Toyama Math. J. Vol. 40(2018 · 2019), 17-35

Intermediate pseudoconvexity for unramified Riemann domains over \mathbb{C}^n

Makoto ABE, Tadashi SHIMA and Shun SUGIYAMA

Abstract. We characterize the q-pseudoconvexity for unramified Riemann domains over \mathbb{C}^n , where $1 \leq q \leq n$, by the continuity property which holds for a class of maps whose projections to \mathbb{C}^n are families of unidirectionally parameterized q-dimensional analytic balls written by polynomials of degree at most two.

1. Introduction

An unramified (Riemann) domain over \mathbb{C}^n is a pair (D, π) of a second countable connected complex manifold D and a locally biholomorphic map $\pi: D \to \mathbb{C}^n$. According to Fritzsche–Grauert [4], we denote by $\check{\partial}D$ the set of accessible boundary points of (D, π) , by $\check{D} = D \cup \check{\partial}D$ the abstract closure of (D, π) , and by $\check{\pi}: \check{D} \to \mathbb{C}^n$ the extension of π to \check{D} .

We say that an upper semicontinuous function $u: D \to [-\infty, +\infty)$ is *q*-plurisubharmonic, where $1 \leq q \leq n$, if for every open set G of \mathbb{C}^q and for every holomorphic map $f: G \to D$ the function $u \circ f: G \to [-\infty, +\infty)$ is subpluriharmonic in the sense of Fujita [5, 6]. We say that (D, π) is *q*pseudoconvex if the function $-\ln d_D: D \to \mathbb{R}$ is *q*-plurisubharmonic, where d_D denotes the Euclidean boundary distance function of (D, π) .

In this paper, we give a characterization of the q-pseudoconvexity for unramified domains over \mathbb{C}^n by the continuity property which holds for

²⁰¹⁰ Mathematics Subject Classification. 32F10, 32D26.

Key words and phrases. unramified Riemann domain, q-plurisubharmonic function, q-pseudoconvex domain.

a class of maps whose projections to \mathbb{C}^n are families of unidirectionally parameterized q-dimensional analytic balls written by polynomials of degree at most 2. To be precise, we prove that an unramified domain (D, π) over \mathbb{C}^n is q-pseudoconvex, where $1 \leq q \leq n$, if and only if the following condition is satisfied (see Theorem 4.1):

Let $\check{\lambda} : \overline{\mathbf{B}_q(0,1)} \times [0,1] \to \check{D}$, where $\mathbf{B}_q(0,1)$ denotes the unit ball in \mathbb{C}^q , be a continuous map which satisfies the conditions that $\check{\lambda}(\overline{\mathbf{B}_q(0,1)} \times [0,1] \setminus \{(0,1)\}) \subset D$, there exists a holomorphic map $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) : \mathbb{C}^{q+1} \to \mathbb{C}^n$ of the form $\lambda_{\nu}(z_1, z_2, \dots, z_q, t) = P_{\nu}(z_1, z_2, \dots, z_q) + c_{\nu}t$, where P_{ν} is a polynomial of variables z_1, z_2, \dots, z_q of degree at most 2 and $c_{\nu} \in \mathbb{C}$ for every $\nu = 1, 2, \dots, n$, such that $H := \lambda(\mathbb{C}^{q+1})$ is a (q+1)-dimensional complex affine subspace of \mathbb{C}^n , the induced map $\lambda : \mathbb{C}^{q+1} \to H$ is biholomorphic, and $\check{\pi} \circ \check{\lambda} = \lambda$ on $\overline{\mathbf{B}_q(0,1)} \times [0,1]$. Then, we have that $\check{\lambda}(0,1) \in D$.

As a corollary, we obtain a Lelong type characterization of a qpseudoconvex unramified domain over \mathbb{C}^n (see Corollary 5.2). On the other hand, in the case where q = 1, we obtain a characterization of a pseudoconvex unramified domain over \mathbb{C}^n , which generalizes Yasuoka [21, Theorem 2] and refines Sugiyama [17, Theorem 3.1] (see Corollary 5.3).

2. Preliminaries

Let $n \in \mathbb{N}$. We denote by $\|\cdot\|$ the Euclidean norm on \mathbb{C}^n , that is,

$$||z|| := \left(\sum_{\nu=1}^{n} |z_{\nu}|^2\right)^{1/2}$$

for every $z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$. We call the set

$$\mathbf{B}_{n}(c, r) := \{ z \in \mathbb{C}^{n} \mid ||z - c|| < r \}$$

the open ball of radius r with center c in \mathbb{C}^n , where $r \in (0, +\infty]$ and $c \in \mathbb{C}^n$. We call the set $\mathbf{B}_n(0, 1)$ the unit ball in \mathbb{C}^n . **Proposition 2.1.** Let (D, π) be an unramified domain over \mathbb{C}^n . Let $a_k \in D, r_k \in (0, +\infty]$, and B_k a neighborhood of a_k in D such that $\pi(B_k) = \mathbf{B}_n(\pi(a_k), r_k)$ and $\pi|_{B_k} : B_k \to \pi(B_k)$ is biholomorphic for each k = 1, 2. Assume that $B_1 \cap B_2 \neq \emptyset$. Then, we have that $(\pi|_{B_1})^{-1} = (\pi|_{B_2})^{-1}$ on $\pi(B_1) \cap \pi(B_2)$ and the map $\pi|_{B_1 \cap B_2} : B_1 \cap B_2 \to \pi(B_1) \cap \pi(B_2)$ is biholomorphic.

Proof. Let $Q_k := \mathbf{B}_n(\pi(a_k), r_k)$ for each k = 1, 2. For an arbitrary $a \in B_1 \cap B_2 \neq \emptyset$, we have that $\pi(a) \in Q_1 \cap Q_2$ and $(\pi|_{B_k})^{-1}(\pi(a)) = a$ for each k = 1, 2. Moreover, the set $Q_1 \cap Q_2$ is connected and therefore $(\pi|_{B_1})^{-1} = (\pi|_{B_2})^{-1}$ on $Q_1 \cap Q_2$ by the identity principle for liftings. Then, for every $z \in Q_1 \cap Q_2$, we have that

$$x := (\pi|_{B_1})^{-1} (z) = (\pi|_{B_2})^{-1} (z) \in B_1 \cap B_2$$

and $\pi(x) = z$. It follows that $\pi(B_1 \cap B_2) = Q_1 \cap Q_2$ and the map $\pi|_{B_1 \cap B_2} : B_1 \cap B_2 \to Q_1 \cap Q_2$ is biholomorphic. \Box

Let (D, π) be an unramified domain over \mathbb{C}^n . For every point $a \in D$, the (Euclidean) boundary distance $d_D(a)$ of a is the supremum of all $r \in (0, +\infty]$ which satisfy the condition that there exists a neighborhood B of a in D such that $\pi(B) = \mathbf{B}_n(\pi(a), r)$ and the map $\pi|_B : B \to \mathbf{B}_n(\pi(a), r)$ is biholomorphic. The function $d_D : D \to (0, +\infty]$ is said to be the (Euclidean) boundary distance function of (D, π) . For every $a \in D$ and for every $r \in (0, d_D(a)]$, there exists a unique neighborhood B(a, r) of a in D such that $\pi(B(a, r)) = \mathbf{B}_n(\pi(a), r)$ and the map $\pi|_{B(a,r)} : B(a, r) \to \mathbf{B}_n(\pi(a), r)$ is biholomorphic. We call the set B(a, r) the open ball in D of radius r with center a. The map $\pi : D \to \mathbb{C}^n$ is biholomorphic if and only if there exists $a \in D$ such that $d_D(a) = +\infty$. If π is not biholomorphic, then the function $d_D : D \to \mathbb{R}$ is continuous (see Jarnicki-Pflug [10, pp. 6–7]).

Proposition 2.2. Let (D, π) be an unramified domain over \mathbb{C}^n . Let $a \in D$ and E a subset of the closure of $B(a, d_D(a))$ in D. Let $W := \bigcup_{x \in E} B(x, d_D(x))$. Then, the map $\pi|_W : W \to \pi(W)$ is biholomorphic.

Proof. We have only to prove that the map $\pi|_W : W \to \pi(W)$ is injective. Let $d := d_D$, B := B(a, d(a)), and $Q := \mathbf{B}_n(\pi(a), d(a))$. Let $y_1, y_2 \in W$ and assume that $z_0 := \pi(y_1) = \pi(y_2)$. Then, there exists $x_k \in E$ such that $y_k \in B(x_k, d(x_k))$ for each k = 1, 2. Since $B \cap B(x_k, d(x_k)) \neq \emptyset$, we have that $\left(\left. \pi \right|_{B(x_k, d(x_k))} \right)^{-1} = \left(\left. \pi \right|_B \right)^{-1}$ on $Q \cap \mathbf{B}_n(\pi(x_k), d(x_k))$ by Proposition 2.1. Let $c := \left(d(x_2)\pi(x_1) + d(x_1)\pi(x_2) \right) / \left(d(x_1) + d(x_2) \right)$. Since $\pi(x_1), \pi(x_2) \in \overline{Q}$ and $z_0 \in \mathbf{B}_n(\pi(x_1), d(x_1)) \cap \mathbf{B}_n(\pi(x_2), d(x_2)) \neq \emptyset$, we have that $c \in Q \cap \mathbf{B}_n(\pi(x_1), d(x_1)) \cap \mathbf{B}_n(\pi(x_2), d(x_2))$. Then,

$$(\pi|_B)^{-1}(c) \in B \cap B(x_1, d(x_1)) \cap B(x_2, d(x_2))$$

and therefore $B(x_1, d(x_1)) \cap B(x_2, d(x_2)) \neq \emptyset$. By Proposition 2.1, we have that $(\pi|_{B(x_1, d(x_1))})^{-1} = (\pi|_{B(x_2, d(x_2))})^{-1}$ on $\mathbf{B}_n(\pi(x_1), d(x_1)) \cap$ $\mathbf{B}_n(\pi(x_2), d(x_2))$. It follows that $y_1 = (\pi|_{B(x_1, d(x_2))})^{-1}(z_0) =$ $(\pi|_{B(x_2, d(x_2))})^{-1}(z_0) = y_2$. Thus, we proved that $\pi|_W$ is injective. \Box

Let D be a complex manifold. According to Fujita [5, 6], an upper semicontinuous function $u: D \to [-\infty, +\infty)$ is said to be *subpluriharmonic* if for every relatively compact open set G of D and for every real-valued pluriharmonic function h defined on a neighborhood of \overline{G} , the inequality $u \leq h$ on ∂G implies the inequality $u \leq h$ on \overline{G} .¹ If D is holomorphically spreadable, then, by Vâjâitu [20, Proposition 2], an upper semicontinuous function $u: D \to [-\infty, +\infty)$ is subpluriharmonic if and only if there exists an open covering $\{U_i\}_{i \in I}$ of D such that u is subpluriharmonic on U_i for every $i \in I$.

Proposition 2.3 (Słodkowski [16, Lemma 4.4]) Let D be an open set of \mathbb{C}^n and $u: D \to [-\infty, +\infty)$ an upper semicontinuous function. If u is not subpluriharmonic, then there exist $c \in D$, $r \in (0, d_D(c))$, K > 0, and a function f holomorphic in a neighborhood of $\overline{\mathbf{B}_n(c, r)}$ such that u(c) + $\Re(f(c)) = 0$, and $u + \Re(f) \leq -K ||z - c||^2$ on $\overline{\mathbf{B}_n(c, r)}$.²

Let D be a complex manifold of dimension n. Let q be an integer such that $1 \leq q \leq n$. Then, an upper semicontinuous function

¹ The subpluriharmonic functions on an open set D of \mathbb{C}^n exactly coincide with the (n-1)-plurisubharmonic functions on D in the sense of Hunt–Murray [9, Definition 2.3] (see Fujita [6, Proposition 2]).

² We can choose f to be a polynomial of degree at most 2 (see Abe–Sugiyama [1]). However, we do not use this refinement to prove Theorem 4.1.

 $u: D \to [-\infty, +\infty)$ is said to be *q*-plurisubharmonic if for every open set G of \mathbb{C}^q and for every holomorphic map $f: G \to D$ the function $u \circ f: G \to [-\infty, +\infty)$ is subpluriharmonic.³ An upper semicontinuous function $u: D \to [-\infty, +\infty)$ is *q*-plurisubharmonic if and only if there exists an open covering $\{U_i\}_{i\in I}$ of D such that u is *q*-plurisubharmonic on U_i for every $i \in I$.

Proposition 2.4 (Fujita [6, Theorem 2]) Let q and n be integers such that $1 \leq q \leq n$. Let D be an open set of \mathbb{C}^n and $u : D \to [-\infty, +\infty)$ an upper semicontinuous function. Then, the following two conditions are equivalent.

- (1) u is q-plurisubharmonic.
- (2) u is (q-1)-plurisubharmonic in the sense of Hunt-Murray [9, Definition 2.5], that is, for every q-dimensional complex affine subspace L of \mathbb{C}^n the function $u|_{D\cap L}$ is subpluriharmonic.

Corollary 2.5. Let q and n be integers such that $1 \le q \le n$. Let (D, π) be an unramified domain over \mathbb{C}^n and $u: D \to [-\infty, +\infty)$ an upper semicontinuous function. Then, the following two conditions are equivalent.

- (1) u is q-plurisubharmonic.
- (2) For every q-dimensional complex affine subspace L of \mathbb{C}^n the function $u|_{\pi^{-1}(L)}$ is subpluriharmonic.

Proof. There exists an open covering $\{U_i\}_{i \in I}$ of D such that $\pi|_{U_i} : U_i \to \pi(U_i)$ is biholomorphic for every $i \in I$. Then, by Proposition 2.4, condition (2) is equivalent to the one that u is q-plurisubharmonic on U_i for every $i \in I$, which is equivalent to condition (1).

Let D be a complex manifold of dimension n. Let q be an integer such that $1 \leq q \leq n$. We say that D is weakly q-pseudoconvex if there exists

³ The q-plurisubharmonic functions on an open set D of \mathbb{C}^n exactly coincide with the pseudoconvex functions of order n-q on D in the sense of Fujita [5, 6] and with the weakly q-plurisubharmonic functions on D in the sense of Popa-Fischer [15].

an exhaustion function $u: D \to [-\infty, +\infty)$ which is q-plurisubharmonic on $D.^4$ If D is a second countable complex manifold of dimension n with no compact connected components, then, by Greene–Wu [7] (see also Ohsawa [13]), D is *n*-complete, that is, there exists a \mathscr{C}^{∞} strictly subpluriharmonic exhaustion function on D and therefore D is weakly *n*-pseudoconvex.

Proposition 2.6. Let q, m, and n be integers such that $1 \le q \le m \le n$. Let D be a complex manifold of dimension n and E an m-dimensional closed complex submanifold of D. If D is weakly q-pseudoconvex, then E is also weakly q-pseudoconvex.

Proof. Since D is weakly q-pseudoconvex, there exists a q-plurisubharmonic exhaustion function $u : D \to [-\infty, +\infty)$. Then, the function $u|_E : E \to [-\infty, +\infty)$ is a q-plurisubharmonic exhaustion function of E.

Let (D, π) be an unramified domain over \mathbb{C}^n . Let q be an integer such that $1 \leq q \leq n$. We say that (D, π) is *q*-pseudoconvex if the function $-\ln d_D: D \to [-\infty, +\infty)$ is *q*-plurisubharmonic on D.⁵

Proposition 2.7 (Matsumoto [12, Theorem 2]) Let q and n be integers such that $1 \leq q \leq n$. Let (D, π) be an unramified domain over \mathbb{C}^n . Then, the following two conditions are equivalent.

- (1) D is weakly q-pseudoconvex.
- (2) (D, π) is q-pseudoconvex.

According to Fritzsche–Grauert [4, pp. 101–102], we recall some definitions related to the abstract boundary of an unramified domain (D, π) over \mathbb{C}^n . Let $\{x_k\}$ be a sequence of points in D which satisfies the following three conditions:

⁴ A weakly 1-pseudoconvex manifold is nothing but a weakly pseudoconvex manifold in the sense of Demailly [3].

⁵ If D is a connected open set of \mathbb{C}^n , then (D, i), where i denotes the inclusion, is q-pseudoconvex if and only if D is (q-1)-pseudoconvex in \mathbb{C}^n in the sense of Słodkowski [16, Definition 4.1]. On the other hand, our definition of q-pseudoconvexity is different from that of Ohsawa [13].

Intermediate pseudoconvexity for unramified Riemann domains over \mathbb{C}^n 23

- $\{x_k\}$ has no subsequence which converges in D.
- There exists $b \in \mathbb{C}^n$ such that $\lim_{k \to \infty} \pi(x_k) = b$ in \mathbb{C}^n .
- For every connected neighborhood V of b in \mathbb{C}^n there exists $k_0 \in \mathbb{N}$ such that for every $k, l \geq k_0$ the point x_k can be joined to the point x_l by a path $\gamma : [0, 1] \to D$ with $(\pi \circ \gamma)([0, 1]) \subset V$.

We say that two such sequences $\{x_k\}$ and $\{y_k\}$ are equivalent if they satisfy the following two conditions:

- $\lim_{k\to\infty} \pi(x_k) = \lim_{k\to\infty} \pi(y_k) = b.$
- For every connected neighborhood V of b in \mathbb{C}^n there exists $k_0 \in \mathbb{N}$ such that for every $k, l \geq k_0$ the point x_k can be joined to the point y_l by a path $\gamma : [0, 1] \to D$ with $(\pi \circ \gamma) ([0, 1]) \subset V$.

An accessible boundary point of (D, π) is an equivalence class $\xi = [\{x_k\}]$ of such sequences. We denote by $\check{\partial}D$ the set of all accessible boundary points of (D, π) . We call the set $\check{\partial}D$ the *abstract boundary* of (D, π) and the set $\check{D} := D \cup \check{\partial}D$ the *abstract closure* of (D, π) . For every $\xi = [\{x_k\}] \in \check{\partial}D$, we define a neighborhood system $\{\check{U}\}$ of ξ in \check{D} as follows:

Take an arbitrary connected open set U in D such that $x_k \in U$ except for finitely many k. Then, let \check{U} be the union of U and the set of all accessible boundary points $\eta = [\{y_k\}]$ such that $y_k \in U$ except for finitely many k and $\lim_{k\to\infty} \pi(y_k) \in \overline{\pi(U)}$.

In this way, the set \check{D} becomes a regular space and the map $\check{\pi} : D \to \mathbb{C}^n$ defined by

$$\breve{\pi}(x) := \begin{cases} \pi(x) & \text{if } x \in D, \\ \lim_{k \to \infty} x_k & \text{if } x = [\{x_k\} \end{cases}$$

is continuous.

3. Lemmata

Lemma 3.1. Let q and n be integers such that $1 \leq q \leq n$. Let (D, π) be a q-pseudoconvex unramified domain over \mathbb{C}^n . Let $\check{\lambda} : \overline{\mathbf{B}_q(0,1)} \times [0,1] \to \check{D}$ be a continuous map which satisfies the following two conditions:

- $\check{\lambda}((\overline{\mathbf{B}_q(0,1)} \times [0,1)) \cup (\partial \mathbf{B}_q(0,1) \times \{1\})) \subset D.$
- The map $\check{\lambda}(\cdot, t) : \mathbf{B}_q(0, 1) \to D$ is holomorphic for every $t \in [0, 1)$.

Then, we have that $\check{\lambda}(\overline{\mathbf{B}_q(0,1)} \times \{1\})) \subset D$.

Proof. Since $\check{\lambda}(\partial \mathbf{B}_q(0,1) \times \{1\}) \subset D$, there exists $r \in (0,1)$ such that $\check{\lambda}(\{r \leq ||z|| \leq 1\} \times \{1\}) \subset D$. By Proposition 2.7, there exists an exhaustion function $u: D \to [-\infty, +\infty)$ which is *q*-plurisubharmonic on *D*. Then, we have that

$$K:=\max_{\{r\leq \|z\|\leq 1\}\times [0,1]} u\circ \breve{\lambda}<+\infty.$$

Let $t \in [0, 1)$. Since the map $\check{\lambda}(\cdot, t) : \mathbf{B}_q(0, 1) \to D$ is holomorphic, the function $(u \circ \check{\lambda})(\cdot, t) : \mathbf{B}_q(0, 1) \to [-\infty, +\infty)$ is subpluriharmonic. Therefore, by the maximum principle for subpluriharmonic functions (see Fujita [5, Proposition 1]), we have that $(u \circ \check{\lambda})(z, t) \leq K$ for every $z \in \overline{\mathbf{B}_q(0, 1)}$. It follows that $\check{\lambda}(\overline{\mathbf{B}_q(0, 1)} \times [0, 1)) \subset \{u \leq K\}$. Since $\{u \leq K\}$ is a compact set in D, we have that

$$\check{\lambda}(z,1) = \lim_{t \to 1-0} \check{\lambda}(z,t) \in \{u \le K\} \subset D$$

for every $z \in \overline{\mathbf{B}_q(0,1)}$.

Lemma 3.2. Let q, m, and n be integers such that $1 \leq q \leq m \leq n$. Let (D,π) be an unramified domain over \mathbb{C}^n . Let H be an m-dimensional complex affine subspace of \mathbb{C}^n such that $\pi^{-1}(H)$ is weakly q-pseudoconvex. Let $\check{\lambda} : \overline{\mathbf{B}_q(0,1)} \times [0,1] \to \check{D}$ be a continuous map such that $\check{\lambda}(\overline{\mathbf{B}_q(0,1)} \times [0,1] \setminus \{(0,1)\}) \subset D \cap \pi^{-1}(H)$ and the map $\check{\lambda}(\cdot,t) : \mathbf{B}_q(0,1) \to D$ is holomorphic for every $t \in [0,1)$. Then, we have that $\check{\lambda}(0,1) \in D$.

Proof. Let $F := \overline{\mathbf{B}_q(0,1)} \times [0,1]$. Let Z be the connected component of $\pi^{-1}(H)$ which includes the connected set $\check{\lambda}(F \setminus \{(0,1)\})$. Then, the closed complex subspace Z of D with the induced map $\pi_{Z,H} : Z \to H$ is an unramified domain over $H \cong \mathbb{C}^m$. By assumption, $\pi^{-1}(H)$ is weakly q-pseudoconvex and therefore Z is q-pseudoconvex by Proposition 2.7. Suppose that $\check{\lambda}(0,1) \in \check{\partial}D$. Take arbitrary sequences $\{(z^{(k)}, s^{(k)})\}$ and $\{(w^{(k)}, t^{(k)})\}$ in $F \setminus \{(0,1)\}$ which converge to (0,1) in F. Then, both

24

two sequences $\{\check{\lambda}(z^{(k)}, s^{(k)})\}$ and $\{\check{\lambda}(w^{(k)}, t^{(k)})\}$ have no convergent subsequence in Z and we have that

$$\lim_{k \to \infty} \pi(\breve{\lambda}(z^{(k)}, s^{(k)})) = \lim_{k \to \infty} \pi(\breve{\lambda}(w^{(k)}, t^{(k)})) = \breve{\pi}(\breve{\lambda}(0, 1))$$

in \mathbb{C}^n . For every r > 0, there exist $\rho \in (0,1)$ and $\delta \in (0,1)$ such that $\left(\breve{\pi} \circ \breve{\lambda}\right) (\mathbf{B}_q(0,\rho) \times (1-\delta,1]) \subset \mathbf{B}_n(\breve{\pi}(\breve{\lambda}(0,1)),r)$. There exists $k_0 \in \mathbb{N}$ such that $(z^{(k)}, s^{(k)}), (w^{(k)}, t^{(k)}) \in \mathbf{B}_q(0,\rho) \times (1-\delta,1]$ for every $k \geq k_0$. Since the set $\mathbf{B}_q(0,\rho) \times (1-\delta,1]$ is convex, the path

$$\gamma: [0,1] \to Z, \quad \gamma(\tau) := \breve{\lambda}((1-\tau) \, z^{(k)} + \tau w^{(l)}, (1-\tau) \, s^{(k)} + \tau t^{(l)}),$$

joins $\check{\lambda}(z^{(k)}, s^{(k)})$ to $\check{\lambda}(w^{(l)}, t^{(l)})$ and satisfies the condition that $(\pi \circ \gamma)([0,1]) \subset \mathbf{B}_n(\check{\pi}(\check{\lambda}(0,1)), r)$ for $k, l \geq k_0$. Therefore, the sequences $\{\check{\lambda}(z^{(k)}, s^{(k)})\}$ and $\{\check{\lambda}(w^{(k)}, t^{(k)})\}$ are equivalent each other and determine a unique point $\xi \in \check{\partial}Z$ and we have that

$$\lim_{k \to \infty} \breve{\lambda}(z^{(k)}, s^{(k)}) = \lim_{k \to \infty} \breve{\lambda}(w^{(k)}, t^{(k)}) = \xi$$

in \check{Z} . It follows that $\lim_{(z,t)\to(0,1)}\check{\lambda}(z,t) = \xi$ in \check{Z} although $\check{\lambda}(F \setminus \{(0,1)\}) \subset Z$. This contradicts Lemma 3.1. Thus, we proved that $\check{\lambda}(0,1) \in D$. \Box

Lemma 3.3. Let (D, π) be an unramified domain over \mathbb{C}^n such that π is not biholomorphic. Then, for every $a \in D$, there exist $b^{(0)} \in \partial \mathbf{B}_n(\pi(a), d_D(a))$ and $\xi^{(0)} \in \check{\partial}D$ such that

$$\lim_{z \to b^{(0)}} \left(\pi |_{B(a,d_D(a))} \right)^{-1} (z) = \xi^{(0)}$$

in *Ď*.

Proof. Let $d := d_D$, B := B(a, d(a)), $Q := \mathbf{B}_n(\pi(a), d(a))$, and $\sigma := (\pi|_B)^{-1} : Q \to B$. Take an arbitrary $b \in \partial Q$. First, we consider the case where there exists a sequence $\{w^{(k)}\} \subset Q$ which converges to b in \mathbb{C}^n such that the sequence $\{\sigma(w^{(k)})\}$ converges to some ξ in D. Then, we have that $B \cap B(\xi, d(\xi)) \neq \emptyset$ and

$$\pi(\xi) = \lim_{k \to \infty} \pi(\sigma(w^{(k)})) = \lim_{k \to \infty} w^{(k)} = b.$$

Therefore, by Proposition 2.1, we have that

$$\lim_{z \to b} \sigma(z) = \lim_{z \to b} \left(\pi|_{B(\xi, d(\xi))} \right)^{-1} (z) = \left(\pi|_{B(\xi, d(\xi))} \right)^{-1} (b) = \xi$$

in *D*. Next, we consider the case other than the above. Take arbitrary sequences $\{z^{(k)}\}$ and $\{w^{(k)}\}$ in *Q* which converge to *b* in \mathbb{C}^n . Then, both two sequences $\{\sigma(z^{(k)})\}$ and $\{\sigma(w^{(k)})\}$ have no convergent subsequence in *D* and we have that

$$\lim_{k \to \infty} \pi(\sigma(z^{(k)})) = \lim_{k \to \infty} \pi(\sigma(w^{(k)})) = b$$

in \mathbb{C}^n . For every r > 0, there exists $k_0 \in \mathbb{N}$ such that $z^{(k)}, w^{(k)} \in \mathbf{B}_n(b, r)$ for every $k \ge k_0$. Since $Q \cap \mathbf{B}_n(b, r)$ is convex, the path

$$\gamma: [0,1] \to D, \quad \gamma(t) := \sigma((1-t) \, z^{(k)} + t w^{(l)}),$$

joins $\sigma(z^{(k)})$ to $\sigma(w^{(l)})$ and satisfies the condition that $(\pi \circ \gamma)([0,1]) \subset \mathbf{B}_n(b,r)$ for $k, l \geq k_0$. Therefore, the sequences $\{\sigma(z^{(k)})\}$ and $\{\sigma(w^{(k)})\}$ are equivalent each other, determine a point $\xi \in \check{\partial}D$, and we have that

$$\lim_{k \to \infty} \sigma(z^{(k)}) = \lim_{k \to \infty} \sigma(w^{(k)}) = \xi$$

in \check{D} . It follows that $\lim_{z\to b} \sigma(z) = \xi$ in \check{D} . Thus, we proved that, for every $b \in \partial Q$, there exists a unique $\xi(b) \in \check{D}$ such that $\lim_{z\to b} \sigma(z) = \xi(b)$ in \check{D} . Seeking a contradiction, suppose that $\xi(b) \in D$ for every $b \in \partial Q$. Then, by Proposition 2.2, the map $\pi|_W : W \to \pi(W)$ is biholomorphic, where

$$W := B \cup \left(\bigcup_{b \in \partial Q} B(\xi(b), d(\xi(b))) \right).$$

Since $\overline{Q} \subset \pi(W)$, there exists $\delta > 0$ such that $\mathbf{B}_n(\pi(a), d(a) + \delta) \subset \pi(W)$. Then, $U := (\pi|_W)^{-1} (\mathbf{B}_n(\pi(a), d(a) + \delta))$ is a neighborhood of a and the map $\pi : U \to \mathbf{B}_n(\pi(a), d(a) + \delta)$ is biholomorphic, which contradicts the definition of d(a). It follows that there exists $b^{(0)} \in \partial Q$ such that $\xi^{(0)} := \xi(b^{(0)}) \in \check{\partial}D$.

By a similar argument in Yasuoka [21, pp. 143–144], we can prove the following lemma (see Sugiyama [18]).

Lemma 3.4. Let $c \in \mathbb{C}^n$, r > 0, and $f \in \mathscr{O}(\mathbf{B}_n(c,r))$ with $\Im(f(c)) = 0$. Let

$$P(z) := \sum_{|\alpha| \le 2} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} e^f}{\partial z^{\alpha}}(c) (z - c)^{\alpha}, \quad \alpha = (\alpha_1, \alpha_2, \dots, \alpha_n),$$

for every $z \in \mathbb{C}^n$. Then, for every $\varepsilon \in (0, e^{-\Re(f(c))})$, there exist $\rho \in (0, r)$, $\delta > 0$, and M > 0 such that

$$\ln |P(z) - t| \le \Re(f(z)) - \varepsilon t + M ||z||^3$$

for every $(z,t) \in \overline{\mathbf{B}_n(0,\rho)} \times [0,\delta].$

4. Theorem

Theorem 4.1. Let q and n be integers such that $1 \leq q \leq n$. Let (D, π) be an unramified domain over \mathbb{C}^n . Then, the following two conditions are equivalent.

- (1) (D, π) is q-pseudoconvex.
- (2) Let $\check{\lambda} : \overline{\mathbf{B}_q(0,1)} \times [0,1] \to \check{D} = D \cup \check{\partial}D$ be a continuous map which satisfies the following two conditions:
 - $\check{\lambda}(\overline{\mathbf{B}_q(0,1)} \times [0,1] \setminus \{(0,1)\}) \subset D.$
 - There exists a holomorphic map $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) : \mathbb{C}^{q+1} \to \mathbb{C}^n$ of the form

$$\lambda_{\nu}(z_1, z_2, \dots, z_q, t) = P_{\nu}(z_1, z_2, \dots, z_q) + c_{\nu}t,$$

where $P_{\nu}(z_1, z_2, ..., z_q)$ is a polynomial of $z_1, z_2, ..., z_q$ of degree at most 2 and $c_{\nu} \in \mathbb{C}$ for every $\nu = 1, 2, ..., n$, such that the image $H := \lambda(\mathbb{C}^{q+1})$ is a (q+1)-dimensional complex affine subspace of \mathbb{C}^n , the induced map $\lambda : \mathbb{C}^{q+1} \to H$ is biholomorphic, and $\breve{\pi} \circ \breve{\lambda} = \lambda$ on $\overline{\mathbf{B}_q(0,1)} \times [0,1]$.

Then, we have that $\check{\lambda}(0,1) \in D$.

Remark 4.2. The expression of λ in the hypothesis in condition (2) does not depend on a complex affine transformation of coordinates of \mathbb{C}^n .

Remark 4.3. If q = n, then there does not exist such λ that satisfies the hypothesis in condition (2) and therefore every unramified domain (D, π) over \mathbb{C}^n satisfies condition (2).

Proof of Theorem 4.1.

$$(1) \rightarrow (2)$$
. The assertion is a direct consequence of Lemma 3.1.

(2) \rightarrow (1). We have only to prove the assertion when $1 \leq q \leq n-1$ and π is not biholomorphic. Seeking a contradiction, suppose that (D,π) is not q-pseudoconvex. By Corollary 2.5, there exists a q-dimensional complex affine subspace L of \mathbb{C}^n such that the function $-\ln d$ is not subpluriharmonic on $\pi^{-1}(L)$, where $d := d_D$. Take a connected component Z of $\pi^{-1}(L)$ such that $(-\ln d) |_Z$ is not subpluriharmonic on Z. The closed complex submanifold Z of D with the induced map $\pi_{Z,L} : Z \to L$ is an unramified domain over $L \cong \mathbb{C}^q$. By a translation and by a unitary transformation of coordinates w_1, w_2, \ldots, w_n of \mathbb{C}^n , we may assume that $L = \{w_{q+1} = w_{q+2} = \cdots = w_n = 0\}$. Then, the functions $\pi_1|_Z, \pi_2|_Z, \ldots, \pi_q|_Z$ give a system of local coordinates of Z near any point of Z, where $\pi_{\nu} := w_{\nu} \circ \pi$ for every $\nu = 1, 2, \ldots, n$. By Proposition 2.3, there exist $a \in Z, r \in (0, d(a)), K > 0$, and a function f holomorphic near $\overline{B^{(Z)}(a, r)}$ such that $-\ln d(a) + \Re(f(a)) = 0, \Im(f(a)) = 0$, and

$$-\ln d + \Re(f) \le -K \sum_{\nu=1}^{q} |\pi_{\nu} - \pi_{\nu}(a)|^2$$

on $\overline{B^{(Z)}(a,r)}$, where $B^{(Z)}(a,r)$ denotes the open ball in Z of radius r with center a. By a translation of coordinates, we may further assume that $\pi(a) = 0$ in \mathbb{C}^n . Let

$$\ell: \mathbb{C}^q \to \mathbb{C}^n, \quad \ell(z_1, z_2, \dots, z_q) := (z_1, z_2, \dots, z_q, 0, \dots, 0).$$

Since $\|\ell(z)\| = \|z\|$ for every $z \in \mathbb{C}^q$, we have that $\ell(\mathbf{B}_q(0,r)) = \mathbf{B}_n(0,r) \cap L$. Let $B := B(a, d(a)), Q := \mathbf{B}_n(0, d(a))$, and $\sigma := (\pi|_B)^{-1} : Q \to B$. Then, we have that $B^{(Z)}(a, r) = \sigma(\mathbf{B}_n(0, r) \cap L)$. Let $\tilde{f}(z) := f(\sigma(\ell(z)))$ for every $z \in \mathbf{B}_q(0, r)$. Take an arbitrary $\varepsilon \in (0, e^{-\Re(\tilde{f}(0))})$. By Lemma 3.4, there exist $\rho_1 \in (0, r), \delta > 0$, and M > 0 such that

$$\ln |P(z) - t| \le \Re(\tilde{f}(z)) - \varepsilon t + M ||z||^3$$

for every $(z,t) \in \overline{\mathbf{B}_q(0,\rho_1)} \times [0,\delta]$, where

$$P(z) := \sum_{|\alpha| \le 2} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} e^{\tilde{f}}}{\partial z^{\alpha}}(0) z^{\alpha}, \quad \alpha = (\alpha_1, \alpha_2, \dots, \alpha_q),$$

on \mathbb{C}^q . Take an arbitrary $\rho \in (0, \min \{\rho_1, K/M\})$. Let $E := \overline{\mathbf{B}_q(0, \rho)} \times [0, \delta]$. For every $(z, t) \in E \setminus \{(0, 0)\}$, we have that

$$\Re(\tilde{f}(z)) - \varepsilon t + M \, \|z\|^3 < \Re(\tilde{f}(z)) + K \, \|z\|^2$$

and therefore we have that

$$|P(z) - t| < e^{\Re(\tilde{f}(z)) + K ||z||^2} \le e^{\ln d(\sigma(\ell(z)))} = d(\sigma(\ell(z))).$$

On the other hand, we have that

$$|P(0) - 0| = \left| e^{\tilde{f}(0)} \right| = e^{\Re(f(a))} = e^{\ln d(a)} = d(a).$$

By Lemma 3.3, there exist $b^{(0)} \in \partial Q$ and $\xi^{(0)} \in \check{\partial} D$ such that $\lim_{z\to b^{(0)}} \sigma(z) = \xi^{(0)}$ in \check{D} . Let

$$\varphi : \mathbb{C}^q \times \mathbb{C} \to \mathbb{C}^n, \quad \varphi(z,t) := (P(z) - t) u^{(0)} + \ell(z),$$

where $u^{(0)} = (u_1^{(0)}, u_2^{(0)}, \dots, u_n^{(0)}) := b^{(0)}/P(0)$. Then, for every $(z, t) \in E \setminus \{(0, 0)\}$, we have that

$$\|\varphi(z,t) - \ell(z)\| = |P(z) - t| < d(\sigma(\ell(z)))$$

and therefore

$$\varphi(z,t) \in \mathbf{B}_n(\ell(z), d(\sigma(\ell(z)))) = \pi(B(\sigma(\ell(z)), d(\sigma(\ell(z)))) \subset \pi(W),$$

where $W := \bigcup_{x \in B} B(x, d(x))$. By Proposition 2.2, the map $\pi|_W : W \to \pi(W)$ is biholomorphic. Let

$$\breve{\varphi}(z,t) := \begin{cases} (\pi|_W)^{-1} \left(\varphi(z,t) \right) & \text{if } (z,t) \in E \setminus \{(0,0)\}, \\ \xi^{(0)} & \text{if } (z,t) = (0,0). \end{cases}$$

Then, we have that $\check{\pi} \circ \check{\varphi} = \varphi$ on E. Suppose that there exists a sequence $\{(z^{(k)}, t^{(k)})\} \subset E \setminus \{(0,0)\}$ which converges to (0,0) in $\mathbb{C}^q \times \mathbb{C}$ such that

29

the sequence $\{\check{\varphi}(z^{(k)}, t^{(k)})\}$ converges to some point η in D. Then, we have that $W \cap B(\eta, d(\eta)) \neq \emptyset$ and therefore there exists $x \in B$ such that $B(x, d(x)) \cap B(\eta, d(\eta)) \neq \emptyset$. Then, by Proposition 2.1, there exists a path $\beta : [0, 1] \to D$ which joins x to η such that $\pi \circ \beta$ is the line segment which joins $\pi(x)$ to $b^{(0)}$. Since $(\pi \circ \beta)([0, 1)) \subset Q$ and $\beta(0) = x = \sigma(\pi(x))$, we have that $\beta = \sigma \circ (\pi \circ \beta)$ on [0, 1) by the identity principle for liftings. It follows that

$$\eta = \lim_{t \to 1-0} \beta(t) = \lim_{t \to 1-0} \sigma((1-t)\pi(x) + tb^{(0)}) = \xi^{(0)} \in \check{\partial}D,$$

which is a contradiction. Therefore, for every sequence $\{(z^{(k)}, t^{(k)})\} \subset E \setminus \{(0,0)\}$ which converges to (0,0) in $\mathbb{C}^q \times \mathbb{C}$, the sequence $\{\breve{\varphi}(z^{(k)}, t^{(k)})\}$ has no convergent subsequence in D. For every s > 0, there exist $\rho' \in (0, \rho)$ and $\delta' \in (0, \delta)$ such that $\varphi(\mathbf{B}_q(0, \rho') \times (-\delta', \delta')) \subset \mathbf{B}_n(b^{(0)}, s)$. There exists $k_0 \in \mathbb{N}$ such that $(z^{(k)}, t^{(k)}) \in \mathbf{B}_q(0, \rho') \times [0, \delta')$ and $1/k < \delta'$ for every $k \ge k_0$. Since the set $\mathbf{B}_q(0, \rho') \times [0, \delta') \setminus \{(0, 0)\}$ is arcwise connected, there exists a path $\gamma : [0, 1] \to D$ which joins $\breve{\varphi}(z^{(k)}, t^{(k)})$ to $\breve{\varphi}(0, 1/l)$ and $(\pi \circ \gamma)([0, 1]) \subset W \cap \mathbf{B}_n(b^{(0)}, s)$ for every $k, l \ge k_0$. Therefore, the sequence $\{\breve{\varphi}(z^{(k)}, t^{(k)})\}$ is equivalent to $\{\breve{\varphi}(0, 1/k)\}$ and we have that

$$\lim_{k \to \infty} \breve{\varphi}(x^{(k)}, t^{(k)}) = \lim_{k \to \infty} \breve{\varphi}(0, 1/k) = \lim_{k \to \infty} \sigma((P(0) - 1/k) u^{(0)}) = \xi^{(0)}$$

in \check{D} . It follows that $\lim_{(z,t)\to(0,0)} \check{\varphi}(z,t) = \xi^{(0)}$ in \check{D} . Thus, we proved that the map $\check{\varphi} : E \to \check{D}$ is continuous. Let $F := \overline{\mathbf{B}_q(0,1)} \times [0,1]$, let $\check{\lambda} : F \to \check{D}$, $\check{\lambda}(\zeta,\tau) := \check{\varphi}(\rho\zeta, \delta(1-\tau))$, and let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) : \mathbb{C}^q \times \mathbb{C} \to \mathbb{C}^n$, $\lambda(\zeta,\tau) := \varphi(\rho\zeta, \delta(1-\tau))$. Then, $\check{\lambda}$ is continuous, $\check{\lambda}(F \setminus \{(0,1)\}) = \check{\varphi}(E \setminus \{(0,0)\}) \subset D, \, \check{\pi} \circ \check{\lambda} = \lambda \text{ on } F$, and $\check{\lambda}(0,1) = \check{\varphi}(0,0) = \xi^{(0)} \in \check{\partial}D$. We have that

$$\lambda(\zeta,\tau) = (P(\rho\zeta) - \delta(1-\tau)) u^{(0)} + \ell(\rho\zeta)$$
$$= \left\{ (P(\rho\zeta) - \delta) u^{(0)} + \ell(\rho\zeta) \right\} + \tau \delta u^{(0)}$$

and every component of $(P(\rho\zeta) - \delta) u^{(0)} + \ell(\rho\zeta)$ is a polynomial of $\zeta_1, \zeta_2, \ldots, \zeta_n$ of degree at most 2. Let $H := \mathbb{C} u^{(0)} + L$, which is a complex linear subspace of \mathbb{C}^n . For every $(z,t) \in \mathbb{C}^q \times \mathbb{C}$, we have that $\varphi(z,t) = (P(z) - t) u^{(0)} + \ell(z) \in H$. Suppose that $u^{(0)} \in L$. Then, we have

that H = L and $\check{\lambda}(F \setminus \{(0,1)\}) = \check{\varphi}(E \setminus \{(0,1)\}) \subset \pi^{-1}(L)$. Since $\pi^{-1}(L)$ is weakly q-pseudoconvex, we have that $\xi^{(0)} = \lim_{(z,t)\to(0,1)}\check{\lambda}(z,t) \in D$ by Lemma 3.2, which is a contradiction. It follows that $u_0 \notin L$ and $\dim H = q + 1$. Therefore, there exists $m \in \{q + 1, q + 2, \dots, n\}$ such that $u_m^{(0)} \neq 0$. Let

$$\psi: \mathbb{C}^n \to \mathbb{C}^q \times \mathbb{C}, \quad \psi(w_1, w_2, \dots, w_n) = (z_1, z_2, \dots, z_q, t),$$

be the holomorphic map defined by

$$\begin{cases} z_{\nu} = w_{\nu} - \left(u_{\nu}^{(0)}/u_{m}^{(0)}\right) \cdot w_{m} \quad (\nu = 1, 2, \dots, q), \\ t = P\left(\left(w_{\nu} - \left(u_{\nu}^{(0)}/u_{m}^{(0)}\right) \cdot w_{m}\right)_{\nu=1}^{q}\right) - \left(1/u_{m}^{(0)}\right) \cdot w_{m} \end{cases}$$

Then, by direct computations, we can verify that $(\psi|_H) \circ \varphi = \mathrm{id}_{\mathbb{C}^q \times \mathbb{C}}$ and $\varphi \circ (\psi|_H) = \mathrm{id}_H$. It follows that $\varphi : \mathbb{C}^q \times \mathbb{C} \to \varphi(\mathbb{C}^q \times \mathbb{C}) = H$ is biholomorphic. Since the map $\mathbb{C}^q \times \mathbb{C} \to \mathbb{C}^q \times \mathbb{C}, (\zeta, \tau) \to (\rho\zeta, \delta(1-\tau))$, is a complex affine automorphism, the map $\lambda : \mathbb{C}^q \times \mathbb{C} \to H$ is also biholomorphic. Consequently, $\check{\lambda}$ satisfies the supposition of condition (2) but does not satisfies the conclusion of it, which is a contradiction. \Box

5. Corollaries

As a corollary to Theorem 4.1, we have the following characterization of a q-pseudoconvex unramified domain over \mathbb{C}^n by the continuity property (cf. Słodkowski [16, Theorem 4.3] and Vâjâitu [19, Corollary 1]).

Corollary 5.1. Let q and n be integers such that $1 \leq q \leq n$. Let (D, π) be an unramified domain over \mathbb{C}^n . Then, the following two conditions are equivalent.

- (1) (D, π) is q-pseudoconvex.
- (2) Let $\check{\lambda} : \overline{\mathbf{B}_q(0,1)} \times [0,1] \to \check{D}$ be a continuous map which satisfies the following two conditions:
 - $\check{\lambda}((\overline{\mathbf{B}_q(0,1)}\times[0,1))\cup(\partial\mathbf{B}_q(0,1)\times\{1\}))\subset D.$
 - The map $\check{\lambda}(\cdot, t) : \mathbf{B}_q(0, 1) \to D$ is holomorphic for every $t \in [0, 1)$.

Then, we have that $\check{\lambda}(\overline{\mathbf{B}_q(0,1)} \times \{1\}) \subset D$.

We have the following characterization of a q-pseudoconvex unramified domain over \mathbb{C}^n , which generalizes Lelong [11, p. 201], Hitotumatu [8, Proposition 14], Alessandrini–Silva [2, p. 86], Słodkowski [16, Corollary 4.8], and Pawlaschyk–Zeron [14, Proposition 3.14].

Corollary 5.2. Let q and n be integers such that $1 \leq q \leq n$. Let (D, π) be an unramified domain over \mathbb{C}^n . Then, the following two conditions are equivalent.

- (1) (D, π) is q-pseudoconvex.
- (2) For every (q+1)-dimensional complex affine subspace H of \mathbb{C}^n , the closed complex submanifold $\pi^{-1}(H)$ of D is weakly q-pseudoconvex.

Proof.

(1) \rightarrow (2). The assertion is a direct consequence of Propositions 2.6 and 2.7.

 $(2) \to (1)$. Seeking a contradiction, suppose that (D, π) is not q-pseudoconvex. Let $F := \overline{\mathbf{B}_q(0,1)} \times [0,1]$. By Theorem 4.1, there exists a continuous map $\check{\lambda} : F \to \check{D}$ which satisfies the following three conditions:

- $\check{\lambda}(F \setminus \{(0,1)\}) \subset D.$
- There exists a holomorphic map $\lambda : \mathbb{C}^{q+1} \to \mathbb{C}^n$ such that the image $H := \lambda(\mathbb{C}^{q+1})$ is a (q+1)-dimensional complex affine subspace of \mathbb{C}^n , the induced map $\lambda : \mathbb{C}^{q+1} \to H$ is biholomorphic, and $\check{\pi} \circ \check{\lambda} = \lambda$ on F.
- $\check{\lambda}(0,1) \in \check{\partial}D.$

Then, by assumption, $\pi^{-1}(H)$ is weakly *q*-pseudoconvex. Since $\check{\lambda}(F \setminus \{(0,1)\}) \subset D \cap \pi^{-1}(H)$, we have that $\check{\lambda}(0,1) = \lim_{(z,t)\to(0,1)} \check{\lambda}(z,t) \in D$ by Lemma 3.2, which is a contradiction.

In the case where q = 1, we have the following characterization of a pseudoconvex unramified domain over \mathbb{C}^n , which generalizes Yasuoka [21, Theorem 2] and refines Sugiyama [17, Theorem 3.1].

Corollary 5.3. Let (D, π) be an unramified domain over \mathbb{C}^n . Then, the following two conditions are equivalent.

- (1) (D, π) is pseudoconvex.
- (2) Let $\check{\lambda} : \overline{B_1(0,1)} \times [0,1] \to \check{D}$ be a continuous map which satisfies the following two conditions:
 - $\check{\lambda}(\overline{B_1(0,1)} \times [0,1] \setminus \{(0,1)\}) \subset D.$
 - There exists a holomorphic map $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) : \mathbb{C}^2 \to \mathbb{C}^n$ of the form

$$\lambda_{\nu}(z,t) = P_{\nu}(z) + c_{\nu}t,$$

where $P_{\nu}(z)$ is a polynomial of z of degree at most 2 and $c_{\nu} \in \mathbb{C}$ for every $\nu = 1, 2, ..., n$, such that the image $H := \lambda(\mathbb{C}^2)$ is a complex affine subspace of dimension 2, the induced map λ : $\mathbb{C}^2 \to H$ is biholomorphic, and $\breve{\pi} \circ \breve{\lambda} = \lambda$ on $\overline{B_1(0,1)} \times [0,1]$.

Then, we have that $\check{\lambda}(0,1) \in D$.

Acknowledgment. The first author is partially supported by JSPS KAKENHI Grant Number JP17K05301.

References

- M. Abe and S. Sugiyama, A characterization of subpluriharmonicity for a function of several complex variables, *Bulletin of the Graduate School of Integrated Arts and Sciences, Hiroshima Univ., II: Studies in Environmental Sciences* (to appear).
- [2] L. Alessandrini and A. Silva, On a theorem of Lelong, Math. Nachr., 147 (1990), 83–88.
- [3] J.-P. Demailly, Estimations L² pour l'opérateur ∂ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4), 15 (1982), 457–511.
- [4] K. Fritzsche and H. Grauert, From holomorphic functions to complex manifolds, Grad. Texts in Math., vol. 213, Springer, New York, 2002.

- [5] O. Fujita, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, J. Math. Kyoto Univ., 30 (1990), 637–649.
- [6] O. Fujita, On the equivalence of the q-plurisubharmonic functions and the pseudoconvex functions of general order, Annual Reports of Graduate School of Human Culture, Nara Women's Univ., 7 (1991), 77-81.
- [7] R. E. Greene and H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble), 25 (1975), 215– 235.
- [8] S. Hitotumatu, On some conjectures concerning pseudo-convex domains, J. Math. Soc. Japan, 6 (1954), 177–195.
- [9] L. R. Hunt and J. J. Murray, q-plurisubharmonic functions and a generalized Dirichlet problem, *Michigan Math. J.*, 25 (1978), 299–316.
- [10] M. Jarnicki and P. Pflug, Extension of holomorphic functions, De Gruyter Expositions in Mathematics, vol. 34, Walter de Gruyter, Berlin, 2000.
- [11] P. Lelong, Domaines convexes par rapport aux fonctions plurisousharmoniques. J. Analyse Math., 2 (1952), 178–208.
- [12] K. Matsumoto, Pseudoconvex Riemann domains of general order over Stein manifolds, Mem. Fac. Sci. Kyushu Univ. Ser. A. Math., 44 (1990), 95–109.
- T. Ohsawa, Completeness of noncompact analytic spaces, Publ. Res. Inst. Math. Sci., 20 (1984), 683–692.
- [14] T. Pawlaschyk and E. S. Zeron, On convex hulls and pseudoconvex domains generated by q-plurisubharmonic functions, part I, J. Math. Anal. Appl., 408 (2013), 394–408.
- [15] A. Popa-Fischer, A generalization to the q-convex case of a theorem of Fornæss and Narasimhan, *Michigan Math. J.*, **50** (2002), 483–492.

- [16] Z. Słodkowski, Local maximum property and q-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl., 115 (1986), 105–130.
- [17] S. Sugiyama, Polynomials and pseudoconvexity for Riemann domains over Cⁿ, Toyama Math. J., 38 (2016), 101–114.
- [18] S. Sugiyama, Generalized Cartan-Behnke-Stein's theorem and qpseudoconvexity in a Stein manifold, Tohoku Math. J. (2) (to appear).
- [19] V. Vâjâitu, On increasing unions of q-complete manifolds. Rev. Roumaine Math. Pures Appl., 43 (1998), 235–244.
- [20] V. Vâjâitu, A Levi problem for continuous strongly q-plurisubharmonic functions, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 573–578.
- [21] T. Yasuoka, Polynomials and pseudoconvexity, Math. Sem. Notes Kobe Univ., 11 (1983), 139–148.

Makoto ABE School of Integrated Arts and Sciences Hiroshima University Higashi-Hiroshima 739-8521, Japan e-mail: abem@hiroshima-u.ac.jp

Tadashi SHIMA School of Informatics and Data Science Hiroshima University Higashi-Hiroshima 739-8521, Japan e-mail: tadashi@hiroshima-u.ac.jp

Shun SUGIYAMA Graduate School of Science Hiroshima University Higashi-Hiroshima 739-8526, Japan e-mail: d171772@hiroshima-u.ac.jp

(Received February 4, 2019)