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A remark on algebraic addition theorems

Yukitaka ABE

Abstract. Let K be a subfield of the meromorphic function field on
C" which has the transcendence degree n over C. There are two ways
of stating an algebraic addition theorem for K. The author wrote the
relation of these two ways in a book [Toroidal Groups, Yokohama
Publishers, Inc., Yokohama, 2018]. However, the explanation was too
rough. In this paper, the detailed complete proof is given.

1. Introduction

Let M(C"™) be the field of meromorphic functions on C". We studied
and determined an algebraic function field K(C M(C")) of n variables
over C ([1, 2]). This study makes Weierstrass’ statement established and

clear. Weierstrass’ statement is stated in [6] as follows:

Tout systeme de n fonctions (indépendantes) & n variables
qui admet un théoreme d’addition est une combinaison algébrique
de n fonctions abéliennes (ou dégénérescences) a n arguments

et aux mémes périodes.
We consider the following condition (T) for a subfield K of M(C™).

(T) K is finitely generated over C and Transc K = n.

If K satisfies condition (T), then there exist fo, fi1,...,fn € K such
that K = C(fo, f1,.-.,fn) and fi,..., f,, are algebraically independent
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over C. To simplify the description, we write C(F') = C(fo, f1,..., fn) and
C(F1) =C(f1,..., fn) setting F := {fo, f1,..., fu} and F1 := {f1,..., fu}.

Furthermore we write

C(F(x)7 F(:U)) = C(fo(ﬂ?), fl(fl:)v s 7fn($)7 fO(y)7 fl(y)a s 7fn(y))7

where z = (z1,...,2,) and y = (y1,. .., yn) are two independent tuples of n
complex variables. We note that there are two ways of stating an algebraic

addition theorem. The first one is the following.

Definition 1. Let K = C(F) be as above. We say that K admits (AAT)
if filz +y) € C(F(x),F(y)) for any j =0,1,....n.

The above definition is independent of the choice of generators fy, fi,- .., fn
(cf. Lemma 6.2.2 in [3]).
An algebraic addition theorem stated in Weierstrass’ original statement

is slightly different. That is the following type.

Definition 2. Let fi,..., fn, € M(C™) be algebraically independent over
C. We say that fi,..., fn admit (AAT*) if fij(x + y) is algebraic over
C(Fi(x), Fi(y)) forallj=1,...,n.

We assume that algebraically independent functions fi,..., f, € M(C")
admit (AAT*). Let K/C(F1) be a finite algebraic extension. If g1,..., g, €
K are algebraically independent, then g¢1,...,g, admit (AAT*) (Lemma
6.2.6 in [3]). Therefore, (AAT*) for subfields K is defined as follows.

Definition 3. Let K be a subfield of M(C™) satisfying condition (T). We
say that K admits (AAT*) if there exist fi1,..., fn € K algebraically inde-
pendent over C such that f1,..., f, admit (AAT*).

The following proposition is immediate from the definitions.

Proposition 1 (Proposition 6.2.8 in [3]) Let K be a subfield of M(C™)
satisfying condition (T). If K admits (AAT), then it admits (AAT™).

The converse is the following theorem.
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Theorem 1 (Proposition 6.2.9 in [3]) Let K be a subfield of M(C")
satisfying condition (T). If K admits (AAT*), then there exists an algebraic
extension K of K such that K admits (AAT).

The statement of the above theorem is correct. However, the proof in [3]
was written too roughly. Recently, Baro, de Vicente and Otero [4] published
an extension result for maps admitting an algebraic addition theorem. We
note that a similar argument is needed to complete the proof of the above
theorem. In [4] they considered germs of meromorphic maps. Therefore,
they had to investigate carefully domains of convergence. Our objects are
meromorphic functions on C™. Then, some parts of their argument are not
needed in our case. Although Theorem 1 is considered as a corollary of the
main theorem of [4], we will give the detailed proof of Theorem 1 modifying

their argument.

2. Proof of Theorem 1

We assume that a subfield K of M(C") satisfies condition (T) and admits
(AAT™) through this section. We set K = C(F'), where F' = { fo, f1,..., fn}

and f1,..., f, are algebraically independent over C.

Lemma 1. There exists an open dense subset Q0 of C™ such that for any
fe K, f(x+a) is algebraic over K for all a € Q.

Proof. Let Py be the polar set of f; for i = 0,1,...,n. We set Pr :=
iio Py,. Since K admits (AAT™*), f;(z+vy) is algebraic over C(Fi(z), Fi(y))
for any j = 1,...,n. Then there exists a non-zero polynomial of the mini-

mal degree

mj .
Pi(X) =Y AV (z,y) X"
k=0

with A (z,9) € Clfi(2), ., fa(@), /1Y), -, fu(y)] such that AT (z,y),

Agj) (x,9),..., A%g (x,y) have no common divisor except constants and P;( f;(z+

y)) = 0. We define

Nj:={ac C”\PF;A,(Cj)(:c,a) =0,k=0,1,...,m;}
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and N := Uj_; N;. If we set Q2 := C"\ (Pp U N), then Q is an open dense
subset of C". Take any a € . By the definition of 2, f;(z+a) is algebraic
over K for any j =1,...,n. Since fy(z + a) is algebraic over C(Fi(x +a)),

it is algebraic over K. O
Lemma 2. For any f € K, f(—x) is algebraic over K.

Proof. It suffices to show that fj(—z) is algebraic over K for any j =
0,1,...,n.

By the assumption, fj(x + y) is algebraic over C(F(x), F(y)). There-
fore we have TranscC(F(z), F(y), F(z + y)) = 2n. On the other hand
we have TranscC(F(z), F(z + y)) = 2n. Hence f;(y) is algebraic over
C(F(z), F(x +y)). Take a € Q. Let y = —z + a. Then fj(—z + a) is
algebraic over C(F'(z), F'(a)) = K. Substituting x+a for x, we obtain that
fj(—x) is algebraic over C(F(x + a)). By Lemma 1, f;(z + a) is algebraic
over K for all ¢ = 0,1,...,n. Thus we conclude that f;(—x) is algebraic
over K. O

Lemma 3. There ezist a finite subset C of QU{0} with 0 € C and C = —C,
and a finite number of functions Ag, A1,...,Axn € C{F(z + a),F(y +
a);a € C}) satisfying the following conditions.

(a) For any f € K, f(x +vy) is algebraic over C(Ag, A1, ..., AN).

(b) For any j =0,1,..., N we have

for any a € C™.

Proof. Takeanyi =0,1,...,n. Weset S(gi) := {0} and Kéi) = C(F(x), F(y)).
Let

0o ' . .
Po(X) = X0 43~ AV (2,9) X7, AN (x,y) € K,
j=0
be the minimal polynomial of f;(xz + y) over Koi). If all of Agz satisfy (1),
then we denote C() := S(gi) and Agi)(m,y) = Aé@(m,y) for 5 =0,1,...,4.
Otherwise, there exists a; € C” such that

Lo ) 4
Qo(X) = Py(X) — (X““ +> A (@ + a1,y — a1>Xﬂ) #0.
j=0
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Since () is dense in C", we may assume a; € 2. We set Sy) = (()i) U
{al.’ —ay} and K{Z) =C({F(z+a),Fly+a)a € SY)}) in this case. Then
K[gl) C K fl) and fi(z + y) is algebraic over Kfz). We take the minimal

polynomial

¢
Pi(X) = X0+l 4 Z AV (a,y) X7
§=0
of fi(x + y) over Kfi). Since deg Qg < fo + 1, we have deg P; < deg P.
If all of A% satisfy (1), then we set (¥ := SY) and Ag-i) = Aglz for
j=0,1,...,0.

If it is not the case, we repeat the above procedure. Then we obtain
sequences {S,gi)}, {K,gl)} and {Qy} such that S,gi) = S(?lu{a%—ak, a—ag;a €
8,?_)1} for some ay € Q with Qx_1(X) # 0 and K,(f) =C{F(z+a),F(y+
a)ia € SV}). Tf Q_1(X) # 0, then deg Q) < degQp_1. Therefore, this
procedure stops by a finite number of steps. Let s be the first number with

Qs(X) = 0. Then for the minimal polynomial

Ls
_ ylstl (4) j
Py(X)=X + EOA&j(a:,y)XJ
J:

of fi(z + y) over Ks(i), the coefficients Ag%,AS)l, e ,AS}S satisfy (1). We
set C() := Sgi) and Ag.i) = Aglg for j =0,1,...,N;, where we write N; =
ls. Let € == ULoC? and {Ag, Ay,..., Ay} == Uo{Al, AP, .. a0y,

Then we obtain the desired conclusion. O

Proof of Theorem 1. Let C and Ag, Ay,..., Ay € C{F(x +a), F(y +
a);a € C}) be as in Lemma 3. Take b € C™ such as A;(x,b) € M(C") for
all 7 =0,1,...,N. We define Qg := N,cc(£2 — b —¢). Then €y is also an
open dense subset of C". Let Bj(x) := Aj(z,b) for j = 0,1,...,N. We
define two fields K and L by

f{t:: C({Bj($+a),Bj(—$+a)§a S Q(]’j = O¢17"'7N})

and

L:=C({F(x+c¢),F(—x+c);ceC}).
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We show that K C L and any f € K is algebraic over K. From (1) it
follows that for any a € C"

Aj(x +a,b) =Aj(x,a+0b) (2)

for j =0,1,...,N. Let a € Qy. Since a+b+c € Q for any ¢ € C, we
have Bj(z +a) = Aj(z,a+b) € C{F(xz +¢);c € C}). By Lemma 1, any
element of C({F'(z + ¢);c € C}) is algebraic over K. Because of C = —C,
we have that Bj(—z 4+ a) € C({F(—z + ¢);c € C}) and any element of
C{F(—z+c);c € C}) is algebraic over C(F(—x)). Since fj(—z) is algebraic
over K for j =0,1,...,n (Lemma 2), any element of C({F(—z+c¢);c € C})
is algebraic over K.

Next we show that K admits (AAT). Since TranscK = n, we can take
90, Gy, gn € K such that K = C(G) and g¢1,...,g, are algebraically
independent over C. Let f € K. Tt is obvious by the definition of K
that f(z +a) € K for any a € Q. We define g(z,y) := f(z +y). Then,
g(z,a) € C(G(x)) for any a € Qp. Similarly, we have g(a,y) € C(G(y))
for any a € Q. It follows from Theorem 3 in [5] (the proof is the same as
that of Theorem 6.6.5 in [3]) that f(z 4+ y) = g(z,y) € C(G(x),G(y)) on
Qo x Qp. Since Qg x Qg is an open dense subset of C™ x C", it holds on

C™ x C" by the uniqueness theorem. O
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