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Abstract

In hedonic models of housing prices, it is impossible to estimate simultaneously
the impact of selling time, age and cohort effects without introducing some restric-
tions on estimated effects. In this paper we address the simultaneity problem by
estimating time, age and cohort effects with a semiparametric generalized additive
model that allows for a nonlinearity in age and cohort effect. The model is applied
to house prices in 23 Tokyo special wards between 1990 and 2008. Estimates of
age effect showed lower prices for older houses, and we failed to reject the linearity
restriction in this effect. On the other hand, there was a significant nonlinearity
in estimates of cohort effect, which justified the application of the nonparametric
regression model. We also examined the joint impact of cohort and age effect on
housing prices, and found that the shape of age effect was different across cohorts
of housing. Estimates of year effect indicate a declining trend in prices that was
more pronounced compared with conventional hedonic models that do not include
simultaneously age, time, and cohort effects on housing prices.
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1 Introduction

Hedonic models of house prices commonly include three factors that are related to time:
the time of sale, the age of house, and cohort or year of construction. There is an perfect
collinearity between these time, age and cohort terms, because the year when the house
is sold equals to the house age plus the year when the house was constructed. This
identification problem results in the multicollinearlity among dependent variables when
the model is estimated in regression analysis.

In this paper we address the simultaneity problem by estimating time, age and cohort
effects with a semiparametric generalized additive model that allows for a nonlinearity
in age and cohort effect. To break the collinearity, the typical solution has been to
omit either the age or the cohort effects. However, there are good reasons for not
eliminating any of the three variables, since their impact on price is likely to arise from
quite different sources. The time effect measures the impact of market conditions on the
general trend of housing prices, so this effect is essential for creating quality-controlled
housing price indexes out of hedonic models. The age effect is measuring the physical
depreciation, or the added cachet that accrues as the housing unit gets older, and in
consequence the age effect is nearly always included in hedonic regressions. Finally, the
cohort effect measures the impact of the year when the housing unit was constructed,
and the effects could account for unmeasured style characteristics that are particularly
prized in a particular area (Coulson and McMillen (2008)).

A survey of 78 hedonic studies referenced by Sirmans et al. (2006) found that while
almost all of them included either age or vintage in the hedonic specification, and those
that had multiple dates of sale included some form of time variable, but no study
included both age and vintage in the specification, even in some nonlinear or dummy
variable form.

An alternative solution is provided by the method of non-linearizing these variables
in the functional form of the ‘parametric’ regression model. Unfortunately, economic
theory provides little guidance concerning the functional form of dependence of house
price on quality and researchers have used forms which are somewhat flexible in order to
let the data ‘speak’. Cropper et al. (1988) used a Monte Carlo study to investigate the
performance of different functional forms. While Halvorsen and Pollakowski (1981) used
a real world data set, Cropper et al. (1988) carefully specified a single type of utility
function for a group of consumers and produced a market price gradient by allowing
the taste parameter of this function to be randomly distributed. After considering six
different models (such as translog or Box−Cox), the study found that a linear Box−Cox
regression produced the most accurate estimates of marginal attribute prices. However,
non-linearizing may not perfectly solve the problem and leave the high correlation among
the year of the sale, house age and the year of construction. Furthermore, it is not clear
which functional form should be used to specify the cohort effect.

As an alternative method, Coulson and McMillen (2008) disentangle the year, age
and cohort effects on housing price using the second difference approach of McKenzie
(2006). The method of McKenzie (2006) allows for simultaneous unrestricted nonpara-
metric estimation of the year of sale, the house age, and cohort effects. As a nonpara-
metric estimator, it removes the problem of imposing structure on a model when the
structure is clearly incorrect. The only restriction that this method imposes is that that
some two neighboring age effects are equal to some known constant, which in practice is
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set to zero. One serious limitation of this method is that many alternative restrictions
on neighboring parameters may be considered, corresponding the number of age effects
in the estimated model. Fu (2008) reports evidence that the estimates can be changed
dramatically with different combinations of neighboring effects that are assumed to be
equal.

The remainder of this paper is organized as follows. Next section presents the
basic hedonic price specification of generalized additive model that includes the time of
housing sale, the housing age and the year when the housing was build. The section
also describes the details of the identification problem and our approach how to solve
it. Section 3 describes the estimation method of generalized additive model which is
based on the algorithm of Wood (2004). Section 4 reports descriptive statistics of our
data on the transactions in single-family condominiums in the special 23 wards of Tokyo
(Japan), as well as variable definitions in estimated models. Section 5 report our results
of estimating hedonic price models, and compare them with estimates derived from
conventional models that do not include all three time-related effects on housing prices.
Some concluding remarks are given in section 6.

2 Model

2.1 Time, Age and Cohort Effects

We denote the year of sale by t. If age index of a house is j at transaction year t, then
the log price of i-th house is expressed by Pi(t,j,t−j), where t− j is cohort year. The k-th

characteristic variable of house Xk
i(t,j,t−j) is similarly defined. To create a pseudo-panel

dataset, consider the sample average of housing units for a given year of sale t and age
j. The average of log price is

Pt,j,t−j =
1

n(t,j,t−j)

n(t,j,t−j)∑
i=1

Pi(t,j,t−j) (t = 1, 2, · · · , T, j = 0, 1, · · · , J(t)).

The number of observations in transaction year t is J(t) + 1 if there is no missing age
in year. Hence the number of the sample average is

∑T
t=1(J(t) + 1) = N .

In our hedonic price model of house prices, the log price of a housing unit depends
on three major effects: the year when the house was sold, the age of house, and the year
when the house was constructed. Consider the log price Pt,j,ℓ of a house that was sold
in year t (the year of construction as ℓ = t− j). Values of ℓ will be used to differentiate
between each cohort of housing. We allow a flexible shape of year, age and cohort
effects, and estimated them by three sets of dummy variables for year of the sale, and
for age and cohorts of housing. For instance, the number of different sale years is T ,
and age varies between 0 and J years. In our data T = 19 and J = 50 (the specifics
of the data are discussed in section 4). Let DY

t , t = 1, 2, · · · , T be T dummy variables
for the year of the sale. Similarly, we estimate age and cohort effects with the dummy
variables DA

j and DC
ℓ , respectively.

Combining three effects on log of housing prices, we get the following model (omitting
for the moment the other housing characteristics on the right-hand side):

Pt,j,ℓ = b0 +

T∑
t=1

αtD
Y
t +

J∑
j=0

βjD
A
j +

L∑
ℓ=1

γℓD
C
ℓ + ut,j,ℓ (1)
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where αt, βj and γℓ are year, age and cohort effect, ut,j,ℓ is the error term with zero
mean and variance σ2. In each dummy variable DY

t , D
A
j , and DC

ℓ , the sum across rows
is always one, which results in perfect collinearity (i.e., ‘dummy variable trap’) between
the intercept term b0 and each of DY

t , D
A
j and DC

ℓ . Typically, the problem is solved by

dropping a single dummy variable from each of DY
t , D

A
j and DC

ℓ . For instance, the first
dummy variable can be dropped, which restricts the corresponding regression parameter
to zero, making it a convenient benchmark against which all subsequent estimates can
be compared. We used this approach in our study.

2.2 Identification problem and its solutions

Identification problem occurs in equation (1) even after solving the dummy variable
trap, because there is an exact linear relation among the year of the sale t, age j and
the year of cohort ℓ (namely, ℓ = t − j). Because of the perfect collinearity, a given
pattern of house prices can be explained by various combinations of year, age and
cohort effects. Suppose that housing prices are increasing by 2 percent a year. Due to
the identification problem, it is not possible to single out a unique explanation of this
general trend. One possible interpretation is a change in the year effect by 2 percent
per year, with no changes in age and cohort effects. Another possible interpretation of
the same pattern is by increasing age and cohort effects, when housing price increase
by 2 percent per year for older houses, and the same 2 percent increase among houses
in more recent cohorts (as denoted by higher values of t − j), while the effect remains
fixed. Similar examples of alternative interpretations of age, cohort and year effects are
well-known in the literature on age-cohort-year models (see, for example, Deaton and
Paxson (1994) and Paxson (1996)).

The identification problem can be solved by imposing restrictions on estimated re-
gression coefficients in (1). A recent application of year-age-cohort model to housing
prices by Coulson and McMillen (2008) follows McKenzie (2006)’s second difference
approach, where the identification problem is avoided by assuming that some neighbor-
ing parameters in the age effect βj − βj−1 are equal to some known constant λ (which
Coulson and McMillen (2008) actually set to zero).

The major problem is this approach is possible sensitivity of final estimates to the
choice of parameters that are assumed to be equal. While Coulson and McMillen (2008)
choose to restrict the first and second parameters of age effect (i.e., β2 − β1 = 0), in
fact there is a large number of alternative restrictions. For instance, with 51 age effects
in our model, there are 50 possible restrictions on pairs of neighboring coefficients.
Similarly, we have 19 years of data in our dataset, so the number of possible restrictions
on neighboring year effects is 18. Overall, the number of possible restrictions in either
age or year effects grows to 50+18 = 68. The number increases further after we consider
possible restrictions on neighboring parameters of cohort effects. With (51 + 19)− 1 =
69 cohort effects, the total number of restrictions in either of these three effects is
(51 − 1) + (19 − 1) + (69 − 1) = 136. Clearly, the consideration of all these possible
restrictions on neighboring parameters is not an easy task.

The solution of Coulson and McMillen (2008) would be satisfactory if final estimates
of age, cohort and year effects are little changed with different combinations of restricted
parameters, but Fu (2008) reports evidence that the estimates can be changed dramat-
ically with different combinations of neighboring parameters that are assumed to be
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equal.
In this paper we propose a different solution of the identification problem, in which

a mild structure is imposed on the age effect, while no restrictions are applied to cohort
and year effects. Specifically, we assume that age effect can be represented by a smooth
function of housing age, and that the age affect may have a nonlinear impact on housing
prices. We will refer to this model as the smoothing age model of housing prices.

Our model is related to the smoothing cohort model of Fu (2008), where it was also
developed to solve the identification problem among age, cohort, and year effects. The
only difference between our approach and the approach of Fu (2008) is that we apply
the nonparametric term age effect, while in Fu (2008) it is applied to cohort effect.

After introducing a smooth nonlinear age effect, the age dummyDA
j in (1) is replaced

with a single variable Aj . Similarly, the cohort dummy DC
t−j is replaced with a single

cohort variable Ct−j . The impact of age on housing price is estimated by a smooth, but
possibly nonlinear, function s(Aj), resulting in the following regression model:

Pt,j,t−j = αt + s(Aj) + γ · Ct−j +X ′
t,j,t−jb+ ut,j,t−j , (2)

where αt is the year effect in year t of the sale, s(·) is smoothing function, Aj is age
term, γ is the cohort effect for cohort year trend term, and

Xt,j,t−j =
(
1, X1

t,j,t−j , · · · , Xk
t,j,t−j , · · · , XK

t,j,t−j ,
)′

is vector of average characteristic variables, which the k-th characteristic variable is
Xk

t,j,t−j =
1

n(t,j,t−j)

∑n(t,j,t−j)

i=1 Xk
i(t,j,t−j) and ut,j,t−j is error term.

The initial specification of the smoothing age model in (2) will be referred as Model
1. Subsequently, this initial model will be modified by several alternative specifications.
For example, we will introduce in Model 2 a nonlinear cohort effect s(Ct−j) (similarly
to the smoothing cohort model of Fu (2008)), while in Model 3 we will consider the
possibility that there is a joint effect between cohort and age effects, both of which are
estimated as nonlinear functions. These alternative specifications will be explained in
more details in Section 3.2.

3 Estimation

3.1 Estimation of the basic model

The smoothing age model in equation (2) is essentially a semiparametric regression
model that has two parts: a nonparametric term s(Aj) and a parametric part. Origi-
nally, Fu (2008) suggested to fit the smoothing model as a generalized additive model
(GAM), using the backfitting algorithm of Hastie and Tibshirani (1990). However, the
stability of the backfitting algorithm was questioned in recent years, particularly in
datasets with high collinearity among explanatory variables (Schimek, forthcoming).
Another limitation of the traditional GAM estimator is the need to choose a smoothing
parameter prior to estimation. Most often, the smoothing parameter in the GAM esti-
mator is given by the number of degrees of freedom v that are used to approximate the
nonparametric term. For example, when v = 1, then the conventional linear regression
model becomes a special case of the GAM. On the other hand, semiparametric regres-
sion models have v > 1, with larger values of v indicating relatively more nonlinear
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effects. While Fu (2008) claimed that setting v to 10 degrees of freedom ‘yields good
results’ (p.341), there is no guarantee that the value of smoothing parameter will be an
accurate in describing the actual shape of age effects. It is more preferable to determine
the degree of smoothing of s(Aj) in an endogenous way that depends on examined data.

In this paper, we use the automatic selection of v, which is possible with the Modified
Generalized Cross Validation (MGCV) algorithm of Wood (2004). Compared with the
backfitting algorithm, the MGCV approach has superior numerical stability, especially
when explanatory variables are correlated (Schimek, forthcoming). In addition, the
MGCV algorithm selects an appropriate degree of smoothness using a large variety of
selection methods, including the generalized cross validation (GCV) criterion of Craven
and Wahba (1979), or restricted maximum likelihood (REML) methods that represent
the nonparametric part as random effects (Ruppert et al., 2003). In this paper, we
estimate the smoothing age model (2) by the MGCV algorithm, with the smoothness
of age effect determined by minimizing the GCV criterion.

In the Appendix to this paper, we provide technical details about estimation of op-
timal degree of smoothness in MGCV algorithm of Wood (2004). In summary, while Fu
(2008) suggested to estimate the smoothing cohort model with v fixed at 10, the MGCV
algorithm searches for an optimal values of smoothing parameter λ. This algorithm in
practice can select any degree of smoothing, including the special case of linear age
effect, when for v = 1 the GCV criterion is minimized.

We will refer to the semiparametric model (2) as Model 1. The model was esti-
mated with mgcv library version 1.5-5 Wood (2006) which is available in R software (R
Development Core Team, 2009).

3.2 Alternative Models

In addition to Model 1, we considered several alternative specifications that include a
nonlinearity in cohort effect, and also a joint impact between age and cohort effects.

In Model 2, we specified cohort effect as a nonlinear smooth function, in the same
way as we specified the age effect in Model 1:

Pt,j,t−j = αt + s(Aj) + s(Ct−j) +X ′
t,j,t−jb+ ut,j,t−j (3)

In equation (3), the two smooth nonparametric terms s(Aj) and s(Ct−j) have additive
affect on house prices, but there is no interaction between these effects. However, age
effects may not have the same pattern with different vintages of housing. For example,
some old vintages of houses may have a kind of ‘retro’ value, which will increase their
price compared with houses of the same age, but build in more recent years. To account
for this joint impact, we specified Model 3 with an interaction term s(Aj , Ct−j) between
age and cohort effects:

Pt,j,t−j = αt + s(Aj) + s(Ct−j) + s(Aj , Ct−j) +X ′
t,j,t−jb+ ut,j,t−j (4)

Finally, we considered whether our initial specification of nonlinear age effect on housing
prices can be simplified further by assuming a linear effect of age on housing prices. With
this modification, we obtained the following Model 4:

Pt,j,t−j = αt + β ·Aj + s(Ct−j) + s(Aj , Ct−j) +X ′
t,j,t−jb+ ut,j,t−j (5)
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Note that after specifying the linear age effect in Model 4, there is no the identification
problem between age, cohort, and year effects, since the cohort effect in Model 4 is no
longer linear, but specified as a nonparametric term s(Ct−j), and this prevents the exact
linear dependence between these three effects.

4 Description of the Data and Variable Definition

Our data of single-family condominiums is drawn from a weekly magazine, Shukan
Jutaku Joho (Residential Information Weekly) published by Recruit Co., Ltd., one of
the largest vendors of residential lettings information in Japan. Table 1 shows the
descriptive statistics of single-family condominiums data. This dataset covers the special
23 wards of Tokyo in Japan for the sales periods from 1990 to 2008, and the sample
size includes 39,218 housing transactions. When the Japan’s bubble economy bursted
in 1989, not only stock prices but also house prices fell sharply. While for the whole
sample the average price is about 37 million yen, the average was as high as 84 million
yen in 1990, but then dropped to 27 million yen in 2001. The full sample of 39,218
condominiums include houses build from 1954 to 2008, except for 1955, 1956 and 1961,
for which the sample contains no data. The age varied between zero (indicating houses
that were during the current year), and 50 years.

Table 2 reports the distribution of age and cohorts (construction year) at the time of
sale. The frequency of construction year is the highest in the 1980s, while the housing
age is the highest between 10 and 19 years. There is a negative correlation between age
and construction year, with the correlation coefficient −0.779 for full sample.

To implement a pseudo-panel approach to disentangle time, age, and cohort effects,
we construct a matrix of mean price and the following characteristic variables

• X1: Log of sq. meters

• X2: Log of time distance from Central Business District

• X3: Log of minutes on foot to a nearly station

• X4: Log of number of houses in condominium

by housing age (0, 1, 2, · · · , 50) and the year of sale (1990, 1991, · · · , 2008). We expected
positive effects on housing prices from X1 and X4, while negative effects were expected
from X2 andX3.

Our pseudo-panel dataset contained 51× 19 = 969 cells with 259 missing elements,
so the final sample size was 710. With this pseudo-panel data, we constructed two price
indices that show price changes relatively to the base year. In the first index I1, the
housing age was fixed at 8 years, while in the second index I2, housing cohort was fixed
at 1982. These indices were defined as follows:

I1 = exp (Pt, 8, t−8 − P1990, 8, 1990−8)

I2 = exp (Pt, t−1982, 1982 − P1990, 1990−1982, 1982)

(t = 1990, 1991, · · · , 2008)

where Pt,j,t−j is log price in year of the sale t, age j and construction year t− j.
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Estimates of these housing indices are shown in Figure 1. Both price indices are
falling sharply from 1990 to 1999. Subsequently, the first index with fixed age rebounded
sharply, while the second index with fixed cohort remained steady. Though age constant
price index I1 control the age effects, the index does not differentiate between cohort
and time effects, simply because cohort years are changing simultaneously with current
years. Similarly, the price index I2 with fixed cohort effect involves changing age effects.
However, the second index could not differentiate between age and year effects.

These results can be explained as follows. Suppose that the log of housing prices
depends on time effect αt, age effect β, and cohort effect γ: Pt,j,t−j = αt+βAj +γCt−j ,
where Aj and Ct−j are trend terms. Consider the first case when age is fixed at j. Then
the log difference between t and s is Pt,j,t−j − Ps,j,s−j = (αt − αs) + γ(Ct−j − Cs−j).
Since this price change has not only time effect but also cohort effect, the price index
I1 has bias. Next, consider the second case when the cohort year is fixed at t − j.
Log differencing the cohort-constant price results in Pt,j,t−j − Ps,j−(t−s),t−j = (αt −
αs) + β(Aj − Aj−(t−s)). Note that if the cohort year is fixed, age effect remains in the
price change equation (such as repeat sales method of Bailey et al. (1963)), once again
producing bias in price index.

In next section, we show the results of estimating the hedonic price model with the
semiparametric estimator. Time, age and cohort terms are perfectly collinear because
each term is measured annually. In order to avoid the collinearity problem, we use
smoothing terms.

5 Results

5.1 Estimation results of a parametric part in semiparametric hedonic
price models

As a benchmark for comparing our semiparametric models, we estimated a standard
hedonic linear regression model, in which the identification problem is solved by omitting
the cohort effect:

Pt,j,t−j = αt + βAj +X ′
t,j,t−jb+ ut,j,t−j (6)

Table 3 reports results of estimating the standard linear hedonic model, as well as
semiparametric models, discussed in sections 3 and 3.2. The coefficients of variables
from years from 1991 to 2008 show the time effects, with the base year at 1990. The
smooth term of age appears in Models 1, 2 and 3, and while in Model 4 it is represented
by a linear term. Similarly, the smooth term of cohort appears in Models 2, 3 and
4, and the effect has a linear specification in Model 1. Finally, the joint smooth term
s(Aj , Ct−j) for age and cohort effects is used in Models 3 and 4.

Results of estimating the standard linear hedonic model without cohort effect are
shown in first column (eq.(6) titled ‘Linear’). Time effect, age effect and other attributes
effects are statistically significant and have expected signs. Based on the parameter
estimate for age, the house depreciation rate turned out to be 100×{exp(−0.017)−1} =
1.69 % per year. However, note that these coefficients may be biased since a cohort effect
is omitted from equation (6).

Second column (Model 1) provides estimation results of equation (2), in which the
semiparametric hedonic price model has a smooth age term. Cohort effect for is sig-
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nificantly positive, indicating higher prices for more recently build houses. As for the
time effect, regression estimates are almost the same compared with the result from the
linear regression model in the first column up to 2000, and then estimates from Model
1 show a more significant decline in prices.

Third column (Model 2) reports estimation results of equation (3), in which semi-
parametric hedonic price model has smooth nonlinear terms for both age and cohort
terms. This time, estimates of time effects turned out slightly higher in Model 3 com-
pared with the linear hedonic model and the nonparametric Model 1.

Fourth column (Model 3) reports estimation results of the parametric part of Model
3, specified by equation 4. Overall, estimated time effects are smaller compared with
estimates from the hedonic linear model.

Fifth column (Model 4) provides estimation results of the parametric part in semi-
parametric hedonic price with smoothing cohort effects, and the joint term for age and
cohort effects. Age is specified as a linear term, and turned out negative, but not signif-
icantly different from zero. Besides, the estimates of time effects were not on the whole
significant.

Table 3 also reports ‘deviance explained’, which is a measure of fit for nonparametric
models. Similarly to R-squared statistics in linear models, deviance approaches unity
with small residuals.

Overall, the deviance statistic reached a high level of 0.948 for Models 3 and 4,
and the measure of fit was only marginally lower for Model 2. The generalized cross
validation (GCV, see Appemdix A.1) score eq.(13) is a method to choose the degree of
smoothing for fitting a model. Apart from finding an appropriate level of smoothness,
the relatively low GCV score for Model 3 indicates that this Model is slightly more
preferable compared to other hedonic price models in table 3. Conversely, the GCV
score turned out the highest for the standard linear hedonic model, where it is as high
as 0.504.

5.2 Comparison of nonlinear effects of age and cohort

Figure 2 plots the age effect, estimated by Model 1 (eq.(2)). The effect is allowed to be
nonlinear, and on the whole it shows a declining effect of age on prices, implying that
older housing is sold at discount in Japan. The estimated number of degrees of freedom
for the nonparametric term is 3.51 (as reported in table 4), indicating a moderate
nonlinearity of the estimated age effect. Besides, table 4 reports that an approximate
p-value for the null hypothesis that the smoothing age term is zero is small enough,
implying that the effect is statistically significant at 1 percent significance level.

In a similar way, figure 3 displays the age effect that we obtained with Model 2
(eq.(3)), in which the cohort term is estimated by a nonlinear smooth function. This
smoothed cohort effect is plotted in figure 5. Compared to smoothed age effect in
figure 3, the smoothed cohort effect is more nonlinear, as indicated by large number of
estimated degrees of freedom 12.58, which is much larger that the comparable estimate
for the degree of freedom 3.06 of the age effect in Model 2, as shown in figure 3. The
slope of the cohort effect is declining, indicating a positive effect on price for houses
build in the 1960s. As shown in Table 4, the smoothed cohort effect was statistically
different from zero.

Figures 4, 6 and 8 show estimated of smoothed age and cohort effects, and their joint
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effect on housing prices, as estimated by Model 3 (eq.(4)). Profiles of age and cohort
effects were quite similar to estimates from Model 2 (eq.(3)), though the standard errors
turned out larger in Model 3. As for the joint effect of age and cohort effects, Figure
8 shows that it was complex. For relatively old and recent cohorts of houses, the age
effect shows a decline in prices with older houses. However, for houses in the middle of
our cohort range, the age effect on prices turned out basically flat. Overall, we found
that the shape of age effect on housing prices was not the same for different cohorts of
houses.

How this peculiar pattern of joint age and cohort effects can be interpreted? Coulson
and McMillen (2008) noted that housing cohorts measure the separate impact from the
period of housing construction, such as unmeasured style characteristics. Economic
conditions at the construction year also affect the decision-making of sellers and buyers,
which is likely to be reflected in transaction price. There is a possibility that buyers
would expect high future income if the economy at the construction year is in good
shape. Such expectations might increase the bid-price of houses. Moreover, sellers
might build more luxurious houses. In consequence, cohort effects in our models may
pick up the effects of these general economic conditions.

However, our housing data do not have in sufficient details information about style
characteristics of houses, and we have no data about attitudes of sellers and buyers
during construction years. Thus, as a proxy for this missing information, we used
the growth rate of Japanese real GDP Gt−j in construction years as an additional
explanatory variable to estimate the cohort effect. Figure 9 plots the annual rate of
change in the Japanese real GDP. Average growth rate was 9.5% in the 1960s, 5.2% in
the 1970s, 4.4% in the 1980s, 1.5% in the 1990s and 0.7% in the 2000s.

After substituting the growth of GDP for the cohort effect, we obtained the following
Model 5:

Pt,j,t−j = αt + s(Aj) + γg ·Gt−j +X ′
t,j,t−jb+ ut,j,t−j . (7)

Results of estimating Model 5 (eq.(7)) are reported in the rightmost column in Table
3. As expected, a higher GDP growth has positive effect on housing prices, and the
estimated parameter is statistically significant. Figure 5, 6, 7 show that smoothing
cohort effects in the 1960’s push up the price. Replacing a cohort year variable with
GDP growth rate, we may approach the true character of nonlinear cohort effect. Nev-
ertheless, the GCV score of Model 5 was 0.413, which is much higher than comparable
scores for Models 3 and 4, where we did not approximate the cohort effect by the GDP
growth.

5.3 Model selection

Table 5 reports results of comparing several pairs of models, one of which is restricted,
while the other is unrestricted. In other words, these two models specify the null
hypothesis H0 and alternative hypothesis H1, respectively, as shown in the heading of
table 5. Hypothesis testing is based on the deviance of generalized additive models. The
table reports two sets of p values. The first set is derived from the F distribution, which
is not strictly applicable to the generalized additive model due to the use of non-linear
terms (Wood, 2006). The second set of p values is obtained from regression bootstrap
testing. Our bootstrap approach is explained in more details in Appendix A.3.
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The first row reports F value and corresponding p values for the linear model eq.(6)
and Model 1 eq.(2). F value was 57.2, and both p values turned out sufficiently small,
so the null hypothesis of linear model for the age effect and the lack of cohort effect
was rejected. The second row compares Model 1 to Model 2 eq.(3) that has smoothed
age effect and cohort effects. Once again, both p values are much lower than the
significance level of 0.05, indicating that Model 2 is preferable to more restricted Model
1. The third row compares Model 3 eq.(4), which has a joint smooth term for age and
cohort smooth, to Model 2 eq.(3), in which age and cohort effects are included only
as additive terms. The comparison produced very low p values, indicating that the
null hypothesis (i.e., Model 2 in this comparison) can be rejected at 0.05 significance
level. In the fourth row, we compare Model 3 eq.(4) and Model 4 eq.(5). In the latter
model, age effect is expressed by a linear term, rather than a set of dummy variables for
different ages. In this comparison, p values proved inconsistent, with the first p value
exceeding the significance level of 0.05, and thus proving support for the model under
the null hypothesis (i.e., Model 3). On the other hand, the bootstrap p value turned out
less than 0.05, indicating that the null hypothesis can be rejected, and giving support
to Model 4.

How these conflicting results in comparing Models 3 and 4 can be reconciled? One
additional piece of evidence is provided by GCV scores, reported at the last row of
Table 3. Note that out of five estimated models, the smallest GCV score was in Model
3 (0.324), while the score was only marginally larger for Model 4 (0.325). Based on this
result, our final preference is for Model 3, with Model 4 only marginally less preferable.

5.4 Estimation of hedonic price indices

In figure 10 we report the quality-adjusted price indices that can be estimated from year
effects in our hedonic models. The price indices were estimated by setting the price for
1990 to 1, and then estimating indices for subsequent years as

{exp(0), exp(α̂1991), · · · , exp(α̂2008)} .

Line 0 denotes the price index derived from the standard linear hedonic model that omit
cohort effects eq.(6), and which is specified by OLS. Lines 1, 2, 3, and 4 denote price
indices that are derived, respectively, from Models 1 (eq.(2)), 2 (eq.(3)), 3 (eq.(4)), and
4 (eq.(5)) as specified by generalized additive model. Line 5 denotes price indices from
the OLS estimation result of Model 5 eq.(7)

It turned out that the major difference between these alternative indices appeared
whenever we included the joint effect of age and cohort of houses. Overall, our results
show that conventional hedonic price indices that do not include cohort effects on hous-
ing prices, as well as the joint effect of age and cohort, may produce an upward bias
in estimated price indices (as evident, for example, in price index estimates from the
standard hedonic price model).

6 Conclusion

The purpose of this paper is to solve identification problem among time-related vari-
ables. Year of the sale, age of the construction and construction year are important
in estimating hedonic models of house prices. If we could observe exogenous changes
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of housing markets and have satisfactory measurements of quality features of housing
units, then proxy variables like the year of the sale, housing age and construction year
are not necessary in the hedonic approach. However, because such quality-related data
are rarely available, the use of time-related proxy variables is usually unavoidable. Un-
fortunately, this creates another problem, because the time-related proxy variables have
perfect collinearity among them. Due to the collinearity, conventional hedonic regres-
sion models did include both age and cohort variables in their specification (Sirmans
et al., 2006).

To disentangle the perfect collinearity between time, age and cohort variables, this
paper suggested to use a semiparametric regression approach that imposes relatively
mild restrictions on estimated hedonic model.

In this approach, we approximated age and cohort effects by smooth nonparametric
functions. Compared with nonlinear age effect, estimates of the cohort effect were
more non-linear, as shown by a larger number of degrees of freedom that are required to
approximate the nonlinear function. The cohort effect also showed relatively high prices
for older cohorts of houses, especially for houses that were build in the 1960s. We may
interpret this pattern by a relatively good maintenance of old houses in Japan, which
allowed such houses to remain in the housing market, with sellers capable to charge
premium prices.

We also tried to explain the estimated profile of the cohort effect by attributing the
cohort effect to changing economic conditions during the construction years, since these
conditions have effect on the decision-making of sellers and buyers. Thus, we replaced
our cohort-year variable with annual growth of Japan’s GDP, which we assumed to be
a good proxy for the true pattern of nonlinear cohort effect. However, this model did
not perform better than models with the original cohort-year variable.

Our major finding is that the introduction of smooth joint function of age and cohort
effects resulted in models with the best performance in terms of explained deviance and
generalized cross-validation score. The estimated pattern of the joint effect showed that
the shape of age effect was not the same for different cohorts of houses, indicating that
the house depreciation rate in Japan may depend on specific cohorts of housing. We
also found that the omission of the joint effect of age and cohort terms may produce a
bias in hedonic price indices. This implies that it may not be sufficient if hedonic price
models control for only the age effect on housing prices in pooling data.
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A Appendix. Outline of nonparametric estimation and
hypothesis testing.

A.1 Estimation of a single nonparametric term.

Consider a reduced specification of eq.(2) that includes only the nonparametric term
f(zi). Once this basic case is introduced, its extension to the full semiparametric model
(2) will be trivial. In the reduced specification, the dependent variable yi is explained
by a single explanatory variable zi with a nonlinear effect on yi:

yi = f(zi) + ϵi (8)

where f(·) is an arbitrary smooth function and ϵi is the error term with zero mean and
variance σ2.

Let κ1 < · · · < κM be a sequence of breakpoints (‘knots’) that are distinct numbers
that span the range of zi. In the MGCV algorithm, the smooth function f(zi) is ap-
proximated by a sequence of cubic splines. In general, splines are piecewise polynomials
that are joined at the ‘knots’. Due to special restrictions, the cubic splines are continu-
ous at the knots, and also have continuous first and second derivatives. Let M denote
the number of knots. Then a cubic spline can be represented by truncated cubic basis
functions:

f(zi) = δ0 + δ1zi + δ2z
2
i + δ3z

3
i +

M∑
m=1

δm+3(zi − κm)3+ (9)

where

(zi − κm)+ =

{
0 zi ≤ κm

zi − κm zi > κm

In this representation, the cubic spline has a simple interpretation of a global cubic
polynomial δ0 + δ1zi + δ2z

2
i + δ3z

3
i and M local polynomial deviations

∑M
m=1 δm+3(zi −

κm)3+. In matrix form, the truncated cubic basis becomes y = Zδ + ϵ , where Z is
design matrix with ith row vector Zi =

[
1 zi z2i z3i (zi − κ1)

3
+ · · · (zi − κM )3+

]
,

δ is the corresponding vector of regression parameters, and ϵ is the error term. The
smooth function f(Z, δ) is linear in M + 4 regression parameters, and can be fitted
by minimizing the sum of squared residuals: (y − Zδ)′(y − Zδ) = ∥y −Zδ∥2 , where
∥ · · · ∥ stands for the Euclidean norm.

By increasing the number of knots M , the model becomes more flexible in approxi-
mating y. But if the number of knots is too large, the estimates f̂(z) may follow y too
closely. In the limit, when M = n, the cubic spline simply interpolates y. To prevent
too much wiggliness in the estimated curve, a special term that penalizes rapid changes
in f̂(z) is added to the fitting criteria. A common penalty is λ

∫
[fzz(z)]

2 dx , which has
a smoothing parameter λ and an integrated squared second derivative fzz(z) of f(z).
This results in the penalized least-squares criterion as follows:

Q(f, λ) = ∥y −Zδ∥2 + λ

∫
[fzz(z)]

2 dx.

If f̂(z) is too rough, this will increase the penalty term
∫
[fzz(z)]

2 dx. The smoothing
parameter λ controls the trade-off between the model fit ∥y −Zδ∥ and the roughness
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penalty R =
∫
[fzz(z)]

2 dx . When λ = 0, the roughness penalty R has no effect

on the minimization criterion Q(f, λ), producing unpenalized estimates f̂(x) that just
interpolate data. In contrast, when λ = +∞, this results in the perfectly smooth line,
i.e., in a linear regression line with a constant slope.

The minimization of the penalized criterion Q(f, λ) is simplified by noting that
derivatives and integrals of f(z) are linear transformations of parameters dm(z) in the
cubic spline basis, with fzz(z) =

∑M
m=1 δmdmzz(z) and

∫
f(z)dz =

∑M
m=1 δm

∫
dm(z)dz

, where dm(z) denotes a particular form of basis function (such as the truncated cubic
basis function in (9)). Thus, fzz(z) = dzz(z)

′δ , from which it follows that [fzz(z)]
2 =

δ′dzz(z)
′dzz(z)δ = δ′F (z)δ. Finally,

R =

∫
[fzz(z)]

2dz = δ′
(∫

F (z)dz

)
δ = δ′Sδ.

Thus, the roughness penalty R can be represented as a quadratic form in the parameter
vector δ and matrix S of known coefficients that are derived from the basis function
dm(z).

Substituting the roughness penalty R with δ′Sδ , the penalized least-squares crite-
rion becomes

Q(f, λ) = ∥y −Zδ∥2 + λδ′Sδ. (10)

Differentiating Q(f, λ) with respect to δ and setting the derivative to zero produces an
estimate of δ:

δ̂ =
(
Z ′Z + λS

)−1
Z ′y. (11)

The estimate of δ depends on the value of unknown smoothing parameter λ. The
MGCV algorithm selects an appropriate value of λ by using the concept of hat matrix
from the ordinary least-squares model. In the model, the hat matrix H projects the
vector of dependent variable y into the vector of predicted values ŷ = Hy , with
H = Z (Z ′Z)−1Z ′. Using the estimate of δ̂ from (11), the hat matrix of the penalized
spline model can be similarly defined as HS = Z (Z ′Z + λS)−1Z ′. Since the matrix
HS transforms the vector of y into the vector of its smoothed values, the matrix HS

is often called a smoother matrix. In the MGCV algorithm, the optimal value of λ
is found by minimizing the GCV criteria Vg (λ) that depends on the sum of squared

residuals ∥y −Zδ̂∥2 and the trace of smoother matrix HS :

Vg(λ) =
n∥y −Zδ̂∥2

[n− tr (HS)]
2 (12)

where n is the number of observations, and tr (HS) is the trace of HS .
Though the MGCV algorithm selects an appropriate degree of smoothness with

respect to parameter λ, this parameter is not informative in evaluating the estimated
degree of smoothness. It is much easier to interpret the trace of the smoother matrix
tr (HS) , since it is equal to the number of degrees of freedom, needed to approximate the
smoothed function f(z) (Ruppert et al., 2003). Let ν = tr (HS) . Since the smoothing
parameter λ is a part of HS , λ and ν are correlated. In particular, a small degree of
smoothing is indicated by λ → 0 and ν → ∞. Conversely, a high degree of smoothing
corresponds to λ → ∞ and ν → 0. An important special case is when ν ≤ 1. This range
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of ν indicates a parametric effect, when a single variable is sufficient to approximate the
smoothed function f(z).

The GCV criterion Vg(λ) has one problem in selecting an optimal smoothness.
Monte Carlo studies by Kim and Gu (2004) and Bacchini et al. (2007) demonstrated
that Vg(λ) may choose too small values of λ, which results in undersmoothing. The
problem can be solved by multiplying tr (HS) in (12) by a parameter η that increases
the cost per trace of HS :

V̄g(λ) =
n∥y −Zδ̂∥2

[n− η · tr (HS)]
2 . (13)

In estimating the smoothing cohort model, we followed the recommendation in Wood
(2006) that a good value for η is 1.4. In practice, the modification had little effect on
our estimates of age or cohort effects.

After specifying how the smooth function f(x) is estimated by spline basis functions,
the basic model (8) can be easily extended to the full semiparametric model eq.(2)
that adds the parametric part with cohort and year effects (in subsection 2.2). For
the smoothing age model, the parametric part W includes matrices of dummy variables
DY

t , D
C
ℓ . After the extension, the truncated cubic basis (9) still has the form y = Z̃δ̃+ϵ,

but the basis Z̃ now includes an expanded design matrix Z̃ = [Z,W ] . The estimate
of δ̃ is obtained from (11), where the smoothing parameter λ is found by minimizing
either Vg(λ) or V̄g(λ).

A.2 Estimation of a joint effect of two smooth functions.

In this subsection, we describe how we estimated the joint effects of age and cohort
of housing in Model 3 and 4 (eq.(4) and (5) in subsection 3.2). While the effect of
single nonparametric term zi on yi in eq.(8) produces a smooth line that account a
possible nonlinear relationship, the joint effect of two variables ai and ci on yi is given
by yi = f(ai, ci) + ϵi. The joint effect of ai and ci on yi produces a smooth surface,
in which the effect of ai on yi may be not only nonlinear, but also different at various
levels of ci.

In estimating the smooth effect of two covariates ai and ci on yi, we used a tensor
product smoother that was introduced in Wood (2006). The smoother is closely related
to the univariate smoother that we described in subsection A.1. Essentially, the joint
smoother of ai and ci is constructed from marginal bases and penalties of each of the
covariates. Consider the construction of the joint basis function of f(a, c). Let marginal

smoothing terms for fa(a) and fc(c) be denoted by fa(a) =
∑Mq

q=1 θ
a
qd

q(a) and fc(c) =∑Mr
r=1 θ

c
rd

r(c) , where θaq and θcr are regression parameters (similar to the parameter δ in
the univariate specification eq.(9)), and dq(a) and dr(c) are basis functions for a and c.
To proceed from fa(a) and fc(c) to f(a, c), we first assume that θaq in the basis function

of fa(a) is a smooth function of c, with θaq (c) =
∑Mr

r=1 δqrd
r(c) . Then the joint basis for

a and c becomes

f(a, c) =

Mq∑
q=1

θaq (c)d
q(a) =

Mq∑
q=1

Mr∑
r=1

δqrd
r(c)dq(a) (14)

In matrix form, the joint basis regression model is written by y = Z(a, c)δ + ϵ.
Essentially, the joint basis function Z(a, c) is constructed as the Kronecker product of
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individual marginal smoothing bases of a and c, denoted Za and Zc. For example,
for the univariate smooth term a, the individual smoothing base was defined by Z in
subsection A.1.

The roughness penalty for the joint smoother is constructed similarly to the joint
smoothing basis function Z, by using marginal roughness penalties for a and c. For
the univariate smooth of a, such a penalty was already defined by (10). To construct
the composite penalty term, let fa|c(a) be a joint smooth of a and c with some fixed c.
Then the roughness of fa|c is given by Ra(fa|c). By integrating Ra(fa|c) across different
c, we obtain Ra(fa) =

∫
Ra(fa|c)dc , which measures the total roughness of f(a, c) in

the direction of a.
The total roughness penalty in the direction of c is obtained similarly, by fixing a at

some specific points, and integrating the total roughness penalty Rc(fc) =
∫
Rc(fc|a)da

across different fixed values of a. So a reasonable penalty is

λa

∫
Ra(fa|c)dc+ λc

∫
Rc(fc|a)da.

On the assumption that fa|c(a) =
∑

θaq (c)d
q(a), we colud writeRa(fa|c) = θa(c)′Saθ

a(c).
A simple reparameterization can be used to provide an approximation to the terms in
penalty: θa′ = Γθa. Hence the penalty coefficient matrix becomes S′

a = Γ−1′SaΓ
−1.

Then Ra(fa) and Rc(fc) are used to create composite roughness penalties S̄a = S′
a⊗IMr

and S̄c = IMq ⊗S′
c, where IMr and IMq denote identity matrices, with Mq and Mr equal

to the number of ‘knots’ in the direction of c and a, respectively.
Using the composite roughness penalties S̄a and S̄c, the penalized least-squared

criterion is constructed similarly to (10), by combining the least-squares term with
roughness penalties in the direction of a and c, which are multiplied by the corresponding
smoothing parameters λa and λc:

Q(f(a, c), λa, λc) = ∥y −Zδ∥2 + λaδ
′S̄aδ + λcδ

′S̄cδ (15)

Specific details about the construction of the joint basis function Z(a, c) and the rough-
ness penalty are provided in Wood (2006). Similarly to the univariate case, individual
smoothing parameters λa and λc are selected by minimizing the GCV criterion, as
defined in (13).

A.3 Hypothesis testing with bootstrap.

Since the GAM estimator does not belong to conventional linear regression models,
hypothesis testing is complicated because the finite sample distribution of test statistics
is not known. The problem can be solved by using a bootstrap testing procedure that
resamples residuals from a GAM fit. Consider two models, called Model A and B. Let
Model A satisfy the null hypothesis, and Model B satisfy the alternative hypothesis.
Denote fitted values and residuals from estimating Model A as ŷA and ûA. Let the
actual value of test statistic be ϕ̂. To estimate a p-value for the test statistic ϕ̂, we used
the following bootstrap approach from MacKinnon (2007):

1. Specify the number of bootstrap replications O, and the significance level of the
test.
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2. For each o = 1, · · · , O, resample regression residuals from ûA, and denote the
bootstrap sample as ûAo . Then calculate bootstrap values of y as yAo = ŷA + ûAo .

3. Using yAo and matrix of independent variables x, estimate alternative model B,
and calculate a bootstrap test statistic ϕ∗

o .

4. Repeat until the last bootstrap resampling of ûA that produces test statistic ϕ∗
O.

5. Estimate a bootstrap p-value for ϕ̂ by p̂∗(ϕ̂) = 1
O

∑O
o=1 I

(
ϕ∗
o > ϕ̂

)
. Suppose that

ϕ∗
o was larger than ϕ̂ at 35 times, and O = 1000. Then p̂∗(ϕ̂) = 35/1000 = 0.035.

6. If p̂∗(ϕ̂) < significance level, reject the null hypothesis, and otherwise, accept it.
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Table 1: Descriptive statistics
Variable Mean Std. Dev. Minimum Maximum
Log of sales price 8.003 0.603 5.966 11.771
Year of sale 1999.323 5.165 1990 2008
Year bulit 1981.737 7.397 1954 2008
Age 17.585 8.044 0 50
X1: Log of sq. meters 4.005 0.395 2.461 6.085
X2: Log of time distance from CBD 1.879 0.676 0 3.258
X3: Log of minutes on foot to a nearly station 2.157 0.791 0 4.159
X4: Log of number of houses in a condominium 4.213 0.953 2.639 7.641

Note. The full sample size is 39,218 sales of single-family condominiums in the special 23 wards of Tokyo.

Table 2: Distribution of age cohorts at time of sale
Year built Age at time of sale

0− 9 10− 19 20− 29 30− 39 40− 50 Total
1950− 1959 0 0 0 4 6 10
1960− 1969 0 0 614 770 82 1,466
1970− 1979 0 3,757 6,944 2,356 0 13,057
1980− 1989 3,275 11,677 4,627 0 0 19,579
1990− 1999 2,605 1,765 0 0 0 4,370
2000− 2008 736 0 0 0 0 736

Total 6,616 17,199 12,185 3,130 88 39,218
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Table 3: Estimation results

eq.(6) eq.(2) eq.(3) 2 eq.(4) eq.(5) eq.(7)
Variable Linear Model 1 Model 2 Model 3 Model 4 Model 5
Const. 6.431∗∗∗ 0.037∗∗∗ 5.942∗∗∗ 6.194∗∗∗ 7.011∗∗∗ 6.300∗∗∗

(0.209) (0.005) (0.189) (0.264) (2.331) (0.184)
Year1991 −0.103∗∗∗ −0.102∗∗∗ −0.088∗∗∗ −0.111∗∗∗ −0.105 −0.100∗∗∗

(0.032) (0.029) (0.026) (0.032) (0.116) (0.029)
Year1992 −0.267∗∗∗ −0.266∗∗∗ −0.245∗∗∗ −0.292∗∗∗ −0.278 −0.260∗∗∗

(0.031) (0.028) (0.025) (0.047) (0.231) (0.028)
Year1993 −0.344∗∗∗ −0.343∗∗∗ −0.320∗∗∗ −0.390∗∗∗ −0.367 −0.331∗∗∗

(0.030) (0.028) (0.025) (0.065) (0.351) (0.027)
Year1994 −0.461∗∗∗ −0.460∗∗∗ −0.433∗∗∗ −0.525∗∗∗ −0.493 −0.444∗∗∗

(0.030) (0.027) (0.026) (0.083) (0.474) (0.027)
Year1995 −0.618∗∗∗ −0.617∗∗∗ −0.585∗∗∗ −0.701∗∗∗ −0.659 −0.596∗∗∗

(0.030) (0.027) (0.026) (0.102) (0.600) (0.027)
Year1996 −0.711∗∗∗ −0.710∗∗∗ −0.674∗∗∗ −0.810∗∗∗ −0.761 −0.685∗∗∗

(0.031) (0.028) (0.028) (0.120) (0.729) (0.028)
Year1997 −0.732∗∗∗ −0.731∗∗∗ −0.687∗∗∗ −0.845∗∗∗ −0.791 −0.700∗∗∗

(0.031) (0.028) (0.029) (0.138) (0.860) (0.028)
Year1998 −0.769∗∗∗ −0.771∗∗∗ −0.720∗∗∗ −0.898∗∗∗ −0.842 −0.737∗∗∗

(0.031) (0.028) (0.030) (0.156) (0.993) (0.028)
Year1999 −0.808∗∗∗ −0.812∗∗∗ −0.755∗∗∗ −0.951∗∗∗ −0.898 −0.772∗∗∗

(0.031) (0.029) (0.032) (0.173) (1.127) (0.028)
Year2000 −0.861∗∗∗ −0.868∗∗∗ −0.800∗∗∗ −1.017∗∗∗ −0.970 −0.823∗∗∗

(0.031) (0.028) (0.033) (0.191) (1.263) (0.028)
Year2001 −0.872∗∗∗ −0.885∗∗∗ −0.814∗∗∗ −1.049∗∗∗ −1.014 −0.835∗∗∗

(0.031) (0.029) (0.035) (0.208) (1.400) (0.029)
Year2002 −0.860∗∗∗ −0.878∗∗∗ −0.800∗∗∗ −1.051∗∗∗ −1.035 −0.822∗∗∗

(0.032) (0.030) (0.037) (0.224) (1.538) (0.030)
Year2003 −0.821∗∗∗ −0.845∗∗∗ −0.759∗∗∗ −1.027∗∗∗ −1.035 −0.785∗∗∗

(0.033) (0.030) (0.039) (0.241) (1.676) (0.030)
Year2004 −0.818∗∗∗ −0.851∗∗∗ −0.756∗∗∗ −1.041∗∗∗ −1.082 −0.785∗∗∗

(0.033) (0.030) (0.041) (0.257) (1.814) (0.031)
Year2005 −0.800∗∗∗ −0.841∗∗∗ −0.739∗∗∗ −1.040∗∗∗ −1.122 −0.771∗∗∗

(0.033) (0.030) (0.042) (0.273) (1.953) (0.030)
Year2006 −0.757∗∗∗ −0.809∗∗∗ −0.699∗∗∗ −1.014∗∗∗ −1.146 −0.733∗∗∗

(0.033) (0.030) (0.044) (0.288) (2.092) (0.031)
Year2007 −0.628∗∗∗ −0.685∗∗∗ −0.574∗∗∗ −0.901∗∗∗ −1.093 −0.606∗∗∗

(0.033) (0.030) (0.046) (0.304) (2.230) (0.031)
Year2008 −0.593∗∗∗ −0.658∗∗∗ −0.532∗∗∗ −0.870∗∗∗ −1.132 −0.572∗∗∗

(0.033) (0.030) (0.048) (0.318) (2.368) (0.031)
Age −0.017∗∗∗ - - - −0.041

(0.001) (0.059)
s(Age) No Yes Yes Yes No Yes

Cohort - 0.003∗∗∗ - - - -
(0.000)

s(Cohort) No No Yes Yes Yes No

s(Age,Cohort) No No No Yes Yes No

Growth rate - - - - - 0.006∗∗∗

(0.001)
X1 0.762∗∗∗ 0.724∗∗∗ 0.741∗∗∗ 0.720∗∗∗ 0.720∗∗∗ 0.682∗∗∗

(0.050) (0.046) (0.048) (0.047) (0.047) (0.047)
X2 −0.178∗∗∗ −0.176∗∗∗ −0.142∗∗∗ −0.121∗∗∗ −0.124∗∗∗ −0.179∗∗∗

(0.025) (0.023) (0.023) (0.022) (0.022) (0.023)
X3 −0.180∗∗∗ −0.163∗∗∗ −0.092∗∗∗ −0.091∗∗∗ −0.092∗∗∗ −0.156∗∗∗

(0.016) (0.015) (0.018) (0.017) (0.017) (0.015)
X4 0.048∗∗∗ 0.051∗∗∗ 0.042∗∗∗ 0.040∗∗∗ 0.040∗∗∗ 0.058∗∗∗

(0.016) (0.014) (0.015) (0.014) (0.014) (0.014)

Deviance explained 0.912 0.927 0.942 0.948 0.948 0.929
GCV score 0.504 0.420 0.354 0.324 0.325 0.413

t values in parentheses. ∗ significant at 10%, ∗∗ significant at 5%, ∗∗∗ significant at 1%.
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Table 4: Approximate degree of freedom of the smooth and F test

smooth term Model 1 Model 2 Model 3 Model 4 Model 5
s(Age) 3.51∗∗∗ 3.06∗∗∗ 4.25∗∗∗ - 3.52∗∗∗

s(Cohort) - 12.58∗∗∗ 12.75∗∗∗ 11.40∗∗∗ -
s(Age,Cohort) - - 4.50∗ 12.70∗∗ -

note: If approximate p-value by F test (for the null hypotheses that the each

smoothing term is zero) is less than .01, then ∗∗∗, less than .05, then ∗∗ and

less than .1, then ∗.

Table 5: Model selection

H0 H1 F -value p-value Bootstrap p-value
Linear Model Model 1 57.2 0.000 0.003

Model 1 Model 2 14.0 0.000 0.002
Model 2 Model 3 13.7 0.000 0.003
Model 3 Model 4 2.0 0.110 0.003
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Figure 1: Average price indices
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Figure 2: Age effect (Model 1)
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Figure 3: Age effect (Model 2)
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Figure 4: Age effect (Model 3)
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Figure 5: Cohort effect (Model 2)
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Figure 6: Cohort effect (Model 3)
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Figure 7: Cohort effect (Model 4)
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Figure 8: Joint effect of age and cohort (Model 3)
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Figure 9: Annual growth rates of Japan’s real GDP
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Data source: Economic and Social Research Institute, Cabinet Office, Government of Japan
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Figure 10: Estimates of hedonic price indices
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