A remark on algebraic addition theorems

Yukitaka ABE

Abstract

Let K be a subfield of the meromorphic function field on \mathbf{C}^{n} which has the transcendence degree n over \mathbf{C}. There are two ways of stating an algebraic addition theorem for K. The author wrote the relation of these two ways in a book [Toroidal Groups, Yokohama Publishers, Inc., Yokohama, 2018]. However, the explanation was too rough. In this paper, the detailed complete proof is given.

1. Introduction

Let $\mathcal{M}\left(\mathbf{C}^{n}\right)$ be the field of meromorphic functions on \mathbf{C}^{n}. We studied and determined an algebraic function field $K\left(\subset \mathcal{M}\left(\mathbf{C}^{n}\right)\right)$ of n variables over $\mathbf{C}([1,2])$. This study makes Weierstrass' statement established and clear. Weierstrass' statement is stated in [6] as follows:

Tout système de n fonctions (indépendantes) à n variables qui admet un théorème d'addition est une combinaison algébrique de n fonctions abéliennes (ou dégénérescences) à n arguments et aux mêmes périodes.

We consider the following condition (T) for a subfield K of $\mathcal{M}\left(\mathbf{C}^{n}\right)$.
(T) K is finitely generated over \mathbf{C} and $\operatorname{Trans}_{\mathbf{C}} K=n$.

If K satisfies condition (T), then there exist $f_{0}, f_{1}, \ldots, f_{n} \in K$ such that $K=\mathbf{C}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ and f_{1}, \ldots, f_{n} are algebraically independent

2010 Mathematics Subject Classification. 32A20.
Key words and phrases. algebraic addition theorem, algebraic function fields of n variables.
over \mathbf{C}. To simplify the description, we write $\mathbf{C}(F)=\mathbf{C}\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ and $\mathbf{C}\left(F_{1}\right)=\mathbf{C}\left(f_{1}, \ldots, f_{n}\right)$ setting $F:=\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$ and $F_{1}:=\left\{f_{1}, \ldots, f_{n}\right\}$. Furthermore we write

$$
\mathbf{C}(F(x), F(y))=\mathbf{C}\left(f_{0}(x), f_{1}(x), \ldots, f_{n}(x), f_{0}(y), f_{1}(y), \ldots, f_{n}(y)\right),
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are two independent tuples of n complex variables. We note that there are two ways of stating an algebraic addition theorem. The first one is the following.

Definition 1. Let $K=\mathbf{C}(F)$ be as above. We say that K admits (AAT) if $f_{j}(x+y) \in \mathbf{C}(F(x), F(y))$ for any $j=0,1, \ldots, n$.

The above definition is independent of the choice of generators $f_{0}, f_{1}, \ldots, f_{n}$ (cf. Lemma 6.2.2 in [3]).

An algebraic addition theorem stated in Weierstrass' original statement is slightly different. That is the following type.

Definition 2. Let $f_{1}, \ldots, f_{n} \in \mathcal{M}\left(\mathbf{C}^{n}\right)$ be algebraically independent over C. We say that f_{1}, \ldots, f_{n} admit $\left(\mathrm{AAT}^{*}\right)$ if $f_{j}(x+y)$ is algebraic over $\mathbf{C}\left(F_{1}(x), F_{1}(y)\right)$ for all $j=1, \ldots, n$.

We assume that algebraically independent functions $f_{1}, \ldots, f_{n} \in \mathcal{M}\left(\mathbf{C}^{n}\right)$ admit ($\left.\mathrm{AAT}^{*}\right)$. Let $K / \mathbf{C}\left(F_{1}\right)$ be a finite algebraic extension. If $g_{1}, \ldots, g_{n} \in$ K are algebraically independent, then g_{1}, \ldots, g_{n} admit $\left(\mathrm{AAT}^{*}\right)$ (Lemma 6.2.6 in [3]). Therefore, (AAT^{*}) for subfields K is defined as follows.

Definition 3. Let K be a subfield of $\mathcal{M}\left(\mathbf{C}^{n}\right)$ satisfying condition (T). We say that K admits $\left(\mathrm{AAT}^{*}\right)$ if there exist $f_{1}, \ldots, f_{n} \in K$ algebraically independent over \mathbf{C} such that f_{1}, \ldots, f_{n} admit (AAT^{*}).

The following proposition is immediate from the definitions.
Proposition 1 (Proposition 6.2.8 in [3]) Let K be a subfield of $\mathcal{M}\left(\mathbf{C}^{n}\right)$ satisfying condition (T). If K admits (AAT), then it admits (AAT^{*}).

The converse is the following theorem.

Theorem 1 (Proposition 6.2.9 in [3]) Let K be a subfield of $\mathcal{M}\left(\mathbf{C}^{n}\right)$ satisfying condition (T). If K admits (AAT^{*}), then there exists an algebraic extension \widetilde{K} of K such that \widetilde{K} admits (AAT).

The statement of the above theorem is correct. However, the proof in [3] was written too roughly. Recently, Baro, de Vicente and Otero [4] published an extension result for maps admitting an algebraic addition theorem. We note that a similar argument is needed to complete the proof of the above theorem. In [4] they considered germs of meromorphic maps. Therefore, they had to investigate carefully domains of convergence. Our objects are meromorphic functions on \mathbf{C}^{n}. Then, some parts of their argument are not needed in our case. Although Theorem 1 is considered as a corollary of the main theorem of [4], we will give the detailed proof of Theorem 1 modifying their argument.

2. Proof of Theorem 1

We assume that a subfield K of $\mathcal{M}\left(\mathbf{C}^{n}\right)$ satisfies condition (T) and admits $\left(\mathrm{AAT}^{*}\right)$ through this section. We set $K=\mathbf{C}(F)$, where $F=\left\{f_{0}, f_{1}, \ldots, f_{n}\right\}$ and f_{1}, \ldots, f_{n} are algebraically independent over \mathbf{C}.

Lemma 1. There exists an open dense subset Ω of \mathbf{C}^{n} such that for any $f \in K, f(x+a)$ is algebraic over K for all $a \in \Omega$.

Proof. Let $P_{f_{i}}$ be the polar set of f_{i} for $i=0,1, \ldots, n$. We set $P_{F}:=$ $\bigcup_{i=0}^{n} P_{f_{i}}$. Since K admits (AAT $\left.{ }^{*}\right), f_{j}(x+y)$ is algebraic over $\mathbf{C}\left(F_{1}(x), F_{1}(y)\right)$ for any $j=1, \ldots, n$. Then there exists a non-zero polynomial of the minimal degree

$$
P_{j}(X)=\sum_{k=0}^{m_{j}} A_{k}^{(j)}(x, y) X^{k}
$$

with $A_{k}^{(j)}(x, y) \in \mathbf{C}\left[f_{1}(x), \ldots, f_{n}(x), f_{1}(y), \ldots, f_{n}(y)\right]$ such that $A_{0}^{(j)}(x, y)$, $A_{1}^{(j)}(x, y), \ldots, A_{m_{j}}^{(j)}(x, y)$ have no common divisor except constants and $P_{j}\left(f_{j}(x+\right.$ $y))=0$. We define

$$
N_{j}:=\left\{a \in \mathbf{C}^{n} \backslash P_{F} ; A_{k}^{(j)}(x, a)=0, k=0,1, \ldots, m_{j}\right\}
$$

and $N:=\bigcup_{j=1}^{n} N_{j}$. If we set $\Omega:=\mathbf{C}^{n} \backslash\left(P_{F} \cup N\right)$, then Ω is an open dense subset of \mathbf{C}^{n}. Take any $a \in \Omega$. By the definition of $\Omega, f_{j}(x+a)$ is algebraic over K for any $j=1, \ldots, n$. Since $f_{0}(x+a)$ is algebraic over $\mathbf{C}\left(F_{1}(x+a)\right)$, it is algebraic over K.

Lemma 2. For any $f \in K, f(-x)$ is algebraic over K.
Proof. It suffices to show that $f_{j}(-x)$ is algebraic over K for any $j=$ $0,1, \ldots, n$.

By the assumption, $f_{j}(x+y)$ is algebraic over $\mathbf{C}(F(x), F(y))$. Therefore we have $\operatorname{Trans}_{\mathbf{C}} \mathbf{C}(F(x), F(y), F(x+y))=2 n$. On the other hand we have $\operatorname{Trans}_{\mathbf{C}} \mathbf{C}(F(x), F(x+y))=2 n$. Hence $f_{j}(y)$ is algebraic over $\mathbf{C}(F(x), F(x+y))$. Take $a \in \Omega$. Let $y=-x+a$. Then $f_{j}(-x+a)$ is algebraic over $\mathbf{C}(F(x), F(a))=K$. Substituting $x+a$ for x, we obtain that $f_{j}(-x)$ is algebraic over $\mathbf{C}(F(x+a))$. By Lemma $1, f_{i}(x+a)$ is algebraic over K for all $i=0,1, \ldots, n$. Thus we conclude that $f_{j}(-x)$ is algebraic over K.

Lemma 3. There exist a finite subset \mathcal{C} of $\Omega \cup\{0\}$ with $0 \in \mathcal{C}$ and $\mathcal{C}=-\mathcal{C}$, and a finite number of functions $A_{0}, A_{1}, \ldots, A_{N} \in \mathbf{C}(\{F(x+a), F(y+$ $a) ; a \in \mathcal{C}\})$ satisfying the following conditions.
(a) For any $f \in K, f(x+y)$ is algebraic over $\mathbf{C}\left(A_{0}, A_{1}, \ldots, A_{N}\right)$.
(b) For any $j=0,1, \ldots, N$ we have

$$
\begin{equation*}
A_{j}(x, y)=A_{j}(x+a, y-a) \tag{1}
\end{equation*}
$$

for any $a \in \mathbf{C}^{n}$.
Proof. Take any $i=0,1, \ldots, n$. We set $\mathcal{S}_{0}^{(i)}:=\{0\}$ and $K_{0}^{(i)}:=\mathbf{C}(F(x), F(y))$. Let

$$
P_{0}(X)=X^{\ell_{0}+1}+\sum_{j=0}^{\ell_{0}} A_{0, j}^{(i)}(x, y) X^{j}, \quad A_{0, j}^{(i)}(x, y) \in K_{0}^{(i)}
$$

be the minimal polynomial of $f_{i}(x+y)$ over $K_{0}^{(i)}$. If all of $A_{0, j}^{(i)}$ satisfy (1), then we denote $\mathcal{C}^{(i)}:=\mathcal{S}_{0}^{(i)}$ and $A_{j}^{(i)}(x, y):=A_{0, j}^{(i)}(x, y)$ for $j=0,1, \ldots, \ell_{0}$. Otherwise, there exists $a_{1} \in \mathbf{C}^{n}$ such that

$$
Q_{0}(X):=P_{0}(X)-\left(X^{\ell_{0}+1}+\sum_{j=0}^{\ell_{0}} A_{0, j}^{(i)}\left(x+a_{1}, y-a_{1}\right) X^{j}\right) \neq 0 .
$$

Since Ω is dense in \mathbf{C}^{n}, we may assume $a_{1} \in \Omega$. We set $\mathcal{S}_{1}^{(i)}:=\mathcal{S}_{0}^{(i)} \cup$ $\left\{a_{1},-a_{1}\right\}$ and $K_{1}^{(i)}:=\mathbf{C}\left(\left\{F(x+a), F(y+a) ; a \in \mathcal{S}_{1}^{(i)}\right\}\right)$ in this case. Then $K_{0}^{(i)} \subset K_{1}^{(i)}$ and $f_{i}(x+y)$ is algebraic over $K_{1}^{(i)}$. We take the minimal polynomial

$$
P_{1}(X)=X^{\ell_{1}+1}+\sum_{j=0}^{\ell_{1}} A_{1, j}^{(i)}(x, y) X^{j}
$$

of $f_{i}(x+y)$ over $K_{1}^{(i)}$. Since $\operatorname{deg} Q_{0}<\ell_{0}+1$, we have $\operatorname{deg} P_{1}<\operatorname{deg} P_{0}$. If all of $A_{1, j}^{(i)}$ satisfy (1), then we set $\mathcal{C}^{(i)}:=\mathcal{S}_{1}^{(i)}$ and $A_{j}^{(i)}:=A_{1, j}^{(i)}$ for $j=0,1, \ldots, \ell_{1}$.

If it is not the case, we repeat the above procedure. Then we obtain sequences $\left\{\mathcal{S}_{k}^{(i)}\right\},\left\{K_{k}^{(i)}\right\}$ and $\left\{Q_{k}\right\}$ such that $\mathcal{S}_{k}^{(i)}=\mathcal{S}_{k-1}^{(i)} \cup\left\{a+a_{k}, a-a_{k} ; a \in\right.$ $\left.\mathcal{S}_{k-1}^{(i)}\right\}$ for some $a_{k} \in \Omega$ with $Q_{k-1}(X) \neq 0$ and $K_{k}^{(i)}=\mathbf{C}(\{F(x+a), F(y+$ $\left.\left.a) ; a \in \mathcal{S}_{k}^{(i)}\right\}\right)$. If $Q_{k-1}(X) \neq 0$, then $\operatorname{deg} Q_{k}<\operatorname{deg} Q_{k-1}$. Therefore, this procedure stops by a finite number of steps. Let s be the first number with $Q_{s}(X)=0$. Then for the minimal polynomial

$$
P_{s}(X)=X^{\ell_{s}+1}+\sum_{j=0}^{\ell_{s}} A_{s, j}^{(i)}(x, y) X^{j}
$$

of $f_{i}(x+y)$ over $K_{s}^{(i)}$, the coefficients $A_{s, 0}^{(i)}, A_{s, 1}^{(i)}, \ldots, A_{s, \ell_{s}}^{(i)}$ satisfy (1). We set $\mathcal{C}^{(i)}:=\mathcal{S}_{s}^{(i)}$ and $A_{j}^{(i)}:=A_{s, j}^{(i)}$ for $j=0,1, \ldots, N_{i}$, where we write $N_{i}=$ ℓ_{s}. Let $\mathcal{C}:=\bigcup_{i=0}^{n} \mathcal{C}^{(i)}$ and $\left\{A_{0}, A_{1}, \ldots, A_{N}\right\}:=\bigcup_{i=0}^{n}\left\{A_{0}^{(i)}, A_{1}^{(i)}, \ldots, A_{N_{i}}^{(i)}\right\}$. Then we obtain the desired conclusion.

Proof of Theorem 1. Let \mathcal{C} and $A_{0}, A_{1}, \ldots, A_{N} \in \mathbf{C}(\{F(x+a), F(y+$ $a) ; a \in \mathcal{C}\})$ be as in Lemma 3. Take $b \in \mathbf{C}^{n}$ such as $A_{j}(x, b) \in \mathcal{M}\left(\mathbf{C}^{n}\right)$ for all $j=0,1, \ldots, N$. We define $\Omega_{0}:=\bigcap_{c \in \mathcal{C}}(\Omega-b-c)$. Then Ω_{0} is also an open dense subset of \mathbf{C}^{n}. Let $B_{j}(x):=A_{j}(x, b)$ for $j=0,1, \ldots, N$. We define two fields \widetilde{K} and L by

$$
\widetilde{K}:=\mathbf{C}\left(\left\{B_{j}(x+a), B_{j}(-x+a) ; a \in \Omega_{0}, j=0,1, \ldots, N\right\}\right)
$$

and

$$
L:=\mathbf{C}(\{F(x+c), F(-x+c) ; c \in \mathcal{C}\}) .
$$

We show that $\widetilde{K} \subset L$ and any $f \in \widetilde{K}$ is algebraic over K. From (1) it follows that for any $a \in \mathbf{C}^{n}$

$$
\begin{equation*}
A_{j}(x+a, b)=A_{j}(x, a+b) \tag{2}
\end{equation*}
$$

for $j=0,1, \ldots, N$. Let $a \in \Omega_{0}$. Since $a+b+c \in \Omega$ for any $c \in \mathcal{C}$, we have $B_{j}(x+a)=A_{j}(x, a+b) \in \mathbf{C}(\{F(x+c) ; c \in \mathcal{C}\})$. By Lemma 1, any element of $\mathbf{C}(\{F(x+c) ; c \in \mathcal{C}\})$ is algebraic over K. Because of $\mathcal{C}=-\mathcal{C}$, we have that $B_{j}(-x+a) \in \mathbf{C}(\{F(-x+c) ; c \in \mathcal{C}\})$ and any element of $\mathbf{C}(\{F(-x+c) ; c \in \mathcal{C}\})$ is algebraic over $\mathbf{C}(F(-x))$. Since $f_{j}(-x)$ is algebraic over K for $j=0,1, \ldots, n$ (Lemma 2), any element of $\mathbf{C}(\{F(-x+c) ; c \in \mathcal{C}\})$ is algebraic over K.

Next we show that \widetilde{K} admits (AAT). Since $\operatorname{Trans}_{\mathbf{C}} \widetilde{K}=n$, we can take $g_{0}, g_{1}, \ldots, g_{n} \in \widetilde{K}$ such that $\widetilde{K}=\mathbf{C}(G)$ and g_{1}, \ldots, g_{n} are algebraically independent over C. Let $f \in \widetilde{K}$. It is obvious by the definition of \widetilde{K} that $f(x+a) \in \widetilde{K}$ for any $a \in \Omega_{0}$. We define $g(x, y):=f(x+y)$. Then, $g(x, a) \in \mathbf{C}(G(x))$ for any $a \in \Omega_{0}$. Similarly, we have $g(a, y) \in \mathbf{C}(G(y))$ for any $a \in \Omega_{0}$. It follows from Theorem 3 in [5] (the proof is the same as that of Theorem 6.6.5 in [3]) that $f(x+y)=g(x, y) \in \mathbf{C}(G(x), G(y))$ on $\Omega_{0} \times \Omega_{0}$. Since $\Omega_{0} \times \Omega_{0}$ is an open dense subset of $\mathbf{C}^{n} \times \mathbf{C}^{n}$, it holds on $\mathbf{C}^{n} \times \mathbf{C}^{n}$ by the uniqueness theorem.

References

[1] Y. Abe, A statement of Weierstrass on meromorphic functions which admit an algebraic addition theorem, J. Math. Soc. Japan, 57(2005), 709-723.
[2] Y. Abe, Explicit representation of degenerate abelian functions and related topics, Far East J. Math. Sci. (FJMS), 70(2012), 321-336.
[3] Y. Abe, Toroidal Groups, Yokohama Publishers, Inc., Yokohama, 2018.
[4] E. Baro, J. de Vicente and M. Otero, An extension result for maps admitting an algebraic addition theorem, J. Geom. Anal., 29(2019), 316-327.
[5] S. Bochner, On the addition theorem for multiply periodic functions, Proc. Am. Math. Soc., 3(1952), 99-106.
[6] P. Painlevé, Sur les fonctions qui admettent un théorème d'addition, Acta Math., 27(1903), 1-54.

Yukitaka Abe
Department of Mathematics
Faculty of Science
University of Toyama
Gofuku, Toyama 930-8555, JAPAN
e-mail: abe@sci.u-toyama.ac.jp

