IEICE TRANS. ??, VOL.Exx-??, NO.xx XXXX 200x

[BRIEF PAPER

Effects of oscillator phase noise on frequency delta sigma
modulators with a high oversampling ratio for sensor applications

Koichi MAEZAWA ', Senior Member and Masayuki MORI', Nonmember

SUMMARY  Frequency delta sigma modulation (FDSM) is a unique
analog to digital conversion technique featuring large dynamic range with
wide frequency band width. It can be used for high performance digital-
output sensors, if the oscillator in the FDSM is replaced by a variable
frequency oscillator whose frequency depends on a certain external physical
quantity. One of the most important parameters governing the performance
of these sensors is a phase noise of the oscillator. The phase noise is an
essential error source in the FDSM, and it is quite important for this type of
sensors because they use a high frequency oscillator and an extremely large
oversampling ratio. In this paper, we will discuss the quantitative effects of
the phase noise on the FDSM output on the basis of a simple model. The
model was validated with experiments for three types of oscillators.
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1. Introduction

Frequency delta-sigma modulation is a unique analog-to-
digital conversion technique based on a voltage controlled
oscillator (VCO) [1]-[11]. This technique requires no feed-
back digital-to-analog converter nor integrator restricting the
operation frequency of the conventional delta-sigma modu-
lators (DSMs). It features very high operating frequencies
together with the advantages of conventional DSMs, such as,
a wide dynamic range and high signal-to-noise ratio (SNR)
without using high-precision analog components [12]-[15].
One of the main applications of the FDSM is to use it as a
multiple-valued quantizer in higher order DSMs.

The FDSM can also be used for digital output sensors
when the VCO is replaced by the oscillator whose oscillation
frequency depends on an external physical parameter. The
oversampling ratio (OSR) of such sensors should be very
large to obtain high SNR, because the FDSM works only
as a first order DSM. Moreover, to make use of such large
OSRs, the oscillation frequency of the oscillator should be
also high, in the microwave to millimeter wave frequency
range. We have already proposed and demonstrated such
sensors using a high electron mobility transistor (HEMT)
and a resonant tunneling diode (RTD) [16]-[20]. However,
such high frequency oscillators are often deteriorated by
phase noise [21]-[24]. It is, thus, important to know the
effects of the phase noise of the oscillator on the high OSR
FDSM. Though M. Hgvin et al. [1], [25] has mentioned that
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Fig.1  Block diagram of the frequency delta-sigma modulator.

the phase noise should be first-order noise shaped, details
are not yet clear. In this paper, we propose a simple model
and a formulation of the effects of the phase noise on the
FDSM. This makes it possible to compare the effects of the
phase noise with those of the quantization noise directly. Its
validity is demonstrated with experimental results.

2. Modeling of the phase noise in FDSM
2.1 Frequency delta-sigma modulation

A simplified block diagram of an FDSM is shown in Fig. 1.
It consists of a VCO, a binary quantizer, a register, and an
XOR gate. The oscillator outputs a frequency modulation
(FM) signal, which can be easily converted to the pulse
density modulation (PDM) digital signal using a register
and an XOR. The FDSM has a significant advantage that it
has no feedback loop nor integrator restricting the operation
frequency, in addition to the features of the conventional
DSMs.

2.2 Phase noise model

First, to clarify the effects of the phase noise, one must
distinguish high frequency white noise and low frequency
S~ noise (@ 2 1), where f is an offset from the carrier
frequency [26]. The former can be modified by the noise
shaping, and it has little effects on the output of the FDSM
sensors [25]. On the other hand, the latter noise has a sig-
nificant effects on the output signal. These noises can be
regarded as frequency fluctuation, so that it cannot be distin-
guished from the input signal for the FDSM.

We model the f~% noise as the modulation of the os-
cillator’s frequency by many independent oscillators with an
amplitude of ay [27], [28], which are distributed uniformly
in the frequency range with an interval of the frequency fp, as
shown in Fig. 2. The sinusoidal input signal is assumed and
also shown in the figure. The output voltage of the oscillator,
V (1), is expressed by
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Fig.2 A model of phase noise source by uniformly distributed oscillators.

V(t) = Vysin (27r /Ot(fC + fN(T))d‘r) . (1)

Here, Vy, f., fn(7) are the output voltage amplitude, carrier
frequency, and frequency fluctuation due to the f~¢ noise,
respectively. For simplicity, the signal source is excluded in
this equation. The frequency noise is modeled as

(@) = ax sin(2rk for+¢i). @
k

Here, ¢y is a random initial phase of each oscillator. Substi-
tuting eq. 2 in eq. 1, we obtain

V(1) = Vosin |2 fer =) :—]’j cos(2rk fot+di)+do| . (3)
% 0

Here,
ag
= — 4
$o Ek o cos(¢x) 4)

is a total initial phase component. We assume that the noise
is so small that first order approximation, sin(x+48) ~ sinx+
0 cos x, can be used. Then, the output voltage becomes

V(t) ~ Vosin(2x fot + ¢p)
Vo cos(2m fet + ¢o) Z Z—k cos(2mk fot + dy)
— kfo

= Vo sin(2r fot + ¢o)
V() ag
SLONY K feos 2r(f + k
5 Zk] oy (08 (et kfo)t + o+ 60)
+cos (2n(fe — kfo)t + ¢o — ¢i)}- (5)

This indicates that the noises with the amplitude of
Voar /(2k fo) are added at the frequency f. + kfy. Con-
sequently, the phase noise £ ( f) can be obtained by dividing
the squared noise amplitudes by carrier power and fj.

a(f)?
4ffo’
where a(f) = ay for kfy < f < (k+1)fo. When all of

the oscillator amplitudes, ag, are identical, this yields -20
dB/dec dependence for the L(f).

L(f) = (6

2.3 Noise in the FDSM output spectrum

The frequency fluctuation by phase noise can not be distin-
guished from the signal, and it makes the noise floor in the
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output signal spectrum as implicated in Fig. 2. To clarify the
relation between the phase noise and the noise in the FDSM
output, we use a simple approximation.

We assume that the sampling frequency is so high that
the output of the FDSM can be approximated by a continuous
pulse density function PD(z) as

£ _2f()
2R

Here, f(¢), f; are the instantaneous frequency of the oscil-
lator and the sampling frequency, respectively. The output
of the FDSM is 1111... for f(z) = f;/2, while it is 0000...
for f(t) = 0or f(t) = f;. This indicates that full-scale input
is fs/4 at the center frequency of f. = f;/4. Therefore, with
the full-scale sinusoidal input, the PD(¢) is expressed as,

PD(7) = @)

PD(t)= 2

7 fc+§sin(27rfsigt)+;aksin(27rkf0t+¢k) .

®)

The 3rd term in the parenthesis indicates that the noise of
power density ai/ (2fo) per Hz is added to the FDSM signal
at the frequency, k fy. To compare this with the quantization
noise, we normalize this noise by the full-scale range, f;/4.

(f) = a(f)*/(2fo) _ 16a(f)* _ 64fL(f) ©)
Py AD22 7 f2h 12
This equation relates the phase noise, L(f), to the noise
floor of the FDSM output, p,(f). For identical a;’s, L(f)
is proportional to f -2 5o that, the FDSM noise due to the
phase noise is constant.

2.4 Quantization noise

To compare the noise floor due to the phase noise, the quan-
tization noise should also be normalized to the full-scale
range. Noise power density of the first order DSM is given
by [29]

2A? nf

So(f) = sinz(—) (10
AT V7

where, the A is a quantization step. The quantization noise

power density can be obtained by dividing So(f) by full-

scale power of 1bit quantizer as

16 ., (nf\ 16x%f2
PQ(f)=3—szm2(f): T (11)

2.5 Phase noise of the sampling clock

The phase noise of the sampling clock can also be analyzed
by the similar model. The pulse density function PD(¢)
including frequency fluctuation of both the carrier frequency,
A f., and the sampling clock, A f;, can be expressed as
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Fig.3  Comparison of the FDSM noises for three types of oscillators. The figures show the measured
phase noise, calculated FDSM noise power, and the measured FDSM noise power, from top to bottom,
respectively. Moving averages are also plotted in the top and bottom figures. Left column:resonant
tunneling diode oscillator (1.25 GHz) [20], Center column:Keysight 83650L CW Generator (250 MHz),
Right column:Crystek CRBSCS-01-250.000 clock source (250 MHz). The measured phase noise of the
Crystek clock source is limited by the noise floor of the spectrum analyzer (-117dBc/Hz).
PD(/) = 2fc +Afe N 2 fot Afo— Je Af, (12) FDSM circuit comprises a high-frequency sampler, an edge
fi+Afs € N detector, and a digital-filter. A high-frequency transceiver

This indicates that the effect of A f; is smaller than that of
the A f; by a factor of (f./f;). Thus, the noise power density
due to the phase noise of the sampling clock is expressed as

poc(f) = L) (L)
¥s ‘fs2 f‘s

This indicates that the lower carrier frequency is ad-
vantageous for suppressing the phase noise effects of the
sampling clock. However, in general case, higher oscilla-
tion frequency leads to larger frequency modulation width,
which enhances the sensitivity. Therefore it is advantageous
to down-convert high frequency FM signal.

13)

3. Experiments

We have measured the phase noise of various types of os-
cillators, and calculated the noise properties of the FDSM
from these phase noise data. Then, these noises were com-
pared with the outputs of the FDSM employing these oscilla-
tors. For this purpose, we fabricated a 10Gb/s-class sampling
FDSM circuit on a field programmable gate array (FPGA).
We used the FPGA evaluation board, Xilinx ZCU-102. The

module was used for the sampling circuit, which could be
operated at a sampling rate of as high as 16.3 Gb/s. Here, the
sampling rate was chosen to be 12.582912 Gb/s, which corre-
sponds to a oversampling ratio of 2! for a signal bandwidth
of 96 kHz. The details of the FDSM circuit are described in
the previous paper [20], [30].

Figure 3 shows examples of the results. The figures
show the measured phase noise, calculated FDSM noise
power, and the measured FDSM noise power, from top to
bottom, respectively. The phase noises were measured us-
ing Keysight 8565EC spectrum analyzer. The FDSM noise
powers were corrected using the effective noise band width
(ENBW), and they were plotted per Hz. Three types of os-
cillators are shown in the figure. The left column shows the
results of the RTD oscillator used for the delta-sigma modu-
lation microphone sensor [20]. It consists of an RTD and a
disk-shaped microstrip resonator on FR-4 substrate. It shows
relatively high phase noise with a simple -20 dB/dec-like de-
pendence, and it was difficult to measure under 1 kHz. The
calculated FDSM noise power is as large as -170 dBFS at
high frequency, and increases slightly when decreasing the
frequency. This is in good agreement with the experimental
result shown in the bottom figure.



The center column shows the results of the Keysight
83650L CW generator. The generator shows much smaller
phase noise. It also shows a unique step-like structure at
around 40 kHz and small peak at 3 kHz because of the phase
locked loop (PLL). In the calculated FDSM noise power, it
is shown that the phase noise dominates at frequencies lower
than 40 kHz, while the quantization noise dominates higher
than this frequency. The calculated noise power also agrees
well with the measured value.

The right column shows the results of Crystek
CRBSCS-01-250.000 crystal oscillator. This has very small
phase noise, and the calculated FDSM noise is also very
low. It is shown that the FDSM noise due to the phase noise
is much smaller than the quantization noise at frequencies
higher than 1 kHz. As shown in the bottom figure, the FDSM
noise agrees well with the calculated quantization noise at
nearly all frequencies. This indicates that the FDSM noise
can be further reduced by increasing the sampling frequency.

It is noted that the phase noise of the sampling clock
has no noticeable effect on the FDSM noise floor because of
relatively small carrier frequency as discussed in 2.5.

4. Conclusion

Effects of the phase noise on the FDSM is discussed. Sim-
ple model of the FDSM noise is proposed to evaluate them
quantitatively. The validity of the model is demonstrated
with three types of oscillators.
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