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Lie derivatives of homogeneous structures of real

hypersurfaces in a complex space form

Shôto Fujiki, Setsuo Nagai and Takashi Sasaki

Abstract. In this paper we calculate the Lie derivatives of homoge-
neous structure tensors of homogeneous real hypersurfaces in nonflat
complex space forms in the direction of the structure vector field.
Using these results, we give two characterization theorems of a ho-
mogeneous real hypersurface of type (A) in a nonflat complex space
form.

1. Introduction

Let Mn(c) be an n-dimensional complex space form with constant holo-

morphic sectional curvature c ̸= 0, and let J̃ and g be its complex struc-

ture and Riemannian metric. Complete and simply connected complex

space forms are isometric to a complex projective space CPn or a complex

hyperbolic space CHn for c > 0 or c < 0, respectively.

Let M be a connected submanifold of Mn(c) with real codimension 1.

We refer to this simply as a real hypersurface below. For a local unit

normal vector field ν of M , we define the structure vector field ξ of M by

ι∗ξ = −J̃ν, where ι∗ denotes the differential map of the immersion map ι

of M into Mn(c). Further, the structure tensor field ϕ and the 1-form η are

defined by J̃ ι∗X = ι∗ϕX + g(X, ξ)ν, η(X) = g(X, ξ) for a tangent vector

X of M , where g denotes the induced Riemannian metric of M .
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The structure vector ξ is said to be principal if Aξ = αξ is satisfied for

some function α, where A is the shape operator of ι. A real hypersurface

of Mn(c) is said to be a Hopf real hypersurface when its structure vector is

principal.

A connected Riemannian manifold is said to be homogeneous if its group

of isometries acts transitively on it. In the paper [1], W. Ambrose and

I. M. Singer characterized a Riemannian homogeneous manifold by some

kind of a tensor field of type (1, 2) which is called a homogeneous structure

tensor (for details see §2, Definition 2.1 and Theorem AS). Later F. Tricerri

and L. Vanhecke [12] characterized a naturally redective Riemannian ho-

mogeneous manifold by some kind of a tensor field of type (1, 2) which is

called a naturally reductive homogeneous structure tensor (for details see

§2, Definition 2.3 and Theorem T-V).

A real hypersurface in a complex space form Mn(c) is said to be a ho-

mogeneous real hypersurface if it is an orbit of an analytic subgroup of the

group of isometries of Mn(c). In a nonflat complex space form homogneous

real hypersurfaces are all classified (c.f.[10], [3]).

The second author [7] constructed a naturally reductive homogenous

structure tensor TA on a homogeneous real hypersurface of type (A) in

a nonflat complex space form (for details see §2, Theorem NA). Further

the second author [8] constructed a homogeneous structure tensor TB on

a homogeneous real hypersurface of type (B) in a nonflat complex space

form (for derails see §2, Theorem NB).

In this paper we give some characterization theorems of a homogeneous

real hypersurface of type (A) in a nonflat complex space form Mn(c) by the

Lie derivatives of TA and TB in the direction of the structure vector field

ξ. Our theorems are:

Theorem 3.1 Let M be a Hopf real hypersurface in a nonflat complex space

form Mn(c) (c ̸= 0). Then, the Lie derivative LξT
A of the homogeneous

structure TA in the direction of the structure vector field ξ satisfies the
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following equation:

(LξT
A)XY =− η(X)(−αAY − ϕAϕAY − c

4
Y )

+ η(Y )(−αAX − ϕAϕAX − c

4
X)

− g(A2X − αAX − c

4
X +

c

4
η(X)ξ, Y )ξ, X, Y ∈ TM.

(3.1)

Here TM denotes the tangent bundle of M .

Theorem 3.2 Let M be a Hopf real hypersurface in a nonflat complex space

form Mn(c) (c ̸= 0). If LξT
A vanishes on M , then M is locally congruent

to a homogeneous real hypersurface of type (A) in Mn(c).

Theorem 3.3 Let M be a Hopf real hypersurface in a nonflat complex space

form Mn(c) (c ̸= 0). Then, the Lie derivative LξT
B of the homogeneous

structure TB in the direction of the structure vector field ξ satisfies the

following equation:

(LξT
B)XY =− α

2
η(X)(ϕAϕY +AY )

+ η(Y )(ϕAϕAX + αAX +
c

4
X)

− g(A2X − αAX − c

4
X,Y )ξ +

3

2
α2η(X)η(Y )ξ, X, Y ∈ TM.

(3.11)

Theorem 3.4 Let M be a Hopf real hypersurface in a nonflat complex space

form Mn(c) (c ̸= 0). If LξT
B vanishes on M , then M is locally congruent

to a homogeneosu real hypersurface of type (A) in Mn(c).

2. Preliminaries

In this section we explain preliminary results concerning Riemannian

homogeneous structures and real hypersurfaces of a complex space form.

First, we recall a criterion for homogeneity of a Riemannian manifold

obtained by W. Ambrose and I. M. Singer [1]. We start with
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Definition 2.1. A connected Riemannian manifold (M, g) is said to be

homogeneous if the group I(M) of isometries of M acts transitively on M .

On the other hand, local homogeneity is defined by

Definition 2.2. A connected Riemannian manifold (M, g) is said to be

locally homogeneous if, for each p, q ∈ M , there exists a neighborhood U

of p, a neighborhood V of q and a local isometry ϕ : U −→ V such that

ϕ(p) = q.

In the paper [1], Ambrose and Singer gave a criterion for homogeneity

of a Riemannian manifold:

Theorem AS([1]). A connected, complete and simply connected Rieman-

nian manifold M is homogeneous if and only if there exists a tensor field

T of type (1, 2) on M such that

(i) g(TXY, Z) + g(Y, TXZ) = 0,

(ii) (∇XR)(Y, Z) = [TX , R(Y, Z)]−R(TXY, Z)−R(Y, TXZ),

(iii) (∇XT )Y = [TX , TY ]− TTXY ,

for X,Y, Z ∈ X(M). Here ∇ denotes the Levi-Civita connection of M , R

is the Riemannian curvature tensor of M and X(M) is the Lie algebra of

all C∞ vector fields over M .

Furthermore, without the topological conditions of completeness and

simply connectedness, the three conditons (i)–(iii) give a criterion for local

homogeneity of M .

Remark 2.1. If we put ∇̃ := ∇− T , then the conditions (i), (ii) and (iii)

are equivalent to ∇̃g = 0, ∇̃R = 0 and ∇̃T = 0, respectively.

Next, we present the definition of a naturally reductive homogeneous

Riemannian manifold.

Definition 2.3. Let M be a homogeneous Riemannian manifold and g

its metric tensor. Then (M, g) is said to be a naturally reductive homo-

geneous Riemannian manifold if there exists a homogeneous representation
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M = G/K with a transitive Lie group G of isometries of M and the isotropy

group K of some point p ∈ M such that for the Lie algebra g of G and k of

K there exists a vector subspace m of g satisfying

(i) g = m⊕ k,

(ii) Ad(K)m ⊂ m,

(iii) ⟨[X,Y ]m, Z⟩+ ⟨Y, [X,Z]m⟩ = 0, X, Y, Z ∈ m,

where ⟨·, ·⟩ denotes the inner product of m induced on m from g by identi-

fication of m with TpM .

If (M, g) is naturally reductive, both the Riemannian metric tensor g

and the Riemannian curvature tensor R of M are parallel with respect to

the canonical connection ∇̃ corresponding to the decomposition (i) in Def-

inition 2.3 (cf. [12] p57). Further, for the tensor T = ∇−∇̃, ∇̃XT = 0 and

TXX = 0 are satisfied for any X ∈ TM . We know the following criterion:

Theorem T-V([12] p57) A connected, complete and simply connected Rie-

mannian manifold M is naturally reductive homogeneous if and only if there

exists a tensor field T of type (1, 2) on M such that

(i) ∇̃g = 0, (ii) ∇̃R = 0, (iii) ∇̃T = 0, (iv) TXX = 0

for X ∈ TM , where ∇̃ denotes the connection defined by ∇̃ = ∇− T .

Next, we mention some preliminary results concerning real hypersurfaces.

Let Mn(c) (c ̸= 0) be an n-dimensional complex space form with constant

holomorphic sectional curvature c and let g and J̃ be its metric tensor and

complex structure, respectively. The standard models for such spaces are

the complex projective space CPn(c) (for c > 0) and the complex hyperbolic

space CHn(c) (for c < 0).

Let M be a real hypersurface of Mn(c). We also denote by g the induced

Riemannian metric on M and by ν a local unit normal vector field along

M in Mn(c).

The Gauss and Weingarten formulas are:

∇Xι∗Y = ι∗∇XY + g(AX,Y )ν, (2.1)

∇Xν = −ι∗AX, (2.2)
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where ∇ and ∇ denote the Levi-Civita connection of Mn(c) and M , respec-

tively and A is the shape operator of M in Mn(c).

We define an almost contact metric structure (ϕ, ξ, η, g) on M as usual.

That is defined by

ι∗ξ = −J̃ν, η(X) = g(X, ξ), ι∗ϕX = (J̃X)T , X ∈ TM, (2.3)

where TM denotes the tangent bundle of M and ( )T the tangential com-

ponent of a vector. These structure tensors satisfy the following equations:

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), X, Y ∈ TM.
(2.4)

where I denotes the identity mapping of TM .

From (2.1) and (2.3), we easily have

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, (2.5)

∇Xξ = ϕAX, (2.6)

for tangent vectors X, Y ∈ TM .

In our case the Gauss and Coddazi equations of M become

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX

−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ}

+ g(AY,Z)AX − g(AX,Z)AY,

(2.7)

(∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ} . (2.8)

A real hypersurface M of Mn(c) is said to be a homogeneous real hypersur-

face if it is an orbit of an analytic subgroup of the isometry group of Mn(c).

We know the complete classification of homogeneous real hypersurfaces of

CPn:

Theorem T([10]). Let M be a homogeneous real hypersurface of CPn.

Then M is locally congruent to one of the following spaces:

(A1) a geodesic hypersphere;

(A2) a tube over a totally geodesic CPk (1 ≤ k ≤ n− 2);
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(B) a tube over a complex quadric Qn−1;

(C) a tube over CP1 × CPn−1
2

and n(≥ 5) is odd;

(D) a tube over a complex Grassmann G2,5 and n = 9;

(E) a tube over a Hermitian symmetric space SO(10)/U(5) and n = 15.

For homogeneity of a real hypersurface in CPn, there is a criterion ob-

tained by M. Kimura [4]. His theorem is

Theorem K([4]). Let M be an connected real hypersurface in CPn. Then

M has constant principal curvatures and the structure vector ξ is principal

if and only if M is congruent to an open subset of a homogeneous real

hypersurface.

In CHn Berndt [2] obtains the complete classification of Hopf hypersur-

faces with constant principal curvatures. His theorem is the following:

Theorem B([2]). Let M be a connected real hypersurface of CHn (n ≥ 2)

with constant principal curvatures. Further, assume that the structure vec-

tor ξ is principal. Then M is orientable and holomorphic congruent to an

open part of one of the following hypersurfaces:

(A0) a horosphere in CHn;

(A) a tube of radius r ∈ R+ over a totally geodesic CHk (0 ≤ k ≤ n− 1);

(B) a tube of radius r ∈ R+ over a totally geodesic totally real submanifold

RHn .

Here CH0 means a single point.

For the principal curvatures α, λ1, λ2, λ3, λ4 and their multiplicities

mα, mλ1 , mλ2 , mλ3 , mλ4 , we have the following table, where α is the

principal curvature corresponding to the principal direction ξ (see [11]):
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type principal curvatures multiplicities

(A1) α =
√
c cot

√
cr mα = 1

λ1 =
√
c
2 cot

√
c
2 r mλ1 = 2(n− 1)

(A2) α =
√
c cot

√
cr mα = 1

λ1 =
√
c
2 cot

√
c
2 r mλ1 = 2(n− k − 1)

λ2 = −
√
c
2 tan

√
c
2 r mλ2 = 2k

(B) α =
√
c cot

√
cr mα = 1

λ1 =
√
c
2 cot

√
c
2 (r − π

2
√
c
) mλ1 = n− 2

λ2 = −
√
c
2 tan

√
c
2 (r − π

2
√
c
) mλ2 = n− 2

(C) α =
√
c cot

√
cr mα = 1

λi =
√
c
2 cot

√
c
2 (r − πi

2
√
c
) mλi

= n− 3 (i = 2, 4)

(i = 1, 2, 3, 4) mλi
= 2 (i = 1, 3)

(D) α =
√
c cot

√
cr mα = 1

λi =
√
c
2 cot

√
c
2 (r − πi

2
√
c
) mλi

= 4 (i = 1, 2, 3, 4)

(i = 1, 2, 3, 4)

(E) α =
√
c cot

√
cr mα = 1

λi =
√
c
2 cot

√
c
2 (r − πi

2
√
c
) mλi

= 8 (i = 2, 4)

(i = 1, 2, 3, 4) mλi
= 6 (i = 1, 3)

Table 1: principal curvatures in CPn

Concerning the principal curvatures α, λ1, λ2 and their multiplicities

mα, mλ1 , mλ2 , we have the following (see [6]):

type principal curvatures multipricities

(A0) α =
√
−c 1

λ1 =
√
−c
2 2n− 2

(A) α =
√
−c coth

√
−cr 1

λ1 =
√
−c
2 coth

√
−c
2 r 2(n− k − 1)

λ2 =
√
−c
2 tanh

√
−c
2 r 2k

(B) α =
√
−c tanh

√
−cr 1

λ1 =
√
−c
2 coth

√
−c
2 r n− 1

λ2 =
√
−c
2 tanh

√
−c
2 r n− 1

Table 2: principal curvatures in CHn
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For Hopf real hypersurfaces we know the following:

Theorem MO([9], [5]). Let M be a real hypersurface in Mn(c) whose

structure vector ξ is principal with principal curvature α. Then α is a

locally constant function. Furthermore, for any principal curvature vector

X ⊥ ξ with AX = λX, we get the following equation:

(2λ− α)AϕX = (αλ+
c

2
)ϕX. (2.9)

Using the table 1 and the table 2, we easily have the following:

Proposition 2.1. For a real hypersurface of type (A) in Mn(c), we have

ϕA = Aϕ, (2.10)

A2 − αA− c

4
I = − c

4
η ⊗ ξ. (2.11)

Here I denotes the identity map on TM .

Proposition 2.2. For a real hypersurface of type (B) in Mn(c), we have

ϕA+Aϕ = − c

α
ϕ, (2.12)

A2 +
c

α
A− c

4
I = (α2 +

3

4
c)η ⊗ ξ. (2.13)

In [7] and [8] the second author proved the following theorems:

Theorem NA([7]) Let M be a homogeneous real hypersurface of type (A)

in a nonflat complex space form Mn(c) (c ̸= 0). Then

TA
XY = η(Y )ϕAX − η(X)ϕAY − g(ϕAX, Y )ξ, X, Y ∈ TM (2.14)

defines a naturally reductive homogeneous structure on M .

Theorem NB([8]) Let M be a homogeneous real hypersurface of type (B)

in a nonflat complex space form Mn(c) (c ̸= 0). Then

TB
XY =

α

2
η(X)ϕY + η(Y )ϕAX − g(ϕAX, Y )ξ. X, Y ∈ TM (2.15)

defines a homogeneous structure on M .
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3. Proof of theorems

In this section we shall prove our main theorems.

Firstly, we prove the following theorem:

Theorem 3.1. Let M be a Hopf real hypersurface in a nonflat complex

space form Mn(c) (c ̸= 0). Then, the Lie derivative LξT
A of the homoge-

neous structure TA in the direction of the structure vector field ξ satisfies

the following equation:

(LξT
A)XY =− η(X)(−αAY − ϕAϕAY − c

4
Y )

+ η(Y )(−αAX − ϕAϕAX − c

4
X)

− g(A2X − αAX − c

4
X +

c

4
η(X)ξ, Y )ξ, X, Y ∈ TM.

(3.1)

Proof. We calculate the Lie derivative LξT
A by

(LξT
A)XY = Lξ(T

A
XY )− TA

LξX
Y − TA

X (LξY ), X, Y ∈ TM.

From (2.4), (2.6) and (2.14), we have

Lξ(T
A
XY ) =g(∇ξY, ξ)ϕAX + η(Y ) {∇ξ(ϕAX)−∇ϕAXξ}

− g(∇ξX, ξ)ϕAY − η(X) {∇ξ(ϕAY )−∇ϕAY ξ}

− g(∇ξ(ϕAX), Y )ξ − g(ϕAX,∇ξY )ξ,

(3.2)

TA
LξX

Y =η(Y )ϕA∇ξX − η(Y )ϕAϕAX − g(∇ξX, ξ)ϕAY

− g(ϕA∇ξX,Y )ξ + g(ϕAϕAX, Y )ξ,
(3.3)

TA
X (LξY ) =g(∇ξY, ξ)ϕAX − η(X)ϕA(∇ξY −∇Y ξ)

− g(ϕAX,∇ξY )ξ + g(A2X,Y )ξ − α2η(X)η(Y )ξ.
(3.4)

From (2.5), we have

(∇ξϕ)X = 0, X ∈ TM. (3.5)

According to the Codazzi equation (2.8) and the equation (2.6), we have

(∇ξA)X = αϕAX −AϕAX +
c

4
ϕX. (3.6)
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Combining (3.2), (3.3), (3.4), (3.5) with (3.6), we are led to

(LξT
A)XY =− η(X)(−αAY − ϕAϕAY − c

4
Y )

+ η(Y )(−αAX − ϕAϕAX − c

4
X)

− g(A2X − αAX − c

4
X +

c

4
η(X)ξ, Y )ξ.

This proves the theorem.

Secondly, we prove the following theorem:

Theorem 3.2. Let M be a Hopf real hypersurface in a nonflat complex

space form Mn(c) (c ̸= 0). If LξT A vanishes on M , then M is locally

congruent to a homogeneous real hypersurface of type (A) in Mn(c).

Proof. By our assumption we have

(LξT
A)XY =− η(X)(−αAY − ϕAϕAY − c

4
Y )

+ η(Y )(−αAX − ϕAϕAX − c

4
X)

− g(A2X − αAX − c

4
X +

c

4
η(X)ξ, Y )ξ

= 0.

(3.7)

Substituting X, Y ∈ {ξ}⊥, AX = λX into left side of (3.7), we have

λ2 − αλ− c

4
= 0, (3.8)

where {ξ}⊥ denotes the orthogonal complement of the vector space spanned

by ξ in TM .

So, M has at most three distinct constant principal curvatures. Accord-

ing to Theorem K in §2, M must be locally congruent to a real hypersurface

either of type (A) or of type (B). But a real hypersurface of type (B) does

not satisfy (3.8) (c.f. Talbe 1 and Table 2). So M must be of type (A)

On the other hand, for a real hypersurface of type (A), we have the

following from Proposition 2.1,

ϕAϕAX =ϕ2A2X

=−A2X + α2η(X).
(3.9)
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Substituting (3.9) into the right side of (3.1), we conclude that

(LξT
A)XY =− η(X)(A2Y − αAY − c

4
Y )

+ η(Y )(A2X − αAX − c

4
X)

− g(A2X − αAX − c

4
X +

c

4
η(X)ξ, Y )ξ.

(3.10)

According to Proposition 2.1, the right side of (3.10) vanishes. This proves

the theorem.

Thirdly, we prove the following theorem:

Theorem 3.3. Let M be a Hopf real hypersurface in a nonflat complex

space form Mn(c) (c ̸= 0). Then, the Lie derivative LξT B of the homoge-

neous structure TB in the direction of the structure vector field ξ satisfies

the following equation:

(LξT
B)XY =− α

2
η(X)(ϕAϕY +AY )

+ η(Y )(ϕAϕAX + αAX +
c

4
X)

− g(A2X − αAX − c

4
X,Y )ξ +

3

2
α2η(X)η(Y )ξ, X, Y ∈ TM.

(3.11)

Proof. We calculate the Lie deribative LξT
B by

(LξT
B)XY = Lξ(T

B
XY )− TB

LξX
Y − TB

X (LξY ), X, Y ∈ TM.

Using (2.4), (2.5), (2.6) and (2.15), we have

Lξ(T
B
XY ) =

α

2
g(∇ξX, ξ)ϕY +

α

2
η(X)ϕ∇ξY − α

2
η(X)ϕAϕY

+ g(∇ξY, ξ)ϕAX − η(Y )(αAX +
c

4
X)

− 2η(Y )ϕAϕAX + η(Y )ϕA∇ξX

+ g(αAX +
c

4
X,Y )ξ + g(ϕAϕAX, Y )ξ

− g(ϕA∇ξX,Y )ξ − g(ϕAX,∇ξY )ξ,

(3.12)

TB
LξX

Y =
α

2
g(∇ξX, ξ)ϕY + η(Y )ϕA∇ξX − η(Y )ϕAϕAX

− g(ϕA∇ξX,Y )ξ + g(ϕAϕAX, Y )ξ,
(3.13)
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and

TB
X (LξY ) =

α

2
η(X)ϕ∇ξY +

α

2
η(X)AY − α2

2
η(X)η(Y )ξ

+ g(∇ξY, ξ)ϕAX − g(ϕAX,∇ξY )ξ

+ g(A2X,Y )ξ − α2η(X)η(Y )ξ.

(3.14)

Combining (3.12), (3.13) with (3.14), we have

(LξT
B)XY =− α

2
(ϕAϕY +AY )

− η(Y )(ϕAϕAX + αAX +
c

4
X)

− g(A2X − αAX − c

4
X,Y )ξ +

3

2
α2η(X)η(Y )ξ.

This proves the theorem.

Finally, we prove the following theorem:

Theorem 3.4. Let M be a Hopf real hypersurface in a nonflat complex

space form Mn(c) (c ̸= 0). If LξT
B vanishes on M , then M is locally

congruent to a homogeneous real hypersurface of type (A) in Mn(c).

Proof. By our assumption we have

(LξT
B)XY =− α

2
(ϕAϕY +AY )

− η(Y )(ϕAϕAX + αAX +
c

4
X)

− g(A2X − αAX − c

4
X,Y )ξ +

3

2
α2η(X)η(Y )ξ

= 0.

(3.15)

Substituting X, Y ∈ {ξ}⊥, AX = λX into the left side of (3.15), we have

λ2 − αλ− c

4
= 0. (3.16)

So, M has at most three distinct constant principal curvatures. According

to Theorem K in §2, M must be locally congruent to a real hypersurface

either of type (A) or of type (B). But a real hypersurface of type (B)

does not satisfy (3.6) (c.f. Talbe 1 and Table 2). So, M must be locally

congruent to a homogeneous real hypersurface of type (A).
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On the other hand, for a real hypersurface of type (A), from (2.4), (2.10)

and (2.11), we always have

(LξT
B)XY =− α

2
(ϕ2AY +AY )

− η(Y )(ϕ2A2 + αAX +
c

4
X)

− g(A2X − αAX − c

4
X,Y )ξ +

3

2
α2η(X)η(Y )ξ

= η(Y )(A2X − αAX − c

4
X)− g(A2X − αAX − c

4
X,Y )ξ

= − c

4
η(X)η(Y )ξ +

c

4
η(X)η(Y )ξ

= 0.

This proves the theorem.
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