Toyama Math. J. Vol. 40(2018 · 2019), 37-43

A remark on algebraic addition theorems

Yukitaka Abe

Abstract. Let K be a subfield of the meromorphic function field on \mathbb{C}^n which has the transcendence degree n over \mathbb{C} . There are two ways of stating an algebraic addition theorem for K. The author wrote the relation of these two ways in a book [Toroidal Groups, Yokohama Publishers, Inc., Yokohama, 2018]. However, the explanation was too rough. In this paper, the detailed complete proof is given.

1. Introduction

Let $\mathcal{M}(\mathbf{C}^n)$ be the field of meromorphic functions on \mathbf{C}^n . We studied and determined an algebraic function field $K(\subset \mathcal{M}(\mathbf{C}^n))$ of *n* variables over \mathbf{C} ([1, 2]). This study makes Weierstrass' statement established and clear. Weierstrass' statement is stated in [6] as follows:

Tout système de n fonctions (indépendantes) à n variables qui admet un théorème d'addition est une combinaison algébrique de n fonctions abéliennes (ou dégénérescences) à n arguments et aux mêmes périodes.

We consider the following condition (T) for a subfield K of $\mathcal{M}(\mathbb{C}^n)$.

(T) K is finitely generated over C and $\text{Trans}_{\mathbf{C}}K = n$.

If K satisfies condition (T), then there exist $f_0, f_1, \ldots, f_n \in K$ such that $K = \mathbf{C}(f_0, f_1, \ldots, f_n)$ and f_1, \ldots, f_n are algebraically independent

 $^{2010 \} Mathematics \ Subject \ Classification. \ \ 32A20 \ .$

 $Key\ words\ and\ phrases.$ algebraic addition theorem, algebraic function fields of n variables .

over **C**. To simplify the description, we write $\mathbf{C}(F) = \mathbf{C}(f_0, f_1, \ldots, f_n)$ and $\mathbf{C}(F_1) = \mathbf{C}(f_1, \ldots, f_n)$ setting $F := \{f_0, f_1, \ldots, f_n\}$ and $F_1 := \{f_1, \ldots, f_n\}$. Furthermore we write

$$\mathbf{C}(F(x), F(y)) = \mathbf{C}(f_0(x), f_1(x), \dots, f_n(x), f_0(y), f_1(y), \dots, f_n(y)),$$

where $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are two independent tuples of n complex variables. We note that there are two ways of stating an algebraic addition theorem. The first one is the following.

Definition 1. Let $K = \mathbf{C}(F)$ be as above. We say that K admits (AAT) if $f_j(x+y) \in \mathbf{C}(F(x), F(y))$ for any j = 0, 1, ..., n.

The above definition is independent of the choice of generators f_0, f_1, \ldots, f_n (cf. Lemma 6.2.2 in [3]).

An algebraic addition theorem stated in Weierstrass' original statement is slightly different. That is the following type.

Definition 2. Let $f_1, \ldots, f_n \in \mathcal{M}(\mathbb{C}^n)$ be algebraically independent over **C**. We say that f_1, \ldots, f_n admit (AAT^{*}) if $f_j(x + y)$ is algebraic over $\mathbb{C}(F_1(x), F_1(y))$ for all $j = 1, \ldots, n$.

We assume that algebraically independent functions $f_1, \ldots, f_n \in \mathcal{M}(\mathbb{C}^n)$ admit (AAT*). Let $K/\mathbb{C}(F_1)$ be a finite algebraic extension. If $g_1, \ldots, g_n \in K$ are algebraically independent, then g_1, \ldots, g_n admit (AAT*) (Lemma 6.2.6 in [3]). Therefore, (AAT*) for subfields K is defined as follows.

Definition 3. Let K be a subfield of $\mathcal{M}(\mathbb{C}^n)$ satisfying condition (T). We say that K admits (AAT^{*}) if there exist $f_1, \ldots, f_n \in K$ algebraically independent over \mathbb{C} such that f_1, \ldots, f_n admit (AAT^{*}).

The following proposition is immediate from the definitions.

Proposition 1 (Proposition 6.2.8 in [3]) Let K be a subfield of $\mathcal{M}(\mathbb{C}^n)$ satisfying condition (T). If K admits (AAT), then it admits (AAT^{*}).

The converse is the following theorem.

Theorem 1 (Proposition 6.2.9 in [3]) Let K be a subfield of $\mathcal{M}(\mathbb{C}^n)$ satisfying condition (T). If K admits (AAT^{*}), then there exists an algebraic extension \widetilde{K} of K such that \widetilde{K} admits (AAT).

The statement of the above theorem is correct. However, the proof in [3] was written too roughly. Recently, Baro, de Vicente and Otero [4] published an extension result for maps admitting an algebraic addition theorem. We note that a similar argument is needed to complete the proof of the above theorem. In [4] they considered germs of meromorphic maps. Therefore, they had to investigate carefully domains of convergence. Our objects are meromorphic functions on \mathbb{C}^n . Then, some parts of their argument are not needed in our case. Although Theorem 1 is considered as a corollary of the main theorem of [4], we will give the detailed proof of Theorem 1 modifying their argument.

2. Proof of Theorem 1

We assume that a subfield K of $\mathcal{M}(\mathbb{C}^n)$ satisfies condition (T) and admits (AAT^{*}) through this section. We set $K = \mathbb{C}(F)$, where $F = \{f_0, f_1, \ldots, f_n\}$ and f_1, \ldots, f_n are algebraically independent over \mathbb{C} .

Lemma 1. There exists an open dense subset Ω of \mathbb{C}^n such that for any $f \in K$, f(x + a) is algebraic over K for all $a \in \Omega$.

Proof. Let P_{f_i} be the polar set of f_i for i = 0, 1, ..., n. We set $P_F := \bigcup_{i=0}^n P_{f_i}$. Since K admits (AAT*), $f_j(x+y)$ is algebraic over $\mathbf{C}(F_1(x), F_1(y))$ for any j = 1, ..., n. Then there exists a non-zero polynomial of the minimal degree

$$P_j(X) = \sum_{k=0}^{m_j} A_k^{(j)}(x, y) X^k$$

with $A_k^{(j)}(x,y) \in \mathbf{C}[f_1(x), \ldots, f_n(x), f_1(y), \ldots, f_n(y)]$ such that $A_0^{(j)}(x,y), A_1^{(j)}(x,y), \ldots, A_{m_j}^{(j)}(x,y)$ have no common divisor except constants and $P_j(f_j(x+y)) = 0$. We define

$$N_j := \{a \in \mathbf{C}^n \setminus P_F; A_k^{(j)}(x, a) = 0, k = 0, 1, \dots, m_j\}$$

and $N := \bigcup_{j=1}^{n} N_j$. If we set $\Omega := \mathbb{C}^n \setminus (P_F \cup N)$, then Ω is an open dense subset of \mathbb{C}^n . Take any $a \in \Omega$. By the definition of Ω , $f_j(x+a)$ is algebraic over K for any j = 1, ..., n. Since $f_0(x+a)$ is algebraic over $\mathbb{C}(F_1(x+a))$, it is algebraic over K.

Lemma 2. For any $f \in K$, f(-x) is algebraic over K.

Proof. It suffices to show that $f_j(-x)$ is algebraic over K for any j = 0, 1, ..., n.

By the assumption, $f_j(x + y)$ is algebraic over $\mathbf{C}(F(x), F(y))$. Therefore we have $\operatorname{Trans}_{\mathbf{C}}\mathbf{C}(F(x), F(y), F(x + y)) = 2n$. On the other hand we have $\operatorname{Trans}_{\mathbf{C}}\mathbf{C}(F(x), F(x + y)) = 2n$. Hence $f_j(y)$ is algebraic over $\mathbf{C}(F(x), F(x + y))$. Take $a \in \Omega$. Let y = -x + a. Then $f_j(-x + a)$ is algebraic over $\mathbf{C}(F(x), F(a)) = K$. Substituting x + a for x, we obtain that $f_j(-x)$ is algebraic over $\mathbf{C}(F(x + a))$. By Lemma 1, $f_i(x + a)$ is algebraic over K for all $i = 0, 1, \ldots, n$. Thus we conclude that $f_j(-x)$ is algebraic over K.

Lemma 3. There exist a finite subset C of $\Omega \cup \{0\}$ with $0 \in C$ and C = -C, and a finite number of functions $A_0, A_1, \ldots, A_N \in \mathbb{C}(\{F(x + a), F(y + a); a \in C\})$ satisfying the following conditions.

(a) For any $f \in K$, f(x+y) is algebraic over $\mathbf{C}(A_0, A_1, \dots, A_N)$. (b) For any $j = 0, 1, \dots, N$ we have

$$A_j(x,y) = A_j(x+a,y-a) \tag{1}$$

for any $a \in \mathbf{C}^n$.

Proof. Take any i = 0, 1, ..., n. We set $\mathcal{S}_0^{(i)} := \{0\}$ and $K_0^{(i)} := \mathbf{C}(F(x), F(y))$. Let

$$P_0(X) = X^{\ell_0+1} + \sum_{j=0}^{\ell_0} A_{0,j}^{(i)}(x,y) X^j, \quad A_{0,j}^{(i)}(x,y) \in K_0^{(i)},$$

be the minimal polynomial of $f_i(x+y)$ over $K_0^{(i)}$. If all of $A_{0,j}^{(i)}$ satisfy (1), then we denote $\mathcal{C}^{(i)} := \mathcal{S}_0^{(i)}$ and $A_j^{(i)}(x,y) := A_{0,j}^{(i)}(x,y)$ for $j = 0, 1, \ldots, \ell_0$. Otherwise, there exists $a_1 \in \mathbb{C}^n$ such that

$$Q_0(X) := P_0(X) - \left(X^{\ell_0 + 1} + \sum_{j=0}^{\ell_0} A_{0,j}^{(i)}(x + a_1, y - a_1) X^j \right) \neq 0.$$

Since Ω is dense in \mathbb{C}^n , we may assume $a_1 \in \Omega$. We set $\mathcal{S}_1^{(i)} := \mathcal{S}_0^{(i)} \cup \{a_1, -a_1\}$ and $K_1^{(i)} := \mathbb{C}(\{F(x+a), F(y+a); a \in \mathcal{S}_1^{(i)}\})$ in this case. Then $K_0^{(i)} \subset K_1^{(i)}$ and $f_i(x+y)$ is algebraic over $K_1^{(i)}$. We take the minimal polynomial

$$P_1(X) = X^{\ell_1+1} + \sum_{j=0}^{\ell_1} A_{1,j}^{(i)}(x,y) X^j$$

of $f_i(x+y)$ over $K_1^{(i)}$. Since deg $Q_0 < \ell_0 + 1$, we have deg $P_1 < \deg P_0$. If all of $A_{1,j}^{(i)}$ satisfy (1), then we set $\mathcal{C}^{(i)} := \mathcal{S}_1^{(i)}$ and $A_j^{(i)} := A_{1,j}^{(i)}$ for $j = 0, 1, \ldots, \ell_1$.

If it is not the case, we repeat the above procedure. Then we obtain sequences $\{S_k^{(i)}\}, \{K_k^{(i)}\}$ and $\{Q_k\}$ such that $S_k^{(i)} = S_{k-1}^{(i)} \cup \{a+a_k, a-a_k; a \in S_{k-1}^{(i)}\}$ for some $a_k \in \Omega$ with $Q_{k-1}(X) \neq 0$ and $K_k^{(i)} = \mathbb{C}(\{F(x+a), F(y+a); a \in S_k^{(i)}\})$. If $Q_{k-1}(X) \neq 0$, then deg $Q_k < \deg Q_{k-1}$. Therefore, this procedure stops by a finite number of steps. Let *s* be the first number with $Q_s(X) = 0$. Then for the minimal polynomial

$$P_s(X) = X^{\ell_s+1} + \sum_{j=0}^{\ell_s} A_{s,j}^{(i)}(x,y) X^j$$

of $f_i(x+y)$ over $K_s^{(i)}$, the coefficients $A_{s,0}^{(i)}, A_{s,1}^{(i)}, \ldots, A_{s,\ell_s}^{(i)}$ satisfy (1). We set $\mathcal{C}^{(i)} := \mathcal{S}_s^{(i)}$ and $A_j^{(i)} := A_{s,j}^{(i)}$ for $j = 0, 1, \ldots, N_i$, where we write $N_i = \ell_s$. Let $\mathcal{C} := \bigcup_{i=0}^n \mathcal{C}^{(i)}$ and $\{A_0, A_1, \ldots, A_N\} := \bigcup_{i=0}^n \{A_0^{(i)}, A_1^{(i)}, \ldots, A_{N_i}^{(i)}\}$. Then we obtain the desired conclusion.

Proof of Theorem 1. Let \mathcal{C} and $A_0, A_1, \ldots, A_N \in \mathbf{C}(\{F(x+a), F(y+a); a \in \mathcal{C}\})$ be as in Lemma 3. Take $b \in \mathbf{C}^n$ such as $A_j(x, b) \in \mathcal{M}(\mathbf{C}^n)$ for all $j = 0, 1, \ldots, N$. We define $\Omega_0 := \bigcap_{c \in \mathcal{C}} (\Omega - b - c)$. Then Ω_0 is also an open dense subset of \mathbf{C}^n . Let $B_j(x) := A_j(x, b)$ for $j = 0, 1, \ldots, N$. We define two fields \widetilde{K} and L by

$$\widetilde{K} := \mathbf{C}(\{B_j(x+a), B_j(-x+a); a \in \Omega_0, j=0, 1, \dots, N\})$$

and

$$L := \mathbf{C}(\{F(x+c), F(-x+c); c \in \mathcal{C}\}).$$

Yukitaka Abe

We show that $\widetilde{K} \subset L$ and any $f \in \widetilde{K}$ is algebraic over K. From (1) it follows that for any $a \in \mathbb{C}^n$

$$A_j(x+a,b) = A_j(x,a+b) \tag{2}$$

for j = 0, 1, ..., N. Let $a \in \Omega_0$. Since $a + b + c \in \Omega$ for any $c \in C$, we have $B_j(x + a) = A_j(x, a + b) \in \mathbb{C}(\{F(x + c); c \in C\})$. By Lemma 1, any element of $\mathbb{C}(\{F(x + c); c \in C\})$ is algebraic over K. Because of $\mathcal{C} = -\mathcal{C}$, we have that $B_j(-x + a) \in \mathbb{C}(\{F(-x + c); c \in C\})$ and any element of $\mathbb{C}(\{F(-x+c); c \in C\})$ is algebraic over $\mathbb{C}(F(-x))$. Since $f_j(-x)$ is algebraic over K for j = 0, 1, ..., n (Lemma 2), any element of $\mathbb{C}(\{F(-x+c); c \in C\})$ is algebraic over K.

Next we show that \widetilde{K} admits (AAT). Since $\operatorname{Trans}_{\mathbf{C}}\widetilde{K} = n$, we can take $g_0, g_1, \ldots, g_n \in \widetilde{K}$ such that $\widetilde{K} = \mathbf{C}(G)$ and g_1, \ldots, g_n are algebraically independent over \mathbf{C} . Let $f \in \widetilde{K}$. It is obvious by the definition of \widetilde{K} that $f(x+a) \in \widetilde{K}$ for any $a \in \Omega_0$. We define g(x,y) := f(x+y). Then, $g(x,a) \in \mathbf{C}(G(x))$ for any $a \in \Omega_0$. Similarly, we have $g(a,y) \in \mathbf{C}(G(y))$ for any $a \in \Omega_0$. It follows from Theorem 3 in [5] (the proof is the same as that of Theorem 6.6.5 in [3]) that $f(x+y) = g(x,y) \in \mathbf{C}(G(x), G(y))$ on $\Omega_0 \times \Omega_0$. Since $\Omega_0 \times \Omega_0$ is an open dense subset of $\mathbf{C}^n \times \mathbf{C}^n$, it holds on $\mathbf{C}^n \times \mathbf{C}^n$ by the uniqueness theorem.

References

- Y. Abe, A statement of Weierstrass on meromorphic functions which admit an algebraic addition theorem, J. Math. Soc. Japan, 57(2005), 709-723.
- [2] Y. Abe, Explicit representation of degenerate abelian functions and related topics, Far East J. Math. Sci. (FJMS), 70(2012), 321-336.
- [3] Y. Abe, Toroidal Groups, Yokohama Publishers, Inc., Yokohama, 2018.
- [4] E. Baro, J. de Vicente and M. Otero, An extension result for maps admitting an algebraic addition theorem, J. Geom. Anal., 29(2019), 316-327.

- [5] S. Bochner, On the addition theorem for multiply periodic functions, Proc. Am. Math. Soc., 3(1952), 99-106.
- [6] P. Painlevé, Sur les fonctions qui admettent un théorème d'addition, Acta Math., 27(1903), 1-54.

Yukitaka ABE Department of Mathematics Faculty of Science University of Toyama Gofuku, Toyama 930-8555, JAPAN e-mail: abe@sci.u-toyama.ac.jp

(Received December 3, 2019)