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Experimental demonstration of a hard-type oscillator using a
resonant tunneling diode and its comparison with a soft-type
oscillator

Koichi MAEZAWA†a), Senior Member, Tatsuo ITO†, and Masayuki MORI†, Nonmembers

SUMMARY A hard-type oscillator is defined as an oscillator having
stable fixed points within a stable limit cycle. For resonant tunneling diode
(RTD) oscillators, using hard-type configuration has a significant advan-
tage that it can suppress spurious oscillations in a bias line. We have
fabricated hard-type oscillators using an InGaAs-based RTD, and demon-
strated a proper operation. Furthermore, the oscillating properties have
been compared with a soft-type oscillator having a same parameters. It has
been demonstrated that the same level of the phase noise can be obtained
with a much smaller power consumption of approximately 1/20.
key words: resonant tunneling diode, oscillator, hard-type oscillator, phase
noise, spurious oscillation

1. Introduction

Recently, there has been an increasing interest in THz wave
technology for various applications such as wireless commu-
nication, sensors [1]–[3], etc. This leads to attention to THz
oscillators. Among them resonant tunneling diode (RTD)
oscillators attract a great deal of attention as high perfor-
mance signal sources [4]–[8]. The RTD’s negative differen-
tial resistance (NDR) is a basis for simple oscillators. The
oscillation frequency of the RTD oscillators has been con-
tinuously increasing in this decade and now it exceeds 1.9
THz [9]–[11]. Applications to wireless communication have
been also investigated using RTD oscillators [12]–[14].

However, there are still some important issues for prac-
tical applications, since the RTD is a 2-terminal device.
Among them spurious oscillations in the bias line is one
of the most important issues [15]. We have recently pro-
posed to use "Hard-type" oscillator concept to overcome this
issue [16]–[20]. In this paper, we report on basic operation
of the hard-type oscillator fabricated with an InGaAs-based
RTD, and also discuss their stability compared with a soft-
type oscillator fabricated with same parameters.

2. Hard-type oscillator circuit

The hard-type oscillators are defined as the oscillators having
stable fixed points within a stable limit cycle [21]. This
means that no self-excitation of the oscillation occurs. This
is advantageous to avoid spurious oscillation if we add a
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Fig. 1 Hard-type oscillator using an RTD with a capacitor-coupled trigger
input.

Table 1 Circuit parameters
𝑅b 30Ω
𝐶b 10 pF
𝐶r 10 pF
𝐶c 1 pF

RTD Area 20 𝜇m2

RTD Peak Current Density 1 × 105 A/𝜇m2

Microstrip Line 50Ω, 4.5mm

trigger circuit to excite only the desired oscillation.
Figure 1 shows the hard-type oscillator we investigate

here. It is a simple RTD oscillator whose resonator is con-
sisting of a capacitor, 𝐶r, and a transmission line. It has a
series resistor, 𝑅b, in the bias line, which hides the NDR of
the RTD from the bias line. The 𝐿b is a parasitic inductance
in the bias line.

The resistor, 𝑅b, suppresses the spurious oscillation in
the bias line, however, it also prevents the RTD being biased
in the NDR region. Therefore, no oscillation begins when
the voltage corresponding to the NDR region is applied. To
excite oscillation a trigger pulse should be applied to the
resonator. For this purpose, various types of the trigger cir-
cuit have been proposed, which use a high electron mobility
transistor (HEMT) [16], a Schottky diode [18], [19], or a
capacitor [20]. Here, we chose a most simple solution, the
capacitor-coupled trigger.

A voltage pulse to the trigger input pushes the oscil-
lation node voltage apart from the stable fixed points, and
makes the oscillation begin. When the oscillation occurs,
the capacitor, 𝐶b, stabilizes the bias terminal.

Simple circuits were fabricated using an InGaAs-based
RTD on a printed circuit board (PCB) to demonstrate the ba-
sic operation. The RTD was fabricated with standard photo
lithography and liftoff process. The details were shown in
the reference [22]. The RTD was connected by wire bond-
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Fig. 2 Output spectra of the hard-type oscillator. a) Before triggering, b)
Under periodic pulse application, c) After triggering, d) Magnified view of
the oscillation peak. 𝑥-axis: a), b), c) 0 to 3GHz with 300MHz/div, d) 100
kHz/div, 𝑦-axis: 10 dB/div.

ing, and 1005-type (mm) chip devices were used for the
capacitors and resistors. To eliminate the effects of bonding
wires and for ease of the measurement, relatively low res-
onant frequency of 1 GHz was chosen. Circuit parameters
are shown in Table 1. We think that the results discussed
in this paper is also valid for higher frequency oscillators,
because the same equivalent circuit well describes the oper-
ation of the oscillators at THz frequency range [10]. For the
circuit configuration, we employed a microstrip transmis-
sion line instead of an inductor for future higher frequency
experiments. The equivalent inductance was about 1.4 nH
at 1 GHz. From this value the characteristic impedance of
the resonator is calculated to be 12 Ω, which is defined as√
(𝐿/𝐶). This small impedance value ensures harmonic os-

cillation [23], and it is similar to those calculated from the
parameters reported for THz oscillators [24], [25]. A soft-
type oscillator having a parallel stabilizing resistor of 5Ω in
place of the series resistor was also fabricated with the same
parameters for comparison.

3. Results and discussion

First, we tested the basic operation of the hard-type oscillator.
The current-voltage characteristics of the bias terminal show
a large hysteresis due to the series connected bias line resistor
of 30 Ω. This hysteresis disables the RTD to be biased in
the NDR region.

The measured spectra of the hard-type oscillator are
shown in Fig. 2. As shown in a), no oscillation was observed
even though the bias voltage corresponding to the hysteresis
region was applied to the circuit.

Then we applied periodic pulse signal to the circuit.
The pulse height and width were 800 mV and 1 ns respec-
tively, with 35 ps rise and fall times. The repetition rate
was set to 100 MHz. Fig. b) shows the spectrum while the
pulses are fed. A strong peak at the resonant frequency was
observed among broad and noisy signals. This peak remains
after the pulse signal input was stopped as shown in Fig. c),
which indicates the circuit is in the oscillation state. Once
the oscillation begins, stable oscillation persists while the

Fig. 3 Minimum trigger pulse height required for oscillator excitation as
a function of the pulse width.

bias voltage is in the hysteresis region. Figure 2 d) shows
the magnified view of the spectrum. The oscillation peak is
sharp, and no spurious oscillation was observed. This stable
oscillation can be obtained with a small current of approxi-
mately 10 mA, which corresponds to the power consumption
of 12 to 13 mW. It is noted here that the periodic pulses in
Fig. 2 (b) are not necessary and a single-pulse can excite
the oscillator. The oscillation spectrum is the same for both
conditions. This is a natural consequence of the fact that
there is only one limit cycle in this system.

Next, we investigated the trigger pulse condition for
proper operation. Figure 3 shows the minimum pulse height
required for triggering the oscillation as a function of the
pulse width. It has an interesting dependence showing a val-
ley at about 0.5 ns. This pulse width corresponds to the half
period of the oscillation. This dependence can be explained
as follows. First, current pulse is induced when the pulse
voltage rises. This excites the circuit to begin oscillation.
Next, when the pulse voltage falls, the current pulse with
opposite direction flows. This enhances the excitation if it
occurs at the opposite phase of the oscillation, while it sup-
press the excitation if the phase of the oscillation is the same
as the first current pulse. Consequently, the minimum pulse
height can be obtained when the pulse width equals to half
the oscillation period.

Finally, we compared the properties of the hard-type
oscillator with a soft-type oscillator fabricated with the same
parameters. The fabricated soft-type oscillator shows stable
oscillations at around 0.99 GHz. It consumes much larger
power, approximately 210mW. About 95 % of this power
was consumed at the stabilization resistor.

Regarding the stability of the oscillators, one of the
most important properties is a phase noise [26]–[28], which
governs the performance of the communication systems, sen-
sors [29]–[31], etc., using the oscillators. Figure 4 shows the
oscillation frequency and the phase noise at the offset fre-
quency of 100 kHz as a function of the bias voltage. The bias
voltage region for oscillation are 0.86 to 1.09 V, and 1.16 to
1.31 V for soft- and hard-type oscillators, respectively. Due
to the series resistor, the voltage region of the hard-type
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Fig. 4 Oscillation frequency and phase noise of the soft- and hard-type
oscillators having the same circuit parameters. The offset frequency of the
phase noise is 100 kHz.

oscillator shifts to higher voltages. Both oscillators show
relatively small dependence of the oscillation frequency on
the bias voltage, which indicates the oscillation is not relax-
ation mode but harmonic mode [23], [32].

For the soft-type oscillator the phase noise is large
at around the smallest voltage, where the oscillator shows
slightly unstable behavior with spurious oscillations. This is
due to a large negative differential conductance (small NDR)
just above the peak voltage, because 5Ω stabilization resis-
tance is not enough to compensate NDR here. Decreasing
the resistance can suppress this instability, however, it in-
creases the power consumption. Except above region, soft-
and hard-type oscillators show almost the same phase noise.
It should be noted that the same level of frequency stability
can be obtained for the hard-type oscillator even though the
power consumption is approximately 1/20.

4. Conclusion

A hard-type oscillator was fabricated with an InGaAs-based
RTD. It has a capacitor-coupled trigger input for excite oscil-
lation. Proper triggering and stable oscillation were demon-
strated with this circuit. Next, details of triggering operation
were investigated, and it was found that the minimum pulse
height required for exciting the oscillation can be obtained
when the pulse width equals to half the oscillation period.
Finally, phase noise property was compared to that of the
soft-type oscillator having the same circuit parameters. It
was demonstrated that the same phase noise can be obtained
with a much smaller power consumption of approximately
1/20.
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