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A remark on algebraic addition theorems

Yukitaka Abe

Abstract. Let K be a subfield of the meromorphic function field on
Cn which has the transcendence degree n over C. There are two ways
of stating an algebraic addition theorem for K. The author wrote the
relation of these two ways in a book [Toroidal Groups, Yokohama
Publishers, Inc., Yokohama, 2018]. However, the explanation was too
rough. In this paper, the detailed complete proof is given.

1. Introduction

Let M(Cn) be the field of meromorphic functions on Cn. We studied

and determined an algebraic function field K(⊂ M(Cn)) of n variables

over C ([1, 2]). This study makes Weierstrass’ statement established and

clear. Weierstrass’ statement is stated in [6] as follows:

Tout système de n fonctions (indépendantes) à n variables

qui admet un théorème d’addition est une combinaison algébrique

de n fonctions abéliennes (ou dégénérescences) à n arguments

et aux mêmes périodes.

We consider the following condition (T) for a subfield K of M(Cn).

(T) K is finitely generated over C and TransCK = n.

If K satisfies condition (T), then there exist f0, f1, . . . , fn ∈ K such

that K = C(f0, f1, . . . , fn) and f1, . . . , fn are algebraically independent
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over C. To simplify the description, we write C(F ) = C(f0, f1, . . . , fn) and

C(F1) = C(f1, . . . , fn) setting F := {f0, f1, . . . , fn} and F1 := {f1, . . . , fn}.
Furthermore we write

C(F (x), F (y)) = C(f0(x), f1(x), . . . , fn(x), f0(y), f1(y), . . . , fn(y)),

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are two independent tuples of n

complex variables. We note that there are two ways of stating an algebraic

addition theorem. The first one is the following.

Definition 1. Let K = C(F ) be as above. We say that K admits (AAT)

if fj(x + y) ∈ C(F (x), F (y)) for any j = 0, 1, . . . , n.

The above definition is independent of the choice of generators f0, f1, . . . , fn

(cf. Lemma 6.2.2 in [3]).

An algebraic addition theorem stated in Weierstrass’ original statement

is slightly different. That is the following type.

Definition 2. Let f1, . . . , fn ∈ M(Cn) be algebraically independent over

C. We say that f1, . . . , fn admit (AAT∗) if fj(x + y) is algebraic over

C(F1(x), F1(y)) for all j = 1, . . . , n.

We assume that algebraically independent functions f1, . . . , fn ∈M(Cn)

admit (AAT∗). Let K/C(F1) be a finite algebraic extension. If g1, . . . , gn ∈
K are algebraically independent, then g1, . . . , gn admit (AAT∗) (Lemma

6.2.6 in [3]). Therefore, (AAT∗) for subfields K is defined as follows.

Definition 3. Let K be a subfield of M(Cn) satisfying condition (T). We

say that K admits (AAT∗) if there exist f1, . . . , fn ∈ K algebraically inde-

pendent over C such that f1, . . . , fn admit (AAT∗).

The following proposition is immediate from the definitions.

Proposition 1 (Proposition 6.2.8 in [3]) Let K be a subfield ofM(Cn)

satisfying condition (T). If K admits (AAT), then it admits (AAT∗).

The converse is the following theorem.
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Theorem 1 (Proposition 6.2.9 in [3]) Let K be a subfield of M(Cn)

satisfying condition (T). If K admits (AAT∗), then there exists an algebraic

extension K̃ of K such that K̃ admits (AAT).

The statement of the above theorem is correct. However, the proof in [3]

was written too roughly. Recently, Baro, de Vicente and Otero [4] published

an extension result for maps admitting an algebraic addition theorem. We

note that a similar argument is needed to complete the proof of the above

theorem. In [4] they considered germs of meromorphic maps. Therefore,

they had to investigate carefully domains of convergence. Our objects are

meromorphic functions on Cn. Then, some parts of their argument are not

needed in our case. Although Theorem 1 is considered as a corollary of the

main theorem of [4], we will give the detailed proof of Theorem 1 modifying

their argument.

2. Proof of Theorem 1

We assume that a subfield K ofM(Cn) satisfies condition (T) and admits

(AAT∗) through this section. We set K = C(F ), where F = {f0, f1, . . . , fn}
and f1, . . . , fn are algebraically independent over C.

Lemma 1. There exists an open dense subset Ω of Cn such that for any

f ∈ K, f(x + a) is algebraic over K for all a ∈ Ω.

Proof. Let Pfi be the polar set of fi for i = 0, 1, . . . , n. We set PF :=⋃n
i=0 Pfi . Since K admits (AAT∗), fj(x+y) is algebraic over C(F1(x), F1(y))

for any j = 1, . . . , n. Then there exists a non-zero polynomial of the mini-

mal degree

Pj(X) =

mj∑
k=0

A
(j)
k (x, y)Xk

with A
(j)
k (x, y) ∈ C[f1(x), . . . , fn(x), f1(y), . . . , fn(y)] such that A

(j)
0 (x, y),

A
(j)
1 (x, y), . . . , A

(j)
mj (x, y) have no common divisor except constants and Pj(fj(x+

y)) = 0. We define

Nj := {a ∈ Cn \ PF ;A
(j)
k (x, a) = 0, k = 0, 1, . . . ,mj}
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and N :=
⋃n

j=1Nj . If we set Ω := Cn \ (PF ∪N), then Ω is an open dense

subset of Cn. Take any a ∈ Ω. By the definition of Ω, fj(x+a) is algebraic

over K for any j = 1, . . . , n. Since f0(x+a) is algebraic over C(F1(x+a)),

it is algebraic over K.

Lemma 2. For any f ∈ K, f(−x) is algebraic over K.

Proof. It suffices to show that fj(−x) is algebraic over K for any j =

0, 1, . . . , n.

By the assumption, fj(x + y) is algebraic over C(F (x), F (y)). There-

fore we have TransCC(F (x), F (y), F (x + y)) = 2n. On the other hand

we have TransCC(F (x), F (x + y)) = 2n. Hence fj(y) is algebraic over

C(F (x), F (x + y)). Take a ∈ Ω. Let y = −x + a. Then fj(−x + a) is

algebraic over C(F (x), F (a)) = K. Substituting x+a for x, we obtain that

fj(−x) is algebraic over C(F (x + a)). By Lemma 1, fi(x + a) is algebraic

over K for all i = 0, 1, . . . , n. Thus we conclude that fj(−x) is algebraic

over K.

Lemma 3. There exist a finite subset C of Ω∪{0} with 0 ∈ C and C = −C,

and a finite number of functions A0, A1, . . . , AN ∈ C({F (x + a), F (y +

a); a ∈ C}) satisfying the following conditions.

(a) For any f ∈ K, f(x + y) is algebraic over C(A0, A1, . . . , AN ).

(b) For any j = 0, 1, . . . , N we have

Aj(x, y) = Aj(x + a, y − a) (1)

for any a ∈ Cn.

Proof. Take any i = 0, 1, . . . , n. We set S(i)0 := {0} and K
(i)
0 := C(F (x), F (y)).

Let

P0(X) = X`0+1 +
`0∑
j=0

A
(i)
0,j(x, y)Xj , A

(i)
0,j(x, y) ∈ K

(i)
0 ,

be the minimal polynomial of fi(x + y) over K
(i)
0 . If all of A

(i)
0,j satisfy (1),

then we denote C(i) := S(i)0 and A
(i)
j (x, y) := A

(i)
0,j(x, y) for j = 0, 1, . . . , `0.

Otherwise, there exists a1 ∈ Cn such that

Q0(X) := P0(X)−

X`0+1 +
`0∑
j=0

A
(i)
0,j(x + a1, y − a1)X

j

 6= 0.
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Since Ω is dense in Cn, we may assume a1 ∈ Ω. We set S(i)1 := S(i)0 ∪
{a1,−a1} and K

(i)
1 := C({F (x + a), F (y + a); a ∈ S(i)1 }) in this case. Then

K
(i)
0 ⊂ K

(i)
1 and fi(x + y) is algebraic over K

(i)
1 . We take the minimal

polynomial

P1(X) = X`1+1 +
`1∑
j=0

A
(i)
1,j(x, y)Xj

of fi(x + y) over K
(i)
1 . Since degQ0 < `0 + 1, we have degP1 < degP0.

If all of A
(i)
1,j satisfy (1), then we set C(i) := S(i)1 and A

(i)
j := A

(i)
1,j for

j = 0, 1, . . . , `1.

If it is not the case, we repeat the above procedure. Then we obtain

sequences {S(i)k }, {K
(i)
k } and {Qk} such that S(i)k = S(i)k−1∪{a+ak, a−ak; a ∈

S(i)k−1} for some ak ∈ Ω with Qk−1(X) 6= 0 and K
(i)
k = C({F (x + a), F (y +

a); a ∈ S(i)k }). If Qk−1(X) 6= 0, then degQk < degQk−1. Therefore, this

procedure stops by a finite number of steps. Let s be the first number with

Qs(X) = 0. Then for the minimal polynomial

Ps(X) = X`s+1 +
`s∑
j=0

A
(i)
s,j(x, y)Xj

of fi(x + y) over K
(i)
s , the coefficients A

(i)
s,0, A

(i)
s,1, . . . , A

(i)
s,`s

satisfy (1). We

set C(i) := S(i)s and A
(i)
j := A

(i)
s,j for j = 0, 1, . . . , Ni, where we write Ni =

`s. Let C :=
⋃n

i=0 C(i) and {A0, A1, . . . , AN} :=
⋃n

i=0{A
(i)
0 , A

(i)
1 , . . . , A

(i)
Ni
}.

Then we obtain the desired conclusion.

Proof of Theorem 1. Let C and A0, A1, . . . , AN ∈ C({F (x + a), F (y +

a); a ∈ C}) be as in Lemma 3. Take b ∈ Cn such as Aj(x, b) ∈ M(Cn) for

all j = 0, 1, . . . , N . We define Ω0 :=
⋂

c∈C(Ω − b − c). Then Ω0 is also an

open dense subset of Cn. Let Bj(x) := Aj(x, b) for j = 0, 1, . . . , N . We

define two fields K̃ and L by

K̃ := C({Bj(x + a), Bj(−x + a); a ∈ Ω0, j = 0, 1, . . . , N})

and

L := C({F (x + c), F (−x + c); c ∈ C}).
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We show that K̃ ⊂ L and any f ∈ K̃ is algebraic over K. From (1) it

follows that for any a ∈ Cn

Aj(x + a, b) = Aj(x, a + b) (2)

for j = 0, 1, . . . , N . Let a ∈ Ω0. Since a + b + c ∈ Ω for any c ∈ C, we

have Bj(x + a) = Aj(x, a + b) ∈ C({F (x + c); c ∈ C}). By Lemma 1, any

element of C({F (x + c); c ∈ C}) is algebraic over K. Because of C = −C,
we have that Bj(−x + a) ∈ C({F (−x + c); c ∈ C}) and any element of

C({F (−x+c); c ∈ C}) is algebraic over C(F (−x)). Since fj(−x) is algebraic

over K for j = 0, 1, . . . , n (Lemma 2), any element of C({F (−x+c); c ∈ C})
is algebraic over K.

Next we show that K̃ admits (AAT). Since TransCK̃ = n, we can take

g0, g1, . . . , gn ∈ K̃ such that K̃ = C(G) and g1, . . . , gn are algebraically

independent over C. Let f ∈ K̃. It is obvious by the definition of K̃

that f(x + a) ∈ K̃ for any a ∈ Ω0. We define g(x, y) := f(x + y). Then,

g(x, a) ∈ C(G(x)) for any a ∈ Ω0. Similarly, we have g(a, y) ∈ C(G(y))

for any a ∈ Ω0. It follows from Theorem 3 in [5] (the proof is the same as

that of Theorem 6.6.5 in [3]) that f(x + y) = g(x, y) ∈ C(G(x), G(y)) on

Ω0 × Ω0. Since Ω0 × Ω0 is an open dense subset of Cn × Cn, it holds on

Cn ×Cn by the uniqueness theorem. 2
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