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Lie derivatives of homogeneous structures of real
hypersurfaces in a complex space form

Shoto FuJiki, Setsuo NAGAT and Takashi SASAKI

Abstract. In this paper we calculate the Lie derivatives of homoge-
neous structure tensors of homogeneous real hypersurfaces in nonflat
complex space forms in the direction of the structure vector field.
Using these results, we give two characterization theorems of a ho-
mogeneous real hypersurface of type (A) in a nonflat complex space
form.

1. Introduction

Let M, (c) be an n-dimensional complex space form with constant holo-
morphic sectional curvature ¢ # 0, and let J and g be its complex struc-
ture and Riemannian metric. Complete and simply connected complex
space forms are isometric to a complex projective space CP, or a complex
hyperbolic space CH,, for ¢ > 0 or ¢ < 0, respectively.

Let M be a connected submanifold of M,(c) with real codimension 1.
We refer to this simply as a real hypersurface below. For a local unit
normal vector field v of M, we define the structure vector field £ of M by
1€ = —J v, where ¢, denotes the differential map of the immersion map ¢
of M into M, (c). Further, the structure tensor field ¢ and the 1-form 7 are
defined by JuX = X + g(X, & v, n(X) = g(X, &) for a tangent vector

X of M, where g denotes the induced Riemannian metric of M.
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The structure vector £ is said to be principal if A = af is satisfied for
some function «, where A is the shape operator of . A real hypersurface
of M, (c) is said to be a Hopf real hypersurface when its structure vector is

principal.

A connected Riemannian manifold is said to be homogeneous if its group
of isometries acts transitively on it. In the paper [1], W. Ambrose and
I. M. Singer characterized a Riemannian homogeneous manifold by some
kind of a tensor field of type (1,2) which is called a homogeneous structure
tensor (for details see §2, Definition 2.1 and Theorem AS). Later F. Tricerri
and L. Vanhecke [12] characterized a naturally redective Riemannian ho-
mogeneous manifold by some kind of a tensor field of type (1,2) which is
called a naturally reductive homogeneous structure tensor (for details see
§2, Definition 2.3 and Theorem T-V).

A real hypersurface in a complex space form M, (c) is said to be a ho-
mogeneous real hypersurface if it is an orbit of an analytic subgroup of the
group of isometries of M, (c). In a nonflat complex space form homogneous

real hypersurfaces are all classified (c.f.[10], [3]).

The second author [7] constructed a naturally reductive homogenous
structure tensor T4 on a homogeneous real hypersurface of type (A) in
a nonflat complex space form (for details see §2, Theorem NA). Further
the second author [8] constructed a homogeneous structure tensor 72 on
a homogeneous real hypersurface of type (B) in a nonflat complex space
form (for derails see §2, Theorem NB).

In this paper we give some characterization theorems of a homogeneous
real hypersurface of type (A) in a nonflat complex space form M, (c) by the
Lie derivatives of T4 and T8 in the direction of the structure vector field
&. Our theorems are:

Theorem 3.1 Let M be a Hopf real hypersurface in a nonflat complex space
form My (c) (c # 0). Then, the Lie derivative L¢T# of the homogeneous

structure TA in the direction of the structure vector field & satisfies the
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following equation:

(LePN)xY = —n(X)(~aAY — pAPAY — 1Y)

C

+n(Y)(—aAX — pAPAX — ZX)

~ g(A2X — aAX — EX v gn(X)g,Y)g, X, Y eTM.
(3.1)

Here T'M denotes the tangent bundle of M.

Theorem 3.2 Let M be a Hopf real hypersurface in a nonflat complex space
form My(c) (¢ #0). If ﬁgTA vanishes on M, then M 1is locally congruent
to a homogeneous real hypersurface of type (A) in My,(c).

Theorem 3.3 Let M be a Hopf real hypersurface in a nonflat complex space
form M,(c) (c # 0). Then, the Lie derivative LT of the homogeneous
structure TP in the direction of the structure vector field ¢ satisfies the

following equation:

(LeTP)xY = = Sn(X)($ABY + AY)

F (V) (GAPAX + aAX + EX)

3
— g(A%X — aAX — EX, Y)E+ oPn(X)n(Y)E, X, Y eTM.
(3.11)

Theorem 3.4 Let M be a Hopf real hypersurface in a nonflat complex space
form My (c) (¢ #0). If LTB vanishes on M, then M is locally congruent
to a homogeneosu real hypersurface of type (A) in My,(c).

2. Preliminaries

In this section we explain preliminary results concerning Riemannian
homogeneous structures and real hypersurfaces of a complex space form.

First, we recall a criterion for homogeneity of a Riemannian manifold
obtained by W. Ambrose and I. M. Singer [1]. We start with
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Definition 2.1. A connected Riemannian manifold (M, g) is said to be

homogeneous if the group I(M) of isometries of M acts transitively on M.
On the other hand, local homogeneity is defined by

Definition 2.2. A connected Riemannian manifold (M, g) is said to be
locally homogeneous if, for each p,q € M, there exists a neighborhood U
of p, a neighborhood V' of q and a local isometry ¢ : U — V such that

o(p) =g

In the paper [1], Ambrose and Singer gave a criterion for homogeneity

of a Riemannian manifold:

Theorem AS([1]). A connected, complete and simply connected Rieman-
nian manifold M is homogeneous if and only if there exists a tensor field
T of type (1,2) on M such that

(1) 9(IxY,Z)+g(Y,TxZ) =0,
(i) (VxR)(Y,Z) = [Tx,R(Y,Z)] — R(TxY,Z) — R(Y,Tx Z),
(iii) (VxT)y = [Tx,Ty] — Tryv,

for XY, Z € X(M). Here V denotes the Levi-Civita connection of M, R
is the Riemannian curvature tensor of M and X(M) is the Lie algebra of
all C* wvector fields over M.

Furthermore, without the topological conditions of completeness and
simply connectedness, the three conditons (i)—(iii) give a criterion for local

homogeneity of M.

Remark 2.1. If we put V := V — T, then the conditions (i), (ii) and (iii)
are equivalent to Vg =0, VR =0 and VT = 0, respectively.
Next, we present the definition of a naturally reductive homogeneous

Riemannian manifold.

Definition 2.3. Let M be a homogeneous Riemannian manifold and g
its metric tensor. Then (M,g) is said to be a naturally reductive homo-

geneous Riemannian manifold if there exists a homogeneous representation
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M = G/K with a transitive Lie group G of isometries of M and the isotropy
group K of some point p € M such that for the Lie algebra g of G and £ of
K there exists a vector subspace m of g satisfying

(i)g=mat,

(il) Ad(K)m C m,

(iii) ([X,Y]m, Z) + (Y, [X, Z]m) =0, X,Y,Z € m,

where (-,-) denotes the inner product of m induced on m from g by identi-
fication of m with T, M.

If (M,g) is naturally reductive, both the Riemannian metric tensor g
and the Riemannian curvature tensor R of M are parallel with respect to
the canonical connection V corresponding to the decomposition (i) in Def-
inition 2.3 (cf. [12] p57). Further, for the tensor T =V —V, VxT = 0 and
Tx X = 0 are satisfied for any X € TM. We know the following criterion:

Theorem T-V([12] p57) A connected, complete and simply connected Rie-
mannian manifold M is naturally reductive homogeneous if and only if there
exists a tensor field T of type (1,2) on M such that

(i) Vg=0, (i) VR=0, (iii) VI'=0, (iv) TxX =0

for X € TM, where V denotes the connection defined by V =V —T.

Next, we mention some preliminary results concerning real hypersurfaces.
Let M, (c) (¢ # 0) be an n-dimensional complex space form with constant
holomorphic sectional curvature ¢ and let g and J be its metric tensor and
complex structure, respectively. The standard models for such spaces are
the complex projective space CP,(c) (for ¢ > 0) and the complex hyperbolic
space CHy(c) (for ¢ < 0).

Let M be a real hypersurface of M, (c). We also denote by g the induced
Riemannian metric on M and by v a local unit normal vector field along
M in M,(c).

The Gauss and Weingarten formulas are:

VxuY =uVxY +g(AX,Y)y, (2.1)

Vxv=—1,4X, (2.2)
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where V and V denote the Levi-Civita connection of M,,(c) and M, respec-
tively and A is the shape operator of M in M, (c).

We define an almost contact metric structure (¢, &, n, g) on M as usual.
That is defined by

E=—Ju, n(X) =g(X,8), X = (JX)T, X eTM, (2.3)

where TM denotes the tangent bundle of M and ( )7 the tangential com-

ponent of a vector. These structure tensors satisfy the following equations:

¢2:_I+n®§7 (bé:()) 77°¢:O) 77(6):17

(2.4)
9(¢X,¢Y) = g(X,Y) —n(X)n(Y), X, Y eTM.
where I denotes the identity mapping of T'M.
From (2.1) and (2.3), we easily have
Vx§ = pAX, (2.6)
for tangent vectors X, Y € T M.
In our case the Gauss and Coddazi equations of M become
R(X,Y)Z =7 {g(Y. 2)X = g(X, 2)Y + g(6Y, 2)6X
—9(6X, Z2)$Y — 29(6X,Y )07} (27)

+ g(AY, 2)AX — g(AX, Z)AY,

(VXA = (VyA)X = £ {n(X)6Y —n(Y)oX —29(0X, )¢} (28)

A real hypersurface M of M,(c) is said to be a homogeneous real hypersur-
face if it is an orbit of an analytic subgroup of the isometry group of M, (c).
We know the complete classification of homogeneous real hypersurfaces of
CP,:

Theorem T([10]). Let M be a homogeneous real hypersurface of CP,.
Then M is locally congruent to one of the following spaces:

(A1) a geodesic hypersphere;

(A2) a tube over a totally geodesic CP; (1 <k <n —2);
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(B) a tube over a complex quadric Qp—1;

(C) a tube over CP; x (CPanl and n(> 5) is odd;

(D) a tube over a complex Grassmann G5 and n = 9;

(E) a tube over a Hermitian symmetric space SO(10)/U(5) and n = 15.
For homogeneity of a real hypersurface in CP,,, there is a criterion ob-

tained by M. Kimura [4]. His theorem is

Theorem K([4]). Let M be an connected real hypersurface in CP,. Then
M has constant principal curvatures and the structure vector £ is principal
if and only if M is congruent to an open subset of a homogeneous real
hypersurface.

In CH,, Berndt [2] obtains the complete classification of Hopf hypersur-

faces with constant principal curvatures. His theorem is the following:

Theorem B([2]). Let M be a connected real hypersurface of CH,, (n > 2)
with constant principal curvatures. Further, assume that the structure vec-
tor & is principal. Then M is orientable and holomorphic congruent to an
open part of one of the following hypersurfaces:
(Ap) a horosphere in CH,;
(A) a tube of radius r € Ry over a totally geodesic CHy (0 <k <n —1);
(B) a tube of radius r € R4 over a totally geodesic totally real submanifold
RH, .

Here CHy means a single point.

For the principal curvatures a, A1, A2, A3, A4 and their multiplicities
Mq, My, My,, M)y, My,, we have the following table, where « is the

principal curvature corresponding to the principal direction & (see [11]):
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type principal curvatures multiplicities
(Ay) = \/ccot+/cr me =1
:%cot%r A =2(n—1)
(A2) = \/ccot/cr Mme =1
‘/Ecotﬁ my, =2(n—k—1)
Ay = ‘[ tan ‘2[7“ A = 2k
(B) ﬁcot Ver me =1
A1 = \[cot‘[(r—ﬁ) my, =n—2
Ao = — ‘[tan\{( 2\/6) My, =N — 2
(C) = \/ccot/cr me =1
i = \[cot\/(r—;\”/) my, =n—3 (i =2,4)
i=1,2,3 4) my, =2 (i=1,3)
(D) = \/ccot+/cr me =1
A = V;cotf( Z5) | ma =4(i=1,2,34)
(z =1,2 3,4)
(E) = \/ccot+/cr me =1
Ai = \éEcot \[( 2\[) my, =8 (i =2,4)
(i=1,2 3 4) my, =6 (i=1,3)

Table 1: principal curvatures in CP,

Concerning the principal curvatures «, A1, A2 and their multiplicities

M, My, My,, we have the following (see [6]):

type | principal curvatures | multipricities
(Ao) a=+/~c 1
AL = < 2 — 2
(A) | a=+/—ccothy/—cr 1
A = ° 2(n —k—1)
Ay = g tanh @r 2k
(B) | a =+/—ctanh/—cr 1
A= \/jc coth \/jc n—1
Ay = F tanh F n—1

Table 2: principal curvatures in CH,
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For Hopf real hypersurfaces we know the following:

Theorem MO([9], [5]). Let M be a real hypersurface in My(c) whose
structure vector £ s principal with principal curvature o. Then « is a
locally constant function. Furthermore, for any principal curvature vector
X 1L & with AX = \X, we get the following equation:

2\ — @) ApX = (aX + g)ng. (2.9)

Using the table 1 and the table 2, we easily have the following:

Proposition 2.1. For a real hypersurface of type (A) in M,(c), we have

PA = Ao, (2.10)
A2—aA—§I:—§n®f. (2.11)
Here I denotes the identity map on T M.

Proposition 2.2. For a real hypersurface of type (B) in My(c), we have

A+ As = ——0, (2.12)
9 C C. 9 §
A +5A_ZI_(Q +4c)77®§. (2.13)

In [7] and [8] the second author proved the following theorems:
Theorem NA([7]) Let M be a homogeneous real hypersurface of type (A)
in a nonflat complex space form M,(c) (¢ #0). Then

TRY =n(Y)pAX —n(X)pAY — g(pAX,Y)E, X, Y eTM  (2.14)
defines a naturally reductive homogeneous structure on M.

Theorem NB([8]) Let M be a homogeneous real hypersurface of type (B)
in a nonflat complex space form My,(c) (¢ # 0). Then

TBY = %n(X)w +n(Y)pAX — g(pAX,Y)E. X, Y €TM  (2.15)

defines a homogeneous structure on M.



10 Shoto FuJiki, Setsuo NAGAT and Takashi SASAKI

3. Proof of theorems

In this section we shall prove our main theorems.

Firstly, we prove the following theorem:

Theorem 3.1. Let M be a Hopf real hypersurface in a nonflat complex
space form My(c) (c # 0). Then, the Lie derivative L¢T# of the homoge-
neous structure T# in the direction of the structure vector field & satisfies

the following equation:

(LeP)xY = —n(X)(~aAY — pAPAY — 1Y)

C

+n(Y)(—aAX — pAPAX — ZX)
— g(A%X — aAX — %X + Zn(X)g,Y)fy X, Y eTM.
(3.1)
Proof. We calculate the Lie derivative LT A by
(LT xY = Le(TRY) = T7xY —TR(LeY), X, Y e TM.
From (2.4), (2.6) and (2.14), we have

Le(TRY) =g(VeY, €)pAX + (V) {Ve(AX) — Vyax€}
— 9(VeX,)pAY —n(X) {Ve(pAY) — Voavé}  (3.2)
= 9(Ve(9AX),Y)E — g(pAX, VY,

TixY =n(Y)pAVeX — n(Y)pASAX — g(VeX, )pAY

(3.3)
— g(PAVX, Y )E + g(pAPAX, Y,
TR(LeY) =g(VeY,€)pAX — n(X)pA(VeY — Vyé) (3.4)
— 9(9AX, VeY)E + g(A2X,Y)E — o*n(X)n(Y)E.
From (2.5), we have
(Ved)X =0, X eTM. (3.5)

According to the Codazzi equation (2.8) and the equation (2.6), we have

(VeA)X = agpAX — ApAX + gqu. (3.6)
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Combining (3.2), (3.3), (3.4), (3.5) with (3.6), we are led to

(LeTN)xY = —n(X)(~aAY — pAPAY — 1Y)
1Y) (—aAX — pAPAX — EX)

~ g(A2X — aAX — EX + gn(X)g, Y)e.

This proves the theorem. ]

Secondly, we prove the following theorem:

Theorem 3.2. Let M be a Hopf real hypersurface in a nonflat complex
space form My(c) (¢ # 0). If EgTA vanishes on M, then M 1is locally

congruent to a homogeneous real hypersurface of type (A) in M,(c).

Proof. By our assumption we have

(Ler)xY = —n(X)(~aAY — pAPAY — 1Y)

F(Y)(—aAX — pApAX — SX)
. 2 (3.7)
— g(A%X — aAX — X Z77(X)§, Y)E

=0.
Substituting X, Y € {€}, AX = AX into left side of (3.7), we have

A2 — o) — g =0, (3.8)

where {¢ }J‘ denotes the orthogonal complement of the vector space spanned
by € in TM.

So, M has at most three distinct constant principal curvatures. Accord-
ing to Theorem K in §2, M must be locally congruent to a real hypersurface
either of type (A) or of type (B). But a real hypersurface of type (B) does
not satisfy (3.8) (c.f. Talbe 1 and Table 2). So M must be of type (A)

On the other hand, for a real hypersurface of type (A), we have the

following from Proposition 2.1,

DAPAX =¢* A’ X

(3.9)
= — A’X + o*n(X).
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Substituting (3.9) into the right side of (3.1), we conclude that

(LeT™)xY = —n(X)(4%Y —aAY = 1Y)
+7(Y)(A2X — aAX — 7X) (3.10)
— (42X — aAX = $X + Tn(X)E Y)E,
According to Proposition 2.1, the right side of (3.10) vanishes. This proves

the theorem. O
Thirdly, we prove the following theorem:

Theorem 3.3. Let M be a Hopf real hypersurface in a nonflat complex
space form My(c) (¢ # 0). Then, the Lie derivative L¢TP of the homoge-
neous structure TP in the direction of the structure vector field & satisfies

the following equation:

(LeTP)xY == Sn(X)(¢AQY + AY)
F (V) (GABAX + aAX + EX)

—g(A%X — aAX — EX, Y)E+ gaQn(X)n(Y)§7 X, Y eTM.
(3.11)
Proof. We calculate the Lie deribative LT B by
(LeTP)xY = L(TRY) = TE XY =T (LeY), X, Y € TM.
Using (2.4), (2.5), (2.6) and (2.15), we have

Le(TRY) =59(VeX )Y + Tn(X)eVeY — Tn(X)gAoY
+9(VeY, PAX = n(Y)(@AX + 7X)
—2m(Y)pAPAX + (Y )pAV: X (3.12)
+ glaAX + EX, Y)¢ + g(pAPAX,Y)E

— 9(@AVeX,Y)E — g(pAX, VY,
TE XY =59(VeX, 0 +n(Y)AVEX —n(Y)oAsAX

(3.13)
— 9(PAV X, Y)E + g(pAPAX, Y )E,
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and
2
TE(LeY) =%n(X)¢V5Y + %n(X)AY - %n(X)n(Y)g
+ g(VeY, €)pAX — g(pAX, VY )E (3.14)

+g(A’X,Y)E — oPn(X)n(Y)E.
Combining (3.12), (3.13) with (3.14), we have
(LeTP)xY =— %@A(py + AY)
—(Y)(9APAX + aAX + 7X)

— g(A%X — aAX — ZX, Y)E+ ;aQn(X)n(Y)g.

This proves the theorem. ]

Finally, we prove the following theorem:

Theorem 3.4. Let M be a Hopf real hypersurface in a nonflat complex
space form My, (c) (¢ # 0). If LT vanishes on M, then M s locally

congruent to a homogeneous real hypersurface of type (A) in M,(c).
Proof. By our assumption we have

(LeTB)xY = — —(pABY + AY)

«
2
— (V) ($ASAX + 0 AX + S X)

. 4 ; (3.15)
—g(A%X — aAX — ZX,Y)E + SaPn(X)n(Y)E

=0.
Substituting X, Y € {§}L, AX = AX into the left side of (3.15), we have

A2 o) — g — 0. (3.16)

So, M has at most three distinct constant principal curvatures. According
to Theorem K in §2, M must be locally congruent to a real hypersurface
either of type (A) or of type (B). But a real hypersurface of type (B)
does not satisfy (3.6) (c.f. Talbe 1 and Table 2). So, M must be locally

congruent to a homogeneous real hypersurface of type (A).



14

Shoto Fuiiki, Setsuo NAGAT and Takashi SASAKI

On the other hand, for a real hypersurface of type (A4), from (2.4), (2.10)

and (2.11), we always have

(LeTP)xY =— %(&Ay + AY)
— p(Y)(¢2A2 + aAX + EX)
— g(A2X — aAX — SXY)E+ Satn(X)n(Y)e
— (V) (A%X — aAX — EX) ~ g(A2X — aAX — ZX7 Y)e
= — (XY + n(Om(Y )
=0.
This proves the theorem. O
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