflammatory cytokines secreted by peripheral blood pDCs disrupt the immune tolerance which 

results in flare-up of IBD (Baumgart et al., 2011). Similarly, infiltration of pDCs in the inflamed 

colonic tissues is associated with disease severity (Liu, Dasgupta et al., 2019). pDCs have been 

reported to increase in the peripheral blood (Mitsialis et al., 2020). On the contrary, there is a 

report showing that the decrease of pDCs in peripheral blood of UC patients result in pDC 

migration from peripheral blood into the intestinal mucosa (Baird et al., 2016). Although the 

aberrant distribution of pDCs in IBD patients was revealed by clinical studies, the pathological 

role of pDCs involved in the pathogenesis of colitis is unclear. Dextran sulfate sodium (DSS)-

induced colitis model is commonly used in the study of IBD because of the similar pathological 

condition in UC patients. DSS caused the impairment of colonic epithelium. Diarrhea, bleeding, 

body weight loss and even mortality are the main symptoms of DSS-induced colitis model 

(Eichele and Kharbanda, 2017). Infiltration of macrophages and DCs are involved in the DSS-

induced colitis (Eichele and Kharbanda, 2017). Recently, pDCs have been reported to be related 

to the progression of colitis in experimental colitis models. pDCs are increased in the colonic LP 

of DSS-induced colitis model, and depletion of pDCs abrogates colonic inflammation (Arimura 

et al., 2017). Studies of pDCs using other colitis models have also been reported. In Citrobacter 

rodentium-induced colitis model, depletion of pDCs promotes the activation of cDCs in LNs and 

causes the decrease of Foxp3+ T cells. These impaired gut barrier functions result in the 

exaggeration of colitis (Pöysti et al., 2021). In a Wiskott-Aldrich syndrome (WAS) protein 

(WASp) knock-out developed spontaneous colitis model, disruption of IFN-α signaling in pDCs 

relieves the colitis (Prete et al., 2013). However, in the deficiency of WASp caused colitis model, 

pDCs are proved unassociated with the pathology of colitis caused by deficiency in WASp or 

interleukin (IL)-10 (Sawai et al., 2018).  

These findings prove that pDCs are commit to the pathogenesis of colonic inflammations. 

However, previous studies have yielded inconsistent results about the pathogenic roles of pDCs. 

 

* Therapeutic agents: Kampo formulas and compounds in natural medicine 

Kampo formulas are composed of natural medicines and exert therapeutic effects on patients 

individually according to the different symptoms and different ages (Takayama et al., 2018). Most 

of Kampo formulas are prescribed individually to improve the different kinds of diseases 

(Takayama et al., 2018). Kampo formulas are used for treating many immunological diseases. 

In the treatment of skin disorders, byakkokaninjinto and shoseiryuto have been used as cures for 

patients with skin disorders (Arumugam and Watanabe, 2017, chapter 1). Byakkokaninjinto and 
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Jumihaidokuto which have effect on suppressing inflammation are used in atopic dermatitis 

patients (Arumugam and Watanabe, 2017, chapter 10). Hochuekkito protects the skin from 

bacterial infections (Arumugam and Watanabe, 2017, chapter 10). As one of the components of 

byakkokaninjinto, Ginseng Radix has been used as its antiviral effects (Im et al., 2016) and 

promoted the recovery from illness (Arumugam and Watanabe, 2017). 

Saireito, tokishakuyakusan and jumihaidokuto have been used as cures for patients with 

gastrointestinal diseases (Arumugam and Watanabe, 2017, chapter 1). Tokishakuyakusan and 

jumihaidokuto have been used as treatment for IBD because of the anti-inflammatory effects. 

Daikenchuto is used as treatment for CD for its effect of enhancing blood circulation (Arumugam 

and Watanabe, 2017, chapter 5). As one of the components of Kampo formula, As-IV has been 

reported to upregulate the colonic stem cells and suppress symptoms of 2,4,6-trinitrobenzene 

sulfonic acid-induced colitis model by modulating the energy metabolism (Jiang, Sun et al., 2017). 

Oxy is extracted from Sophora flavescens Aiton. Oxy exerts its anti-inflammatory effects by 

regulating the differentiation of Th1 and Th17 cells in a DSS-induced colitis model (Chen et al., 

2017). Similarly, Oxy relieves the DSS-induce colitis by suppressing the differentiation of Th17 

cells and promoting the differentiation of Treg cells (Wang et al., 2019). 

Therefore, both Kampo formulas and compounds extracted from natural medicines are used as 

therapeutic agent for immunological diseases such as dermatitis and colitis. However, there is 

little study targeting on the pDCs which elucidates the therapeutic role of Kampo formulas or 

compounds in the immunological disease. 
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Objective 

pDCs migrate into inflamed sites and rapidly secrete massive amounts of type-I IFN once 

affected by viral infections. Moreover, pDCs have been reported to be involved in the 

pathogenesis of many immune diseases through regulating the innate immune response and the 

adaptive immune response. 

pDCs are infiltrated in the lesional skin of patients with inflammatory skin disorders. However, 

the pathophysiological roles of pDCs in the inflammatory diseases are not apparent. I speculated 

that whether the inhibition of pDC migration might have the potential to ameliorate inflammatory 

dermatitis. Thus, I investigated the inhibitors of pDC migration during Kampo formulas. Then a 

(1-fluoro-2,4-dinitrobenzene) DNFB-induced allergic contact dermatitis model was established 

to investigate the effect of inhibition of pDC migration in the skin disorders. We aimed to elucidate 

the effect of byakkokaninjinto which exerted an inhibitory effect on pDC migration on ear 

swelling of an allergic contact dermatitis model.  

Infiltration of pDCs was found in the IBD patients and DSS-induced colitis model. However, 

the pathophysiological role of pDCs in the colitis is not apparent. I speculated that whether the 

inhibition of pDC migration might have the potential to ameliorate colonic inflammatory diseases. 

80 compounds were screened to select the specific inhibitors of pDC migration. As-IV and Oxy 

which were selected as a specific inhibitor exerted inhibitory effect on pDC migration in vitro. 

Further, a DSS-induced colitis model was established to elucidate the effect of inhibiting pDC 

migration in colonic inflammation in vivo. The number of pDCs in the colon with colitis and As-

IV or Oxy treated colon was not altered. We assumed that whether As-IV or Oxy caused a 

restriction in distribution of pDCs in ILFs. We aimed to prove that restriction in distribution of 

pDCs in ILFs ameliorated the symptoms of DSS-induced colitis.  

Above all, our study is to elucidate the pathophysiological role of pDCs in the inflammatory 

diseases. 
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Chapter 1 

Therapeutic benefit in allergic dermatitis derived from the inhibitory effect of 

byakkokaninjinto on the migration of plasmacytoid dendritic cells 

 

1. Introduction 

Dendritic cells (DCs) play a critical role in immune regulation. In particular, DCs possess a 

strong ability to present antigens to CD4+ T cells. DCs, as versatile immunocytes, play roles in 

the induction of T cell activation at the beginning of an immune response and in immune tolerance. 

During these processes, DCs need to migrate to organs and tissues to exert their functions. The 

migration of DCs is induced by chemokines and depends on chemokine concentration gradients 

(Sokol and Luster, 2015). In general, DCs have been divided into conventional dendritic cells 

(cDCs) and plasmacytoid dendritic cells (pDCs). The bone marrow is the primary site of pDC 

production, and pDCs migrate through the circulation to the thymus, secondary lymphoid organs 

and peripheral tissues. In the normal state, pDCs rarely exist in peripheral tissues, but once viral 

infection occurs, pDCs accumulate in infected sites and rapidly secrete massive amounts of type-

I (interferon) IFN. pDCs are activated by viruses; subsequently, they extend, form dendrites and 

express the costimulators MHCII, CD40, CD80 and CD86 for antigen presentation (Swiecki and 

Colonna, 2015). Consequently, the migration of pDCs is important in facilitating the immune 

functions of these cells. 

Chemokine (C-C motif) ligand 19 (CCL19) and Chemokine (C-C motif) ligand 21 (CCL21), as 

ligands of C-C chemokine receptor type 7 (CCR7), are highly expressed in secondary lymphoid 

tissues (Hauser and Legler, 2016). The numbers of 120G8+ B220int CD11cint pDCs are decreased 

in the peripheral lymph nodes and mesenteric lymph nodes of CCR7-deficient mice (Liu et al., 

2011). Thus, CCR7 is required for pDC migration to the lymph nodes both under steady-state 

conditions and during viral infections (Seth et al., 2011). 

pDCs have been reportedly related to inflammatory skin disorders (Saadeh et al., 2016). 

Infiltrated pDCs have been found in the skin of systemic sclerosis patients, whereas pDCs in the 

peripheral blood have been found to be decreased, and depletion of B220+ PDCA-1+ pDCs reduces 

skin thickness in a skin fibrosis model (Ah Kioon et al., 2018). Similarly, pDCs are increased, and 

pDCs accumulate in inflamed sites in patients with contact dermatitis (Garzorz-Stark et al., 2018, 

Lebre et al., 2008). Otherwise, it has been reported that pDCs are increased in the lesional skin of 

atopic dermatitis patients (Garzorz-Stark et al., 2018, Lebre et al., 2008, Hashizume et al., 2005). 

Therefore, pDCs play essential roles in the pathogenic mechanism and defense mechanisms of 

many inflammatory skin disorders, including atopic dermatitis. 

Kampo formulas have been used according to individual situations. Many Kampo formulas 

target the immune system, and their therapeutic effects on immunological diseases have been 
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demonstrated in clinical studies (Wang and Kaneko, 2018; Takayama et al., 2018). However, the 

precise mechanisms of Kampo formulas are not well understood. In addition, little is known about 

the effects of Kampo formulas on the function of DCs, a target for immunological diseases, even 

though DCs play a key role in immune responses. 

Byakkokaninjinto, a traditional Japanese Kampo formula, has been frequently used in Japan and 

originates from the classical Chinese records of ‘Shang Han Lun’ and ‘Jin Gui Yao Lue’. 

Byakkokaninjinto is composed of Gypsum Fibrosum, Ginseng Radix, Glycyrrhizae Radix, 

Anemarrhenae Rhizoma and Oryzae Fructus (Table 1). Gypsum Fibrosum, as the basic 

component of byakkokaninjinto, is composed of calcium sulfate, and Kampo formulas containing 

Gypsum Fibrosum are used for their suppressive effects on heat and inflammation (Lin et al., 

2019). Anemarrhenae Rhizoma has anti-inflammatory effects (Wang, Cai et al., 2018). Ginseng 

Radix has been used as an antiviral drug (Im et al., 2016). Therefore, byakkokaninjinto is widely 

applicable for the treatment of many disorders, such as oral dryness caused by diabetes, dermatitis, 

eczema, urticaria, pneumonia and the common cold (Karuppagounder et al., 2017). Dermatitis is 

one of the indications of byakkokaninjinto, and the efficacy of byakkokaninjinto in clinically 

curing atopic dermatitis and allergic contact dermatitis has been reported (Karuppagounder et al., 

2017, Shimizu, 2013). In addition, it has been reported that byakkokaninjinto induces therapeutic 

effects on spontaneous atopic dermatitis-like skin lesions in NC mice (Tohda et al., 2000) and 

IgE-mediated triphasic skin reaction (Tatsumi et al., 2001). However, the anti-inflammatory 

mechanism underlying the effects of byakkokaninjinto on these dermatitis remains uncertain. 

In this study, we investigated the effects of 86 Kampo formulas on pDC migration and 

demonstrated that byakkokaninjinto exerted therapeutic effects on an (1-fluoro-2,4-

dinitrobenzene) DNFB-induced allergic contact dermatitis model by inhibiting pDC migration. 
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2. Materials and methods 

2.1 Mice 

Male BALB/c mice (6-10 weeks old) were purchased from Japan SLC (Shizuoka, Japan). All 

mice were housed under standard vivarium conditions (23.5 ± 0.5°C, 12-hour light/dark cycle, 

and food and water provided ad libitum). This study was performed in strict accordance with the 

recommendations of the Guide for the Care and Use of Laboratory Animals by the National 

Institutes of Health. The Animal Experiment Committee at the University of Toyama approved 

all the animal care procedures and experiments (authorization No. A2012 INM4, A2015 INM-3 

and A2018 INM-4). 

 

2.2 Preparation of Kampo formulas and each component extracts 

Kampo formula extracts and component extracts were provided as dried powders by the Joint 

Usage/Research Center for Science-Based Natural Medicine, Institute of Natural Medicine, 

University of Toyama and the Knowledge Cluster Initiative Program (Second Stage) of the 

Ministry of Education, Culture, Sports, Science and Technology of Japan. Each herbal extract was 

obtained using a standard method. In brief, each formula and each herbal component was 

extracted in water at 100 °C for 50 min, evaporated under reduced pressure, and freeze-dried to 

obtain a powder extract. The 86 Kampo formula extracts were screened. Detailed information 

about the herbal components of the 86 Kampo formula extracts and detailed information of herbal 

component extracts were stated (Table 2). 

For a mouse allergic contact dermatitis model study, byakkokaninjinto (TJ-34) was purchased 

from Tsumura Co. (Tokyo, Japan) as a dried powder with the 3D-HPLC data (Figure 1) and was 

evaluated as a therapeutic drug for the symptoms of DNFB-induced allergic contact dermatitis.  
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Figure 1. 3D-HPLC data of byakkokaninjinto. 

 

 

2.3 BMpDC generation 

Bone marrow-derived plasmacytoid dendritic cells (BMpDCs) were generated from bone 

marrow cells according to a method described previously (Gotoh et al., 2008). Briefly, bone 

marrow cells were collected from the femur and tibia of male BALB/c mice (6-10 weeks old) and 

incubated in RPMI 1640 medium (Wako, Osaka, Japan) supplemented with 10% FBS (Equitech-

Bio, Kerrville, TX, USA), 55 µM 2-mercaptoethanol, 100 units/mL penicillin, 100 µg/mL 

streptomycin, 292 µg/mL glutamine (Invitrogen, Carlsbad, CA, USA) and 100 ng/mL Flt3 ligand 

(R&D Systems, Minneapolis, MN, USA). On day 7-9, immature BMpDCs were collected and 

stimulated with 2 µM CpG-oligodeoxynucleotides (ODN-2216; Hokkaido System Science, 

Hokkaido, Japan) for 24 hours to induce maturation. 

 

2.4 Chemotaxis assay 

Mature BMpDCs were suspended in modified RPMI 1640 medium (Sigma, St. Louis, MO, 

USA) containing 1% FBS and then incubated with each Kampo formula extract or herbal 

medicine extract for 3 hours at 37°C. Chemotaxis experiments with BMpDCs were performed in 

an EZ-TAXIScanTM chamber according to the manufacturer’s protocol (GE Healthcare Japan, 

Tokyo, Japan). A BMpDC suspension (1×106 cells/mL) was injected into one side of the chamber, 
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and 1 μl of CCL21 (250 µg/mL) was injected into the opposite side of the chamber. A 

concentration gradient of CCL21 was formed, and the migration of the BMpDCs toward the more 

concentrated side of a CCL21 gradient was observed. BMpDC migration was recorded with a 

CCD camera located beneath the chamber every 30 seconds for 1 hour. At the end of the 

chemotaxis assay, the number of migrated BMpDCs during 30 minutes and the velocity and 

directionality of the migrating BMpDCs were analyzed by the TAXIScan Analyzer 2. 

 

2.5 Viability assay and analysis of CCR7 expression level 

Treatment with byakkokaninjinto to mature BMpDCs was performed in the same way as the 

chemotaxis assay. Mature BMpDCs were suspended in modified RPMI 1640 medium containing 

1% FBS and then incubated with byakkokaninjinto for 3 hours at 37°C. Subsequently, BMpDCs 

were stained with Via-Probe (Becton Dickinson, San Jose, CA, USA), anti-mouse mPDCA-1-

APC (Miltenyi Biotec, Bergisch Gladbach, Germany) and anti-mouse CD11c-FITC (BD 

Biosciences, San Jose, CA, USA). To analyze the expression level of CCR7 on BMpDCs, 

BMpDCs were stained with anti-mouse CD197 (CCR7)-PE-Cy7 (eBioscience). 

 

2.6 Flow cytometry and antibodies 

Mature BMpDCs were suspended in FACS buffer (0.01 M phosphate-buffered saline (PBS) 

containing 1% BSA and 0.2% NaN3) and stained with the following antibodies: anti-mouse 

mPDCA-1-APC (Miltenyi Biotec), anti-mouse CD11c-FITC (BD Biosciences), anti-mouse MHC 

class II-PE (eBioscience, San Diego, CA, USA), and anti-mouse CD197 (CCR7)-PE-Cy7 

(eBioscience). Cell proportions were analyzed with a BD FACSCantoII flow cytometer (BD 

Biosciences). 

 

2.7 DNFB-induced allergic contact dermatitis mouse model  

Male BALB/c mice (6 weeks old) were administered intraperitoneally 10 μg DNP-OVA with 1 

mg aluminum hydrogel on day 0. Byakkokaninjinto (0.5 g/kg or 1.0 g/kg) in 0.5% methylcellulose 

was administered orally on day 13. Skin lesions were induced by painting the ear with 0.1% 

DNFB in ethanol on day 14. Ear swelling induced with DNFB was evaluated by measuring ear 

thickness at 1 hour, 2 days and 7 days after DNFB painting. 

 

2.8 Statistical analysis 

The results are expressed as the mean ± SEM. Significant differences among groups were 

evaluated by one-way analysis of variance (ANOVA) followed by Dunnett's test for multiple 

comparisons, and significant differences between groups were evaluated with an unpaired 

Student’s t-test. A P value less than 0.05 was considered significant. 
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3. Results 

3.1 Effects of Kampo formulas on the migration of BMpDCs 

To identify drugs that regulate DC migration, 86 Kampo formula extracts were screened using 

an EZ-TAXIScan chemotaxis assay. The chemotactic responses of BMpDCs were observed 

following stimulation with the CCR7 ligand CCL21, and BMpDCs migrated toward the more 

concentrated side of the CCL21 concentration gradient (Figure 2A). Among the 86 Kampo 

formula extracts, byakkokaninjinto significantly suppressed the migration of BMpDCs from 25 

minutes to 30 minutes at each time point (Figure 2A and B, p < 0.05), and shimotsuto significantly 

accelerated the migration of BMpDCs (Figure 3). The other 84 Kampo formula extracts did not 

show significant effects on BMpDC migration. Compared with the vehicle, byakkokaninjinto 

obviously decreased the number of migrated BMpDCs during 30 minutes (Figure 2B). In addition, 

we also performed a detailed analysis of the inhibitory effect of byakkokaninjinto by analyzing 

the velocity and directionality of BMpDC migration (Figure 2C). The velocity of the migration 

of BMpDCs treated with byakkokaninjinto (0.08 ± 0.00 µm/sec) was significantly slower than 

that of BMpDCs treated with the vehicle (0.11 ± 0.00 µm/sec) (Figure 2C, p < 0.05). In addition, 

the direction of BMpDC migration was calculated as the radian of cells migrating toward the 

more concentrated side of the concentration gradient of CCL21. The directionality of the 

migration of BMpDCs treated with byakkokaninjinto (0.48 ± 0.03 rad) was significantly lower 

than that of those treated with the vehicle (0.67 ± 0.03 rad) (Figure 2C, p < 0.05). These results 

indicate that byakkokaninjinto has a notable inhibitory effect on pDC migration. 

 



17 

 

 

Figure 2. The effects of byakkokaninjinto on the migration of BMpDCs. Chemotactic 

responses were induced in BMpDCs by stimulation with the CCR7 ligand CCL21. Time-lapse 

images of the migration of BMpDCs treated with byakkokaninjinto (0.1 mg/mL) or the vehicle 

were recorded in an EZ-TAXIScan chemotaxis assay (A). The number of byakkokaninjinto-

treated BMpDCs that migrated during 30 minutes is indicated by the line graph (B). Data are 

expressed as the mean ± SE (* p < 0.05, vs the vehicle; n = 3). The effects of byakkokaninjinto 

on the velocity and directionality of BMpDC migration are represented by the bar chart (C). Data 

are expressed as the mean ± SE (* p < 0.05, vs the vehicle; n = 3). 
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Figure 3. The effects of shimotsuto on the migration of BMpDCs. Chemotactic responses were 

induced in BMpDCs by stimulation with the CCR7 ligand CCL21. Time-lapse images of the 

migration of BMpDCs treated with shimotsuto (0.1 mg/mL) or the vehicle were recorded in an 

EZ-TAXIScan chemotaxis assay (A). The typical data for the number of shimotsuto-treated 

BMpDCs that migrated during 30 minutes is indicated by the line graph (B). The effects of 

shimotsuto on the velocity and directionality of BMpDC migration are represented by the bar 

chart (C). Data are expressed as the mean ± SE (* p < 0.05, vs the vehicle; n = 3). 

 

3.2 Viability assay with BMpDCs treated with byakkokaninjinto 

To verify that the inhibitory effect of byakkokaninjinto on BMpDC migration is not due to toxic 

side effects, we examined the viability of BMpDCs treated with byakkokaninjinto. BMpDCs 

treated with byakkokaninjinto or the vehicle were stained with Via-Probe, an anti-CD11c antibody 

and an anti-mPDCA-1 antibody. Dead BMpDCs (CD11cint mPDCA-1+ Via-Probe+) were detected 

by flow cytometry. The proportion of dead BMpDCs following vehicle treatment was 4.3 ± 0.5%, 

and the proportion following byakkokaninjinto treatment was 3.6 ± 0.2% (Figure 4). Thus, 

byakkokaninjinto has no toxic side effects on BMpDCs. 
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Figure 4. The detection of cell death caused by byakkokaninjinto. The toxicity of 

byakkokaninjinto to BMpDCs was detected by flow cytometry. The percentage of dead BMpDCs 

(CD11cint mPDCA-1+ Via-Probe+) was determined. Dot plots show representative data. Data are 

expressed as the mean ± SE (n = 3). 

 

3.3 Expression level of CCR7 on BMpDCs treated with byakkokaninjinto 

The maturation of BMpDCs is accompanied by the upregulation of CCR7 expression, which 

leads to increased sensitivity to CCL21. Thus, the expression level of CCR7 on BMpDCs was 

analyzed by flow cytometry. The expression level of CCR7 on BMpDCs treated with 

byakkokaninjinto was comparable to that on BMpDCs treated with the vehicle (Figure 5), 

indicating that byakkokaninjinto has no effect on the expression of CCR7 on BMpDCs. 

  

Figure 5. The effects of byakkokaninjinto on CCR7 expression in BMpDCs. The expression 

of CCR7 on BMpDCs treated with 0.1 mg/mL byakkokaninjinto (black line) or the vehicle (gray 
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line) was detected by flow cytometry. Representative CCR7 expression data are represented by 

the line graph. 

 

3.4 Effects of the components of byakkokaninjinto on BMpDC migration 

Byakkokaninjinto is composed of Gypsum Fibrosum, Ginseng Radix, Glycyrrhizae Radix, 

Anemarrhenae Rhizoma and Oryzae Fructus. We examined the effect of each component extract 

on the migration of BMpDCs. BMpDCs were treated with one component of byakkokaninjinto 

(0.02 mg/mL, 0.05 mg/mL, or 0.1 mg/mL) or the vehicle for 3 hours. The number of BMpDCs 

chemotaxing towards the CCL21 concentration gradient following treatment with each 

component extract or vehicle was increased during 30 minutes. At the dose of 0.1 mg/mL, the 

number of migrated BMpDCs was obviously decreased by the treatment of Gypsum Fibrosum, 

Ginseng Radix and Glycyrrhizae Radix (Figure 6) There was no effect of Anemarrhenae Rhizoma 

and Oryzae Fructus on the number of migrated BMpDCs (Figure 6A). To confirm the effect of 

each component, the value of the velocity and the directionality of BMpDC migration under 

treatment of each component of byakkokaninjinto (0.02 mg/mL, 0.05 mg/mL, or 0.1 mg/mL) 

were examined. The velocity of BMpDC migration in the vehicle treatment group was 0.12 ± 

0.00 μm/sec. Treatment with Gypsum Fibrosum (0.10 mg/mL) or Ginseng Radix (0.10 mg/mL) 

for 3 hours significantly reduced the velocity of BMpDC migration by 24.7% and 13.3%, 

respectively (Figure 6B, p < 0.05). In addition, the inhibitory effect of Gypsum Fibrosum on the 

velocity of BMpDC migration was dose dependent (Figure 6B). 

The directionality of BMpDC migration in the vehicle group was 0.62 ± 0.04 rad. Treatment 

with Gypsum Fibrosum (0.10 mg/mL) significantly reduced the directionality of BMpDC 

migration by 37.5% (Figure 6C, p < 0.05), and the inhibitory effect of Gypsum Fibrosum on the 

directionality of BMpDC migration was dose dependent (Figure 6C). Therefore, these results 

indicate that Gypsum Fibrosum is an active component in the inhibitory effect of 

byakkokaninjinto on BMpDC migration. 
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Figure 6. The effects of byakkokaninjinto components on BMpDC migration. The number 

of migrated BMpDCs with treatment of each component (0.10 mg/mL) is indicated by the line 

graph (A). Data are expressed as the mean ± SE (* p < 0.05, vs the vehicle; n = 3). The effects of 

each component of byakkokaninjinto at doses of 0.02 mg/mL, 0.05 mg/mL and 0.10 mg/mL on 

the velocity and directionality of BMpDC migration were measured by an EZ-TAXIScan 

chemotaxis assay. The bar chart shows the change rates of BMpDC migration velocity (B) and 

directionality (C) induced by treatment at each dose versus treatment with the vehicle. Data are 

expressed as the mean ± SE (* p < 0.05, vs the vehicle; n = 3). 

 

3.5 Effects of byakkokaninjinto on an DNFB-induced allergic contact dermatitis model 

There are several inconsistent reports on the role of pDCs in the onset of dermatitis, which 

remains controversial. In the present study, we used a murine model of DNFB-induced allergic 

contact dermatitis that exhibits allergic contact dermatitis symptoms (ear swelling) with an 

immediate-phase response (IPR) at 1 hour, a late-phase response (LPR) at 2 days and a very-late-

phase response (vLPR) at 6-10 days after DNFB administration (Itoh et al., 2009). Oral 

administration of byakkokaninjinto exhibited a tendency to suppress ear swelling during the IPR 

in a dose-dependent manner and then markedly prevented ear swelling during the LPR. However, 

byakkokaninjinto had no effect on ear swelling during the vLPR (Figure 7). 
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Figure 7. The effects of byakkokaninjinto on DNFB-induced allergic contact dermatitis 

model. Byakkokaninjinto (0.5 g/kg or 1.0 g/kg) was given by oral administration to DNFB-

induced allergic contact dermatitis model mice 1 day before DNFB sensitization. Ear swelling 

was monitored during the IPR (1 hour), LPR (2 days) and vLPR (7 days). The bar chart shows 

the ear thicknesses of mice treated with 0.5 g/kg or 1.0 g/kg byakkokaninjinto or the vehicle 

during the IPR, LPR and vLPR. Data are expressed as the mean ± SE (* p < 0.05, vs the vehicle; 

n = 5). 
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4. Discussion 

The present study revealed that byakkokaninjinto inhibits the migration of BMpDCs and that 

Gypsum Fibrosum, one of the components of byakkokaninjinto, has a potent inhibitory effect on 

BMpDC migration. Furthermore, it suggested that pDCs are involved in the onset of allergic 

contact dermatitis and that byakkokaninjinto suppresses the onset of allergic contact dermatitis 

by inhibiting pDC migration. 

Byakkokaninjinto significantly inhibited the migration of BMpDCs without inducing cellular 

toxicity in BMpDCs or enhancing the expression of CCR7 on BMpDCs. These results indicated 

that the inhibitory effect of byakkokaninjinto on BMpDC migration was caused by the inhibition 

of CCR7 signaling cascades. The activation of the CCR7 signaling pathway elicited by CCL21 is 

related to trimeric GTP-binding proteins, Jak family proteins and Rho family proteins (Hauser 

and Legler, 2016). Rho, Rac and Cdc42, members of the Rho family of proteins, play crucial roles 

in DC migration (Ridley, 2015). In particular, it has been reported that BMpDCs derived from 

DOCK2-deficient mice hardly migrate toward the more concentrated side of a concentration 

gradient of CCL21 (Gotoh et al., 2008). Furthermore, RAC1 activation induced by CCL21 is 

almost abolished in DOCK2-deficient BMpDCs, although wild-type BMpDCs exhibit RAC1 

activation (Gotoh et al., 2008). Accordingly, Rho family proteins, including RAC1-DOCK2, are 

essential in the migration of pDCs. Thus, it is assumed that byakkokaninjinto inhibits the signaling 

pathway of RAC1-DOCK2 to suppress pDC migration. 

We investigated the effect of each component of byakkokaninjinto on BMpDC migration and 

demonstrated that Gypsum Fibrosum and Ginseng Radix have inhibitory effects on BMpDC 

migration. However, the effective doses (0.1 mg/mL) of Gypsum Fibrosum and Ginseng Radix 

were higher than the amount contained in byakkokaninjinto. Moreover, makyokansekito, which 

contains the same dose of Gypsum Fibrosum as byakkokaninjinto, showed no inhibitory effect on 

the migration of pDCs. In addition, a high dose of Ginseng Radix is contained in many Kampo 

formulas, such as daikenchuto and shikunshito. However, these Kampo formulas had no effect on 

the migration of pDCs. In general, pharmacological effects of Kampo formulas containing many 

herbal components are characterized by synergistic effects or additive effects of multiple herbal 

components, and thus are complicated (Zhou et al., 2016). These results suggest that the inhibitory 

effect of byakkokaninjinto on pDC migration is attributed to the synergistic effects of multiple 

herbal medicines in byakkokaninjinto, including Gypsum Fibrosum and Ginseng Radix. 

It has been reported that pDCs highly infiltrate the lesional skin of patients with contact 

dermatitis (Garzorz-Stark et al., 2018, Wollenberg et al., 2002) or atopic dermatitis (Lebre et al., 

2008, Hashizume et al., 2005), whereas the proportion of CD304+ BDCA4+ pDCs does not change 

in the peripheral blood mononuclear cell population (Lebre et al., 2008). Conversely, BDCA2+ 

pDCs are not recruited into the lesional skin of patients with atopic dermatitis (Vittorakis et al., 
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2014, Wollenberg et al., 2002). Even in patients with atopic dermatitis, the proportion of CD123+ 

pDCs in the blood is higher than that in normal subjects (Hashizume et al., 2005). In ovalbumin-

induced dermatitis model mice, Wang et al. reported that the infiltration of pDCs was increased 

in the inflamed skin and that treatment with the immunostimulatory sequence CpG reduced pDC 

infiltration and skin inflammation (Wang et al., 2008), suggesting that pDCs play pivotal roles in 

the onset and development of dermatitis. However, in DNFB-induced dermatitis model similar to 

our used model, it is also reported that pDCs prevent the ear swelling response by inducing 

systemic tolerance (Goubier et al., 2008, Dubois et al., 2009). Accordingly, the role and 

distribution of pDCs in dermatitis remain poorly understood. In this study, we demonstrated that 

byakkokaninjinto had an inhibitory effect on pDC migration and suppressed the initiation of 

DNFB-induced allergic contact dermatitis. Therefore, the migration of pDCs to inflamed sites or 

the lymph nodes contributes to the onset and development of allergic contact dermatitis. 

pDCs are well known for their capacity to present antigens (Reizis, 2019, Suzuki et al., 2018, 

Villadangos and Young, 2008) and secrete type-I IFN in response to viral infections (Reizis, 2019, 

Swiecki and Colonna, 2015). Acquired immune responses are carried out through pDC migration 

to inflamed sites and mature pDC migration from the inflamed sites to the lymph nodes, where 

they perform antigen presentation. Consequently, the inhibition of pDC migration by 

byakkokaninjinto may have a beneficial effect on allergic dermatitis via the suppression of 

immune responses. 
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5. Conclusion 

In conclusions, CCL21 induced pDCs migrate into LNs to activate T cells or B cells. 

Byakkokaninjinto exerted an inhibitory effect on migration of pDCs into LNs so that activation 

of T cells or B cells was inhibited. And this process prevented the progression of allergic contact 

dermatitis. So pDC migration may be involved in the onset of allergic contact dermatitis. And 

byakkokaninjinto is anticipated to be a therapeutic agent for disorders related to the pDC 

migration (Graphic conclusion 1). 

 

Graphic conclusion 1 
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6. Tables 

Table 1. Components and their percentages in byakkokaninjinto 

Components Full botanical plant names Percentage (%) 

Gypsum Fibrosum Natural hydrous calcium sulfate 48 

Ginseng Radix  Panax ginseng C. A. Meyer 5 

Glycyrrhizae Radix  Glycyrrhiza uralensis Fischer 6 

Anemarrhenae Rhizoma Anemarrhena asphodeloides Bunge 16 

Oryzae Fructus Oryza sativa Linne 25 
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Table 2. Components of 86 kinds of Kampo prescriptions 

No Kampo prescriptions Components 

1. Anchusan Cinnamomi Cortex, Corydalis Tuber, Ostreae Testa, 

Foeniculi Fructus, Amomi Semen, Glycyrrhizae Radix, 

Alpiniae Officinari Rhizoma 

2. Inchinkoto Artemisiae Capillaris Flos, Gardeniae Fructus, Rhei 

Rhizoma  

3. Eppikajutsuto Ephedrae Herba, Gypsum Fibrosum, Zingiberis Rhizoma, 

Ziziphi Fructus, Glycyrrhizae Radix, Atractylodis 

Rhizoma 

4. Orengedokuto Ephedrae Herba, Gypsum Fibrosum, Zingiberis Rhizoma, 

Ziziphi Fructus, Glycyrrhizae Radix, Atractylodis 

Rhizoma 

5. Kakkonto Puerariae Radix, Ephedrae Herba, Zingiberis Rhizoma, 

Ziziphi Fructus, Cinnamomi Cortex, Paeoniae Radix, 

Glycyrrhizae Radix  

6. Kamiuntanto Pinelliae Tuber, Poria Sclerotium, Bambusae Caulis, Citri 

Unshiu Pericarpium, Ziziphi Semen, Glycyrrhizae Radix, 

Ziziphi Fructus, Aurantii Fructus Immaturus, Polygalae 

Radix, Scrophulariae Radix, Ginseng Radix, Rehmanniae 

Radix, Zingiberis Rhizoma 

7. Kamikihito Astragali Radix, Angelicae Acutilobae Radix, Gardeniae 

Fructus, Ginseng Radix, Atractylodis Rhizoma, Poria 

Sclerotium, Ziziphi Semen, Longan Arillus, Bupleuri 

Radix, Polygalae Radix, Ziziphi Fructus, Glycyrrhizae 

Radix, Zingiberis Rhizoma, Saussureae Radix  

8. Kamishoyosan Bupleuri Radix, Paeoniae Radix, Angelicae Acutilobae 

Radix, Poria Sclerotium, Gardeniae Fructus, Moutan 

Cortex, Glycyrrhizae Radix, Zingiberis Rhizoma, 

Menthae Herba, Atractylodis Rhizoma  

9. Kihito Astragali Radix, Angelicae Acutilobae Radix, Ginseng 

Radix, Atractylodis Rhizoma, Poria Sclerotium, Ziziphi 

Semen, Longan Arillus, Polygalae Radix, Ziziphi Fructus, 

Glycyrrhizae Radix, Zingiberis Rhizoma, Saussureae 
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Radix  

10. Keishito Cinnamomi Cortex, Paeoniae Radix, Zingiberis Rhizoma, 

Ziziphi Fructus, Glycyrrhizae Radix 

11. Keishibukuryogan Cinnamomi Cortex, Poria Sclerotium, Paeoniae Radix, 

Persicae Semen, Moutan Cortex 

12. Goshuyuto Euodiae Fructus, Ziziphi Fructus, Zingiberis Rhizoma, 

Ginseng Radix 

13. Goreisan Alismatis Tuber, Poria Sclerotium, Polyporus, 

Atractylodis Rhizoma, Cinnamomi Cortex 

14. Saikokaryukotsuboreito Bupleuri Radix, Pinelliae Tuber, Poria Sclerotium, 

Cinnamomi Cortex, Ziziphi Fructus, Zingiberis Rhizoma, 

Ginseng Radix, Fossilia Ossis Mastodi, Ostreae Testa, 

Rhei Rhizoma  

15. Saikokeishito Bupleuri Radix, Pinelliae Tuber, Scutellariae Radix, 

Glycyrrhizae Radix, Cinnamomi Cortex, Paeoniae Radix, 

Ziziphi Fructus, Ginseng Radix, Zingiberis Rhizoma 

16. San’Oshashinto Rhei Rhizoma, Scutellariae Radix, Coptidis Rhizoma 

17. Sansoninto Ziziphi Semen, Poria Sclerotium, Anemarrhenae 

Rhizoma, Cnidii Rhizoma, Glycyrrhizae Radix 

18. Shikunshito Ginseng Radix, Atractylodis Rhizoma, Poria Sclerotium, 

Glycyrrhizae Radix, Ziziphi Fructus, Zingiberis Rhizoma 

19. Shimotsuto Angelicae Acutilobae Radix, Paeoniae Radix, Cnidii 

Rhizoma, Rehmanniae Radix 

20. Shakuyakukanzoto Paeoniae Radix, Glycyrrhizae Radix 

21. Juzentaihoto Astragali Radix, Cinnamomi Cortex, Paeoniae Radix, 

Angelicae Acutilobae Radix, Rehmanniae Radix, Cnidii 

Rhizoma, Ginseng Radix, Poria Sclerotium, Atractylodis 

Rhizoma, Glycyrrhizae Radix  

22. Shosaikoto Bupleuri Radix, Pinelliae Tuber, Scutellariae Radix, 

Ginseng Radix, Ziziphi Fructus, Glycyrrhizae Radix, 

Zingiberis Rhizoma 

23. Shoseiryuto Ephedrae Herba, Cinnamomi Cortex, Paeoniae Radix, 

Asiasari Radix, Zingiberis Processum Rhizoma, 
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Schisandrae Fructus, Pinelliae Tuber, Glycyrrhizae Radix 

24. Shimbuto Poria Sclerotium, Paeoniae Radix, Atractylodis Rhizoma, 

Zingiberis Rhizoma, Aconiti Radix  

25. Daikenchuto Ginseng Radix, Zingiberis Processum Rhizoma, 

Zanthoxyli Piperiti Pericarpium, Koi 

26. Daisaikoto Bupleuri Radix, Pinelliae Tuber, Scutellariae Radix, 

Paeoniae Radix, Ziziphi Fructus, Aurantii Fructus 

Immaturus, Zingiberis Rhizoma, Rhei Rhizoma 

27. Chotosan Gypsum Fibrosum, Uncariae Uncis cum Ramulus, Citri 

Unshiu Pericarpium, Pinelliae Tuber, Ophiopogonis 

Radix, Ophiopogonis Radix, Ophiopogonis Radix, 

Chrysanthemi Flos, Saposhnikoviae Radix, Glycyrrhizae 

Radix, Zingiberis Rhizoma  

28. Tokakujokito Persicae Semen, Rhei Rhizoma, Cinnamomi Cortex, 

Glycyrrhizae Radix, Sal Mirabilis 

29. Tokishakuyakusan Paeoniae Radix, Atractylodis Rhizoma, Alismatis Tuber, 

Poria Sclerotium, Cnidii Rhizoma, Angelicae Acutilobae 

Radix 

30. Ninjinto Ginseng Radix, Glycyrrhizae Radix, Zingiberis 

Processum Rhizoma, Atractylodis Rhizoma 

31. Bakumondoto Ophiopogonis Radix, Pinelliae Tuber, Oryzae Fructus, 

Ziziphi Fructus, Ginseng Radix, Glycyrrhizae Radix  

32. Hachimijiogan (decoction) Rehmanniae Radix, Corni Fructus, Dioscoreae Rhizoma, 

Alismatis Tuber, Poria Sclerotium, Moutan Cortex, 

Cinnamomi Cortex, Aconiti Radix    

33. Hangekobokuto Pinelliae Tuber, Poria Sclerotium, Magnoliae Cortex, 

Perilla Herba, Zingiberis Rhizoma 

34. Hangeshashito Pinelliae Tuber, Scutellariae Radix, Glycyrrhizae Radix, 

Zingiberis Processum Rhizoma, Ginseng Radix, Ziziphi 

Fructus, Coptidis Rhizoma 

35. Byakkokaninjinto Gypsum Fibrosum, Anemarrhenae Rhizoma, Oryzae 

Fructus, Glycyrrhizae Radix, Ginseng Radix 

36. Boiogito Sinomeni Caulis et Rhizoma, Astragali Radix, 

Atractylodis Rhizoma, Ziziphi Fructus, Zingiberis 
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Rhizoma, Glycyrrhizae Radix 

37. Bofutsushosan Rhei Rhizoma, Sal Mirabilis, Ephedrae Herba, 

Saposhnikoviae Radix, Schizonepetae Spica, Menthae 

Herba, Kasseki, Gardeniae Fructus, Gypsum Fibrosum, 

Platycodi Radix, Forsythiae Fructus, Scutellariae Radix, 

Cnidii Rhizoma, Angelicae Acutilobae Radix, Paeoniae 

Radix, Atractylodis Rhizoma, Glycyrrhizae Radix, 

Zingiberis Rhizoma 

38. Hochuekkito Ginseng Radix, Atractylodis Rhizoma, Astragali Radix, 

Angelicae Acutilobae Radix, Bupleuri Radix, Citri Unshiu 

Pericarpium, Ziziphi Fructus, Zingiberis Rhizoma, 

Glycyrrhizae Radix, Cimicifugae Rhizoma 

39. Maoto Ephedrae Herba, Armeniacae Semen, Cinnamomi Cortex, 

Glycyrrhizae Radix  

40. Maobushisaishinto Aconiti Radix, Asiasari Radix, Ephedrae Herba  

41. Unkeito Pinelliae Tuber, Ophiopogonis Radix, Angelicae 

Acutilobae Radix, Paeoniae Radix, Cnidii Rhizoma, Asini 

Corii Collas, Moutan Cortex, Ginseng Radix, Cinnamomi 

Cortex, Glycyrrhizae Radix, Zingiberis Rhizoma, Euodiae 

Fructus  

42. Unseiin Angelicae Acutilobae Radix, Processi Rehmanniae Radix, 

Paeoniae Radix, Cnidii Rhizoma, Scutellariae Radix, 

Gardeniae Fructus, Coptidis Rhizoma, Phellodendri 

Cortex 

43. Ogikenchuto Cinnamomi Cortex, Zingiberis Rhizoma, Ziziphi Fructus, 

Astragali Radix, Paeoniae Radix, Glycyrrhizae Radix, 

Koi 

44. Kambakutaisoto Glycyrrhizae Radix, Ziziphi Fructus, Tritici Semen 

45. Kyukikyogaito Rehmanniae Radix, Angelicae Acutilobae Radix, 

Paeoniae Radix, Cnidii Rhizoma, Asini Corii Collas, 

Artemisiae Folium, Glycyrrhizae Radix 

46. Keigairengyoto Angelicae Acutilobae Radix, Paeoniae Radix, Cnidii 

Rhizoma, Rehmanniae Radix, Coptidis Rhizoma, 

Phellodendri Cortex,Scutellariae Radix, Gardeniae 
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Fructus, Forsythiae Fructus, Saposhnikoviae Radix, 

Menthae Herba, Schizonepetae Spica, Glycyrrhizae 

Radix, Aurantii Pericarpium, Bupleuri Radix, Angelicae 

Dahuricae Radix, Platycodi Radix 

47. Keishikashakuyakuto Cinnamomi Cortex, Paeoniae Radix, Zingiberis Rhizoma, 

Ziziphi Fructus, Glycyrrhizae Radix 

48. Keishikajutsubuto Cinnamomi Cortex, Paeoniae Radix, Zingiberis Rhizoma, 

Ziziphi Fructus, Glycyrrhizae Radix, Atractylodis 

Rhizoma, Aconiti Radix  

49. Keishikaryukotsuboreito Cinnamomi Cortex, Paeoniae Radix, Zingiberis Rhizoma, 

Ziziphi Fructus, Glycyrrhizae Radix, Fossilia Ossis 

Mastodi, Ostreae Testa 

50. Keishishakuyakuchimoto Ephedrae Herba, Saposhnikoviae Radix, Cinnamomi 

Cortex, Paeoniae Radix, Zingiberis Rhizoma, 

Anemarrhenae Rhizoma, Atractylodis Rhizoma, 

Glycyrrhizae Radix, Aconiti Radix  

51. Kososan Cyperi Rhizoma, Perilla Herba, Citri Unshiu 

Pericarpium, Glycyrrhizae Radix, Zingiberis Rhizoma 

52. Goshajinkigan Rehmanniae Radix, Achyranthis Radix, Cornus Fruit, 

Dioscoreae Rhizoma, Plantaginis Semen, Alismatis Tuber, 

Poria Sclerotium, Moutan Cortex, Aconiti Radix, 

Cinnamomi Cortex 

53. Goshakusan Atractylodis Rhizoma, Poria Sclerotium, Tachibana 

Pericarpium, Pinelliae Tuber, Magnoliae Cortex, Aurantii 

Fructus Immaturus, Platycodi Radix, Angelicae 

Dahuricae Radix, Glycyrrhizae Radix, Ephedrae Herba, 

Cinnamomi Cortex, Zingiberis Processum Rhizoma, 

Angelicae Acutilobae Radix, Paeoniae Radix, Cnidii 

Rhizoma 

54. Saikokeishikankyoto Bupleuri Radix, Cinnamomi Cortex, Scutellariae Radix, 

Ostreae Testa, Zingiberis Processum Rhizoma, 

Glycyrrhizae Radix, Trichosanthis Radix 

55. Saikoseikanto Bupleuri Radix, Angelicae Acutilobae Radix, Paeoniae 

Radix, Cnidii Rhizoma, Rehmanniae Radix, Coptidis 

Rhizoma, Scutellariae Radix, Phellodendri Cortex, 

Gardeniae Fructus, Forsythiae Fructus, Platycodi Radix, 
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Arctii Fructus, Trichosanthis Radix, Menthae Herba, 

Glycyrrhizae Radix  

56. Saibokuto Bupleuri Radix, Pinelliae Tuber, Zingiberis Rhizoma, 

Scutellariae Radix, Ziziphi Fructus, Ginseng Radix, 

Glycyrrhizae Radix, Magnoliae Cortex, Poria Sclerotium, 

Perilla Herba 

57. Saireito Bupleuri Radix, Alismatis Tuber, Pinelliae Tuber, 

Scutellariae Radix, Atractylodis Rhizoma, Ziziphi 

Fructus, Polyporus, Ginseng Radix, Poria Sclerotium, 

Glycyrrhizae Radix, Cinnamomi Cortex, Zingiberis 

Rhizoma 

58. Jiinkokato Atractylodis Rhizoma, Rehmanniae Radix, Paeoniae 

Radix, Citri Unshiu Pericarpium, Angelicae Acutilobae 

Radix, Ophiopogonis Radix, Phellodendri Cortex, 

Glycyrrhizae Radix, Anemarrhenae Rhizoma, Asparagi 

Radix 

59. Shigyakusan (decoction) Bupleuri Radix, Paeoniae Radix, Aurantii Fructus 

Immaturus, Glycyrrhizae Radix 

60. Shakanzoto Glycyrrhizae Radix Praeparata, Zingiberis Rhizoma, 

Cinnamomi Cortex, Cannabidis Fructus, Ziziphi Fructus, 

Ginseng Radix, Rehmanniae Radix, Ophiopogonis Radix, 

Asini Corii Collas 

61. Jumihaidokuto Bupleuri Radix, Platycodi Radix, Pruni Cortex, 

Saposhnikoviae Radix, Poria Sclerotium, Cnidii Rhizoma, 

Araliae Cordatae Rhizoma, Schizonepetae Spica, 

Glycyrrhizae Radix, Zingiberis Rhizoma 

62. Shokenchuto Paeoniae Radix, Cinnamomi Cortex, Ziziphi Fructus, 

Glycyrrhizae Radix, Zingiberis Rhizoma, Koi 

63. Shofusan Angelicae Acutilobae Radix, Rehmanniae Radix, Gypsum 

Fibrosum, Saposhnikoviae Radix, Atractylodis Lanceae 

Rhizoma, Akebiae Caulis, Arctii Fructus, Anemarrhenae 

Rhizoma, Sesami Semen, Glycyrrhizae Radix, Cicadae 

Periostracum, Sophorae Radix, Schizonepetae Spica 

64. Seishinrenshiin Ophiopogonis Radix, Poria Sclerotium, Nelumbis Semen, 

Ginseng Radix, Plantaginis Semen, Scutellariae Radix, 
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Astragali Radix, Lycii Cortex, Glycyrrhizae Radix 

65. Seihaito Angelicae Acutilobae Radix, Ophiopogonis Radix, Poria 

Sclerotium, Scutellariae Radix, Platycodi Radix, 

Armeniacae Semen, Gardeniae Fructus, Mori Cortex, 

Ziziphi Fructus, Citri Unshiu Pericarpium, Bambusae 

Caulis, Asparagi Radix, Fritillariae Bulbus, Glycyrrhizae 

Radix, Schisandrae Fructus, Zingiberis Rhizoma 

66. Sokeikakketsuto Paeoniae Radix, Rehmanniae Radix, Cnidii Rhizoma, 

Atractylodis Lanceae Rhizoma, Angelicae Acutilobae 

Radix, Persicae Semen, Poria Sclerotium, Achyranthis 

Radix, Citri Unshiu Pericarpium, Sinomeni Caulis et 

Rhizoma, Saposhnikoviae Radix, Gentianae Scabrae 

Radix, Clematidis Radix, Notopterygii Rhizoma, 

Glycyrrhizae Radix, Angelicae Dahuricae Radix, 

Zingiberis Rhizoma 

67. Daiokanzoto Rhei Rhizoma, Glycyrrhizae Radix 

68. Daiobotampito Benincasae Semen, Rhei Rhizoma, Persicae Semen, 

Moutan Cortex, Sal Mirabilis 

69. Daibofuto Angelicae Acutilobae Radix, Paeoniae Radix, 

Rehmanniae Radix, Astragali Radix, Saposhnikoviae 

Radix, Eucommiae Cortex, Atractylodis Rhizoma, Cnidii 

Rhizoma, Ginseng Radix, Notopterygii Rhizoma, 

Achyranthis Radix, Glycyrrhizae Radix, Ziziphi Fructus, 

Zingiberis Rhizoma, Aconiti Radix  

70. Chikujountanto Pinelliae Tuber, Citri Unshiu Pericarpium, Poria 

Sclerotium, Glycyrrhizae Radix, Aurantii Fructus 

Immaturus, Bambusae Caulis, Ziziphi Fructus, Bupleuri 

Radix, Coptidis Rhizoma, Cyperi Rhizoma, Platycodi 

Radix, Ophiopogonis Radix, Ginseng Radix 

71. Choijokito Rhei Rhizoma, Sal Mirabilis, Glycyrrhizae Radix 

72. Choreito Polyporus, Poria Sclerotium, Kasseki, Alismatis Tuber, 

Asini Corii Collas 
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73. Tokishigyakukagoshuyusho

kyoto 

Ziziphi Fructus, Angelicae Acutilobae Radix, Paeoniae 

Radix, Cinnamomi Cortex, Akebiae Caulis, Glycyrrhizae 

Radix, Asiasari Radix, Euodiae Fructus, Zingiberis 

Rhizoma 

74. Ninjin’Yoeito Ginseng Radix, Astragali Radix, Atractylodis Rhizoma, 

Poria Sclerotium, Angelicae Acutilobae Radix, 

Rehmanniae Radix, Cinnamomi Cortex, Paeoniae Radix, 

Citri Unshiu Pericarpium, Polygalae Radix, Schisandrae 

Fructus, Glycyrrhizae Radix 

75. Hangebyakujutsutemmato Pinelliae Tuber, Citri Unshiu Pericarpium, Fructus 

Hordei Germinatus, Poria Sclerotium, Astragali Radix, 

Ginseng Radix, Alismatis Tuber, Atractylodis Rhizoma, 

Atractylodis Lanceae Rhizoma, Gastrodiae Tuber, Massa 

Medicata Fermentata, Phellodendri Cortex, Zingiberis 

Rhizoma, Zingiberis Processum Rhizoma 

76. Bukuryoin Poria Sclerotium, Atractylodis Rhizoma, Ginseng Radix, 

Zingiberis Rhizoma, Tachibana Pericarpium, Aurantii 

Fructus Immaturus 

77. Heiisan Atractylodis Lanceae Rhizoma, Magnoliae Cortex, Citri 

Unshiu Pericarpium, Ziziphi Fructus, Zingiberis 

Processum Rhizoma, Glycyrrhizae Radix 

78. Makyokansekito Ephedrae Herba, Armeniacae Semen, Glycyrrhizae 

Radix, Gypsum Fibrosum 

79. Makyoyokukanto Ephedrae Herba, Armeniacae Semen, Coicis Semen, 

Glycyrrhizae Radix 

80. Yokuininto Ephedrae Herba, Angelicae Acutilobae Radix, 

Atractylodis Rhizoma, Coicis Semen, Cinnamomi Cortex, 

Paeoniae Radix, Glycyrrhizae Radix 

81. Yokukansan Atractylodis Rhizoma, Poria Sclerotium, Angelicae 

Acutilobae Radix, Cnidii Rhizoma, Uncariae Uncis cum 

Ramulus, Bupleuri Radix, Glycyrrhizae Radix 

82. Rikkunshito Ginseng Radix, Atractylodis Rhizoma, Poria Sclerotium, 

Glycyrrhizae Radix, Citri Unshiu Pericarpium, Pinelliae 

Tuber, Ziziphi Fructus, Zingiberis Rhizoma 
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83. Ryutanshakanto Gentianae Scabrae Radix, Angelicae Acutilobae Radix, 

Rehmanniae Radix, Alismatis Tuber, Akebiae Caulis, 

Plantaginis Semen, Scutellariae Radix, Gardeniae 

Fructus, Glycyrrhizae Radix 

84. Ryokyojutsukanto Poria Sclerotium, Atractylodis Rhizoma, Zingiberis 

Processum Rhizoma, Glycyrrhizae Radix 

85. Ryokeijutsukanto Poria Sclerotium, Cinnamomi Cortex, Atractylodis 

Rhizoma, Glycyrrhizae Radix 

86. Rokumigan (decoction) Rehmanniae Radix, Corni Fructus, Dioscoreae Rhizoma, 

Alismatis Tuber, Poria Sclerotium, Moutan Cortex, 

Cinnamomi Cortex, Aconiti Radix, Alismatis Tuber, Poria 

Sclerotium, Moutan Cortex    
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Chapter 2 

Suppression of plasmacytoid dendritic cell migration to colonic isolated lymphoid 

follicles abrogates the development of colitis 

 

1. Introduction 

Dendritic cells (DCs) can initiate immune responses by migrating to tissues when they are 

needed (Audiger et al., 2017). DCs are mainly divided into 2 subtypes: conventional DCs (cDCs) 

and plasmacytoid DCs (pDCs). pDCs are known to perform massive type-I interferon (IFN) 

secretion in the context of viral infection to induce antiviral responses. In addition, pDC 

participate in the activation of adaptive immune cells (McKenna et al., 2005). Recent studies on 

the pathophysiological role of pDCs have revealed the importance of pDCs in the pathology of 

immune diseases. pDCs have been reported to be involved in the pathogenesis of autoimmune 

diseases, such as systemic sclerosis (Ye, Ricard et al., 2020) and systemic lupus erythematosus 

(SLE) (Ye, Gaugler et al., 2020). On the opposite, pDCs are capable of exerting regulatory 

functions to induce regulatory FoxP3+ CD4+ T cells in a tolerogenic microenvironment (Bonnefoy 

et al., 2011). Thus, pDCs play pivotal roles in protecting immune responses to pathogenic foreign 

antigens and immune tolerance (Uto et al., 2018). During these immune processes, pDCs are 

required to migrate to organs and tissues to exert their functions. C-C chemokine receptor type 7 

(CCR7) expressed on mature pDCs guides pDCs into the lymph nodes (LNs) or inflamed tissues 

via its ligand chemokine (C-C motif) ligand 21 (CCL21) (Lv et al., 2018). 

Recently, it was found that pDCs are committed to the onset of inflammatory bowel disease 

(IBD). Numerous pDCs infiltrate the colonic mucosa of IBD patients (Smrekar et al., 2018, 

Baumgart et al., 2011). In addition, it has been reported that pDCs are highly enriched in the 

inflamed colon of ulcerative colitis (UC) and Crohn’s disease patients, and this enrichment 

correlates with disease severity (Liu, Dasgupta et al., 2019). Furthermore, Mitsialis V et al. have 

reported that pDCs are increased in the peripheral blood mononuclear cells and colonic mucosa 

of IBD patients using single-cell analysis by mass cytometry methods (Mitsialis et al., 2020). 

However, there is also a report that pDCs are decreased in the peripheral blood of UC patients 

(Baird et al., 2016). In a murine dextran sulfate sodium (DSS)-induced colitis, the population of 

pDCs is increased in the mouse colon (Liu, Dasgupta et al., 2019, Arimura et al., 2017) and 

Arimura K et al. have demonstrated that the depletion of pDCs suppresses inflammation in the 

colon of DSS-induced colitis mice (Arimura et al., 2017). On the other hand, the depletion of 

pDCs impairs gut barrier function and caused heavy colitis in a Citrobacter rodentium-induced 

colitis model (Pöysti et al., 2021). Furthermore, ablating type-I IFN signaling in Wiskott-Aldrich 

syndrome protein (WASp) null mice rescues colitis in a WAS disease model (Prete et al., 2013), 

while Sawai et al. reported that pDCs do not have a major role in the pathology of colitis caused 
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by deficiency in WASp or interleukin (IL)-10 (Sawai et al., 2018). Therefore, these contradictory 

reports suggest that pDCs perform multiple functions in the intestine. Moreover, it is reported that 

the ability of pDCs in the peyer's patch of the small intestine is lower levels of type-I IFN 

production than that of pDCs in spleen (Contractor et al., 2007). Peyer's patch pDCs as a specific 

phenotype of pDCs has regulatory functions (Li et al., 2011). Taking together, pDC in the 

gastrointestinal tract is distinct from pDCs in other organ and tissue and play both pro-

inflammatory responses and regulatory responses. Furthermore, the previous studies show that 

immature pDCs express chemokine receptor CCR9 and primarily migrate into the small intestine, 

but not colon during gut inflammation (Wendland et al., 2007, Mizuno et al., 2012), while CCR7 

allow mature pDCs to migrate into T cell areas of the gut-associated lymphoid tissue (GALT) 

where they prime naive T cells and promote the differentiation of effector T cells (Seth et al., 

2011). In addition, it has been reported that CCR9 or chemokine (C-C motif) ligand 25 (CCL25) 

knockout mice exacerbated DSS colitis and CCR9+ pDCs are potent inducers of regulatory T cell 

function and suppresses antigen-specific immune responses both in vitro and in vivo (Wurbel et 

al., 2014, Hadeiba et al., 2008). These previous studies raise the possibility that CCR7/CCL21 

signaling is crucial for pDC migration during colonic inflammation. The pathophysiological role 

of pDCs in the pathology of IBD remains to be elucidated, but detailed investigation on mature 

pDC migration will provide new insight in designing better strategies to control IBD. 

To the best of our knowledge, no drugs have been found to effectively and potently regulate pDC 

functions, especially pDC migration. Therefore, we utilized traditional Japanese herbal medicines 

as a resource for drug discovery. Traditional Japanese herbal medicines have been widely used 

for various immune diseases, such as rheumatoid arthritis, type 1 diabetes and IBD (Watanabe et 

al., 2017, Won et al., 2020). In addition, many researchers have a great interest in the effects of 

compounds extracted from herbal medicines on the pathological role of DCs in immune diseases 

(Liu et al., 2018, Aldahlawi, 2016). Recent studies have revealed that enhanced DC migration 

results in the aggravation of inflammatory injuries (Liu, Zhang et al., 2019). 

In this study, we hypothesized that the migration of pDCs plays pivotal roles in the development 

and pathology of colitis. Therefore, the purpose of this study was to identify compounds that 

regulate the migration of pDCs and use these compounds to investigate whether the migration of 

pDCs is involved in the development and pathogenesis of colitis and whether inhibition of pDC 

migration can effectively suppress colitis. 
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2. Materials and methods 

2.1 Mice 

Male BALB/cCrSlc mice (7 weeks old) were purchased from Japan SLC (Shizuoka, Japan). 

Mice were allowed free access to food and water and housed in the animal facility at the 

University of Toyama. This study was performed in strict accordance with the recommendations 

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The 

Animal Experiment Committee at the University of Toyama approved all the animal care 

procedures and experiments (authorization No. A2012 INM-4, A2015 INM-3 and A2018 INM-

4). 

 

2.2 Derivation and differentiation of DCs 

DCs were generated from bone marrow (BM) cells isolated from the femurs and tibias of male 

BALB/c mice. For pDC differentiation, BMs were cultured in RPMI 1640 medium (Wako, Osaka, 

Japan) supplemented with 10% fetal bovine serum (FBS) (Equitech-Bio, Kerrville, TX, USA), 55 

µM 2-mercaptoethanol (Invitrogen, Carlsbad, CA, USA), 100 units/mL penicillin (Gibco, Grand 

Island, NY, USA), 140 μM streptomycin (Gibco), 2 mM L-glutamine (Gibco), and 100 ng/mL 

Flt3 ligand (R&D Systems, Minneapolis, MN, USA) for 6 to 9 days. CpG oligodeoxynucleotides 

(ODN-2216, 2 µM) (Hokkaido System Science, Hokkaido, Japan) were used to induce BM-

derived pDC (BMpDC) maturation. As shown in Figure 1, 93.2 ± 3.3% of BM-derived cells using 

Flt3 ligand was CD11cint mPDCA1+ (mean ± SE, n = 4). For cDC differentiation, BM cells were 

cultured in RPMI 1640 medium supplemented with 10% FBS, 55 µM 2-mercaptoethanol, 100 

units/mL penicillin, 140 µM streptomycin, 2 mM L-glutamine, and 10 ng/mL GM-CSF for 7 days. 

Lipopolysaccharide (LPS, 1 µg/mL) (Sigma-Aldrich, St. Louis, MO, USA) was used to induce 

BM-derived cDC (BMcDC) maturation. 

 

 

Figure 1. Frequency of CD11cint mPDCA1+ B220+ SIGLEC-H+ BM-derived cells. 

The frequency of CD11cint mPDCA1+ B220+ SIGLEC-H+ BM-derived cells was detected by flow 

cytometry analysis (A-C). 93.2 ± 3.3% of BM-derived cells using Flt3 ligand was CD11cint 

mPDCA1+ (B). CD11cint mPDCA1+ BM-derived cells using Flt3 ligand contained 9.3 ± 0.2% 
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B220+ SIGLEC-H+ CD11cint mPDCA1+ BM-derived cells (C). Data are expressed as the mean ± 

SE (n = 4). 

 

2.3 Compound preparation and treatment 

Compounds were extracted from traditional Japanese herbal medicines provided by the Joint 

Usage/Research Center for Science-Based Natural Medicine, Institute of Natural Medicine, 

University of Toyama, and the Knowledge Cluster Initiative Program (Second Stage) of the 

Ministry of Education, Culture, Sports, Science and Technology of Japan (Table 1). 

Matured BM-derived DCs (BMDCs) were incubated with 1 μM each compound at 37°C for 30 

minutes. BMDCs were resuspended in modified RPMI 1640 medium (Sigma-Aldrich) 

supplemented with 1% FBS to prepare for chemotaxis studies. 

 

2.4 Chemotaxis assay 

The chemotaxis of BMDCs was measured with an EZ-TAXIScan system (GE Healthcare, Little 

Chalfont, UK), which allows observation of the horizontal migration of BMDCs according to the 

manufacturer’s protocol. BMpDC chemotaxis was induced by CCL21 (R&D Systems), and 

BMcDC chemotaxis was induced by CXCL12 (R&D Systems). Matured BMDCs treated with 

each compound were suspended in modified RPMI 1640 medium containing 1% FBS. 1 µL of 

BMDC suspension (1×106 cells/mL) was injected into one side of the chamber, and 1 µL of 250 

µg/mL chemokine was injected into the contralateral chamber. A chemokine concentration 

gradient was formed, and BMDC migration toward the chemokine along the concentration 

gradient was observed. BMDC migration was automatically recorded every 30 seconds for 3600 

seconds. 

TAXIScan Analyzer 2 (GE Healthcare) was used to analyze the migration of BMDCs. The 

number of BMDCs migrating into the subject area was automatically counted every 30 seconds. 

The migration track of BMDCs was generated by a sequence of time-lapse imaging. The velocity 

and direction of BMDC migration were calculated and analyzed by a TAXIScan Analyzer 2 every 

30 seconds. 

 

2.5 Cell apoptosis 

The toxicity of compounds used to treat BMDCs was detected by staining with an annexin V-

FITC kit according to the manufacturer's protocol (Beckman Coulter, Brea, CA, USA). Briefly, 

after treatment with compounds at 37°C for 30 minutes, BMDCs were stained with 5 μL of 

annexin V-FITC and 2.5 μL of propidium iodide (PI) in binding buffer in the dark at room 

temperature for 10 minutes. Stained BMDCs were analyzed with a FACSCanto II. The 
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percentages of apoptotic cells (stained with annexin V only) and necrotic cells (stained with 

annexin V and PI) in the total cell population were used to evaluate the compound toxicity. 

 

2.6 GTP-RAC1 detection and western blot analysis 

Mature BMpDCs were treated with astragaloside IV (As-IV) or oxymatrine (Oxy) for 12 hours, 

followed by induction with CCL21 for 1 hour at 37°C. GTP-RAC1 in BMpDCs was extracted 

with the Active RAC1 Detection Kit (Cell Signaling Technology, Beverly, MA, USA) and 

detected by western blot analysis according to the manufacturer's protocol. The expression of 

GTP-RAC1 was detected with the primary anti-RAC1 mouse monoclonal antibody (mAb) 

(1:1000, Cell Signaling Technology) from the Active RAC1 Detection Kit and a secondary rabbit 

anti-mouse immunoglobulins/HRP antibody (1:1000, Dako, New Delhi, India). The bands in 

western blots were detected with an ImageQuant LAS4000 (GE Healthcare) and analyzed with 

ImageJ software. 

 

2.7 RNA extraction and microarray analysis 

Mature BMpDCs sorted with a BD FACSAria SORP (BD Biosciences, San Jose, CA, USA) were 

used for RNA extraction. The frequency of CD11cint mPDCA1+ BMpDCs in sorted cells is 98.5 

± 0.5 %. Mature BMpDCs were treated with As-IV or Oxy for 12 hours, followed by induction 

with CCL21 for 1 hour at 37°C. Then, RNA was extracted and purified with the RNeasy Mini Kit 

(Qiagen, Crawley, UK) according to standard procedures. Microarray analysis was performed by 

using the Clariom S Array Mouse (Affymetrix, Santa Clara, CA, USA). Measurement of RNA 

quality and analysis of the microarray were outsourced to Takara Bio Inc. (Osaka, Japan). Data 

were analyzed by GeneSpring (Silicon Genetics, Redwood City, CA, USA) and Ingenuity 

Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA, USA). 

 

2.8 DSS-induced colitis model and compound treatments  

Male BALB/c mice (8 weeks old) were given 3% DSS (MP Biomedicals, Santa Ana, CA, USA) 

in the drinking water for 7 days. Body weight was measured every day. The symptoms of DSS-

induced colitis were monitored daily. The disease activity index (DAI) was defined as the 

combined scores for diarrhea and bloody stool, as previously described (Arimura et al., 2017). 

Diarrhea was scored as: 0 (normal), 1 (soft stool), 2 (loose stool) and 3 (diarrhea) as follows. 

Bloody stool was scored as: 0 (normal), 1 (fecal occult blood), 2 (visible blood) and 3 (rectal 

bleeding) as follows. As-IV (50 mg/kg) or Oxy (100 mg/kg) was administered by intraperitoneal 

(i.p.) injection each day during 3% DSS treatment. Mice were given saline injection as the control. 

According to all established animal welfare guidelines, the mice with the heavy body weight loss 

were euthanized. 



41 

 

 

 

2.9 Isolation of cells and flow cytometry analysis 

The colon was excised from model mice and washed with ice-cold saline. Lamina propria (LP) 

cells were isolated from the colon as previously described (Arimura et al., 2017). In brief, the 

colon was dissected into short segments and incubated in RPMI 1640 medium containing 2% 

FBS and 0.5 mM EDTA at 37°C for 20 minutes. The colon segments were flushed with ice-cold 

RPMI 1640 medium, and LP cells were dissociated according to an enzymatic procedure using 

collagenase (Wako). Discontinuous Percoll density-gradient centrifugation using 40% and 75% 

Percoll was performed to purify LP cells. 

The mesenteric lymph nodes (MLNs) and spleen were excised from model mice. After tissue 

shredding, cells were dissociated according to an enzymatic procedure using collagenase (Wako). 

To analyze isolated pDCs by flow cytometry, isolated pDCs were stained with an APC-

conjugated anti-mPDCA1 antibody (Miltenyi Biotec), a PE-conjugated anti-CD11c antibody (BD 

Biosciences), a Pacific Blue-conjugated anti-CD45R/B220 antibody (BioLegend, San Diego, CA, 

USA), a FITC-conjugated anti-SIGLEC-H antibody (BioLegend) and a solution of 7-amino-

actinomycin D (BD Via-Probe, Becton Dickinson, San Jose, CA, USA). Flow cytometry analysis 

was performed with a FACSCanto II (BD Biosciences). 

 

2.10 Immunohistochemical staining 

Colons were excised, fixed in 4% paraformaldehyde for 24 hours and then embedded in OCT 

compound. 30 μm sections cut by using a cryostat (Leica, Nussloch, Germany) were soaked in 

0.3% Triton X (Sigma, Missouri, USA) for 2 hours and 2% Block Ace (DS Pharma Biomedical, 

Osaka, Japan) for 1 hour. Then, the colon sections were stained with the primary antibodies rat 

IgG anti-mouse B220 (1:200, BioLegend, San Diego, CA, USA), hamster IgG anti-mouse CD11c 

(1:100, BioLegend) and goat IgG anti-mouse CCL21 (1:200, R&D Systems). Alexa Fluor 488-

conjugated donkey IgG anti-rat IgG (1:400, Jackson ImmunoResearch, West Grove, PA, USA), 

Cy3-conjugated goat IgG anti-hamster IgG (1:400, Jackson ImmunoResearch) and Alexa Fluor 

647-conjugated goat anti-rat IgG (1:400, Invitrogen) were used as secondary antibodies. The 
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stained sections were detected with a fluorescence microscope (IX71 system; Olympus, Tokyo, 

Japan) and quantitated with ImageJ software. 

 

2.11 pDC adoptive transfer model and compound treatments 

Matured BMpDCs were labeled with 2.5 µM carboxyfluorescein diacetate succinimidyl ester 

(CFSE) (Wako) for 10 minutes at 37°C and then transferred into male BALB/c mice via tail vein 

injection. The recipient mice were administered As-IV (50 mg/kg), Oxy (100 mg/kg) or saline by 

i.p. injection and monitored 24 hours after pDC adoptive transfer. 

 

2.12 Statistical analysis 

Data are expressed as the mean ± standard error (SE). Statistical analyses were performed by 

using a paired or unpaired two-tailed Student’s t-test, and multiple comparisons were analyzed 

with Bonferroni/Dunnett tests. A P value less than 0.05 for comparisons between the experimental 

conditions and the control was considered statistically significant.   
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3. Results 

3.1 Levels of pDCs in a DSS-induced colitis model 

Several clinical and basic studies have reported that pDCs are involved in the pathogenesis of 

human IBD and murine colitis models; however, the role of pDCs remains unclear. Therefore, to 

elucidate the pathophysiological role of pDCs in colitis, we first investigated whether the 

proportion of pDCs is altered in the mucosal immune system-related tissues of colitis mice. The 

subtypes and characteristics of the gut-specific pDCs that we are focusing on in this study are still 

not fully elucidated at present. Thus, we have defined CD11cint mPDCA1+ DCs as pDCs (Figure 

2). Administration of a 3% DSS solution significantly caused body weight losses (Figure 3A, p < 

0.05) and increases in DAI scores (Figure 3B, p < 0.05). In addition, the colon length was 

markedly decreased in DSS-induced colitis mice (Figure 3C, p < 0.05). CD11cint mPDCA1+ pDCs 

scarcely infiltrated the colonic LP of control mice, while the proportion of CD11cint mPDCA1+ 

pDCs was markedly increased in the colonic LP cells of DSS-induced colitis mice compared with 

those of the control mice (Figure 3D, p < 0.05). Additionally, there were no significant changes 

in the proportion of CD11cint mPDCA1+ pDCs in the MLN cells or splenocytes of colitis mice 

compared to the proportion of the corresponding population of control mice (Figure 3E and F). 

These results raise the possibility that pDCs in the colonic LP are involved in the development of 

DSS-induced colitis. 
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Figure 2. Frequency of CD11cint mPDCA1+ B220+ SIGLEC-H+ pDCs. 

The frequency of CD11cint mPDCA1+ B220+ SIGLEC-H+ pDCs in CD11cint mPDCA1+ pDCs of 

the colonic lamina propria (LP) (A), mesenteric lymph node (MLN) (B) and spleen (C) detected 

by flow cytometry analysis was 66.1 ± 4.2%, 94.9 ± 0.7% and 66.0 ± 1.8%, respectively. Data 

are expressed as the mean ± SE (n = 4). 
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Figure 3. Levels of pDCs in a DSS-induced colitis model. The body weight changes (A), DAI 

scores (B) and colon length (C) were monitored for 7 days. Photos of typical changes in colon 

length are shown (C). Data are expressed as the mean ± SE (* p < 0.05, n = 6). On day 7, the 

frequency of CD11cint mPDCA1+ pDCs in the lamina propria (LP) (D), mesenteric lymph node 

(MLN) (E) and spleen (F) was detected by flow cytometry analysis. Typical data for CD11cint 

mPDCA1+ pDCs and summarized data for the percentage of CD11cint mPDCA1+ pDCs in the 

CD11c+ cell population are shown (D, E, F). Data are expressed as the mean ± SE (* p < 0.05, n 

= 4). 
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3.2 BMDC migration along chemokine concentration gradients 

 Since pDCs were increased in sites of inflammation in the colon, we speculated that inhibition 

of pDC migration would lead to elucidation of the pathophysiological role of pDCs in the colitis 

model. Thus, we searched for specific inhibitors of pDC migration with a chemotaxis assay using 

an EZ-TAXIScan system. BMpDCs migrated toward the higher concentration side according to 

the concentration gradient of CCL21 (Figure 4A). The number of migrated BMpDCs was 

significantly increased at each time point from 810 seconds to 3600 seconds (Figure 4B and C, p 

< 0.05). 

To investigate the inhibitors of pDC migration, we tested the benefit of 80 naturally occurring 

compounds. After treatment with each of the 80 compounds derived from natural medicines (1 

μM) at 37°C for 30 minutes, the chemotactic responses of BMpDCs were assessed by monitoring 

migration along a CCL21 concentration gradient over 3600 seconds (Figure 5). 10 compounds 

reduced the number of migrated BMpDCs by more than 50% but less than 70% compared to 

vehicle (partial inhibition of pDC migration), and 10 compounds reduced the number of migrated 

BMpDCs by more than 70% compared to vehicle (potent inhibition of pDC migration) (Table 2). 

Besides, there were 7 compounds increased the number of migrated BMpDCs by more than 50% 

(Table 3). Among these potent inhibitors of pDC migration, As-IV (Jiang, Lu et al., 2017, Jiang, 

Sun et al., 2017), berberine (Ber) (Yu et al., 2018, Cui et al. 2018), curcumin (Cur) (Zhang, Xue 

et al., 2019, Yue et al., 2019), isofraxidine (Iso) (Niu et al., 2015, Liu et al., 2015) and Oxy (Chen 

et al., 2017) have been well reported to influence immune responses, and Ber, Cur and Oxy have 

been particularly reported to have therapeutic effects on colitis models (Yu et al., 2018, Cui et al. 

2018, Zhang, Xue et al., 2019, Yue et al., 2019, Chen et al., 2017). Thus, we further verified the 

effects of these 5 compounds on the migration of BMpDCs. As-IV, Ber, Cur, Iso and Oxy 

markedly reduced the number of migrated BMpDCs to 7.3 ± 0.07% (Figure 4D, p < 0.05), 10.0 

± 0.04% (Figure 4E, p < 0.05), 16.7 ± 0.05% (Figure 4F, p < 0.05), 6.7 ± 0.10% (Figure 4G, p < 

0.05) and 32.4 ± 0.06% (Figure 4H, p < 0.05) of the control migrated BMpDC number, 

respectively, at 3600 seconds. In addition, the apoptosis and necrosis of pDCs following the 

treatment with each compound were detected using an annexin V-FITC kit to evaluate the 

compound toxicity. The percentages of annexin V-positive/PI-negative (apoptotic) cells or 

annexin V/PI-positive (necrotic) cells in the total BMpDC population were measured by flow 

cytometry. These 5 compounds did not induce either apoptosis or necrosis in BMpDCs compared 

to vehicle (Table 4, p > 0.05), indicating that these compounds inhibit pDC migration without 

inducing cell death. 
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Figure 4. Inhibitors of BMpDC migration induced by CCL21. BMpDC chemotaxis 

experiments were performed with an EZ-TAXIScan system and analyzed with a TAXIScan 

Analyzer 2. Representative photos of BMpDCs migrated toward the more concentrated side of a 

CCL21 gradient at 0 and 3600 seconds are shown (A). The number of migrated BMpDCs during 

3600 seconds is indicated by the line graph (B). The number of migrated BMpDCs at 3600 

seconds is summarized in the bar graph (C). The numbers of migrated BMpDCs following 

treatment with 1 μM As-IV (D), Ber (E), Cur (F), Iso (G) or Oxy (H) for 3600 seconds are shown. 

Data are expressed as the mean ± SE (* p < 0.05, n = 3). 
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Figure 5. Typical data for the 80 compounds on the migration of BMpDCs. (A) Aconitine, 

albiflorin, alisol A, alisol B and alkannin. (B) Amygdalin, arbutin, astragaloside IV, 

atractylenolide III and aucubin. (C) Baicalein, baicalin, barbaloin, berberine and bergenin. (D) 

Bufalin, bufotalin, capillarisin, (E)-capsaicin and catalpol. (E) (E)-cinnamic acid, cinobufagin, 

cinobufotalin, coptisine and corydaline. (F) Curcumin, dehydrocorydaline nitrate, 

dehydrocostuslactone, dihydrocapsaicin and dimethylesculetin. (G) Eleutheroside B, (-)-

epigallocatechin gallate, epihesperidin, ergosterol and beta-eudesmol. (H) (E)-ferulic acid, 

geniposide, geniposidic acid, gentiopicroside and [6]-gingerol. (I) Ginsenoside-Rb1, ginsenoside-

Rc, ginsenoside-Rd, ginsenoside-Re and ginsenoside-Rg1. (J) Glabridin, glycyrrhizic acid, 

gomisin A, gomisin N and hesperidin. (K) Hirsutine, honokiol, hypaconitine, icariin and 

isofraxidine. (L) (Z)-ligustilide, mesaconitine, osthole, oxymatrine and paeoniflorin. (M) Limonin, 

loganin, magnolol, naringin and nodakenin. (N) Paeonol, palmatine, perillaldehyde, puerarin and 

rhynchophylline. (O) Saikosaponin A, saikosaponin B2, saikosaponin C, schizandrin and 

sennoside A. (P) Shikonin, [6]-shogaol, sinomenine, swertiamarin and wogonin. 

 

We next investigated whether these 5 compounds influence cDC migration. cDCs expressing 

CXCR4 are guided by the CXCR4 ligand CXCL12 and migrate to inflamed sites and the LNs 

(Lopez et al., 2018, Tiberio et al., 2018). The number of BMcDCs that migrated along a CXCL12 

concentration gradient was significantly increased at each time point from 390 seconds to 3600 

seconds (Figure 6A and B, p < 0.05). As-IV had no significant effects on the number of migrated 

BMcDCs or the velocity or the direction of BMcDC migration (Figure 6C). Ber markedly 

decreased the number of migrated BMcDCs to 61.5 ± 0.12% of the control migrated BMcDC 

number and significantly decreased the velocity and direction of BMcDC migration (Figure 6D, 

p < 0.05). Cur slightly reduced the number of migrated BMcDCs and significantly decreased the 

velocity and direction of BMcDC migration (Figure 6E, p < 0.05). Iso markedly decreased the 

number of migrated BMcDCs to 48.2 ± 0.12% of the control migrated BMcDC number and 

decreased the velocity and direction of BMcDC migration (Figure 6F, p < 0.05). Oxy had no 

significant effects on the number of migrated BMcDCs or the velocity or the direction of BMcDC 

migration (Figure 6G). 

 Taken together, these results indicate that As-IV and Oxy have selective inhibitory effects on 

pDC migration, whereas Ber, Cur, and Iso have inhibitory effects on both cDC migration and pDC 

migration. In addition, the effects of As-IV and Oxy were concentration dependent (Figure 7). 
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Figure 6. Effects of inhibitors of BMpDC migration on BMcDC migration induced by 

CXCL12. BMcDC chemotaxis experiments were performed with an EZ-TAXIScan system and 

analyzed with a TAXIScan Analyzer 2. The number of BMcDCs migrated toward the more 

concentrated side of a CXCL12 gradient from 0 to 3600 seconds is indicated by the line graph 

(A). The number of migrated BMcDCs at 3600 seconds is indicated by the bar graph (B). The 



51 

 

number, velocity and directionality of migrated BMcDCs following treatment with 1 μM As-IV 

(C), Ber (D), Cur (E), Iso (F) or Oxy (G) at 3600 seconds are shown. Data are expressed as the 

mean ± SE (* p < 0.05, n = 5). 

 

(A) The chemical structure of Astragaloside IV 
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(C) The chemical structure of oxymatrine 

 

 

 

 

Figure 7. Concentration-dependent effects of As-IV and Oxy. The chemical structure of As-

IV (A) and Oxy (C) are shown. Concentration-dependent effects of As-IV or Oxy on BMpDC 

migration at 0.01 μM, 0.1 μM and 1.0 μM were examined with an EZ-TAXIScan system and 

analyzed with a TAXIScan Analyzer 2. The number of migrated BMpDCs at 3600 seconds 

following treatment with As-IV (B) or Oxy (D) are shown. Data are expressed as the mean ± SE 

(* p < 0.05, ** p < 0.01, n = 3-4). 

 

3.3 Effects of As-IV and Oxy on RAC1 activation 

We next investigated the detailed mechanisms of the inhibition of BMpDC migration by As-IV 

or Oxy. It has been reported that activation of RAC1 is critically involved in CCL21-induced pDC 

migration (Gotoh et al., 2008). Therefore, to clarify the involvement of RAC1 activation in the 

inhibitory effects of As-IV and Oxy, we examined GTP-RAC1 expression by using an active 

RAC1 detection kit. GTP-RAC1 expression in BMpDCs was significantly induced by CCL21 

stimulation (Figure 8A, p < 0.05). Treatment with As-IV (Figure 8B, p < 0.05) or Oxy (Figure 8C, 
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p < 0.05) significantly reduced the levels of GTP-RAC1 expression, which led to inhibition of the 

migration of BMpDCs. 

To comprehensively analyze the inhibitory effects of As-IV and Oxy on BMpDC migration, 

microarray analysis of BMpDCs treated with CCL21 following treatment with As-IV or Oxy was 

performed using the Clariom S Array Mouse. In particular, the genes with large changes in 

expression are listed (Table 5). GO analysis by GeneSpring showed no significant evidence for 

DCs function of candidate genes. Next, we analyzed changes in expression levels for genes related 

to cell migration. A heatmap displaying results for each treatment analyzed by GeneSpring is 

shown in Figure 8D. The heatmap is composed of 117 candidate genes involved in cell migration. 

According to the heatmap for the regulation of cell migration, gene expression patterns were 

clearly different between the As-IV and Oxy treatments. Oxy treatment slightly increased the 

expression of sema4a, which activates NFκB via phosphorylation of RAC1 and AKT (Zhang, 

Wei et al., 2019). Oxy treatment decreased the expression of Ikbkap, which is elevated by 

MAPK/ERK signaling pathway activation (Donyo et al., 2016), and Fgf18, which induces 

MAPK/ERK signaling pathway activation (Zhai et al., 2017). As-IV treatment decreased the 

expression of Ajuba, which blocks JAK1/STAT1 signaling pathway activation (Jia et al., 2017), 

Hgf, which induces JAK2/STAT3 signaling pathway activation (Li et al., 2018), and Dpep1, 

which activates the PI3K/AKT signaling pathway (Cui et al., 2019), while Oxy treatment 

increased the expression of these genes. Although the gene expression patterns were clearly 

different between the As-IV and Oxy treatments, these gene expression patterns were not 

consistent with the canonical cell migration pathways in IPA analysis or GeneSpring analysis. 

Taken together, these results indicate that As-IV and Oxy significantly suppress RAC1 activation 

in CCL21-induced pDC migration, although the inhibitory effects of As-IV and Oxy on pDC 

migration are induced by different mechanisms. 
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Figure 8. Effects of 1 μM As-IV or Oxy on RAC1 activation. RAC1 activation was detected 

by evaluating the expression of the GTP-RAC1 protein by using a western blot analysis kit. A 

representative image and the quantification of the band intensity for GTP-RAC1 relative to that 

of total RAC1 are shown in A-C. (A) Representative western blot analysis of GTP-RAC1 in 

BMpDCs induced with CCL21 and quantification of the band intensity are shown (5 independent 

experiments). Data are expressed as the mean ± SE (* p < 0.05, n = 5). Representative western 

blot analysis of GTP-RAC1 in CCL21-induced migrated BMpDCs following treatment with As-

IV (B) or Oxy (C) and the quantification of band intensity are shown (7 independent experiments). 

Data are expressed as the mean ± SE (* p < 0.05, n = 7). Microarray analysis of BMpDCs induced 

with a CCL21 gradient following treatment with As-IV or Oxy was performed by using the 

Clariom S Array Mouse. The differential expression of genes in BMpDCs induced with a CCL21 

gradient following treatment with vehicle (control), As-IV or Oxy is displayed in the heatmap (D). 

The red and blue colors indicated the up-regulation normalized intensity values (log2) and down-

regulation normalized intensity values (log2) of each RNA in each sample. 

 

3.4 Effects of selective inhibitors of pDC migration on a DSS-induced colitis model 

We next examined the effects of As-IV and Oxy on the development of DSS-induced colitis. 

Based on previous studies, we used 50 mg/kg of As-IV (Jiang, Lu et al., 2017, Bao et al., 2016, 

Chen et al., 2016) or 100 mg/kg of Oxy (Chen et al., 2017) as a dose with adequate efficacy and 

without adverse side effects. In the DSS-induced colitis model, As-IV (50 mg/kg) or Oxy (100 

mg/kg) administration significantly reduced the body weight loss (Figure 9A, p < 0.05) and 

elevated DAI compared to DSS-induced colitis mice treated with vehicle (3% DSS) (Figure 9B, 

p < 0.05). In addition, As-IV obviously attenuated colon atrophy (Figure 9C, p < 0.05). However, 

as shown in Figure 9D and 9E, neither As-IV nor Oxy reduced the increased percentage of 

CD11cint mPDCA1+ pDCs in the colonic LP of DSS-induced colitis mice. 
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Figure 9. Effects of As-IV or Oxy on the DSS-induced colitis model and levels of pDCs. The 

body weight changes (A), DAI scores (B) and colon length (C) were monitored for 7 days. Photos 

of typical changes in colon length are shown (C). Data are expressed as the mean ± SE (* p < 0.05 

3% DSS vs control, # p < 0.05 As-IV vs 3% DSS, ∆ p < 0.05 Oxy vs 3% DSS, n = 6). On day 7, 

the frequency of CD11cint mPDCA1+ pDCs in the LP of DSS-induced colitis model mice treated 

with AS-IV (D) or Oxy (E) was detected by flow cytometry analysis. Representative data for 

CD11cint mPDCA1+ pDCs and summarized data for the percentage of CD11cint mPDCA1+ pDCs 

in the CD11c+ cell population are shown (D, E). Data are expressed as the mean ± SE (n = 4). 

 

3.5 Effects of selective inhibitors of pDC migration on the colonic LP and ILFs of mice 

 We investigated the effects of As-IV and Oxy treatment on the distribution of pDCs in the colonic 

LP of DSS-induced colitis mice. Hamada et al. reported that a cluster of B220+ B cells is 
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compartmentalized in the central region of isolated lymphoid follicles (ILFs), which is surrounded 

by a large number of CD11c+ DCs in the mouse intestine (Hamada et al., 2002). In the colon of 

DSS-induced colitis mice, a cluster of B220+ B cells was localized in the central region of ILFs 

(Figure 10A-C left), and most of the CCL21 immunoreactivity was obviously observed around 

the cluster of B220+ B cells in the ILFs (Figure 10A central and right). However, As-IV (Figure 

10B central and right) and Oxy (Figure 10C central and right) both failed to affect the morphology. 

 

Figure 10. Effects of As-IV or Oxy on the distribution of CCL21 in the DSS-induced colitis 

model. The distribution of CCL21 in the colonic ILFs of DSS-induced colitis mice treated with 

saline (A), As-IV (B) or Oxy (C) was identified by immunohistochemical staining of the colon. 

Immunohistochemical staining was performed on samples from 3 mice/group, and representative 

images are presented. 

 

Additionally, CD11c+ B220+ pDCs were mainly localized in the colonic ILFs (Figure 11A upper) 

rather than the colonic LP (Figure 11A lower) of DSS-induced colitis mice. In contrast, CD11c+ 

B220+ pDCs were largely found in the colonic LP rather than the colonic ILFs of DSS-induced 

colitis mice administered As-IV or Oxy (Figure 11B and C). Overall, the altered distribution of 

pDCs could be attributed to the inhibition of pDC migration to colonic ILFs in DSS-induced 

colitis mice by treatment with As-IV or Oxy. 
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Figure 11. Effects of As-IV or Oxy on the distribution of pDCs in the DSS-induced colitis 

model. The distribution of CD11c+ B220+ pDCs in the colonic ILFs and the colonic LP of DSS-

induced colitis mice treated with saline (A), As-IV (B) or Oxy (C) was identified by 

immunohistochemical staining of the colon. CD11c+ B220+ pDCs were observed in the colonic 

ILFs of DSS-induced colitis mice treated with saline (A) but mainly in the colonic LP after 

administration of As-IV (B) or Oxy (C). Immunohistochemical staining was performed on 

samples from 3 mice/group, and representative images are presented. 

 

Furthermore, we investigated the distribution of pDCs in the colonic LP using a pDC adoptive 

transfer method. At 24 hours after adoptive transfer of CFSE+ BMpDCs into normal mice, the 

CFSE+ BMpDCs were distributed in both the lateral and inner sites of colonic ILFs (Figure 12A); 

in contrast, CFSE+ BMpDCs were mostly distributed in the lateral sites of colonic ILFs in As-IV- 

or Oxy-treated mice (Figure 12B and C). In addition, the number of CFSE+ BMpDCs that 

migrated to colonic ILFs was significantly decreased in As-IV- or Oxy-treated mice (Figure 12D, 

p < 0.05). Therefore, As-IV and Oxy suppressed pDC migration toward ILFs in the mouse colon 

and even altered the pDC distribution in colonic ILFs. 

 

Figure 12. Effects of As-IV or Oxy on the migration of adoptively transferred pDCs. CFSE+ 

BMpDCs were adoptively transferred into BALB/c mice. The recipient mice were treated with 

As-IV (50 mg/kg) or Oxy (100 mg/kg). Male BALB/c mice were adoptively transferred with 
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CFSE+ BMpDCs and treated with saline (Saline). Representative images of colonic ILFs from 

pDC adoptively transferred mice treated with saline (A), As-IV (B) or Oxy (C) are presented. 

Data are from 3 independent experiments. The number of CFSE+ pDCs per unit area of ILFs is 

shown in the bar graph (D). Data are expressed as the mean ± SE (# p < 0.05 As-IV vs saline, ∆ 

p < 0.05 Oxy vs saline, n = 4). 

 

  



61 

 

4. Discussion 

DCs play important roles in the immune surveillance system as conductors of innate and 

acquired immune responses by migrating to the appropriate sites at the appropriate times. 

However, the pathophysiological role of DCs, especially that of pDCs, in intestinal inflammation 

is still not fully understood. In particular, the therapeutic implications of inhibiting pDC migration 

remain unknown, and one of the major reasons is the lack of available drugs that can inhibit the 

migration of pDCs. 

In the present study, we identified As-IV and Oxy as selective inhibitors of pDC migration from 

80 compounds contained in traditional Japanese herbal medicines. pDCs accumulated in the 

colonic LP and ILFs of the DSS-induced colitis model, and As-IV and Oxy, which attenuated 

DSS-induced colitis, simultaneously reduced pDC accumulation in the colonic ILFs but not the 

LP of DSS-induced colitis mice. Our results indicate that pDCs play an important role in the 

development of intestinal inflammation and that selective inhibitors of pDC migration toward 

GALTs have the potential to ameliorate intestinal inflammation. 

We demonstrated that As-IV and Oxy are inhibitors of pDC migration but not cDC migration. 

pDCs serve as professional antigen-presenting cells and regulate immune responses in many 

immunological diseases (Ye, Gaugler et al., 2020). Previously, the pharmacological effects of As-

IV and Oxy on immunological diseases were reported. As-IV alleviates allergic inflammation by 

downregulating inflammatory cytokine expression in a murine allergic contact dermatitis model 

(Bao et al., 2016) and suppresses 2,4,6-trinitrobenzene sulfonic acid-induced colitis in a rat model 

(Jiang, Sun et al., 2017). On the other hand, Oxy ameliorates skin lesions in allergic contact 

dermatitis mice (Xu et al., 2018) and alleviates DSS-induced colitis through the inhibition of 

PI3K/Akt signaling (Chen et al., 2017). However, there are no reports concerning the 

immunological effects of Oxy or As-IV on pDC functions, although there are some reports that 

pDCs are involved in the pathology of these diseases. Thus, it is speculated that the preventive 

effects of As-IV and Oxy on these immunological disease models may be partly attributed to the 

suppression of pDC migration. 

In the present study, As-IV and Oxy inhibited the migration of pDCs along a concentration 

gradient of CCL21. CCL21 is indispensably required for pDC migration, and the recruitment of 

pDCs to the LNs is induced by a CCL21 concentration gradient (Tiberio et al., 2018). Furthermore, 

RAC1 activation plays a pivotal role in the migration of pDCs, and inhibition of RAC1 activation 

suppresses pDC migration (Gotoh et al., 2008). In addition, As-IV suppresses the expression of 

GTP-RAC1 in the breast cancer cell line MDA-MB-231 (Jiang, Lu et al., 2017). In the present 

study, our western blot results revealed that the rate of GTP-RAC1 under CCL21 stimulation was 

downregulated by As-IV or Oxy, indicating that the inhibitory effects of As-IV and Oxy on pDC 

migration are mediated by reducing the activation of RAC1. 
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Furthermore, in this study, microarray analysis revealed that As-IV and Oxy differed in the 

expression patterns of genes that regulate cell migration. As-IV slightly decreased the expression 

of Ajuba (Jia et al., 2017) and Hgf (Li et al., 2018), which are involved in JAK/STAT signaling 

pathway activation. Oxy decreased the expression of Ikbkap (Donyo et al., 2016) and Fgf18 (Zhai 

et al., 2017), which are involved in MAPK/ERK signaling pathway activation. Although the 

mechanisms underlying pDC migration are not fully elucidated, our findings suggest that As-IV 

and Oxy affect different pathways to exert their inhibitory effects on pDC migration toward 

GALTs. In the additional analysis by IPA (Ingenuity® Pathway Analysis), refer to that As-IV 

suppressed the expression of iNOS on peritoneal macrophages (Liu et al., 2016), we infer that 

pathway of As-IV on RAC1was As-IV-NOS2-RAC1 (Figure 13). Oxy decreased the expression 

of Srebf1 in rat liver tissues (Shi et al., 2013). Interaction of SREBP-1 and HNF-4α to suppress 

hepatic gluconeogenic activity (Yamamoto et al., 2004). So, we infer that pathway of Oxy on 

RAC1was Oxy-Srebf1-HNF4a-RAC1 (Figure 14). 

Figure 13. 
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Figure 14. 

 

It has been reported that pDCs are significantly increased in the colonic mucosa and MLNs of 

IBD patients and that the infiltration of pDCs into these tissues is closely involved in IBD 

(Baumgart et al., 2011). However, the pathophysiological role of pDCs in the pathology of IBD 

remains unclear. A recent study of a mouse colitis model also demonstrated that pDCs accumulate 

in the colonic mucosa of DSS-induced colitis mice (Arimura et al., 2017). In addition, pDC 

depletion relieves the symptoms of DSS-induced colitis, which are reversed by reconstitution of 

pDCs by using cell transplantation (Arimura et al., 2017). In our study, the population of pDCs 

was increased in the colonic LP but not changed in MLNs of DSS-induced colitis mice. Taken 

together, these findings suggest that pDCs migrate within the colonic mucosa and accumulate in 

the colonic mucosa rather than migrate from inflamed sites in the colon to the MLNs in DSS-

induced colitis mice, which is considered to be deeply involved in the development of DSS-

induced colitis. In contrast, a deficiency in pDCs cannot produce inhibitory effects on 

spontaneously developed chronic colitis induced by deletion of WASP or interleukin (IL)-10 

(Sawai et al., 2018). Therefore, the pathophysiological role of pDCs in colitis needs further 

investigation based on symptoms and pathogenesis. 

We demonstrated that As-IV and Oxy, which inhibited pDC migration, exerted preventive effects 

on DSS-induced colitis. However, treatment with As-IV or Oxy did not affect the population of 

pDCs in the colonic LP of DSS-induced colitis mice. We then investigated the distribution of 

pDCs and expression of CCL21 in the colon of DSS-induced colitis mice. CCL21 expression was 

obviously observed in colonic ILFs, and the distribution of pDCs in the colonic ILFs was 

decreased by As-IV or Oxy treatment, indicating that As-IV and Oxy inhibit the migration of 

pDCs to colonic ILFs. The inhibitory effects of As-IV and Oxy on the migration of pDCs to ILFs 

was also confirmed in a pDC adoptive transfer experiment. ILFs primarily contribute to the 

maintain of immune homeostasis in the colon via initiation of adaptive immune responses (Fenton 

et al., 2020). Yeung et al. have reported increased anomalous lymphoid follicular hyperplasia in 
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the colonic lamina propria of UC patients (Yeung et al., 2000). Likewise, a significant increase 

in ILF development is observed in the colon of DSS colitis mice (Sanderlin et al., 2017). Our 

results in this study demonstrate that inhibition of pDC migration to ILFs exerts preventive effects 

on DSS colitis, indicating that pDCs with antigen presenting function in the ILFs play a critical 

role in the induction of colitis. Therefore, we conclude that the migration of pDCs to ILF, a site 

of priming and differentiation of naive adaptive immune cells, contributes to the pathology of 

severe colonic inflammatory diseases. 

Similar to our study, symptoms of DSS-induced colitis were found to be relieved in CCR7KO 

mice, although the proportion of pDCs in the colon was elevated (Kim et al., 2016). This study 

and our present study indicate that the CCL21/CCR7 interaction-related migration of pDCs within 

the colon of colitis mice contributes to the development of colitis. 

We discovered novel selective inhibitors of pDC migration and investigated their preventive 

effects on DSS-induced colitis. We demonstrated that the identified selective inhibitors of pDC 

migration suppressed the migration of pDCs into colonic ILFs and thereby significantly alleviated 

the symptoms of colitis. 

The present study revealed the pathophysiological role of pDC migration within the inflamed 

colon and the therapeutic potential of suppressing pDC migration in colitis. Therefore, the 

identified selective inhibitors of pDC migration have great potential as innovative lead drug 

candidates with novel mechanisms of action for the treatment of colitis. 
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5. Conclusion 

CCL21 expressed in ILFs induced pDC migration to the ILFs. Migration of pDCs to the ILFs is 

involved in the progression of colonic inflammation. Inhibitory effect of As-IV or Oxy on pDC 

migration to the ILFs alleviated the colonic inflammation. The selective inhibitors of pDC 

migration have great potential as innovative lead drug candidates with novel mechanisms of 

action for the treatment of colitis (Graphic conclusion 2). 

 

Graphic conclusion 2 
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6. Tables 

Table 1. List of Compounds 

Aconitine (E)-Cinnamic Acid Ginsenoside-Rb1 Naringin 

Albiflorin Cinobufagin Ginsenoside-Rc Nodakenin 

Alisol A Cinobufotalin Ginsenoside-Rd Osthole 

Alisol B Coptisine Ginsenoside-Re Oxymatrine 

Alkannin Corydaline Ginsenoside-Rg1 Paeoniflorin 

Amygdalin Curcumin Glabridin Paeonol 

Arbutin Dehydrocorydaline Nitrate Glycyrrhizic Acid Palmatine Chloride 

Astragaloside-IV Dehydrocostuslactone Gomisin A Perillaldehyde 

Atractylenolide III Dihydrocapsaicin Gomisin N Puerarin 

Aucubin Dimethylesculetin Hesperidin Rhynchophylline 

Baicalein Eleutheroside B Hirsutine Saikosaponin A 

Baicalin (-)-Epigallocatechin Gallate Honokiol Saikosaponin B2 

Barbaloin Epihesperidin Hypaconitine Saikosaponin C 

Berberine Ergosterol Icariin Schizandrin 

Bergenin beta-Eudesmol Isofraxidine Sennoside A 

Bufalin (E)-Ferulic Acid (Z)-Ligustilide Shikonin 

Bufotalin Geniposide Limonin (6)-Shogaol 

Capillarisin Geniposidic Acid Loganin Sinomenine 

(E)-Capsaicin Gentiopicroside Magnolol Swertiamarin 

Catalpol (6)-Gingerol Mesaconitine Wogonin 
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Table 2. Inhibitors of pDC migration 

Potent inhibitor of pDC migration Partial inhibitor of pDC migration 

Alkannin Alisol A 

Amygdalin Dehydrocostuslactone 

Astragaloside-IV Dimethylesculetin 

Barbaloin (-)-Epigallocatechin Gallate 

Berberine Epihesperidin 

Curcumin Ergosterol 

Beta-Eudesmol Gensenoside-Rd 

(E)-Ferulic Acid Hypoconitine 

Isofraxidine (6)-Shogaol 

Oxymatrine Sinomenine 

 

Table 3. Accelerators of pDC migration 

Accelerator of pDC migration 

Bergenin 

(E)-Capsaicin 

Coptisine 

Glycyrrhizic Acid 

Gomisin N 

Hesperidin 

Palmatine Chloride 
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Table 4. The ratio of apoptotic and necrotic cells 

 Apoptotic BMpDC (%) Necrotic BMpDC (%) 

Control 0.6 ± 0.6% 1.2 ± 0.4% 

As-IV 0.4 ± 0.3% 2.0 ± 0.0% 

Ber 0.4 ± 0.3% 1.9 ± 0.2% 

Cur 0.5 ± 0.4% 1.8 ± 0.3% 

Iso 0.8 ± 0.6% 2.1 ± 0.2% 

Oxy 0.6 ± 0.5% 2.0 ± 0.2% 
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Table 5. List of genes selected by microarray analysis (1) 

Gene Symbol Description 
Fold Change Log2 ratio 

(As-IV/control upregulation) 

Gm10944 predicted gene 10944 4.05 

Mup12 major urinary protein 12 3.19 

Cyp3a25 
cytochrome P450, family 3, subfamily a, 

polypeptide 25 
3.03 

Olfr1294 olfactory receptor 1294 2.91 

Gm11115 predicted gene 11115 2.90 

Vmn1r91 vomeronasal 1 receptor 91 2.88 

Gm11084 predicted gene 11084 2.83 

Gm5726; 

Gm8677 
predicted gene 5726; predicted gene 8677 2.66 

Nat3 N-acetyltransferase 3 2.62 

Vmn1r101 vomeronasal 1 receptor 101 2.60 

Gene Symbol Description 
Fold Change Log2 ratio 

(As-IV/control downregulation) 

Gm11096 predicted gene 11096  -10.96 

Xcl1 chemokine (C motif) ligand 1 -3.10 

Wfdc9 WAP four-disulfide core domain 9 -2.98 

Lmo7 LIM domain only 7 -2.84 

Olfr1459 olfactory receptor 1459 -2.71 

Sh2b1 SH2B adaptor protein 1 -2.59 

Gm17364 predicted gene, 17364 -2.55 

Tecpr2 tectonin beta-propeller repeat containing 2 -2.53 

Myo9a myosin IXa -2.47 

Tceal1 transcription elongation factor A (SII)-like 1 -2.43 
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Table 5. List of genes selected by microarray analysis (2) 

Gene Symbol Description 
Fold Change Log2 ratio 

(Oxy/control upregulation) 

Gm10944 predicted gene 10944 6.90 

P4ha3 

procollagen-proline, 2-oxoglutarate 4-

dioxygenase (proline 4-hydroxylase), 

alpha polypeptide III 

3.58 

Esp1 exocrine gland secreted peptide 1 3.53 

Astn1 astrotactin 1 3.04 

Ccdc81 coiled-coil domain containing 81 2.98 

Vmn2r98 vomeronasal 2, receptor 98 2.94 

Defb46 defensin beta 46 2.91 

Skint11 
selection and upkeep of intraepithelial T 

cells 11 
2.79 

Dusp13 dual specificity phosphatase 13 2.69 

Guca2a guanylate cyclase activator 2a (guanylin) 2.68 

Gene Symbol Description 
Fold Change Log2 ratio 

(Oxy/control downregulation) 

Gm17482 predicted gene, 17482 -9.83 

Gm11096 predicted gene 11096  -7.96 

Olfr193 olfactory receptor 193 -3.30 

Lmo7 LIM domain only 7 -3.01 

Gm17364 predicted gene, 17364 -2.93 

Olfr1392 olfactory receptor 1392 -2.91 

Hist1h3a histone cluster 1, H3a -2.63 

LOC102639117 secretoglobin family 2A member 2-like -2.53 

Olfr1459 olfactory receptor 1459 -2.52 

Vmn2r116 vomeronasal 2, receptor 116 -2.40 
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Conclusion and Future Directions 

 These findings demonstrate that migration of pDCs is involved in the pathogenesis of immune 

diseases such as contact dermatitis and colonic inflammation. Inhibition of pDC migration 

contributes to alleviate the immune diseases which are related to pDC migration. 

 In the Chapter 1 of our study, we prove that byakkokaninjinto which had an inhibitory effect on 

pDC migration may contribute to ameliorate the occurrence of allergic contact dermatitis. In the 

Chapter 2 of our study, we prove that As-IV and Oxy as the specific inhibitor of pDC migration 

exerted preventive effects on colitis by suppressing pDC migration to colonic ILFs. Besides the 

inhibitors of pDC migration, we discovered the accelerators of pDC migration both in the Chapter 

1 and Chapter 2. Thus, it is expected that effects of accelerators of pDC migration on models of 

various infectious diseases will be elucidated in near future. In the Chapter 2, we have surmised 

the pathways of As-IV or Oxy towards the inactivation of RAC1 using IPA, while we couldn't 

make out the pathways. Therefore, the underlying mechanisms of the inhibitors should be 

elucidated in further studies.  

Conventionally, the function of pDCs is characterized by the secretion of massive type-I IFN to 

prevent virus infection in an innate immune response. In addition, the hypersecretion of IFN from 

pDCs is known for its roles in autoinflammatory. In recent years, regulation of pDCs in the 

adaptive immune system was clearly identified. The findings of my present studies indicated that 

pDC had a pathophysiologic role in the immune diseases mediated by adaptive immune responses. 

Immune diseases were alleviated by inhibition of pDC migration. Hitherto, the therapeutic agents 

which target on the inhibition of pDC migration have not been reported. We provide a new 

therapeutic direction in immunological diseases which were related to pDC migration. In addition, 

a new therapeutic agent by inhibition of pDC migration is considered to be able to be used in 

combination with current therapeutic drugs due to the different pharmacological mechanisms. 

And then, inhibitors of pDC migration have the potential to improve treatment efficiency and 

reduce side effects by leading to reducing the amount of current treatments. 
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