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Intermediate pseudoconvexity for unramified Riemann
domains over Cn

Makoto Abe, Tadashi Shima and Shun Sugiyama

Abstract. We characterize the q-pseudoconvexity for unramified
Riemann domains over Cn, where 1 ≤ q ≤ n, by the continuity
property which holds for a class of maps whose projections to Cn

are families of unidirectionally parameterized q-dimensional analytic
balls written by polynomials of degree at most two.

1. Introduction

An unramified (Riemann) domain over Cn is a pair (D,π) of a second
countable connected complex manifold D and a locally biholomorphic map
π : D → Cn. According to Fritzsche–Grauert [4], we denote by ∂̆D the set
of accessible boundary points of (D,π), by D̆ = D∪ ∂̆D the abstract closure
of (D,π), and by π̆ : D̆ → Cn the extension of π to D̆.

We say that an upper semicontinuous function u : D → [−∞,+∞) is
q-plurisubharmonic, where 1 ≤ q ≤ n, if for every open set G of Cq and for
every holomorphic map f : G → D the function u ◦ f : G → [−∞,+∞)

is subpluriharmonic in the sense of Fujita [5, 6]. We say that (D,π) is q-
pseudoconvex if the function − ln dD : D → R is q-plurisubharmonic, where
dD denotes the Euclidean boundary distance function of (D,π).

In this paper, we give a characterization of the q-pseudoconvexity for
unramified domains over Cn by the continuity property which holds for
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a class of maps whose projections to Cn are families of unidirectionally
parameterized q-dimensional analytic balls written by polynomials of degree
at most 2. To be precise, we prove that an unramified domain (D,π) over Cn

is q-pseudoconvex, where 1 ≤ q ≤ n, if and only if the following condition
is satisfied (see Theorem 4.1):

Let λ̆ : Bq(0, 1) × [0, 1] → D̆, where Bq(0, 1) denotes the unit
ball in Cq, be a continuous map which satisfies the conditions
that λ̆(Bq(0, 1) × [0, 1] \ {(0, 1)}) ⊂ D, there exists a holo-
morphic map λ = (λ1, λ2, . . . , λn) : Cq+1 → Cn of the form
λν(z1, z2, . . . , zq, t) = Pν(z1, z2, . . . , zq) + cνt, where Pν is a
polynomial of variables z1, z2, . . . , zq of degree at most 2 and
cν ∈ C for every ν = 1, 2, . . . , n, such that H := λ(Cq+1) is
a (q + 1)-dimensional complex affine subspace of Cn, the in-
duced map λ : Cq+1 → H is biholomorphic, and π̆ ◦ λ̆ = λ on
Bq(0, 1)× [0, 1]. Then, we have that λ̆(0, 1) ∈ D.

As a corollary, we obtain a Lelong type characterization of a q-
pseudoconvex unramified domain over Cn (see Corollary 5.2). On the other
hand, in the case where q = 1, we obtain a characterization of a pseudocon-
vex unramified domain over Cn, which generalizes Yasuoka [21, Theorem 2]
and refines Sugiyama [17, Theorem 3.1] (see Corollary 5.3).

2. Preliminaries

Let n ∈ N. We denote by ∥ · ∥ the Euclidean norm on Cn, that is,

∥z∥ :=

(
n∑

ν=1

|zν |2
)1/2

for every z = (z1, z2, . . . , zn) ∈ Cn. We call the set

Bn(c, r) := {z ∈ Cn | ∥z − c∥ < r}

the open ball of radius r with center c in Cn, where r ∈ (0,+∞] and c ∈ Cn.
We call the set Bn(0, 1) the unit ball in Cn.



Intermediate pseudoconvexity for unramified Riemann domains over Cn 19

Proposition 2.1. Let (D,π) be an unramified domain over Cn. Let
ak ∈ D, rk ∈ (0,+∞], and Bk a neighborhood of ak in D such that
π(Bk) = Bn(π(ak), rk) and π|Bk

: Bk → π(Bk) is biholomorphic for each
k = 1, 2. Assume that B1∩B2 ̸= ∅. Then, we have that (π|B1)

−1 = (π|B2)
−1

on π(B1) ∩ π(B2) and the map π|B1∩B2 : B1 ∩ B2 → π(B1) ∩ π(B2) is bi-
holomorphic.

Proof. Let Qk := Bn(π(ak), rk) for each k = 1, 2. For an arbitrary a ∈
B1∩B2 ̸= ∅, we have that π(a) ∈ Q1∩Q2 and (π|Bk

)−1 (π(a)) = a for each
k = 1, 2. Moreover, the set Q1 ∩Q2 is connected and therefore (π|B1)

−1 =

(π|B2)
−1 on Q1 ∩ Q2 by the identity principle for liftings. Then, for every

z ∈ Q1 ∩Q2, we have that

x := (π|B1)
−1 (z) = (π|B2)

−1 (z) ∈ B1 ∩B2

and π(x) = z. It follows that π(B1 ∩B2) = Q1 ∩Q2 and the map π|B1∩B2 :

B1 ∩B2 → Q1 ∩Q2 is biholomorphic.

Let (D,π) be an unramified domain over Cn. For every point a ∈ D, the
(Euclidean) boundary distance dD(a) of a is the supremum of all r ∈ (0,+∞]

which satisfy the condition that there exists a neighborhood B of a in D

such that π(B) = Bn(π(a), r) and the map π|B : B → Bn(π(a), r) is
biholomorphic. The function dD : D → (0,+∞] is said to be the (Eu-
clidean) boundary distance function of (D,π). For every a ∈ D and for every
r ∈ (0, dD(a)], there exists a unique neighborhood B(a, r) of a in D such
that π(B(a, r)) = Bn(π(a), r) and the map π|B(a,r) : B(a, r) → Bn(π(a), r)

is biholomorphic. We call the set B(a, r) the open ball in D of radius r with
center a. The map π : D → Cn is biholomorphic if and only if there exists
a ∈ D such that dD(a) = +∞. If π is not biholomorphic, then the function
dD : D → R is continuous (see Jarnicki-Pflug [10, pp. 6–7]).

Proposition 2.2. Let (D,π) be an unramified domain over Cn. Let
a ∈ D and E a subset of the closure of B(a, dD(a)) in D. Let W :=∪

x∈E B(x, dD(x)). Then, the map π|W :W → π(W ) is biholomorphic.

Proof. We have only to prove that the map π|W :W → π(W ) is injective.
Let d := dD, B := B(a, d(a)), and Q := Bn(π(a), d(a)). Let y1, y2 ∈ W
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and assume that z0 := π(y1) = π(y2). Then, there exists xk ∈ E such that
yk ∈ B(xk, d(xk)) for each k = 1, 2. SinceB∩B(xk, d(xk)) ̸= ∅, we have that(
π|B(xk,d(xk))

)−1
= ( π|B)−1 on Q ∩ Bn(π(xk), d(xk)) by Proposition 2.1.

Let c := (d(x2)π(x1) + d(x1)π(x2)) / (d(x1) + d(x2)). Since π(x1), π(x2) ∈
Q and z0 ∈ Bn(π(x1), d(x1)) ∩ Bn(π(x2), d(x2)) ̸= ∅, we have that c ∈
Q ∩Bn(π(x1), d(x1)) ∩Bn(π(x2), d(x2)). Then,

(π|B)−1 (c) ∈ B ∩B(x1, d(x1)) ∩B(x2, d(x2))

and therefore B(x1, d(x1)) ∩ B(x2, d(x2)) ̸= ∅. By Proposition 2.1, we
have that

(
π|B(x1, d(x1))

)−1
=
(
π|B(x2, d(x2))

)−1 on Bn(π(x1), d(x1)) ∩
Bn(π(x2), d(x2)). It follows that y1 =

(
π|B(x1, d(x2))

)−1
(z0) =(

π|B(x2, d(x2))

)−1
(z0) = y2. Thus, we proved that π|W is injective.

Let D be a complex manifold. According to Fujita [5, 6], an upper
semicontinuous function u : D → [−∞,+∞) is said to be subpluriharmonic
if for every relatively compact open set G of D and for every real-valued
pluriharmonic function h defined on a neighborhood of G, the inequality
u ≤ h on ∂G implies the inequality u ≤ h on G.1 If D is holomorphically
spreadable, then, by Vâjâitu [20, Proposition 2], an upper semicontinuous
function u : D → [−∞,+∞) is subpluriharmonic if and only if there exists
an open covering {Ui}i∈I of D such that u is subpluriharmonic on Ui for
every i ∈ I.

Proposition 2.3 (Słodkowski [16, Lemma 4.4]) Let D be an open set
of Cn and u : D → [−∞,+∞) an upper semicontinuous function. If u is
not subpluriharmonic, then there exist c ∈ D, r ∈ (0, dD(c)), K > 0, and
a function f holomorphic in a neighborhood of Bn(c, r) such that u(c) +
ℜ(f(c)) = 0, and u+ ℜ(f) ≤ −K ∥z − c∥2 on Bn(c, r).2

Let D be a complex manifold of dimension n. Let q be an inte-
ger such that 1 ≤ q ≤ n. Then, an upper semicontinuous function

1 The subpluriharmonic functions on an open set D of Cn exactly coincide with the
(n− 1)-plurisubharmonic functions on D in the sense of Hunt–Murray [9, Definition 2.3]
(see Fujita [6, Proposition 2]).

2 We can choose f to be a polynomial of degree at most 2 (see Abe–Sugiyama [1]).
However, we do not use this refinement to prove Theorem 4.1.
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u : D → [−∞,+∞) is said to be q-plurisubharmonic if for every open
set G of Cq and for every holomorphic map f : G → D the function
u ◦ f : G → [−∞,+∞) is subpluriharmonic.3 An upper semicontinuous
function u : D → [−∞,+∞) is q-plurisubharmonic if and only if there
exists an open covering {Ui}i∈I of D such that u is q-plurisubharmonic on
Ui for every i ∈ I.

Proposition 2.4 (Fujita [6, Theorem 2]) Let q and n be integers such
that 1 ≤ q ≤ n. Let D be an open set of Cn and u : D → [−∞,+∞)

an upper semicontinuous function. Then, the following two conditions are
equivalent.

(1) u is q-plurisubharmonic.

(2) u is (q − 1)-plurisubharmonic in the sense of Hunt–Murray [9, Defi-
nition 2.5], that is, for every q-dimensional complex affine subspace L
of Cn the function u|D∩L is subpluriharmonic.

Corollary 2.5. Let q and n be integers such that 1 ≤ q ≤ n. Let (D,π) be
an unramified domain over Cn and u : D → [−∞,+∞) an upper semicon-
tinuous function. Then, the following two conditions are equivalent.

(1) u is q-plurisubharmonic.

(2) For every q-dimensional complex affine subspace L of Cn the function
u|π−1(L) is subpluriharmonic.

Proof. There exists an open covering {Ui}i∈I of D such that π|Ui : Ui →
π(Ui) is biholomorphic for every i ∈ I. Then, by Proposition 2.4, condition
(2) is equivalent to the one that u is q-plurisubharmonic on Ui for every
i ∈ I, which is equivalent to condition (1).

Let D be a complex manifold of dimension n. Let q be an integer such
that 1 ≤ q ≤ n. We say that D is weakly q-pseudoconvex if there exists

3 The q-plurisubharmonic functions on an open set D of Cn exactly coincide with the
pseudoconvex functions of order n − q on D in the sense of Fujita [5, 6] and with the
weakly q-plurisubharmonic functions on D in the sense of Popa-Fischer [15].
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an exhaustion function u : D → [−∞,+∞) which is q-plurisubharmonic on
D.4 If D is a second countable complex manifold of dimension n with no
compact connected components, then, by Greene–Wu [7] (see also Ohsawa
[13]), D is n-complete, that is, there exists a C∞ strictly subpluriharmonic
exhaustion function on D and therefore D is weakly n-pseudoconvex.

Proposition 2.6. Let q, m, and n be integers such that 1 ≤ q ≤ m ≤ n.
Let D be a complex manifold of dimension n and E an m-dimensional closed
complex submanifold of D. If D is weakly q-pseudoconvex, then E is also
weakly q-pseudoconvex.

Proof. Since D is weakly q-pseudoconvex, there exists a q-
plurisubharmonic exhaustion function u : D → [−∞,+∞). Then,
the function u|E : E → [−∞,+∞) is a q-plurisubharmonic exhaustion
function of E.

Let (D,π) be an unramified domain over Cn. Let q be an integer such
that 1 ≤ q ≤ n. We say that (D,π) is q-pseudoconvex if the function
− ln dD : D → [−∞,+∞) is q-plurisubharmonic on D.5

Proposition 2.7 (Matsumoto [12, Theorem 2]) Let q and n be inte-
gers such that 1 ≤ q ≤ n. Let (D,π) be an unramified domain over Cn.
Then, the following two conditions are equivalent.

(1) D is weakly q-pseudoconvex.

(2) (D,π) is q-pseudoconvex.

According to Fritzsche–Grauert [4, pp. 101–102], we recall some defini-
tions related to the abstract boundary of an unramified domain (D,π) over
Cn. Let {xk} be a sequence of points in D which satisfies the following
three conditions:

4 A weakly 1-pseudoconvex manifold is nothing but a weakly pseudoconvex manifold
in the sense of Demailly [3].

5 If D is a connected open set of Cn, then (D, i), where i denotes the inclusion, is
q-pseudoconvex if and only if D is (q − 1)-pseudoconvex in Cn in the sense of Słodkowski
[16, Definition 4.1]. On the other hand, our definition of q-pseudoconvexity is different
from that of Ohsawa [13].
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• {xk} has no subsequence which converges in D.

• There exists b ∈ Cn such that limk→∞ π(xk) = b in Cn.

• For every connected neighborhood V of b in Cn there exists k0 ∈ N
such that for every k, l ≥ k0 the point xk can be joined to the point
xl by a path γ : [0, 1] → D with (π ◦ γ) ([0, 1]) ⊂ V .

We say that two such sequences {xk} and {yk} are equivalent if they satisfy
the following two conditions:

• limk→∞ π(xk) = limk→∞ π(yk) = b.

• For every connected neighborhood V of b in Cn there exists k0 ∈ N
such that for every k, l ≥ k0 the point xk can be joined to the point
yl by a path γ : [0, 1] → D with (π ◦ γ) ([0, 1]) ⊂ V .

An accessible boundary point of (D,π) is an equivalence class ξ = [{xk}] of
such sequences. We denote by ∂̆D the set of all accessible boundary points
of (D,π). We call the set ∂̆D the abstract boundary of (D,π) and the set
D̆ := D ∪ ∂̆D the abstract closure of (D,π). For every ξ = [{xk}] ∈ ∂̆D, we
define a neighborhood system {Ŭ} of ξ in D̆ as follows:

Take an arbitrary connected open set U in D such that xk ∈ U except for
finitely many k. Then, let Ŭ be the union of U and the set of all accessible
boundary points η = [{yk}] such that yk ∈ U except for finitely many k and
limk→∞ π(yk) ∈ π(U).

In this way, the set D̆ becomes a regular space and the map π̆ : D → Cn

defined by

π̆(x) :=

{
π(x) if x ∈ D,

limk→∞ xk if x = [{xk}]

is continuous.

3. Lemmata

Lemma 3.1. Let q and n be integers such that 1 ≤ q ≤ n. Let (D,π) be a
q-pseudoconvex unramified domain over Cn. Let λ̆ : Bq(0, 1) × [0, 1] → D̆

be a continuous map which satisfies the following two conditions:
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• λ̆((Bq(0, 1)× [0, 1)) ∪ (∂Bq(0, 1)× {1})) ⊂ D.

• The map λ̆( · , t) : Bq(0, 1) → D is holomorphic for every t ∈ [0, 1).

Then, we have that λ̆(Bq(0, 1)× {1})) ⊂ D.

Proof. Since λ̆(∂Bq(0, 1) × {1}) ⊂ D, there exists r ∈ (0, 1) such that
λ̆({r ≤ ∥z∥ ≤ 1}×{1}) ⊂ D. By Proposition 2.7, there exists an exhaustion
function u : D → [−∞,+∞) which is q-plurisubharmonic on D. Then, we
have that

K := max
{r≤∥z∥≤1}×[0,1]

u ◦ λ̆ < +∞.

Let t ∈ [0, 1). Since the map λ̆( · , t) : Bq(0, 1) → D is holomorphic, the
function (u◦λ̆)(·, t) : Bq(0, 1) → [−∞,+∞) is subpluriharmonic. Therefore,
by the maximum principle for subpluriharmonic functions (see Fujita [5,
Proposition 1]), we have that

(
u ◦ λ̆

)
(z, t) ≤ K for every z ∈ Bq(0, 1). It

follows that λ̆(Bq(0, 1) × [0, 1)) ⊂ {u ≤ K}. Since {u ≤ K} is a compact
set in D, we have that

λ̆(z, 1) = lim
t→1−0

λ̆(z, t) ∈ {u ≤ K} ⊂ D

for every z ∈ Bq(0, 1).

Lemma 3.2. Let q, m, and n be integers such that 1 ≤ q ≤ m ≤ n.
Let (D,π) be an unramified domain over Cn. Let H be an m-dimensional
complex affine subspace of Cn such that π−1(H) is weakly q-pseudoconvex.
Let λ̆ : Bq(0, 1) × [0, 1] → D̆ be a continuous map such that λ̆(Bq(0, 1) ×
[0, 1] \ {(0, 1)}) ⊂ D ∩ π−1(H) and the map λ̆( · , t) : Bq(0, 1) → D is
holomorphic for every t ∈ [0, 1). Then, we have that λ̆(0, 1) ∈ D.

Proof. Let F := Bq(0, 1) × [0, 1]. Let Z be the connected component
of π−1(H) which includes the connected set λ̆(F \ {(0, 1)}). Then, the
closed complex subspace Z of D with the induced map πZ,H : Z → H is
an unramified domain over H ∼= Cm. By assumption, π−1(H) is weakly
q-pseudoconvex and therefore Z is q-pseudoconvex by Proposition 2.7.
Suppose that λ̆(0, 1) ∈ ∂̆D. Take arbitrary sequences

{
(z(k), s(k))

}
and{

(w(k), t(k))
}

in F \ {(0, 1)} which converge to (0, 1) in F . Then, both
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two sequences
{
λ̆(z(k), s(k))

}
and

{
λ̆(w(k), t(k))

}
have no convergent sub-

sequence in Z and we have that

lim
k→∞

π(λ̆(z(k), s(k))) = lim
k→∞

π(λ̆(w(k), t(k))) = π̆(λ̆(0, 1))

in Cn. For every r > 0, there exist ρ ∈ (0, 1) and δ ∈ (0, 1) such that(
π̆ ◦ λ̆

)
(Bq(0, ρ)× (1− δ, 1]) ⊂ Bn(π̆(λ̆(0, 1)), r). There exists k0 ∈ N such

that (z(k), s(k)), (w(k), t(k)) ∈ Bq(0, ρ) × (1 − δ, 1] for every k ≥ k0. Since
the set Bq(0, ρ)× (1− δ, 1] is convex, the path

γ : [0, 1] → Z, γ(τ) := λ̆((1− τ) z(k) + τw(l), (1− τ) s(k) + τt(l)),

joins λ̆(z(k), s(k)) to λ̆(w(l), t(l)) and satisfies the condition that (π ◦
γ)([0, 1]) ⊂ Bn(π̆(λ̆(0, 1)), r) for k, l ≥ k0. Therefore, the sequences{
λ̆(z(k), s(k))

}
and

{
λ̆(w(k), t(k))

}
are equivalent each other and determine

a unique point ξ ∈ ∂̆Z and we have that

lim
k→∞

λ̆(z(k), s(k)) = lim
k→∞

λ̆(w(k), t(k)) = ξ

in Z̆. It follows that lim(z,t)→(0,1) λ̆(z, t) = ξ in Z̆ although λ̆(F \{(0, 1)}) ⊂
Z. This contradicts Lemma 3.1. Thus, we proved that λ̆(0, 1) ∈ D.

Lemma 3.3. Let (D,π) be an unramified domain over Cn such that π is not
biholomorphic. Then, for every a ∈ D, there exist b(0) ∈ ∂Bn(π(a), dD(a))

and ξ(0) ∈ ∂̆D such that

lim
z→b(0)

(
π|B(a,dD(a))

)−1
(z) = ξ(0)

in D̆.

Proof. Let d := dD, B := B(a, d(a)), Q := Bn(π(a), d(a)), and σ :=

(π|B)−1 : Q → B. Take an arbitrary b ∈ ∂Q. First, we consider the case
where there exists a sequence

{
w(k)

}
⊂ Q which converges to b in Cn such

that the sequence
{
σ(w(k))

}
converges to some ξ in D. Then, we have that

B ∩B(ξ, d(ξ)) ̸= ∅ and

π(ξ) = lim
k→∞

π(σ(w(k))) = lim
k→∞

w(k) = b.
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Therefore, by Proposition 2.1, we have that

lim
z→b

σ(z) = lim
z→b

(
π|B(ξ,d(ξ))

)−1
(z) =

(
π|B(ξ,d(ξ))

)−1
(b) = ξ

in D. Next, we consider the case other than the above. Take arbitrary
sequences

{
z(k)

}
and

{
w(k)

}
in Q which converge to b in Cn. Then, both

two sequences
{
σ(z(k))

}
and

{
σ(w(k))

}
have no convergent subsequence in

D and we have that

lim
k→∞

π(σ(z(k))) = lim
k→∞

π(σ(w(k))) = b

in Cn. For every r > 0, there exists k0 ∈ N such that z(k), w(k) ∈ Bn(b, r)

for every k ≥ k0. Since Q ∩Bn(b, r) is convex, the path

γ : [0, 1] → D, γ(t) := σ((1− t) z(k) + tw(l)),

joins σ(z(k)) to σ(w(l)) and satisfies the condition that (π ◦ γ)([0, 1]) ⊂
Bn(b, r) for k, l ≥ k0. Therefore, the sequences

{
σ(z(k))

}
and

{
σ(w(k))

}
are equivalent each other, determine a point ξ ∈ ∂̆D, and we have that

lim
k→∞

σ(z(k)) = lim
k→∞

σ(w(k)) = ξ

in D̆. It follows that limz→b σ(z) = ξ in D̆. Thus, we proved that, for every
b ∈ ∂Q, there exists a unique ξ(b) ∈ D̆ such that limz→b σ(z) = ξ(b) in D̆.
Seeking a contradiction, suppose that ξ(b) ∈ D for every b ∈ ∂Q. Then, by
Proposition 2.2, the map π|W :W → π(W ) is biholomorphic, where

W := B ∪

 ∪
b∈∂Q

B(ξ(b), d(ξ(b)))

 .

Since Q ⊂ π(W ), there exists δ > 0 such that Bn(π(a), d(a) + δ) ⊂ π(W ).
Then, U := (π|W )−1 (Bn(π(a), d(a) + δ)) is a neighborhood of a and the
map π : U → Bn(π(a), d(a) + δ) is biholomorphic, which contradicts the
definition of d(a). It follows that there exists b(0) ∈ ∂Q such that ξ(0) :=
ξ(b(0)) ∈ ∂̆D.

By a similar argument in Yasuoka [21, pp. 143–144], we can prove the
following lemma (see Sugiyama [18]).
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Lemma 3.4. Let c ∈ Cn, r > 0, and f ∈ O(Bn(c, r)) with ℑ(f(c)) = 0.
Let

P (z) :=
∑
|α|≤2

1

α!

∂|α| ef

∂zα
(c) (z − c)α , α = (α1, α2, . . . , αn),

for every z ∈ Cn. Then, for every ε ∈ (0, e−ℜ(f(c))), there exist ρ ∈ (0, r),
δ > 0, and M > 0 such that

ln |P (z)− t| ≤ ℜ(f(z))− εt+M ∥z∥3

for every (z, t) ∈ Bn(0, ρ)× [0, δ].

4. Theorem

Theorem 4.1. Let q and n be integers such that 1 ≤ q ≤ n. Let (D,π)

be an unramified domain over Cn. Then, the following two conditions are
equivalent.

(1) (D,π) is q-pseudoconvex.

(2) Let λ̆ : Bq(0, 1) × [0, 1] → D̆ = D ∪ ∂̆D be a continuous map which
satisfies the following two conditions:

• λ̆(Bq(0, 1)× [0, 1] \ {(0, 1)}) ⊂ D.

• There exists a holomorphic map λ = (λ1, λ2, . . . , λn) : Cq+1 →
Cn of the form

λν(z1, z2, . . . , zq, t) = Pν(z1, z2, . . . , zq) + cνt,

where Pν(z1, z2, . . . , zq) is a polynomial of z1, z2, . . . , zq of de-
gree at most 2 and cν ∈ C for every ν = 1, 2, . . . , n, such that
the image H := λ(Cq+1) is a (q + 1)-dimensional complex affine
subspace of Cn, the induced map λ : Cq+1 → H is biholomorphic,
and π̆ ◦ λ̆ = λ on Bq(0, 1)× [0, 1].

Then, we have that λ̆(0, 1) ∈ D.

Remark 4.2. The expression of λ in the hypothesis in condition (2) does
not depend on a complex affine transformation of coordinates of Cn.
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Remark 4.3. If q = n, then there does not exist such λ that satisfies the
hypothesis in condition (2) and therefore every unramified domain (D,π)

over Cn satisfies condition (2).

Proof of Theorem 4.1.

(1) → (2). The assertion is a direct consequence of Lemma 3.1.

(2) → (1). We have only to prove the assertion when 1 ≤ q ≤ n − 1 and
π is not biholomorphic. Seeking a contradiction, suppose that (D,π) is
not q-pseudoconvex. By Corollary 2.5, there exists a q-dimensional com-
plex affine subspace L of Cn such that the function − ln d is not subpluri-
harmonic on π−1(L), where d := dD. Take a connected component Z of
π−1(L) such that (− ln d) |Z is not subpluriharmonic on Z. The closed
complex submanifold Z of D with the induced map πZ,L : Z → L is an
unramified domain over L ∼= Cq. By a translation and by a unitary trans-
formation of coordinates w1, w2, . . . , wn of Cn, we may assume that L =

{wq+1 = wq+2 = · · · = wn = 0}. Then, the functions π1|Z , π2|Z , . . . , πq|Z
give a system of local coordinates of Z near any point of Z, where
πν := wν ◦ π for every ν = 1, 2, . . . , n. By Proposition 2.3, there exist
a ∈ Z, r ∈ (0, d(a)), K > 0, and a function f holomorphic near B(Z)(a, r)

such that − ln d(a) + ℜ(f(a)) = 0, ℑ(f(a)) = 0, and

− ln d+ ℜ(f) ≤ −K
q∑

ν=1

|πν − πν(a)|2

on B(Z)(a, r). where B(Z)(a, r) denotes the open ball in Z of radius r with
center a. By a translation of coordinates, we may further assume that
π(a) = 0 in Cn. Let

ℓ : Cq → Cn, ℓ(z1, z2, . . . , zq) := (z1, z2, . . . , zq, 0, . . . , 0).

Since ∥ℓ(z)∥ = ∥z∥ for every z ∈ Cq, we have that ℓ(Bq(0, r)) = Bn(0, r)∩L.
Let B := B(a, d(a)), Q := Bn(0, d(a)), and σ := (π|B)−1 : Q → B. Then,
we have that B(Z)(a, r) = σ(Bn(0, r)∩L). Let f̃(z) := f(σ(ℓ(z))) for every
z ∈ Bq(0, r). Take an arbitrary ε ∈ (0, e−ℜ(f̃(0))). By Lemma 3.4, there
exist ρ1 ∈ (0, r), δ > 0, and M > 0 such that

ln |P (z)− t| ≤ ℜ(f̃(z))− εt+M ∥z∥3
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for every (z, t) ∈ Bq(0, ρ1)× [0, δ], where

P (z) :=
∑
|α|≤2

1

α!

∂|α| ef̃

∂zα
(0)zα, α = (α1, α2, . . . , αq),

on Cq. Take an arbitrary ρ ∈ (0,min {ρ1,K/M}). Let E := Bq(0, ρ)×[0, δ].
For every (z, t) ∈ E \ {(0, 0)}, we have that

ℜ(f̃(z))− εt+M ∥z∥3 < ℜ(f̃(z)) +K ∥z∥2

and therefore we have that

|P (z)− t| < eℜ(f̃(z))+K∥z∥2 ≤ eln d(σ(ℓ(z))) = d(σ(ℓ(z))).

On the other hand, we have that

|P (0)− 0| =
∣∣∣ef̃(0)∣∣∣ = eℜ(f(a)) = eln d(a) = d(a).

By Lemma 3.3, there exist b(0) ∈ ∂Q and ξ(0) ∈ ∂̆D such that
limz→b(0) σ(z) = ξ(0) in D̆. Let

φ : Cq × C → Cn, φ(z, t) := (P (z)− t)u(0) + ℓ(z),

where u(0) = (u
(0)
1 , u

(0)
2 , . . . , u

(0)
n ) := b(0)/P (0). Then, for every (z, t) ∈

E \ {(0, 0)}, we have that

∥φ(z, t)− ℓ(z)∥ = |P (z)− t| < d(σ(ℓ(z)))

and therefore

φ(z, t) ∈ Bn(ℓ(z), d(σ(ℓ(z)))) = π(B(σ(ℓ(z)), d(σ(ℓ(z)))) ⊂ π(W ),

where W :=
∪

x∈B B(x, d(x)). By Proposition 2.2, the map π|W : W →
π(W ) is biholomorphic. Let

φ̆(z, t) :=

{
(π|W )−1 (φ(z, t)) if (z, t) ∈ E \ {(0, 0)},
ξ(0) if (z, t) = (0, 0).

Then, we have that π̆ ◦ φ̆ = φ on E. Suppose that there exists a sequence{
(z(k), t(k))

}
⊂ E \ {(0, 0)} which converges to (0, 0) in Cq × C such that
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the sequence
{
φ̆(z(k), t(k))

}
converges to some point η in D. Then, we

have that W ∩ B(η, d(η)) ̸= ∅ and therefore there exists x ∈ B such that
B(x, d(x)) ∩ B(η, d(η)) ̸= ∅. Then, by Proposition 2.1, there exists a path
β : [0, 1] → D which joins x to η such that π ◦ β is the line segment which
joins π(x) to b(0). Since (π ◦ β) ([0, 1)) ⊂ Q and β(0) = x = σ(π(x)), we
have that β = σ ◦ (π ◦ β) on [0, 1) by the identity principle for liftings. It
follows that

η = lim
t→1−0

β(t) = lim
t→1−0

σ((1− t)π(x) + tb(0)) = ξ(0) ∈ ∂̆D,

which is a contradiction. Therefore, for every sequence
{
(z(k), t(k))

}
⊂

E \{(0, 0)} which converges to (0, 0) in Cq ×C, the sequence
{
φ̆(z(k), t(k))

}
has no convergent subsequence in D. For every s > 0, there exist ρ′ ∈ (0, ρ)

and δ′ ∈ (0, δ) such that φ(Bq(0, ρ
′)× (−δ′, δ′)) ⊂ Bn(b

(0), s). There exists
k0 ∈ N such that (z(k), t(k)) ∈ Bq(0, ρ

′) × [0, δ′) and 1/k < δ′ for every
k ≥ k0. Since the set Bq(0, ρ

′) × [0, δ′) \ {(0, 0)} is arcwise connected,
there exists a path γ : [0, 1] → D which joins φ̆(z(k), t(k)) to φ̆(0, 1/l) and
(π ◦ γ)([0, 1]) ⊂W ∩Bn(b

(0), s) for every k, l ≥ k0. Therefore, the sequence{
φ̆(z(k), t(k))

}
is equivalent to {φ̆(0, 1/k)} and we have that

lim
k→∞

φ̆(x(k), t(k)) = lim
k→∞

φ̆(0, 1/k) = lim
k→∞

σ((P (0)− 1/k)u(0)) = ξ(0)

in D̆. It follows that lim(z,t)→(0,0) φ̆(z, t) = ξ(0) in D̆. Thus, we proved that
the map φ̆ : E → D̆ is continuous. Let F := Bq(0, 1)× [0, 1], let λ̆ : F → D̆,
λ̆(ζ, τ) := φ̆(ρζ, δ (1− τ)), and let λ = (λ1, λ2, . . . , λn) : Cq × C → Cn,
λ(ζ, τ) := φ(ρζ, δ (1− τ)). Then, λ̆ is continuous, λ̆(F \ {(0, 1)}) = φ̆(E \
{(0, 0)}) ⊂ D, π̆ ◦ λ̆ = λ on F , and λ̆(0, 1) = φ̆(0, 0) = ξ(0) ∈ ∂̆D. We have
that

λ(ζ, τ) = (P (ρζ)− δ (1− τ))u(0) + ℓ(ρζ)

=
{
(P (ρζ)− δ)u(0) + ℓ(ρζ)

}
+ τδu(0)

and every component of (P (ρζ)− δ)u(0) + ℓ(ρζ) is a polynomial of
ζ1, ζ2, . . . , ζn of degree at most 2. Let H := Cu(0) + L, which is a com-
plex linear subspace of Cn. For every (z, t) ∈ Cq × C, we have that
φ(z, t) = (P (z)− t)u(0) + ℓ(z) ∈ H. Suppose that u(0) ∈ L. Then, we have
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that H = L and λ̆(F \ {(0, 1)}) = φ̆(E \ {(0, 1)}) ⊂ π−1(L). Since π−1(L)

is weakly q-pseudoconvex, we have that ξ(0) = lim(z,t)→(0,1) λ̆(z, t) ∈ D

by Lemma 3.2, which is a contradiction. It follows that u0 ̸∈ L and
dimH = q + 1. Therefore, there exists m ∈ {q + 1, q + 2, . . . , n} such
that u(0)m ̸= 0. Let

ψ : Cn → Cq × C, ψ(w1, w2, . . . , wn) = (z1, z2, . . . , zq, t),

be the holomorphic map defined byzν = wν −
(
u
(0)
ν /u

(0)
m

)
· wm (ν = 1, 2, . . . , q),

t = P (
(
wν −

(
u
(0)
ν /u

(0)
m

)
· wm

)q
ν=1

)−
(
1/u

(0)
m

)
· wm.

Then, by direct computations, we can verify that (ψ|H) ◦ φ = idCq×C and
φ ◦ (ψ|H) = idH . It follows that φ : Cq ×C → φ(Cq ×C) = H is biholomor-
phic. Since the map Cq×C → Cq×C, (ζ, τ) → (ρζ, δ (1− τ)), is a complex
affine automorphism, the map λ : Cq ×C → H is also biholomorphic. Con-
sequently, λ̆ satisfies the supposition of condition (2) but does not satisfies
the conclusion of it, which is a contradiction.

5. Corollaries

As a corollary to Theorem 4.1, we have the following characterization of
a q-pseudoconvex unramified domain over Cn by the continuity property
(cf. Słodkowski [16, Theorem 4.3] and Vâjâitu [19, Corollary 1]).

Corollary 5.1. Let q and n be integers such that 1 ≤ q ≤ n. Let (D,π)

be an unramified domain over Cn. Then, the following two conditions are
equivalent.

(1) (D,π) is q-pseudoconvex.

(2) Let λ̆ : Bq(0, 1) × [0, 1] → D̆ be a continuous map which satisfies the
following two conditions:

• λ̆((Bq(0, 1)× [0, 1)) ∪ (∂Bq(0, 1)× {1})) ⊂ D.

• The map λ̆( · , t) : Bq(0, 1) → D is holomorphic for every t ∈
[0, 1).
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Then, we have that λ̆(Bq(0, 1)× {1}) ⊂ D.

We have the following characterization of a q-pseudoconvex unramified
domain over Cn, which generalizes Lelong [11, p. 201], Hitotumatu [8,
Proposition 14], Alessandrini–Silva [2, p. 86], Słodkowski [16, Corollary
4.8], and Pawlaschyk–Zeron [14, Proposition 3.14].

Corollary 5.2. Let q and n be integers such that 1 ≤ q ≤ n. Let (D,π)

be an unramified domain over Cn. Then, the following two conditions are
equivalent.

(1) (D,π) is q-pseudoconvex.

(2) For every (q + 1)-dimensional complex affine subspace H of Cn, the
closed complex submanifold π−1(H) of D is weakly q-pseudoconvex.

Proof.

(1) → (2). The assertion is a direct consequence of Propositions 2.6 and
2.7.

(2) → (1). Seeking a contradiction, suppose that (D,π) is not q-
pseudoconvex. Let F := Bq(0, 1) × [0, 1]. By Theorem 4.1, there exists
a continuous map λ̆ : F → D̆ which satisfies the following three conditions:

• λ̆(F \ {(0, 1)}) ⊂ D.

• There exists a holomorphic map λ : Cq+1 → Cn such that the image
H := λ(Cq+1) is a (q + 1)-dimensional complex affine subspace of Cn,
the induced map λ : Cq+1 → H is biholomorphic, and π̆ ◦ λ̆ = λ on
F .

• λ̆(0, 1) ∈ ∂̆D.

Then, by assumption, π−1(H) is weakly q-pseudoconvex. Since λ̆(F \
{(0, 1)}) ⊂ D ∩ π−1(H), we have that λ̆(0, 1) = lim(z,t)→(0,1) λ̆(z, t) ∈ D

by Lemma 3.2, which is a contradiction.

In the case where q = 1, we have the following characterization of a
pseudoconvex unramified domain over Cn, which generalizes Yasuoka [21,
Theorem 2] and refines Sugiyama [17, Theorem 3.1].
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Corollary 5.3. Let (D,π) be an unramified domain over Cn. Then, the
following two conditions are equivalent.

(1) (D,π) is pseudoconvex.

(2) Let λ̆ : B1(0, 1) × [0, 1] → D̆ be a continuous map which satisfies the
following two conditions:

• λ̆(B1(0, 1)× [0, 1] \ {(0, 1)}) ⊂ D.

• There exists a holomorphic map λ = (λ1, λ2, · · · , λn) : C2 → Cn

of the form
λν(z, t) = Pν(z) + cνt,

where Pν(z) is a polynomial of z of degree at most 2 and cν ∈ C
for every ν = 1, 2, . . . , n, such that the image H := λ(C2) is
a complex affine subspace of dimension 2, the induced map λ :

C2 → H is biholomorphic, and π̆ ◦ λ̆ = λ on B1(0, 1)× [0, 1].

Then, we have that λ̆(0, 1) ∈ D.
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