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Abstract 

In this paper, we focus on the fundamental speed–density relationship of aggregated 

vehicular traffic flow in the entire urban area. We use aggregated observations on routes 

that are treated as cross-section units in three time intervals and examine the speed–density 

relationship. We consider a variety of routes and road networks for our spatial panel data 

analysis. We apply the estimator of Kelejian and Prucha (1999) to the usual panel data case, 

based on certain restrictions on the evolution of spatial dependence over time. 
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1. Introduction 

As traffic density increases, a road gets congested, and the speed of the traffic decreases. Since 

Greenshield’s (1935) seminal paper, various models have been proposed to analyze the 

speed–density relationship. Much effort has been devoted to improving the oversimplified 

relationship specified by Greenshield. These classical studies, including those of Greenberg 

(1959), Underwood (1961), Gazis et al. (1961) and Drake et al. (1967), are limited to particular 

expressways and sections thereof. Moreover, the time period covered is also limited. Thus, this 

approach is arguably inadequate for understanding the speed–density relationship of toll-free 

roads in an entire urban area.  

In this paper, we focus on the speed–density relationship of toll-free roads of the entire city. 

We estimate this relationship using the time-series cross-section data of several toll-free roads in 

the twenty-three ward district of Tokyo. Each road section, which is a cross-section observation 

unit, has a spatial linkage to other sections. Hence this data is likely to have spatial 

autocorrelation of the disturbances across cross-sectional units. Kelejian and Prucha (1999) 

developed an estimation method in terms of generalized moments applicable in the presence of 

spatial autocorrelation.  

We extend their method for a time series cross section model so that the extended method 

can be applied to our data. The use of a time series data can effectively reduce the estimation 

bias cased by omitted variables that could take place when single time data is used. 

The rest of the paper is organized as follows. In Section 2, we describe the classical 

speed–density relationship and outline traffic flow theory. In Section 3, we describe the 

empirical model used to estimate the speed–density relationship with spatial panel data. In 

Section 4, we explain key features of the data. In Section 5, we report our estimation and testing 
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results. Conclusions and potential directions for future work are discussed in Section 6. 

 

2. The Speed–Density Relationship Model 

Since Greenshield’s (1935) seminal paper, the various models of the speed–density relationship 

have developed into the so-called K–V curve in a traffic stream model, according to which speed 

V decreases as traffic density K increases. Researchers have long been interested in functionally 

specifying and estimating these relations. In our paper, the traffic density on a particular section 

of road is defined as hourly aggregated traffic flow per one meter of a lane in that section. 

Figure 1 depicts an idealized relationship between V and K. When the road is not crowded, 

the highest speed is attained regardless of the level of K. But as the road gets crowded, the speed 

starts to decline. The graphs of the various specialized functions estimated in the literature  

approximate the downward sloping portion of this “true” K–V curve of this relationship. 

 

[ Insert Figure 1 ] 

 

The functional specifications that appeared in the literature are listed below. 

Greenshield (1935) developed a macroscopic stream model, in which density and speed are 

negatively linearly related as follow: (hereafter, the S model): 

 



 

j
f

K

K
VV 1  [S model] (1) 

Where fV  is the free-flow speed attained when the K  is zero, while jK  is the value of K  

of that attains 0V , which implies that jK  is the jam density (i.e., the maximum value of 

that K  ) .  The speed–density linearity relationship of S model has gradient jf KV 1.  

                                                      
1 These are single-regime models from the viewpoint of the congestion level of vehicles. Each model can also be derived from a 
microscopic approach that focuses on describing the detailed manner in which one vehicle follows another. The several studies in 
which driver behavior in another following car is modeled are typically referred to as car-following models of vehicular traffic 
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Greenberg (1959) assumed a logarithmic relationship between speed and density. He 

proposed the following model (hereafter, the B model): 

 





K

K
VV

j
c ln , [B model] (2) 

where cV  is the critical speed at the maximum traffic capacity, which is corresponding to 

cQQ   in the quadrant IV of figure 1. When density K  approaches zero, the speed V  

diverges to infinity. Thus, a disadvantage of this model is its inability to predict speeds at lower 

densities. 

Underwood (1961) proposed the following exponential model (hereafter, the U model): 

 expf
c

K
V V

K
     

, [U model] (3) 

where cK  is the critical density corresponding to the maximum traffic capacity. The main 

drawback of this model is that speed becomes zero only when density reaches infinity. Hence, 

this model cannot be used for predicting speeds at high densities. Drake et al. (1967) proposed a 

similar model in the form of the half bell-shaped curve model (hereafter, the D model): 

 

2

exp 0.5f
c

K
V V
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. [D model] (4) 

Regression analysis is frequently used to examine the validity of these models. The 

right-hand sides of the traditional equations above characterize the deterministic functional form 

of the speed–density relationship. Assuming that fV , cV , jK  and cK  have unique values, 

the regression models corresponding to the equations (1), (2), (3) and (4) are as follows: 
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where iV  is the speed and iK  is the traffic density in road section i , the parameters of each 

                                                                                                                                                            
(Gazis et al. 1961). In the car-following model, by formulating the acceleration of each following vehicle with the leading vehicle, 
interrelationships between levels of speed–density states are derived. The acceleration of following vehicles is represented by a 
nonlinear differential equation in which the variables are the speeds of the following vehicles and their headway, as measured by, 
for example, distances between vehicles. The model generates the various speed–density functions referred to above in the form of 
the combinations of values taken by the exponents on the variables. 
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model are defined as fS Va  , jfS KVb  , jcB KVa ln , cB Vb  , fU Va ln , 

cU Kb 1 , fD Va ln  and 2
21 cD Kb  , and iu  is a disturbance term. In each simple 

linear regression model, it is expected that the sign of gradient: UBS bbb ,, and Db , are negative. 

In other speed–density models, such as those of Drew (1968) and Gazis et al. (1961), nonlinear 

functional forms are used. 

 

3. The Empirical Model 

In this section, we apply the improved empirical model of the speed–density relationship by 

using time-series cross-sectional data. In equation (5), with regard to the dependent and 

independent variables, we use the following notation: 
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x ,  (6) 

where ity  is the dependent variable corresponding to speed and itx  is the independent 

variable corresponding to density on road section i in time period t. For each section, ity  and 

itx  are aggregated variables per hour. We observed three time intervals: 0700–0800 hours 

 1t , 1300–1400 hours  2t  and 1700–1800 hours  3t .  

 We assume that in the speed–density relationship there are time-constant variables for 

section i and a time effect for period t. The speed–density relationship model with fixed unit, 

time and partial time effects is as follow: 

 itiiiiiiiiiiitiit uSIGDSIGDDIRDDIRDDDxy  3
2
32

2
23

1
32

1
23322 , (7) 

where the speed variable ity  and the density variable itx  have already been defined in the 

context of (6), i  is a fixed effect for the i th section, 2  and 3  are time effects for 
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1300–1400 hours and 1700–1800 hours, respectively, 2iD  and 3iD  are time dummies for 

1300–1400 hours and 1700–1800 hours, respectively, 2
2

1
3

1
2 ,,   and 2

3  are partial time 

effects, iDIR  is a dummy variable for direction, iSIG  represents the density of traffic signals 

on section i and itu  is well-behaved disturbance term. iDIR  and iSIG  are time-constant 

variables. The terms of product in time-constant variables and time periods dummy variables 

control the partial time effects. 

 Each road section as a cross-section observation unit has a spatial linkage to other 

sections. Assuming that unobservable factors in each road section exist and have spatial 

autocorrelation, another disturbance term is as follow 

 it

n

j
jtijit uWu  

1

,  (8) 

where   is a scalar parameter, which is typically referred to as the spatial autoregressive 

parameter, itu  denotes disturbance terms comprising a spatially autocorrelated disturbance 

term, ijW , which is known, and the element of the spatial weight matrix, it , which is the error 

term. We test the model specification later section. If spatial autocorrelation is founded, we also 

estimate the equation (8) by the method of Kelejian and Prucha (1999). The details of 

estimation procedures are noted in Appendix 1 and 2.  

 

4. Data 

We can now estimate the models of the speed–density relationship using spatial panel data. In 

this research, we focus not on highway traffic but on general road traffic in the twenty-three 

special wards of Tokyo. To understand the traffic stream in the entire urban area, we consider a 

variety of routes as our sample for analysis. 

We use data on the traffic flow of vehicles at points of intersection on main trunk roads. The 

intersection traffic data are aggregated by the Metropolitan Police Department (MPD) based on 
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the original statistical reports Traffic Statistics, which reports observed vehicle inflows (and 

outflows) per hour to (and from) intersections aggregated to cover the interval from 0700 to 

1900 hours. The traffic density on a particular section of road is defined as the ratio of 

aggregated traffic flow per hour on that section to the distance covered by that section. The data 

relate to December 13 and 14, 2005. 

Data on vehicular speeds are based on figures from The Metropolitan Police Department 

Traffic Yearbook reported by the MPD. These statistics records journey time and speed from a 

particular intersection to another intersection between 0700–0800 hours, 1300–1400 hours and 

1700–1800 hours. The routes on which traffic is observed comprise five loop routes and 15 

radial routes. Within the area covered by these intersections (the intra-intersection) are 191 road 

sections running in both inner (to center) and outer (to suburb) directions. 

Journey times are calculated from the Database of Journey Time Statistics collected by the 

MPD’s traffic control system. A vehicle’s (overall) journey speed on a section of road is defined 

as the distance of the section divided by the journey time. 

To conduct our analysis, we matched the sections of the intra-intersection on which traffic 

flow data per hour was recorded in the MPD’s Traffic Statistics to the sections on which journey 

times were recorded. The journey time recorded in the MPD’s Traffic Yearbook covers three 

time intervals: 0700–0800 hours, 1300–1400 hours and 1700–1800 hours. The traffic flow data 

were made to correspond to these time intervals. The matched data cover three loop routes and 

15 radial routes. Table 1 lists the names of these routes, the number of road sections included in 

each route and its total distance. The total number of sections on all routes is 97. For example, 

the nine sections in L1, Kanjo-hachi-gosen, total 26.5 km in length. Figure 2 maps the routes 

and intersections covering the twenty-three special wards of Tokyo. 
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[ Insert Table 1 ] 

[ Insert Figure 2 ] 

 

For illustration, Table 2 reports detailed data on each section in L1, Kanjo-hachi-gosen. 

Section 1 runs from Otorii to Minamikamata. This 1.8 km stretch has 12 sets of traffic lights. 

The inner direction runs from Minamikamata to Otorii and the outer direction runs from Otorii 

to Minamikamata. We have data covering the three time intervals mentioned above and three 

directions per section. 

 

[ Insert Table 2 ] 

 

Table 3 reports descriptive statistics for the 97 routes over three time intervals and in two 

directions, which implies a total sample size of 2397582  . In inner directions (loop 

routes) and in directions to the center (radial routes), vehicle speed is fastest in the morning. 

Density does not vary much on these routes. The density on radial routes exceeds that on loop 

routes. In outer directions (loop routes) and in directions to suburbs (radial routes), vehicle 

speed is lowest in the morning. DIR  is a dummy variable for direction and SIG  is the 

number of traffic lights on the length of the corresponding intra-intersection: the density of 

signals. Both DIR  and SIG  are time-constant variables. We can test whether the effects of 

these time-constant variables change over time by using the cross products of time effects. 

 

[ Insert Table 3 ] 

 

The data on the sections that connect within the intersection and the linkages between them 
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depend on the travelling directions. Figure 3 shows that L1, Kanjo-hachi-gosen (sections 1 and 

2) intersects with R1, the Dai-ichi-keihin route (sections 30 and 31) within the Minamikamata 

intersection (intersection a). A vehicle that leaves Higashiyaguchi (intersection b) joins section 

1 and section 30 at intersection a in the inner direction. Thus, section 2 in the inner direction is 

contiguous with sections 1 and 30. However, section 2 in the outer direction is not contiguous 

with either section 1, section 30 or section 31 because it runs in the opposite direction. Table 4 

reports contiguity in each section and uses a code of unity to denote a section that is contiguous 

with another section by its direction, and uses a zero otherwise. This definition yields the 

contiguity matrix }{ ijc . The elements of the standardized spatial weight matrix, whose rows 

each sum to unity, are defined as 
j ijijij ccW  for nji ,,1,  . 

 

[ Insert Table 4 ] 

[ Insert Figure 3 ] 

 

5. Testing and Estimation Results 

5.1. Model Specification 

To choose our preferred speed–density model, we perform specification tests as follows: 

 iH :1
0  (with 0 ). The null hypothesis is that the unit-specific term is constant for 

all i  under the assumption that there is no spatial autocorrelation. We compare our OLS 

results on the pooled data based on incorporating a common constant term and dummy 

variables with the fixed effects panel data model. (Group effect F-test.) 

   0,Cov:2
0 XαH  (with 0 ). The null hypothesis is that α  and X  are uncorrelated 

under the assumption that there is no spatial autocorrelation, where X  is explanation 

variable matrix. This specification test was devised by Hausman (1978) based on a 
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comparison of the fixed- and random-effects estimators. 

 :3
0H  There is no spatial autocorrelation. We employ Moran’s I-test with fixed effects. 

Moran’s I is defined as eeeWe MI , where e  is the pooled OLS residual vector. As 

shown by Cliff and Ord (1973), the asymptotic distribution for the statistic is standard 

normal:       1,0~21 NMIVMIEMISMI  , where SMI denotes the standardized Moran’s 

I  test. 

 0:4
0 H  (with  i  and i  as the fixed effect). Alternative Lagrange Multiplier 

testing procedures for the null hypothesis of no spatial error dependence are presented by 

Anselin (1988) and Baltagi et al. (2003). The test statistic is distributed as chi-squared with 

one degree of freedom, with 5% and 1% critical values of 3.84 and 6.63, respectively. 

 0: 25
0 H  (with 0 ). Assuming the possible existence of spatial correlation, we test 

whether the variance of i  is zero for the randomness of i  (Baltagi et al. 2003, 2008). 

The test statistic is asymptotically distributed as standard normal. 

 

5.2. Estimation Results 

Based on the estimation results for equation (7), Table 5 reports the 1
0H , 2

0H , 3
0H  and 4

0H  

test results for the S, B, U and D type speed–density models. Similar results were obtained for 

all four models. The test for group effects examines whether there are section-specific fixed 

effects. The OLS fixed-effects model incorporating dummy variables outperforms the OLS 

regression based on pooled data because the p-value is sufficiently small. The p-value for the 

Hausman test for fixed and random effects is sufficiently small. This suggests that the 

fixed-effects model is preferable to the random-effects model conditional on 0 . Given the 

SMI, the hypothesis that spatial correlation does not exists in the model is rejected. However, 

what alternative hypothesis of Moran’s I test is acceptable is unclear. Assuming that fixed 

effects exist, the null hypothesis 0  is rejected and the alternative hypothesis 0  is 
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accepted. 

 

[ Insert Table 5 ] 

 

Based on these test results, we estimate (7) with (8) treating i  as a fixed effect. Using the 

residual from the fixed-effects regression model without spatial autocorrelation, we solve the 

generalized moments estimator to estimate   (see Apendix). Both sides of equation (7) are 

multiplied by a Cochrane–Orcutt type weight to obtain feasible generalized least squared 

(FGLS) estimates . 

Estimation results from the S, B, U and D speed–density models are reported in Tables 6, 7, 

8 and 9, respectively. 

 

[ Insert Table 6 and 7 ] 

[ Insert Table 8 and 9 ] 

 

Table 6 reports the estimation results from the S model, in which the dependent variable is 

Vy   and the density variable is Kx  . Column I reports the FGLS estimates from the 

fixed-effects model with spatial error correlation, which corresponds to equation (A8) in 

Appendix 2. The parameter of density is negative and significant. The time effect is also 

negative. In particular, vehicle speeds are significantly lower (by about 4.874 km per hour) 

during evenings, compared with mornings, other circumstances being equal. The estimated 

coefficients of DIRD2  and DIRD3  show the effect of differences in the direction of the traffic 

flow. Vehicles travel faster out to suburbs than into the center (inner direction). The estimated 

coefficients of SIGD2  and SIGD3  show the effect of signal density in each time interval. The 
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greater is the number of traffic lights, the lower are vehicle speeds. 

Column II of Table 6 reports results from the fixed-effects model with unit and time effects 

but without spatial autocorrelation. When 0  is assumed, the estimated coefficients are quite 

large. Columns II and III report the estimation results from the fixed-effects model with unit 

effects but without time and partial time effects. The estimated coefficients of density K  are 

too large. Omitting the time variables may have caused a bias. Column V in Table 6 reports the 

OLS estimates from pooling the data. When unit effects are ignored, the coefficient of density 

becomes insignificant. 

Table 7 reports the estimation results from the Greenberg model, in which the dependent 

variable is Vy   and the density variable is Kx ln . Table 8 reports the estimation results 

from the Underwood model, in which the dependent variable is Vy ln  and the density 

variable is Kx  . Table 9 reports the estimation results from the Drake model, in which the 

dependent variable is Vy ln  and the density variable is 2Kx  . For all models, the 

coefficients of 3D , DIRD2 , DIRD3  and SIGD2  are significant in column I, which reports the 

fixed-effects model with unit and time effects and spatial autocorrelation. Omitting the unit and 

time effects seems to cause a bias. The U and D models fit the data better than do the S and B 

models. However, the coefficient of density in the D model (see column I of Table 9) is not 

significant at the 5% level. Our empirical results indicate that the U model outperforms the 

other models in goodness of fit. This is consistent with Suzuki et al. (2006), who find that the 

exponential model is preferable in analyzing national road route 4 in Japan. 

 

5.3. Critical Density and Critical Speed 

The estimated fixed-effects models with unit and time effects and spatial autocorrelation have 

the following theoretical parameter values (in the context of ititit xy  ˆˆ̂ˆ ): 



13 

 

 
















3ˆˆˆˆ

2ˆˆˆˆ

1ˆ

ˆ̂

2
3

1
33

2
2

1
22

tSIG

tSIG

t

ii

ii

i

it  

if the direction is outer / to suburb and 

 
















3ˆˆˆ

2ˆˆˆ

1ˆ

ˆ̂

2
33

2
22

tSIG

tSIG

t

jj

jj

j

jt  

if the direction is inner / to center. We use equation (5) to determine the critical densities and 

critical speeds in the S, B, U and D types. Table 10 reports these theoretical values for each 

model. If the function of speed–density relationship is specified as  KVV  , the critical 

density corresponding to the maximum traffic flow satisfies     0 ccc KVKKV  and 

 cc KVV  . In the S model, the critical density and critical speed depend on the road section 

and time variations. In the B model, the critical density depends on the road section and time 

variations, but critical speed has a unique value. In the U and D models, critical density has a 

unique value, but critical speed depends on the road section and time variations. 

 

[ Insert Table 10 ] 

 

Table 11 reports average measured critical density values. The B model’s critical density 

exceeds those of the other models. In Figures 4 and 5, the speed–density curve for the B model 

is slightly curved. The critical densities of the U and D models are intermediate values. The B 

model has the lowest critical speed (Table 12). The critical speed for inner direction of loop 

routes at 0700–0800 hours exceeds all other critical speeds. It is similar for radial routes. Figure 

6 shows the speed–density relationship for the U model for each time interval. In the inner (to 

center) direction, we expect the critical speed to increase quickly to reach the critical density 
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 3.2cK , compared with other morning time intervals. 

 

[ Insert Table 11 ] 

[ Insert Table 12 ] 

[ Insert Figure 4 and 5 ] 

[ Insert Figure 6 ] 

 

6. Conclusion 

We analyzed aggregated road network linkage data to understand the speed–density relationship 

in an entire urban area by using spatial panel data aggregated by each route. Because we found 

evidence of spatial autocorrelation in each road section, to obtain efficient estimates, we used a 

weighted regression model with spatial autocorrelation. In the context of the classical 

speed–density relationship, we compared functional forms and such unique regression model 

parameters as the critical density and the critical speed. 

We obtained the following findings. 

 Unobserved unit effects seemed significant on all routes. Moreover, we found evidence 

of spatial correlation among contiguous routes in our data. When disregarding the unit 

effects and time effects, the coefficient of density became insignificant. 

 When using feasible generalized least squares estimation with a generalized moments 

estimator, the parameter of density was negative and significant in the Greenshield (S), 

Greenberg (B) and Underwood (U) models. In the Drake (D) model, the estimated 

coefficient of density was not significant at the 5% level. 

 The critical densities of the U and D models are in between those of the B and S models, 

with the former being the highest. The critical speed on inner loop routes is highest at 
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0700–0800 hours. It is similar on radial routes. 

 

Appendix 1. A Panel Model with Spatial Disturbance  

The speed–density regression model with two-way fixed effects, partial time effects and spatial 

autocorrelation disturbance is given by: 

 ititttitiit uzxy  , it
n

j jtijit uWu   1
 Ttni ,,1,,,1   , (A1) 

where i  is the unobservable fixed unit effect, t  is the unobservable fixed time effect, itz  

is the product of the time period dummy variable s
itd  corresponding to the time effect, where 

1t
isd  if ts  , and the observable time-constant variables iz ; that is, i

t
itit zdz  . In addition, 

itu  denotes disturbance terms comprising a spatially autocorrelated disturbance term, ijW , 

which is known, and the element of the spatial weight matrix, it , which is the error term. The 

parameters  , θ  and   are unknown. We assume that it  is an independent and identically 

distributed error term that is well behaved:   0 jsitE  for ji   and st  . 

Equation (A1) is the panel regression model with fixed effects and a spatially autocorrelated 

disturbance. The constant term in the speed–density linear equations (5) is allowed to differ 

according to time and road section. For example, in the S model, the free speed, fV , takes a 

specific value by observed time and section. We can estimate the differences in the partial 

effects from the time-constant variables relative to a base time period, such as 1t . In 

particular, we can test whether the effects of the time-constant variables change over time. In 

estimation, a time dummy variable for base period is excluded to avoid perfect collinearity, and 

we set the first time period effect 1  to zero. 

By stacking the units incorporated in (A1), for each time period, we have: 

 tittttt z uxαy  ,  (A2) 

 ttt εWuu  ,  (A3) 
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where    nttt yy ,,1 y  is an 1n  vector, as is    n,,1 α , with tx  and tu  being 

similarly defined 1n  vectors and W  being the time-constant spatial weight matrix. One can 

rewrite the spatial autoregressive term (A3) as    ttnt εBεWIu 11   , where 

  WIB  n  and  nI  is an nn   identity matrix. Stacking (A2) and (A3) across time 

periods yields: 

              uθzIτιIxαIιy  TnTnT
~~ ,  (A4) 

   εBIu 1 T ,  (A5) 

where    Tyyy ,1  is an 1nT  vector, and x , u  and ε  are similarly defined. In 

addition,  Tι  and   nι  are vectors of ones of dimension T  and n, respectively.  TI  is an 

identity matrix of dimension T ,   denotes the Kronecker product,  TI
~  is a  1 TT  

matrix that excludes the first row of a TT   identity matrix to avoid perfect collinearity; that 

is,  
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T

TI .  

Further,    nzz ,,1 z ,    T,,2 τ  and    T,,2 θ . The matrix    nT Iι   is of 

dimension nnT  . The matrices     nT ιI ~
 and   zI T

~
 are of dimension  1 TnT . 

The matrix  
1BI T  is of dimension nTnT  . 

The variance of (A5),  uu E , has, in general, a nonspherical structure, which is a function 

of the spatial autoregressive parameter  , the spatial weight matrix W  and the true variance 

of ε . Because W  is known,  uu E  is known up to   and the true variance of ε , which 

we estimate. 

We assume that   is known as *  and define   WIB **  n . To address 
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heteroskedasticity in the disturbance, we can premultiply the model in (A4) as follows: 

       εXΓBIyBI  **
TT ,  (A6) 

where           zIιIxIι  TnTnTX
~

,
~

,,  is an  12  TnnT  matrix and 

  θταΓ ,,,  is an   112  Tn  vector. If the weighted regression model (A6) has a 

well-behaved disturbance, one can apply the generalized least squares method. 

 

Appendix 2. The Generalized Moments Estimator and the Feasible 

Generalized Least Squares Method 

Kelejian and Prucha (1999) developed a moments estimator of the parameter   in a 

cross-sectional setting  1T . We extend their approach by applying their estimator to our 

panel data model with a two-way fixed effects. Consider the following three moment 

conditions: 
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where 2  is the true variance of it ,   WIW  T  and  tr  denotes the trace of a matrix. 

Noting that uWu   and uuε  , the three-equation system implies: 

 
     uuuuuu  E
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Now consider the following analogue to the moments condition in terms of sample moments 

based on the residual vector e  from the two-way fixed effects regression implied by equation 
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(A4). Noting that eWe  , the three-equation system can be rewritten in matrix form as: 
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(A7) 

where  2,ξ  is the error vector associated with a sample of statistical realizations. The 

nonlinear least squares estimator  2ˆ,ˆ   minimizes    22 ,,  ξξ  and is consistent for 

sufficiently large n . We define   WIB  ˆˆ
n  as estimated weight matrix to compute (A6). 

These estimates yield   BI ˆT , which can be substituted into equation (A6). Then, we have 

the following FGLS estimator: 

       yBBIXXBBIXΓ ˆˆˆˆˆ 1



TT ,  (A8) 

where   θταΓ ˆ,ˆ,ˆ,ˆˆ , which comprises the fixed unit effects, the marginal effect of traffic 

density, the fixed time effects and the partial time effects of the time-constant variable. 
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Table 1. Summary of observed routes 

 Name of routes 
Number of sections 

 included in route 

Total 

distance [km] 

Loop routes 

L1 Kanjo-hachi-gosen 9 26.5 

L2 Kanjo-nana-gosen 10 55.4 

L3 Yamate-dori 8 15.5 

Radial routes 

R1 Dai-ichi-keihin 4 10.4 

R2 Sakurada-dori and Dai-ni-keihin 7 14.4 

R3 Aoyama-dori and Tamagawa-dori 7 12.8 

R4 Shinjuku-dori and Kosyu-kaido 5 19.4 

R5 Oume-kaido 5 14.9 

R6 Shin-Oume-kaido 2 6.5 

R7 Mejiro-dori 6 11.0 

R8 Kasuga-dori and Kawagoe-kaido 3 10.0 

R9 Hakusan-dori and Nakasendo 3 6.3 

R10 Syowa-dori and Niko-kaido 5 11.6 

R11 Edo-dori and Mito-kaido 5 9.6 

R12 Kuramae-bashi-dori 5 10.1 

R13 Keiyo-doro 5 8.6 

R14 Kasaibashi-dori  5 7.5 

R15 Harumi-dori 3 2.7 

Total  97 253.2 

   note: Both ends of intersections name are as follows: 

     Start (End)    End (Start) 

    L1 Otorii     Minamitanaka-2-chome 

    L2 Omorihigashi    Kasairinkaikoen 

    L3 Kitashinagawa-2-chome  Nakajuku 

    R1 Yatsuyamabashi   Rokugobashi 

    R2 Hibiya     Tamagawabashi 

    R3  Miyakezaka    Seta 

    R4  Sakuradamon    Chofusyomae 

    R5 Shinjukudaiguardnishi  Tanashicho-1-chome 

    R6 Nishiochiai-1-chome  Igusa-3-chome 

    R7 Kudanshita    Sangendera 

    R8 Ikebukuro-mutsumatarikkyo Tosaibashi 

    R9 Nishisugamo    Funato 

    R10 Uenoekimae    Sujinbashi 

    R11 Marunouchi-1-chome  Kanamachi-3-chome 

    R12 Kuramae-1-chome   Ichikawabashi 

    R13 Ryogokubashi-nishizume  Yagochi 

    R14 Eitai-2-chome   Urayasubashi 

    R15 Iwaidabashi    Harumibashi-nishi 
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Table 2. Data of intersection included in L1: Kanjo-hachi-gosen 

 
Name of 

intersection 
Distance

[km] 
Number of
traffic light

Average speed [km/hour] 
0700−0800 1300−1400  1700−1800 

inner outer inner outer  inner outer

 Otorii    
section-1  1.8 12 15.8 20.4 15.0 14.2  16.1 10.7
 Minamikamata          
section-2  2.6 10 18.2 32.4 14.9 28.3  16.8 27.9
 Higashiyaguchi          
section-3  3.2 15 28.8 33.5 30.8 29.1  31.1 24.5
 Denenchofusyomae          
section-4  3.5 10 30.6 37.1 33.9 33.0  31.9 27.6
 Todorokihudoumae          
section-5  2.6 9 15.8 14.7 25.8 24.8  21.0 12.8
 Seta          
section-6  2.1 7 11.5 26.9 15.4 32.4  12.9 26.0
 Kanpachisetagaya          
section-7  4.0 12 20.7 25.5 25.4 20.7  24.0 12.6
 Kamitakaido-1chome          
section-8  4.1 20 10.1 26.9 21.9 18.7  20.7 14.8
 Shimendo          
section-9  2.6 15 18.0 15.4 21.3 13.5  20.0 13.2
 Minamitanaka-2chome          
           
 Total 26.5 110        
 Mean 2.9 12.2 18.8 25.9 22.7 23.9  21.6 18.9

Note: Data source is The Metropolitan Police Department Traffic Yearbook 2005 except number of traffic light, which is examined 

by Google Map ( http://maps.google.co.jp/ ).  
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Table 3. Descriptive statistics: 97 routes, 3 time intervals and 2 directions 

Variable Routes Directions 
Time 
Zones 

Mean 
Std. 
Dev.

Min Max 
Number 
of Obs. 

V 
(Speed) 

Loop 

Inner 
7--8 25.90 5.80 14.70 37.10 27 

13--14 24.42 5.20 13.50 33.20 27 
17--18 19.96 6.29 10.70 30.30 27 

Outer 
7--8 20.19 6.18 10.10 30.90 27 

13--14 23.66 5.73 14.80 33.90 27 
17--18 22.59 5.81 12.90 31.90 27 

        

Radial 

To center 
7--8 28.01 6.13 14.40 45.60 70 

13--14 23.05 4.42 14.00 32.10 70 
17--18 20.31 5.10 8.70 31.00 70 

To suburb 
7--8 20.23 6.80 5.90 36.30 70 

13--14 22.42 5.25 10.80 33.70 70 
17--18 22.89 5.75 9.70 36.60 70 

         

K 
(Density) 

Loop 

Inner 
7--8 0.14 0.06 0.06 0.29 27 

13--14 0.16 0.07 0.05 0.33 27 
17--18 0.17 0.07 0.06 0.32 27 

Outer 
7--8 0.16 0.07 0.06 0.32 27 

13--14 0.16 0.07 0.06 0.30 27 
17--18 0.17 0.07 0.07 0.32 27 

        

Radial 

To center 
7--8 0.24 0.15 0.07 0.86 70 

13--14 0.31 0.19 0.08 1.21 70 
17--18 0.35 0.26 0.10 1.94 70 

To suburb 
7--8 0.35 0.21 0.07 1.09 70 

13--14 0.33 0.19 0.07 0.94 70 
17--18 0.34 0.20 0.07 1.11 70 

         

DIR 
(Directions) 

     0 1 194 

SIG 
(Density of Signals) 

   4.72 1.75 0.81 13.00 97 

Note: V : average speed [km/hour]，K : density [number of vehicles /meter, hour, lane]，DIR : travel direction dummy variable as 1 if 

the section is outer direction (or direction to suburb), zero otherwise, SIG : density of signal [number of traffic light/distance] 
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Table 4. Spatial contiguity depending on directions (see figure 3) 

 

inner / to center outer / to suburb 

section-1 section-2 section-30 section-31 section-1 section-2 section-30 section-31

in
ne

r/
to

 

ce
nt

er
 

section-1 0 0 0 0 0 0 0 0 

section-2 1 0 1 0 0 0 0 1 

section-30 0 0 0 0 0 0 0 0 

section-31 1 0 1 0 0 1 0 0 

ou
te

r 
/ t

o 

su
bu

rb
 

section-1 0 0 1 0 0 1 0 1 

section-2 0 0 0 0 0 0 0 0 

section-30 1 0 0 0 0 1 0 1 

section-31 0 0 0 0 0 0 0 0 

 

 
Table 5. Testing the fixed effects and spatial autocorrelation 
 (1) Greenshield (2) Greenberg (3) Underwood (4) Drake 

 statistics p-value statistics p-value statistics p-value statistics p-value 

H1: Group Effect 5.699 [.000] 5.747 [.000] 5.193 [.000] 5.100 [.000] 

H2: Hausman Test 74.826 [.000] 76.923 [.000] 68.184 [.000] 65.385 [.000] 

H3: SMI 6.407 [.000] 6.422 [.000] 6.153 [.000] 6.134 [.000] 

H4: LM 12.607 [.000] 12.655 [.000] 11.593 [.001] 11.539 [.001] 
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Table 6. Speed-density relationship (G Model: Geenshields): Dependent variable is Vy  . 

 I  II III IV  V 
 Coef. p-value  Coef. p-value Coef. p-value Coef. p-value  Coef. p-value

const. -   - - -   23.328 [.000]
K −10.328 [.001]  −11.066 [.000] −27.850 [.000] −26.340 [.000]  −1.879 [.159]
D2 −0.494 [.661]  −0.567 [.627] - -   - 
D3 −4.874 [.000]  −4.887 [.000] - -   - 
D2DIR 5.560 [.000]  5.761 [.000] - -   - 
D3DIR 8.715 [.000]  8.766 [.000] - -   - 
D2SIG −0.593 [.006]  −0.598 [.007] - -   - 
D3SIG −0.302 [.182]  −0.288 [.190] - -   - 
FE () Yes   Yes Yes Yes   - 
 0.383   - 0.498 -   - 
H5: 

2 = 0 0.474 [.318]   0.293 [.385]    
R2 0.800   0.757 0.765 0.669   0.003 

 

Table 7. Speed-density relationship (B Model: Greenberg): Dependent variable is Vy  . 

 I  II III IV  V 

 Coef. P-value  Coef. P-value Coef. P-value Coef. P-value  Coef. P-value

const. -   - - -   21.644 [.000]

ln K −4.979 [.000]  −5.244 [.000] −12.526 [.000] −12.211 [.000]  −0.784 [.055]

D2 −0.325 [.773]  −0.425 [.716] - -   - 

D3 −4.642 [.000]  −4.659 [.000] - -   - 

D2DIR 5.072 [.000]  5.246 [.000] - -   - 

D3DIR 8.111 [.000]  8.128 [.000] - -   - 

D2SIG −0.531 [.014]  −0.527 [.017] - -   - 

D3SIG −0.225 [.320]  −0.203 [.352] - -   - 

FE () Yes   Yes Yes Yes   - 

 0.382   - 0.465 -   - 

H5: 
2 = 0 0.458 [.324]   0.266 [.395]    

R2 0.801   0.759 0.774 0.697   0.006 
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Table 8. Speed-density relationship (U Model: Underwood): Dependent variable is Vy ln . 

 I  II III IV  V 

 Coef. P-value  Coef. P-value Coef. P-value Coef. P-value  Coef. P-value

const. -   - - -   3.113 [.000]

K −0.432 [.005]  −0.464 [.003] −1.223 [.000] −1.146 [.000]  −0.094 [.142]

D2 0.012 [.834]  0.012 [.843] - -   - 

D3 −0.201 [.001]  −0.205 [.001] - -   - 

D2DIR 0.255 [.000]  0.266 [.000] - -   - 

D3DIR 0.424 [.000]  0.418 [.000] - -   - 

D2SIG −0.028 [.009]  −0.029 [.008] - -   - 

D3SIG −0.018 [.110]  −0.015 [.164] - -   - 

FE () Yes   Yes Yes Yes   - 

 0.453   - 0.520 -   - 

H5: 
2 = 0 1.188 [.117]   0.927 [.177]    

R2 0.927   0.739 0.922 0.653   0.004 

 

Table 9. Speed-density relationship (D Model: Drake): Dependent variable is Vy ln . 

 I  II III IV  IV 

 Coef. P-value  Coef. P-value Coef. P-value Coef. P-value  Coef. P-value

const. -   - - -   3.094 [.000]

K2 −0.136 [.074]  −0.156 [.045] −0.397 [.000] −0.361 [.000]  −0.065 [.250]

D2 0.004 [.946]  0.003 [.965] - -   - 

D3 −0.227 [.000]  −0.229 [.000] - -   - 

D2DIR 0.285 [.000]  0.290 [.000] - -   - 

D3DIR 0.448 [.000]  0.448 [.000] - -   - 

D2SIG −0.031 [.004]  −0.031 [.004] - -   - 

D3SIG −0.017 [.139]  −0.016 [.148] - -   - 

FE () Yes   Yes Yes Yes   - 

 0.404   - 0.561 -   - 

H5: 
2 = 0 1.244 [.107]   0.967 [.167]    

R2 0.917   0.735 0.901 0.620   0.002 
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Table 10. Critical density and speed 

Model Critical Density: cK  Critical Speed: cV  
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Table 11. Measured critical density of average 

  Inner / to center Outer /to suburb 

Routes Model 0700−0800 1300−1400 1700−1800 0700−0800 1300−1400 1700−1800 

Loop 
n = 27 

S 1.4 1.2 1.1 1.1 1.2 1.2 

B 16.6 9.5 5.3 5.9 9.2 9.5 

U 2.3 

D 1.9 

Radial 
n = 70 

S 1.5 1.3 1.2 1.2 1.3 1.3 

B 33.4 19.0 10.6 12.8 20.3 20.7 

U 2.3 

D 1.9 

 

Table 12. Measured critical speed of average 

  Inner / to center Outer /to suburb 

Routes Model 0700−0800 1300−1400 1700−1800 0700−0800 1300−1400 1700−1800 

Loop 
n = 27 

S 14.2 12.6 11.0 11.1 12.2 12.3 

B 5.0 

U 10.5 9.3 7.9 7.9 9.1 9.0 

D 16.5 14.3 12.1 12.1 14.0 14.0 

Radial 
n = 70 

S 15.0 13.4 11.9 11.9 13.0 13.1 

B 5.0 

U 11.3 10.0 8.5 8.4 9.6 9.6 

D 16.8 14.6 12.4 12.1 14.0 13.9 
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Figure 1. Idealized speed-density relationship 
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Figure 2. Observed routes and intersections 

 

 

Figure 3. Spatial linkage 
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Figure 4. Speed-density relationship:  

inner direction in loop routes at 0700-0800 hours 
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Figure 5. Speed-density relationship:  

direction to center in radial routes at 0700-0800 hours 
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Figure 6. Speed-density relationship of Underwood Model 

 

 


