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Abstract 

  

 Multivalued Logic (MVL) originates from Boolean Logic, and it is the 

development and generalization of the latter. MVL networks’ models abstracted from 

a large number of practical applications need to be optimized to improve their 

performance. Many mathematical and physical methods have been used to solve the 

problems in the early stages of research. In recent years many intelligent 

computational methods have been introduced into research and they have made great 

progress so as to deal with the local minimum, run smoothly in the global field, reach 

some high-quality solutions in a reasonable time and show their robustness. 

Nevertheless they have a common flaw: their measure of the solutions is unique and 

incomplete. In other words, they are all the methods based on a single-objective 

function, while in real world optimization problems need usually be evaluated with 

several criteria. 

 We first propose a novel algorithm called bi-objective elite differential evolution 

(BOEDE) to optimize MVL networks in this thesis. It is a multiobjective algorithm 

completely different from all the existing single-objective optimization ones, and 

multiobjective is one of the most important innovations of it. Two objective functions, 

incorrectness and optimality, are put into evaluating the fitness of individuals in the 

evolution simultaneously. Incorrectness measures the accuracy of solutions inversely, 

and optimality implies the cost of solutions. Another important innovation is that a 

hierarchical storage structure is built for archive population and each rank has a fixed 

size. Moreover, a characteristic updating method corresponding to the structure is 

designed. Subsequently because of the particularity of MVL network problems, the 

performance of BOEDE to solve them is further improved by some techniques, such 

as distinguishing elite solutions and Pareto optimal solutions strictly, modifying the 
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method of dealing with illegal variables, reusing better solutions of the previous 

generation, and so on. 

 The simulations show that our algorithm can not only collect a great number of 

elite solutions, but also collect a great number of Pareto optimal ones with different 

ranks, which are sufficient to provide decision support for a variety of applications. 

The comparison simulation results also indicate that the solutions of the proposed 

algorithm have much richer phenotypes, richer genotypes and lower cost than those of 

the existing algorithms. In general, BOEDE is significantly better than them. 

The content of the thesis is organized as follows: in Chapter 1 we outline research 

topic, research history and research purpose; in Chapter 2 and Chapter 3, we introduce 

the problem to be studied: optimization of MVL networks, and give some basic 

knowledge about MVL networks and optimization in order to understand the 

proposed algorithm; in Chapter 4 we illustrate basic DE algorithm and some 

techniques which are utilized to solve the above problem; in Chapter 5 we propose a 

novel DE algorithm to optimize MVL networks, and expatiate on its innovations; in 

Chapter 6 we give a lot of detailed experiments and make some contrast experiments, 

which all prove the proposed algorithm is more effective and more efficient than the 

existing algorithms; in the last chapter we summarize this research and put forward a 

further research plan. 
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Chapter 1                         

Introduction to Research Topic 

 

1.1  Research background on the topic 

Multivalued logic (MVL) technology evolved from binary Boolean logic 

technology. In traditional Boolean logic systems a variable has only two values, 1 and 

0, to represent two specific states, such as right and wrong in logic, on and off in 

circuits, high and low in level. While in MVL systems, a variable can have many 

values to express many different states [1]. For examples, in the Post algebra it can 

express three symbols: positive, zero and negative; in computer operating systems it 

can express five kinds of process state: create, ready, execute, block, and exit. The 

MVL technology has the potential to increase the information capacity of each single 

line obviously [2]–[6] and consequently it has a great advantage in the logic circuit 

design, reliability analysis, and optimization [7]–[11]. With the expansion of circuit 

integration, the optimization of an MVL network can shrink the size of programmable 

logic arrays effectively, reduce the number of interconnections between chips in 

orders of magnitude [8], [12]–[14], thereby improving the circuit integration [15], 

speeding up hardware [16], and enhancing the ability of fault tolerance [17]. 

Recently, the MVL network technology has also been applied in many other ways 

which are promising and attractive, such as pattern recognition [18], image processing 

[19], associative memories [20] and data mining [21]. Especially it is also applied to 

multivalued neuron (MVN), which is based on the multivalued threshold logic and 

can match inputs and outputs arbitrarily by the partially defined multivalued function 

[22]–[25]. It is necessary and important to optimize MVL networks [26]–[28]. 
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1.2  Research progress on the topic 

In order to optimize MVL networks, the mathematical and physical methods, such 

as algebraic method [29], circuit method [30], hyper-planes method [31], have been 

used. Although these early methods can provide some optimized solutions, they are 

extremely time-consuming, even in orders of days and they can only solve the 

small-size problems [32]–[34]. As an alternative, direct cover (DC) [35]–[38] can 

generate an efficient cover directly for a given MVL network, omitting the 

intermediate procedure of creating prime implicants. DC requires much less 

computational time than those methods based on implicants. MVL networks 

optimized by DC are without any error as the ones before optimizing. However this 

technique aims at accuracy, regardless of the number of optimized gate circuits. That 

is to say, DC is poor in saving the cost of manufacturing and integration of circuits. 

Subsequently in recent years, DC is introduced into some intelligent algorithms [39] 

[40], and these hybrid algorithms can simplify MVL networks. Especially the ant 

colony optimization (ACO) algorithm combines DC technique to improve the 

performance of MVL networks, which is called ACO-DC [41] [42]. ACO-DC is a 

state-of-the-art algorithm, which first uses some ants to decompose an MVL network, 

and then uses DC technique to mimic each sub-network. It completes the cover of 

MVL networks successfully, and reduces the number of gate circuits effectively, yet 

not enough. Meanwhile a new learning MVL network [43]–[45] is put forward to 

improve the performance of the networks based on algebra [46] [47], and several 

kinds of technologies, such as error back-propagation [48] and non-back-propagation 

[49] [50], are introduced into the model. It can accumulate priori knowledge about 

targets and processes, so as to evolve more effectively. In fact, a learning MVL 

network using error backpropagation requires some presuppositions: (1) the simulated 

function curve must be continuous and differentiable at each point, and (2) the values 

of some parameters, e.g., weight and threshold are pre-assigned. It is obvious that 

these conditions are uncertain. 

On the other hand, a learning MVL network based on non-back-propagation such 

as local search [51] [52] and simulated annealing [53] needs no such prior knowledge, 
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but it has its disadvantages: it is easy to fall into a local minimum and easy to 

converge prematurely. To jump out of a local minimum trap, a great deal of research 

has been carried out. A stochastic dynamic factor is introduced into a traditional local 

search method, which can permit the search to go a little farther along the error 

direction in order to escape from a local minimum when the search encounters a trap 

[54] [55]. A clonal selection algorithm incorporated with chaos is proposed to 

maintain the diversity of populations and speed its evolutionary efficiency [56]. 

The above-mentioned search methods have proved to be better than the traditional 

local search through a large number of experiments. They can deal with the local 

minimum, run smoothly in the global field, then reach some high-quality solutions in 

a reasonable time and show their robustness. Nevertheless they have a common flaw: 

their measure of the solutions is unique and incomplete. In other words, they are all 

the methods based on a single objective function. Real world optimization problems 

need usually be evaluated with several criteria, but not only one, and these criteria 

maybe in conflict with each other [72-77]. Specifically the optimization of MVL 

networks includes two objectives: accuracy and optimality. Accuracy is the most 

important measure of a system and optimality reflects the cost of a system. The 

methods mentioned above only take the accuracy into consideration, but ignore the 

optimality. They always try their best to find the best solutions with the least error, 

regardless of the cost of the solutions, which is clearly unreasonable. A modified error 

function combing accuracy and optimality was presented to evaluate the individuals 

of MVL networks by using a weighted sum [57]. It must be emphasized that these two 

evaluation criteria used in [57] are totally unequal in the evaluation function: the 

accuracy plays a dominant role, while the optimality starts to work only when the 

accuracy of an individual is the same or almost the same as that of the other. This 

algorithm is strongly interfered by the weights that are not determined objectively. 

Consequently it is a single-objective one in essence. 

 

1.3  Purpose and method 

In this paper, we for the first time propose a true multiobjective method to 
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optimize MVL networks and try to find the optimal solutions. First and foremost, two 

independent objective evaluation functions are applied into the problems. They are 

similar to the previous definitions, yet we utilize them completely equally in our 

research, without any subjective parameters. Second, in single-objective problems the 

best solution appears when the objective function is the best while in multiobjective 

problems there are complex internal relations among various objectives. It would not 

be a subjective decision whether a solution is abandoned or not in solving MVL 

network problems. Sufficient optimal solutions should be collected in order to provide 

the needed decision support for practical applications. The optimal solutions includes 

two kinds, the elite solutions with no error in accuracy and the Pareto optimal 

solutions whose accuracy and optimality are compromised with each other. The 

solution with both the best accuracy and the best optimality may not be turned into 

reality for the reason of the cost or technical limitations. Thus the best accurate 

solutions should have some different optimality. Furthermore, some products hope to 

reduce the cost by allowing some non-critical errors. Therefore, Pareto optimal 

solutions should also have some different ranks. Altogether, the two kinds of solutions 

should be uniformly distributed along the two evaluation functions. 

In MVL networks, the objective functions have simple phenotypes in which their 

variable values are discrete and limited, while the decision vectors corresponding to 

the objective functions have rich genotypes in which a decision vector has a number 

of variables. Because of these features, a novel algorithm based on the traditional 

differential evolution (DE) is proposed to optimize MVL networks.  

 

1.4  Outline 

In this chapter we first elaborate why we chose MVL optimization problems as 

our research task, that is, the function and significance of this topic. We choose it 

because of wide applications of MVL networks and importance of optimize them. 

Secondly we summarize the existing research methods and their achievements on this 

topic, then put forward some ideas to improve optimization, using DE algorithm to 

minimize MVL networks with two objectives.  
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The remaining content is organized as follows: in Chapter 2 and Chapter 3, we 

introduce the problem to be studied: optimization of MVL networks, and give some 

basic knowledge about MVL networks and optimization in order to understand the 

proposed algorithm; in Chapter 4 we illustrate basic DE algorithm and some 

techniques which are utilized to solve the above problem; in Chapter 5 we propose a 

novel DE algorithm to optimize MVL networks, and expatiate on its innovations [78]; 

in Chapter 6 we give a lot of detailed experiments and make some contrast 

experiments, which all prove the proposed algorithm is more effective and more 

efficient than the existing algorithms; in the last chapter we summarize this research 

and put forward a further research plan. 

 

 

  



 

6 
 

 

Chapter 2                         

MVL Networks 

 

2.1  Structure of MVL networks 

The concept, multivalued logic, should be described ahead of the concept of MVL 

network. Generally, a variable of traditional two-valued systems has only two values 

-1 and 0 - representing two specific states. While in the multivalued systems, a 

variable can have many values and so it can express many states. MVL systems 

evolve from two-valued logic system, and apparently they have more information 

storage on single wire than traditional systems. Without loss of generality, we define it 

as an R- valued system. 

An R-valued logic is used to define a MVL system specifically, in which a 

variable can take values from 0 to R-1 (R∈N and R≥2 ) to express R kinds of states.  

An MVL network [43] [44] is a three-layer feed-forward network, shown in Fig. 

2.1. This network consists of five parts: input, three intermediate layers, and output. 

The network is multivalued because its variables are all multivalued. X is an input 

vector, which includes n input variables, i.e., 

 x = {𝑥1,𝑥2, 𝑥3, … , 𝑥𝑛}              (2.1) 

where 𝑥𝑖 ∈ {0,1,2, … , 𝑅 − 1} ( 𝑖 = 1,2, … , n and  R ∈ N and R ≥ 2) . 
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Fig. 2.1. Structure of MVL networks. 

 

The first layer in an MVL network is considered to be the Literal operation, and 

𝑥𝑖(𝑎𝑖𝑗 , 𝑏𝑖𝑗) is called a Literal operation node, represented as 

 𝑥𝑖(𝑎𝑖𝑗 , 𝑏𝑖𝑗) = {
  𝑅 − 1        𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗

     0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (2.2) 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑚 (𝑚 = 𝑅𝑛 − 1). If 𝑎𝑖𝑗≤𝑏𝑖𝑗, the value of the 

node is R − 1; otherwise the value is 0. Here 𝑎𝑖𝑗  and 𝑏𝑖𝑗  are both window 

parameters and they are certainly multivalued (𝑎𝑖𝑗 , 𝑏𝑖𝑗 ∈ {0,1,2, … , 𝑅 − 1} ); the 

subscript i indicates that the input comes from the ith x and the subscript j indicates 

that the value of the node goes to the jth MIN gate. The Literal operation is shown in 
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Fig. 2.2. 

 

 

Fig. 2.2 Definition of literal operation. 

 

 The second layer is MIN gates. As the name implies, the operation is to get the 

smallest values of all the members including all the input values from Layer 1 and a 

biasing parameter c which is also multivalued  (𝑐𝑗 ∈ {0,1,2, … , 𝑅 − 1}). The MIN 

operation is shown as follows: 

 𝑀𝐼𝑁𝑗 = 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 

   (𝑐𝑗, 𝑥(𝑎1𝑗 , 𝑏1𝑗), … , 𝑥(𝑎𝑖𝑗 , 𝑏𝑖𝑗), … , 𝑥(𝑎𝑛𝑗 , 𝑏𝑛𝑗))    (2.3) 

 

The third layer MAX describes the MAX operation, i.e., 

 𝑀𝐴𝑋 = 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓(𝑀𝐼𝑁1, … , 𝑀𝐼𝑁𝑗, … , 𝑀𝐼𝑁𝑚)   (2.4) 
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MAX is the largest value of all the MIN operations. F(𝑥1, 𝑥2, … , 𝑥𝑛) is the 

output of the network, a value assigned by MAX. (𝑥1, 𝑥2, … , 𝑥𝑛) represents input 

variables corresponding to the value of MAX. 

The MVL network with MAX operation, MIN operation and literal operation can 

simulate any multivalued function based on canonical expansion in a sum-of-products 

form [58] which is given as follows: 

F(𝑥1, 𝑥2, … , 𝑥𝑛) =            (2.5) 

∑ 𝐹(𝑒1, 𝑒2, … , 𝑒𝑛)

𝑒1,𝑒2,…,𝑒𝑛

⋅ 𝑥1(𝑒1, 𝑒1) ⋅ 𝑥2(𝑒2, 𝑒2) ⋅ … ⋅ 𝑥𝑛(𝑒𝑛, 𝑒𝑛) 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are R-valued variables, 𝑒𝑖 ∈ {0,1,2, … , 𝑅 − 1}, 

i = 1,2, … , n and 𝐹(𝑒1, 𝑒2, … , 𝑒𝑛) ∈ {0,1,2, … , 𝑅 − 1}. 

 

2.2  A simple optimization example 

 The above formula is very abstract and it will be illustrated with a classical 

example. Table 2.1 presents a truth table of a 2-variable 4-valued function. X is the 

input vector including two variables which can take a value from a limited set {0, 1, 2, 

3}. Thus there are 16 different input combinations and 16 corresponding output 

results. Then the following canonical expansion is acquired according to the Eq. (2.5) 

and the MVL network, seen Fig. 2.3, is constructed to simulate the MVL function. 
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 Table 2.1   Truth table of a 2-variable 4-valued function. 

      x2 

x1 
0 1 2 3 

0 1 0 0 1 

1 1 1 0 1 

2 3 3 3 1 

3 0 1 0 2 

 

 F(𝑥1, 𝑥2) =    1 ∙ 𝑥1(0,0)𝑥2(0,0)   +   1 ∙ 𝑥1(0,0)𝑥2(3,3) 

    +  1 ∙ 𝑥1(1,1)𝑥2(0,0)   +   1 ∙ 𝑥1(1,1)𝑥2(1,1) 

    +  1 ∙ 𝑥1(1,1)𝑥2(3,3)   +   3 ∙ 𝑥1(2,2)𝑥2(0,0) 

  +  3 ∙ 𝑥1(2,2)𝑥2(1,1)   +   3 ∙ 𝑥1(2,2)𝑥2(2,2) 

  +  1 ∙ 𝑥1(2,2)𝑥2(3,3)   +   1 ∙ 𝑥1(3,3)𝑥2(1,1) 

  +  2 ∙ 𝑥1(3,3)𝑥2(3,3)         (2.6) 

 

 The number of the MIN gates usually reflects the cost of hardware in production. 

The network described by Eq. (2.6) has been simplified by mathematical and physical 

method and the result can be given as follows: 

 

 F(𝑥1, 𝑥2) =    1 ∙ 𝑥1(0,2)𝑥2(0,0)   +   1 ∙ 𝑥1(0,3)𝑥2(3,3) 

    +  1 ∙ 𝑥1(1,3)𝑥2(1,1)   +   2 ∙ 𝑥1(3,3)𝑥2(3,3) 

    +  3 ∙ 𝑥1(2,2)𝑥2(0,2)        (2.7)  
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The simplified structure after optimization is shown in Fig. 2.4. This method has been 

verified to be correct [59].  

 

  

 Fig 2.3 MVL network of Table 2.1 before optimization. 
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 Fig 2.4 MVL network of Table 2.1 after optimization. 

 

 Comparing the two figures which are before and after the simplification 

respectively, we can know the network before optimization has 11 MIN gates and the 

one after optimization has only 5 MIN gates, and the latter is simpler and less costly 

than the former. Generally, the number of MIN gate represents the manufacturing 

cost. Our task is using some algorithm to simulate the initial inputs of a network as 

the ones of Fig. 2.3 at the beginning and to obtain the ideal structure of the network 

like the one of Fig. 2.4 in the end. 

 Furthermore, we maybe obtain several optimizing results like (2.7) and we can 

select one which is cheaper in cost and easier in realization. Although the number of 

MIN gate represents the manufacturing cost, at the same time the high degree of 

integration also brings huge technical problems, that is to say, its technical cost maybe 
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higher. Take another truth table 2.2 as an example. 

 

 Table 2.2   Another Truth table of a 2-variable 4-valued function. 

      x2 

x1 
0 1 2 3 

0 2 1 1 3 

1 1 2 1 3 

2 1 1 1 3 

3 1 3 1 0 

 

Its canonical functions is shown as follows: 

 F(𝑥1, 𝑥2)   =    2 ∙ 𝑥1(0,0)𝑥2(0,0)   +   1 ∙ 𝑥1(0,0)𝑥2(1,1)  +   1 ∙ 𝑥1(0,0)𝑥2(2,2) 

    +  3 ∙ 𝑥1(0,0)𝑥2(3,3)  +   1 ∙ 𝑥1(1,1)𝑥2(0,0) +   2 ∙ 𝑥1(1,1)𝑥2(1,1) 

    +  1 ∙ 𝑥1(1,1)𝑥2(2,2)   +   3 ∙ 𝑥1(1,1)𝑥2(3,3) +   1 ∙ 𝑥1(2,2)𝑥2(0,0) 

  +  1 ∙ 𝑥1(2,2)𝑥2(1,1)   +   1 ∙ 𝑥1(2,2)𝑥2(2,2) +   3 ∙ 𝑥1(2,2)𝑥2(3,3) 

  +  1 ∙ 𝑥1(3,3)𝑥2(0,0)   +   3 ∙ 𝑥1(3,3)𝑥2(1,1) +   1 ∙ 𝑥1(3,3)𝑥2(2,2) 

               (2.8) 

 

 

It has 15 MIN gates. After optimization, we can get results given as follows:  

 

 F(𝑥1, 𝑥2)   =     1 ∙ 𝑥1(0,2)𝑥2(0,3)   +   2 ∙ 𝑥1(0,0)𝑥2(0,0) 

    +  2 ∙ 𝑥1(1,1)𝑥2(1,1)   +   3 ∙ 𝑥1(1,1)𝑥2(1,1) 

    +  3 ∙ 𝑥1(3,3)𝑥2(0,2)         (2.9) 
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 F(𝑥1, 𝑥2)   =     1 ∙ 𝑥1(0,2)𝑥2(0,3)   +   1 ∙ 𝑥1(0,2)𝑥2(2,3) 

    +  2 ∙ 𝑥1(1,1)𝑥2(1,1)   +   2 ∙ 𝑥1(0,0)𝑥2(0,0) 

    +  3 ∙ 𝑥1(1,1)𝑥2(3,3)   +  3 ∙ 𝑥1(3,3)𝑥2(0,2)   (2.10) 

 

 F(𝑥1, 𝑥2)   =     1 ∙ 𝑥1(0,2)𝑥2(0,3)   +   2 ∙ 𝑥1(1,1)𝑥2(1,1) 

    +  3 ∙ 𝑥1(1,1)𝑥2(3,3)   +   3 ∙ 𝑥1(3,3)𝑥2(0,1)   (2.11) 

 

Functions (2.9), (2.10) and (2.11) have 5, 6 and 4 MIN gates, respectively. But 

functions (2.9) and (2.10) have no error with the canonical function (2.8), while 

function (2.11) only has a little error which is 1 in value. We their implementations are 

different. We don’t decide which one is the easiest to implement and some certain 

degree of error can be compatible by different systems. Therefore we try to get as 

many optimized solutions as possible. They are divided into two categories: ones are 

solutions with no error, the others are solutions with few errors which can be tolerant. 

They are chosen by different application systems according to different demands. 

Generally, an MVL network is a special kind of artificial neural networks [79-88]. 
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Chapter 3                        

Multiobjective Optimization 

 

3.1  Multiobjective optimization 

 Multi-objective optimization problems (MOPs) are ubiquitous in the real world. 

For example, during the period of producing a soft system such as mobile phones, cars, 

the characteristics such as performance, reliability, stability, compatibility, cost and so 

on should be taken into considering. Often the cost of such systems is to be minimized, 

while maximum performance is desired. We can take all of these as evaluation 

functions or we can choose some important characteristics as the evaluation functions 

and translate the others into constraints. Formally, a minimum optimization problem 

is defined as follows: 

 

  minimize      y = F(x) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥) ) 

  subject to     E(x) = (𝑒1(𝑥), 𝑒2(𝑥), … , 𝑒𝑚(𝑥) ) ≤ 0 

  where          x =  (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋 

                        y = (𝑦1, 𝑦2, … , 𝑦𝑘) ∈ Y       (3.1) 

 

An MOP includes a set of k objective functions, a set of m constraints functions. Here 
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x is the decision vector, X is the decision space, y is the objective vector, Y is the 

objective space, F(x) is the total objective function consist of k sub-objective 

functions, E(x) is the total constraint functions consist of m sub-constraint functions.  

 When k=1, the optimization problem has only one objective function and it is 

called a Single-objective Optimization Problem (SOP); otherwise it is called a 

Multiobjective Optimization Problem (MOP). When m=0, the optimization problem 

is unconstrained optimization; otherwise it is constrained optimization [60].  

 

3.2  Pareto optimal solutions 

 The optimization goal is to find a set of decision variables in the decision space 

which can satisfy the constraints and make the objective functions appear optimal. In 

SOP, the set of corresponding decision variables is optimal when the unique objective 

function is optimal. But in MOP there are more than one objective functions and the 

ideal case is that when all the objective functions obtain the minimum at the same 

time, the corresponding decision variables are optimal. In fact it is almost impossible. 

Almost all the problems in the real world involves simultaneously several evaluation 

objectives. These objectives are incommensurable and often competitive with each 

other. The improvements to some functions often result in decreases in the 

performance of others. 

 In Fig. 2.3, assume that f1 and f2 are the two objective functions and their values 

are as small as necessary. Compare points A and point C: 𝑓1(𝐴) < 𝑓1(𝐶) and 

𝑓2(𝐴) < 𝑓2(𝐶), which is formally expressed that the decision vector to which point A 

corresponds dominates ( symbol ≻) that to which point C corresponds. This is Pareto 

dominance, defined as follows [60]:  

 

 Pareto dominance (minimize) 

 ∃u =  (𝑢1, 𝑢2, … , 𝑢𝑛) ∈ 𝑋 
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 ∃v =  (𝑣1, 𝑣2, … , 𝑣𝑛) ∈ 𝑋 

 u ≻ y(u dominate y) 

  ∀i = {1,2, … , 𝑛}: 𝑓𝑝(𝑢𝑖) ≤ 𝑓𝑝(𝑣𝑖)  (p = 1,2, … , k) 

  and ∃j = 1,2, … , 𝑛: 𝑓𝑝(𝑢𝑗) ≤ 𝑓𝑝(𝑣𝑗)  (p = 1,2, … , k)   (3.2) 

 

Compare points A and B: 𝑓1(𝐴) < 𝑓1(𝐵) and 𝑓2(𝐴) < 𝑓2(𝐵),  thus we cannot judge 

which is superior and which is inferior. The decision vectors to which points A and B 

correspond to respectively don’t dominate (symbol ⊁) with each other, which is 

indifferent, defined as follows [60]:  

 

 For any two decision vectors u and v 

  ∃u =  (𝑢1, 𝑢2, … , 𝑢𝑛) ∈ 𝑋 

  ∃v =  (𝑣1, 𝑣2, … , 𝑣𝑛) ∈ 𝑋 

 u ∽ v (u is indifferent to v) 

  u ⊁ v and  𝑣 ⊁ u            (3.3) 

 

  

 Fig. 3.1 Schematic diagram of Pareto dominance. 
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3.3  Rank of solutions 

 As mentioned above, in this study optimal solutions include elite solutions with 

different optimality and Pareto optimal solutions with different ranks. For the former, 

rank indicates their optimality. For the latter, rank indicates hierarchy of solutions, 

similar to the concept “level” of non-dominated sorting in NSGA II [61]. Fig. 2 

illustrates the concept of rank. In this figure, it is obvious that the decision vectors to 

which points A and B correspond respectively are indifferent with each other, and they 

dominate all the other vectors. Therefore, they are of course Pareto optimal solutions 

with the first rank. Another decision vectors to which points C, D and E correspond 

respectively are also indifferent with each other. And if points A and B are removed, 

the decision vectors to which points C, D and E correspond are Pareto optimal 

solutions. Thus they are of the second rank. And so on, all Pareto optimal solutions 

with different ranks are obtained. Taking into account the actual situations such as 

allowing some non-critical errors to reduce production costs, the existing 

manufacturing technology which cannot achieve the ideal high-precision solutions, 

more optimal solutions with different ranks have to be collected for the decision 

maker [60] [62]. 
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 Fig. 3.2. Pareto optimal solutions with different ranks. 

 

Chapter 4                     

Differential Evolution 

 

4.1  Development and characteristics of DE 

 Optimization problems are ubiquitous in science and engineering. What shape 

gives an airfoil maximum lift? Which polynomial best fits the given data? Which 

configuration of lenses yields the sharpest image? Without question, very many 

researchers need a robust optimization algorithm for solving the problems that are 

fundamental to their daily work. 

 Ideally, solving a difficult optimization problem should not itself be difficult, e.g., 

a structural engineer with an expert knowledge of mechanical principles should not 

also have to be an expert in optimization theory just to improve his designs. In 

addition to being easy to use, a global optimization algorithm should also be powerful 
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enough to reliably converge to the true optimum. Furthermore, the computer time 

spent searching for a solution should not be excessive. Thus, a genuinely useful global 

optimization method should be simple to implement, easy to use, reliable and fast. 

 Since the 1980s, evolutionary algorithms have become a hotspot in the field of 

computer science, which basically satisfies the above requirements. Evolutionary 

algorithms include Genetic Algorithm (GA), Evolution Strategies (ES), Evolutionary 

Programming (EP), Genetic Programming(GP), Gene Expreceion Programming 

(GEP), and so on.  

 DE is a simple, yet very efficient, global optimization algorithm which originated 

with evolutionary algorithms. It was proposed by Storn and Prince in 1995 [64] to 

solve the Chebyshev polynomials. As a further improved version of the evolutionary 

algorithm, DE has a wide applicability to optimization problems of  on which the 

functions bases do not have the characteristics of being differentiable, continuous, 

unimodal, unlike the classical optimization algorithms. Thus it also has been 

successful in many fields such as data mining, pattern recognition, digital filter design, 

artificial neural networks, and electromagnetics [65]–[68]. It can solve not only SOPs 

but also MOPs [69]–[71].  

 DE has have the following characteristics: 

 It uses the code of genetic variables after optimization as the object of being 

searching, which make the algorithm effective not only in numerical 

optimization problems but also in non-numerical optimization ones;  

 It only utilizes fitness functions and does not need any other information, 

such as the specific values of objective functions, which widens the 

applications to a variety of optimization problems; 

 It has a population search strategy rather than a single search one, which 

allows the algorithm to search in parallel, then obtain many optimized results, 

especially for multiobjective decision-making problems; 

 It uses a stochastic search mechanism, which enhance the robustness of the 
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algorithm. 

 

4.2  Basic DE 

 The basic idea of evolutionary algorithms to solve problems has been inspired by 

biological evolution which involves reproduction, mutation, recombination and 

selection. The algorithms generate the first population randomly, of which the 

individuals as the candidate solutions of the problem. Then mutation operator, 

recombination operator work on the population, which produce a new solution 

population. At the last it applies selection operator into the population and select the 

solutions which can fit the surroundings well according to their values of fitness 

functions. GA is the most famous and classic one of the evolutionary algorithms and 

its basic flowchart is shown in Fig. 4.1. 
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 Fig 4.1 Flowchart of basic GA. 

 

 

 

 DE is a self-adaptive global algorithm based populations, which has a similar 

process with evolutionary algorithms, such as initialization of populations, evaluation 

of the fitness value of individuals, operating of genetic operators, and so on, shown in 

Fig.4.2.  
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   Fig 4.2 Flowchart of basic DE.  

 

 

 Fig. 4.3 demonstrates the pseudo code of DE based on DE/rand/1/bin strategy, 

where 

  NP  is the size of a population, 
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  Xi   is a decision vector, 

  D   is the dimension of the decision vector, 

  jrand  is a random integer,  jrand ∈ [1, D], 

  r j   is a real number generated randomly and  

    uniformly from 0 to 1, 

  CR  is a crossover probability, CR ∈ [0, 1), 

  F   is a scale factor, F∈ (0,1+), 

  Ui   is a trial vector combining three different vectors. 

 

  

 Fig 4.3 Pseudo code of DE/rand/1/bin. 

 

 The termination condition of this algorithm can be the maximum number of 

evolutionary generations or fitness evaluations, which is generally given by user in 

advance. As we can see from the figure, the basic differential evolution algorithm is 

simple and easy to implement.  

 There are two characters in the classical DE: the differential mutation operation 

and the selection operation which are so remarkable as to it is significant difference 
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from other evolutionary algorithms. The vectors of two different individuals in the 

same population execute differential and scaling operations, seen Line 6 of Fig 4.3, to 

get a temporary result. The temporary result adds the vectors of the third individual, 

which creates a new individual. The statement 𝑗 = 𝑗𝑟𝑎𝑛𝑑 ensures that the trial vector 

𝑈𝑖  doesn’t duplicate  𝑋𝑖 totally, and there is one dimension at least coming from the 

vector 𝑉𝑖, which maintains the diversity of the population. Fig. 4.4 plots the possible 

trial vectors in two-dimensional space, where  𝑋𝑖  denotes the target vector,  𝑉𝑖 

denotes the mutation vector and 𝑈𝑖  denotes the trial vector. The hollow circle in the 

figure represents the possible trial vectors. 

 

  

  Fig. 4.4 2D Schematic of Differential mutation. 

 

 

 Finally, the algorithm uses one to one choice method, denoted as follows: 

     𝑋𝑖 = {
𝑈𝑖 ,        if( 𝑓(𝑈𝑖) ≤ 𝑓( 𝑋𝑖) )

 𝑋𝑖 ,         otherwise                  
      (4.1) 
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Here 𝑓(𝑈𝑖) means an objective function of the trial vector and 𝑓( 𝑋𝑖) means that of 

the target vector. If 𝑓(𝑈𝑖) has an equal or lower value than that of 𝑓( 𝑋𝑖), it replaces 

the target vector in the next generation; otherwise, the target is retained in the 

population. This choice method can ensure that the elite individuals cannot be lost in 

the evolution. 

 The differential mutation operations can maintain the diversity of populations, 

and the one to one selection ensures the better individuals are not lost during 

evolutions. Therefore, these two operations are remained in our new algorithm for 

solving MVL network problems. Moreover the new one also uses DE/rand/1/bin 

strategy to produce new individuals. 
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Chapter 5                        

BOEDE for MVL Optimization 

 

5.1  Introduction to BOEDE 

 We design a novel algorithm to optimize the MVL network, called Bi-objective 

Elite Differential Evolution (BOEDE). The algorithm is based on the classical 

Differential Evolutionary (DE) algorithm, and preserves the mutation and crossover 

operators of DE. The essential difference between our algorithm and the traditional 

algorithm is that it uses two evaluation functions, so it belongs to multiobjective 

optimization, while the previous algorithms all have a single objective function. The 

highlight of BOEDE lies in its archive population with fixed-size ranks which is used 

to store the optimal solutions with different ranks. At the same time, the method of 

updating the archive population is very unique. The spark in BOEDE is that it defines 

the concept of the elite solutions clearly and gives priority to save the elite solutions 

and not allowed to be replaced. The elitist solutions are the most precise solutions, 

that is, there is no error between the instruction data and the actual data. 

 The flowchart of BOEDE is shown in Fig. 5.1. The algorithm first generates an 

initialized parent population and calculates the fitness of its individuals, and then 

enters the cycle of evolutionary iteration. In each iteration, it firstly produces the 

offspring population by changing the parent population according to the principle of 

DE and calculates the fitness of its individuals. Secondly, it does some operations 

which include ranking the individuals according to their fitness, labelling the 

individuals by their differences. Thirdly, it updates the archive population using the 

offspring population, then takes the archive population after processing as the parent 

population of next generation. 
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   Fig. 5.1 Flowchart of BOEDE. 

 

 As the name, BOEDE, implies, the proposed algorithm contains three meanings: 

 It bases on DE, follows the structure of basic DE, especially in producing 

new individuals; 

 It puts forward the idea of optimizing the MVL networks with two objectives: 

incorrectness and optimality. Incorrectness reflects the accuracy of 



 

29 
 

optimization and optimality represents the complexity after optimization. In 

all the former algorithms there are only one evaluation: accuracy.  

 It has a new storage structure of final solutions, which includes not only the 

most accurate solutions without any error, but also suboptimal ones with a 

little error but much lower complexity. 

 

5.2  Coding and generating new individuals 

 The classical DE algorithm uses real number coding, which makes it is better for 

solving real number optimization problems. Assume that the variable of the problem 

to be solved has D dimensions, then the ith individual, denoted as Xi, is expressed as 

follows: 

  𝑋𝑖 = {𝑥𝑖(𝑗), 𝑥𝑖(𝑗), … , 𝑥𝑖(𝑗), }        (5.1) 

where i=1,…, NP, j=1,…,D, 𝑥𝑖(𝑗) ∈ [𝐿𝑗, 𝑈𝑗]. NP indicates the size of the population. 

𝐿𝑗 𝑎𝑛𝑑 𝑈𝑗 indicate the minimum and maximum values of variables, respectively.  

 BOEDE follows the coding method although it is for MVL networks which have 

discrete variables. In order to produce an integer 𝑥𝑖(𝑗) ∈ [𝐵𝐿 , 𝐵𝑈]  ( 𝐵𝐿  𝑎𝑛𝑑 𝐵𝑈 

indicate the minimum and maximum values of variables, respectively), it firstly 

produces a real number between 0 and (𝐵𝑈 − 𝐵𝐿 + 1), then truncates the integer part 

to obtain a discrete value, which is according to  

 𝑥𝑖 = 𝐵𝐿 + (𝑖𝑛𝑡)( 𝑟𝑎𝑛𝑑𝑜𝑚 𝑟𝑒𝑎𝑙() ∗ ((𝐵𝑈 − 𝐵𝐿 + 1))  (5.2) 

The variables is randomly generated when the population is initialized, which does 

have little effect on evolution of solutions because the evolution is based on the 

population and there are a lot of random unpredictable transformations. 
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5.3  Bi-objectives 

 We first put forward the idea of optimizing MVL networks with multiple 

objectives. In this specific algorithm, incorrectness and optimality are proposed as the 

two evaluation functions. Incorrectness indicates the error between the actual output 

and the instruction output, i.e., the output value in the given truth table corresponding 

to the actual output, and it is denoted as E in symbol and calculated as 

 

 𝐸𝑐 = ∑ (𝑂𝑝 − 𝑇𝑝)2𝑃
𝑝             (5.3) 

where 𝑂𝑝 represents the pth actual output value of a network, Tp represents the pth 

instruction output, and p represents the pth input vector (𝑥1, 𝑥2, … , 𝑥𝑛)𝑝 . The 

incorrectness function is the most important metric. The smaller the incorrectness 

value is, the better the performance of the network is. If the incorrectness value of a 

solution is 0, the solution is defined as an elite solution. Elite solutions are the best 

results with 0 error and should be collected as many as possible. Optimality indicates 

the number of valid MIN gates in the network, and it is denoted as G in symbol and is 

formally defined as 

 

 G = |{𝑀𝐼𝑁𝑗: 𝑐𝑗 ≠ 0 ∧ 𝑎𝑖𝑗 ≤  𝑏𝑖𝑗}|         (5.4) 

The unit component of an MIN gate is {cj; ai j; bi j}, and when cj , 0 and ai j ≤ bi j, 

the item of the MIN gate is valid, and the value of optimality increases by 1. The 

optimality function shows the manufacturing cost of a network. The smaller the 

optimality value, the lower the manufacturing cost. Although this equation only 

reflects the hardware cost, the implementation technology and other software costs 

must be taken into account. 

 Bi-objectives are applied in the process of selecting excellent individuals from the 

population. As mentioned in Section 2, the multiobjective evaluation is completely 

different from single-objective evaluation. In this study, the values of two objective 
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functions are compared, as shown in Table 5.1. There are two individuals labelled as 

𝐼𝑛𝑑𝑖 and 𝐼𝑛𝑑𝑗. Their incorrectness and optimality are denoted as 𝐸𝑖, 𝐸𝑗, 𝐺𝑖 and 𝐺𝑗, 

respectively. The symbol k means the selection probability. When the incorrectness of 

𝐼𝑛𝑑𝑖 is less than the one of 𝐼𝑛𝑑𝑗 and the optimality of 𝐼𝑛𝑑𝑖 are less than the one of 

𝐼𝑛𝑑𝑗 at the same time, 𝐼𝑛𝑑𝑖 dominates 𝐼𝑛𝑑𝑗, hence it will be selected into the next 

population. The cases can be seen from Lines 2 to 5 of Table 5.1. When Indi𝐼𝑛𝑑𝑖 is 

indifferent to 𝐼𝑛𝑑𝑗, which is expressed from Lines 6 to 8 of Table 5.1, they have 50% 

chance of being selected into the offspring population.  

 

 Table 5.1 Comparison strategy of bi-objective functions. 

  

 It is worth noticing that the bi-objective evaluation method runs both in parent 

population and offspring one through the whole of the algorithm. It is the biggest 

difference between BOEDE and the previous single-objective algorithms and it is one 

of the main contributions of the proposed method. 

 

5.4  Archive with ranks 

 Archive population, similar to the traditional multiobjective optimization 

algorithm, is an effective structure to collect optimal solutions during the evolution, 

and it is also the place where the final output of a network corresponds to the optimal 

decision vectors. 
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 An individual from offspring population and one from archive population are 

compared with their objective functions, and the better one is saved into the latter. 

This strategy is mainly suitable for MOPs with continuous decision variables, because 

the number of the decision variables is infinite, and a tiny change of a decision 

variable may change the value of an objective function. Specifically speaking, the 

different genotypes of individuals can lead to different phenotypes. If the phenotypes 

of two individuals are almost the same, their genotypes must be the same, and one of 

them can thus be abandoned. If they are indifferent with each other, one of them can 

be abandoned at once because there are infinite solutions. But this strategy is not 

suitable for an MVL network learning problem, because 1) the number of its solutions 

is rather limited, and 2) a solution with a kind of phenotype may have several or more 

corresponding solutions with different genotypes. 

1) Structure of Archive Population:  

 The structure is the same as the one of parent and offspring populations in most 

of multiobjective algorithms. The comparison strategy of multiobjective functions like 

Table II has been adopted to save optimal solutions. But they are not suitable for the 

archive in an MVL network problem. 

 In most of MOPs, both decision variables and objective functions are continuous 

and a tiny change of a decision variables may change the values of objective functions. 

That is to say, they can have numerous solutions with different phenotypes and 

different genotypes. While in MVL network problems, the situation is sharply 

different. Specifically for a 2-variable 4-valued MVL function, each decision variable 

can only take 4 integer values: 0,1,2 and 3, but a decision vector has 80 decision 

variables expressed as 

 

 V = {𝑎1,1, 𝑏1,1, 𝑎2,1, 𝑏2,1, 𝑐1, 𝑎1,2, 𝑏1,2, 𝑎2,2, 𝑏2,2, 𝑐2, … … , 𝑎1,𝑗 , 𝑏1,𝑗, 𝑎2,𝑗, 𝑏2,𝑗, 𝑐𝑗, 

  … … , 𝑎1,𝑚, 𝑏1,𝑚, 𝑎2,𝑚, 𝑏2,𝑚, 𝑐𝑚}            (m = 42 = 16)   (5.5) 

 

Thus we have 480 combinations of parameters. Consequently the solutions of this 
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problem have an extremely number of individual genotypes although the variables are 

rather limited. Then the two fitness functions are analyzed. G is an integer number to 

indicate the number of valid MIN gates. There must be many individuals with the 

same G in the population because its range from 1 to 16 is very limited. E is a simple 

function whose result is a positive integer with a range. It has a certain probability of 

repetition. Taken together, many solutions of MVL network problems are probably of 

different genotypes but of the same phenotype. Furthermore, because the parameters 

are randomly and uniformly initialized in the early stage of evolution, the individuals 

usually have a larger E and a smaller G. If the above selection strategy is applied, 

according to the definition of Pareto optimal solutions, the individuals of the archive 

population inevitably would bias toward small G, which is bad for the convergence of 

E. 

 Therefore, a new architecture of archive population is required because of the 

particularity of MVL network problems. The archive population is divided into 16 

ranks, each of which has a fixed size. The structure is shown in Fig. 5.2. The two 

objective functions of an MVL network are both combined into the structure. The 

archive population ranks by G since there are at most 16 MIN gates in the network. 

Each rank can store excellent individuals including the elite solutions with 0 error and 

the Pareto solutions. The maximum capacity of storage is expressed as R. The 

structure is simple but novel. It is very effective for the collection of the excellent 

solutions of MVL networks with discrete variables. 

 

  

 Fig. 5.2. Structure of the archive population. 
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2) Method of Updating Archive Population:  

 A new method of updating the archive population which corresponds to the new 

structure is now proposed. This is a partly update method that fully bases on the 

bi-objective functions. First offspring population and archive population are ranked 

by the optimality and then sorted by the incorrectness, and the elite individuals and 

the ones with the same variables are labelled, respectively. Each step of the following 

update operations is carried out in the range of each rank, which ensures the diversity 

of optimality during the period of optimization. Second collecting excellent solutions 

as many as possible ensures the diversity of incorrectness. 

 In the first generation, the archive is empty without any individual. If the number 

of offspring individuals is less than or equal to R, all the individuals are copied to the 

archive population; otherwise the R ones are copied and the remaining are cut off. In 

every subsequent generation, if the sum of offspring individuals and archive ones is 

less than or equal to R, all are copied to the archive one of course; otherwise the 

archive population must be partly updated according to Fig. 5.3.  

 The following parameters are used: r is the current rank; R is the fixed size; L ∈

{1,2, … , 𝑅/2} is a randomly generated integer that indicates one position of the 

updated individual of archive population; There are N individuals with rank r in 

archive population and there are M individuals with rank r in offspring population, 

and the updating position j is the first one. The rule of partly update is described as 

follows: 

 Case 1: Theoretically, if M ≤ R − N (𝑁 ≤ 𝑅) , all individuals of offspring 

population are copied to archive population starting from the location N + 1; 

Otherwise, 

 Case 2: the update starts from position L and ends when it gets to the last position 

of archive population or offspring population with rank r. Actually, elite solutions 

must be paid much attention not to be overwritten by the updating individuals 

because the number of elite solutions is very small, and individuals with the same 

genotypes cannot be used repeatedly. Thus it is necessary that elite solutions and 

the individuals with the same genotypes must be labelled in pretreatment. 
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 Fig. 5.3. Illustration of partly update. 

 

3) Characteristics of updating:  

 In order to solve an MVL network problem in which there are two objective 

functions and individuals with many genotypes but singular phenotypes, archive 

population with a novel structure and updating method is innovatively proposed to 

maintain the diversity of archive population, and to improve the accuracy during 

evolution. Its characteristics are summed up as follows: 
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a) The updated location of each rank of archive population is set by a random 

function L, which ensures that the best solutions in archive population are not 

replaced and the flag in pretreatment ensures that the elite ones are not 

replaced, either; 

b) The updating location of each rank of offspring population begins from the 

first one, which ensures the best solutions of offspring population are able to 

enter archive population; 

c) The number of updated individuals is limited through parameters L, R, M 

and N, which ensures the updated rate of archive population. In general, 

individuals cannot be immutable unless all the individuals are elite ones; 

d) The update at a probability of 50% can keep the individuals with poor fitness 

in archive population, slow down the evolution speed and reduce the 

possibility of premature convergence; 

e) The sort operation works only by the incorrectness of individuals because the 

ranks of archive population are sorted themselves, so it does not bring too 

much computational burden; 

f) We do not use the one-to-one comparison (which is a common operator in 

DE) in the period of update, but instead carry out the update based on a 

random location generated with 50% probability in archive population. 

Compared to the one-to-one comparison operator, the proposed update 

strategy is straightforward and also effective to be shown in the experiments. 

 

5.5  Other operations in detail 

1) Production of parent population:  

 In evolutionary algorithms, parent population is the foundation of other 

populations. Offspring population based on it is generated by some kinds of rules, and 
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then usually acts as the next parent population. While in our algorithm the parent 

population after the first generation is not the offspring but the archive one after being 

updated because the average fitness of its individuals is better than the other’s. 

Making the archive population as the parent can improve the efficiency of evolution. 

2) Handling of illegal variables: 

  Initially, all the variables of V in (5.5) are generated randomly and uniformly 

distributed. Most of them are legal. But some of them may overflow the decision 

space and become illegal after differential mutation operations. These illegal variables 

have to be dealt with in order to return to the feasible space. The classical approach in 

DE resorts to symmetric mapping as shown in Fig. 5.4(a), while our algorithm 

employs an arbitrary maximum values, shown in Fig. 5.4(b). BL and BU represent the 

lower and upper bounds respectively. In Fig. 5.4(a), variables 𝑥1 is outside of the 

upper bound. The symmetric mapping takes point BU as a symmetric center, gets the 

point 𝑥1
′  that is on the line from point BU to point BL and has the same distance from 

itself to BU as the one from 𝑥1 to BU. Point 𝑥1
′  is a legal variable corresponding to 

𝑥1. 

 

  

 Fig. 5.4. Handling of illegal variables. 

  

 Although the symmetric mapping is effective in DE, it usually takes effect in 

continuous optimization rather than discrete one [65]. Especially for MVL networks, 
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the symmetric mapping makes the algorithm generate many illegal solutions. In Fig. 

5.4(b), once a variable is illegal, it is directly assigned with the maximum value. 

According to the validity of MIN gates, in the five-member group 

{𝑎1,𝑗 , 𝑏1,𝑗, 𝑎2,𝑗 , 𝑏2,𝑗 , 𝑐𝑗}, the probability of three variables 𝑏1,𝑗 , 𝑏2,𝑗 𝑎𝑛𝑑 𝑐𝑗 that can 

acquire the maximum value are greatly increased, thus increasing the number of valid 

MIN gates, and improving the performance of the evolution. 
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Chapter 6                    

Simulation 

 

6.1  Parameters 

 Our algorithm BOEDE is applied to solve the MVL network problems with 2 

variables and 4 values. All the simulations are implemented in Microsoft Visual 

Studio 2017 on a personal computer with Intel i5-4460 3.20G CPU and 4GB memory. 

The parameters used in the simulations are listed in Table 6.1. 

 

 

  Table 6.1 Description of the experimental parameters. 

Name Value      Description 

popsize 300   the size of populations 

m_F 0.5   the scale factor 

m_CR 0.3   the crossing probability 

R 30   the size of each rank in archive population 

ngen 5000   the number of iteration times 

Runno 10   the number of running times 
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6.2  Searching for elite solutions 

 The classical truth table in Table I are used as the first test instance of our 

algorithm and a number of elite solutions are found. 

 The simulations iterate from 1000 to 20000, and each kind of iteration is run 10 

times. The average number of elite solutions with 0 error is shown in Fig. 6.1. As can 

be seen from the figure: when the number of iterations is 1000, the average number of 

elite solutions is 0.1; when the number of iterations is 20000, the number is 245; when 

it is less than 5000, the evolution of the MVL network is not sufficient; when it 

reaches 5000, the number of the solutions increases greatly; when it reaches about 

12000, the diversity of solutions tends to be stable. 

 

 

Fig. 6.1. Trend of the average quantity of the elite solutions on the instance Table 2.1 

when the parameter ngen varies from 1000 to 20000 and Runno = 10. 

 

 A case of 5000 iterations is analyzed carefully. After 10 run times, the average 

number of elite solutions with optimality 5 (i.e., 5 valid MIN gates after optimization) 
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is founded to be 4, and the number with optimality 6 is founded to be 30, and so on, as 

shown in Fig. 6.2. The number 30 is the maximum storage capacity of each rank in 

the archive population. In other words, the archive population of ranks 6, 7 and 8 are 

full of the elite solutions with error of zero. The size of the archive population is 480 

(16R), and the number of all elite solutions is 170.4 on average in each independent 

run. Hence the ratio of elitist solutions to total solutions is 37.87%. 

 

 

Fig. 6.2. Average number of the elite solutions (i.e., E = 0) with different optimality 

on the instance shown in Table I using ngen = 5000 and Runno = 10. 

 

 To verify whether all the elite solutions with the same optimality are really 

different, we further examine the genotype of every solution. Four elite solutions with 

optimality 5 obtained by BOEDE are listed as follows: 
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 F(𝑥1, 𝑥2)  =   1 ∙ 𝑥1(0,2)𝑥2(0,0)   +   1 ∙ 𝑥1(0,3)𝑥2(3,3) 

    +  1 ∙ 𝑥1(1,3)𝑥2(1,1)   +   2 ∙ 𝑥1(3,3)𝑥2(3,3) 

    +  3 ∙ 𝑥1(2,2)𝑥2(0,2)        (6.1) 

 F(𝑥1, 𝑥2)  =   1 ∙ 𝑥1(0,1)𝑥2(0,0)   +   1 ∙ 𝑥1(0,3)𝑥2(3,3) 

    +  1 ∙ 𝑥1(1,3)𝑥2(1,1)   +   2 ∙ 𝑥1(3,3)𝑥2(3,3) 

    +  3 ∙ 𝑥1(2,2)𝑥2(0,2)         (6.2) 

 

 F(𝑥1, 𝑥2)  =   1 ∙ 𝑥1(0,2)𝑥2(0,0)   +   1 ∙ 𝑥1(0,2)𝑥2(3,3) 

    +  1 ∙ 𝑥1(1,3)𝑥2(1,1)   +   2 ∙ 𝑥1(3,3)𝑥2(3,3) 

    +  3 ∙ 𝑥1(2,2)𝑥2(0,2)         (6.3) 

 

 F(𝑥1, 𝑥2)  =   1 ∙ 𝑥1(0,1)𝑥2(0,0)   +   1 ∙ 𝑥1(0,2)𝑥2(3,3) 

    +  1 ∙ 𝑥1(1,3)𝑥2(1,1)   +   2 ∙ 𝑥1(3,3)𝑥2(3,3) 

    +  3 ∙ 𝑥1(2,2)𝑥2(0,2)         (6.4) 

 

The four sets of solutions obviously have the same phenotype (E = 0 and G = 5 ), yet 

different genotypes. This means that there are different input vectors in the MVL 

networks and there are different line connections and different thresholds in real logic 

circuits. Eq. (6.1) is exactly the same as (2.7), which is the optimization result by the 

mathematical method mentioned. It can be also obtained by the single objective 

optimization methods, i.e., SDLS [54] and IMVL [57]. 

 As shown in Fig. 6.2, there are plenty of elite solutions (i.e., E = 0) with 

optimality 6, 7 and 8 respectively. To enumerate and compare these solutions, the 

following equation is used to judge whether two elite solutions x and y (∈ V) with 

the same optimality are of the same genotype solutions or not. 
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   Div =  ∑ (𝑥𝑖 − 𝑦𝑖)
2𝐷

𝑖=1         (6.5) 

 

From (6.5), it is clear that Div = 0 indicates two solutions are the same in the 

genotypic representation. By using (6.5), it is verified that the elite solutions 

summarized in Fig. 9 with the same or different optimality differ from each other in 

the genotypic representation, which suggests that BOEDE is more capable of 

maintaining the diversity of obtained solutions. 

 In addition to the instance shown in Table 2.1, other 29 truth table instances are 

tested and the results based on all these 30 instances are summarized in Table 6.2. In 

Table 6.2, e.g., the instance Test01_11_18 indicates that the number of non-zero items 

of the truth table is 11, and the sum of the values of all non-zero items is 18. In 

addition, the symbol * indicates that the elite solutions are not found when the 

iterations reaches 5000, but a small number of elite ones can be found when it reaches 

10000. From Table IV, it is clear that BOEDE can find elite solutions with no error in 

accuracy for 18 out of 30 instances when ngen=5000. Based on the above results, we 

conclude that BOEDE can obtain a good number of different elite solutions that can 

definitely provide desired decision supports for practical applications of MVL 

networks. 

Table 6.2 Average number of elite solutions for 10 runnings on 30 Truth Tables 

(ngen=5000, Runno=10). 



 

44 
 

 

 

6.3  Searching for Pareto optimal solutions 

 The elite solutions have perfect requirements on accuracy, but sometimes there is 

no need to reach such perfect accuracy. We can reduce accuracy within some 

allowable range to achieve additional improvements of other aspects. For example, an 

ideal simplified elite solution with optimality 5 (i.e., E = 0 and G = 5) can be replaced 

by the two solutions: one, denoted as SA, is with incorrectness 2 and optimality 4 (i.e., 

E = 2 and G = 4), and the other, denoted as SB, is with incorrectness 1 and optimality 

6 (i.e., E = 1 and G = 6). They are indifferent with each other and they are the Pareto 

solutions with the same rank. Although SA and SB have a small error compared to the 

ideal solution, SA has fewer valid MIN gates which can reduce the manufacturing cost, 

while SB has relatively more valid MIN gates which can save the technical cost of the 

matching control circuits [8] [9]. 
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 Fig. 6.3. Illustration of all the elite solutions with different optimality and all the 

Pareto optimal solution with different ranks, according to the sixth running results on 

Table I with ngen=5000. 

 

 Fig. 6.3 shows a typical running result on Table 2.1 with 5000 iterations among 

10 runs. The horizontal axis denotes the incorrectness function (i.e., E in (11)) and the 

vertical axis denotes the optimality (i.e., G in (12)) after optimization. This figure 

shows the phenotypes of all the final solutions in the archive population, according to 

E and G, regardless of the genotype. For example, those dots symbolled ▼ indicate 

the elite solutions (i.e., E = 0) with different optimality. There are 9 solutions and their 

optimality varies from 5 to 13. Except for ▼, in this figure, marks of different shapes 

are used to label the Pareto optimal solutions with different ranks, and all the 

solutions with the same icons have the same rank. The rank of Pareto optimal 

solutions indicates a sorted list described in Section II-B3. In Fig. 6.3, together with 

the elitist solutions, Pareto solutions with the first 7 ranks are illustrated by different 

marks, while those with lower ranks are all drawn using hollow circles. 

 In order to show the ranks more clearly, the elite and Pareto optimal solutions 
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with low quality are removed from the statistical data. Fig. 6.4 focuses on Pareto 

optimal solutions with the first 7 ranks. The upper limit of incorrectness is set to 22. 

The discrete points presented by the two objective functions are obtained Pareto 

solutions, while the connections between the two points are virtual to express the 

ranks of the Pareto optimal solutions intuitively. In Fig. 11, there are 21 solutions 

totally, distributed uniformly in the Pareto front, thus suggesting that BOEDE is able 

to generate a sufficient number of uniformly distributed non-dominated solutions for 

MVL networks. 

 

 

 Fig. 6.4. Pareto optimal solutions with different ranks. 

 

 

 

6.4  Comparison with other algorithms 
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 In this paper, BOEDE is compared with two typical algorithms from two aspects: 

the quality of solutions and the average number of MIN gates after MVL networks are 

optimized. 

1) The quality of solutions 

 The improved local search leaning method [57], IMVL in brief, is one of the most 

competitive algorithms for learning MVL networks. It utilizes a single-objective 

function to optimize MVL networks. It combines the local search and chaos to 

evaluate the correctness and optimality in a form of a weighted sum. IMVL is proved 

to be the best in comparison with local search (LS) [52] and stochastic dynamic local 

search (SDLS) [54]. Therefore, BOEDE is compared with IMVL first in this paper. 

 IMVL is a single-objective algorithm and it has an explicit function of collecting 

the best solutions. It collects solutions in an ascending order of accuracy. While 

BOEDE has two fitness functions and is completely different from single-objective 

algorithms. It not only distinguishes elite solutions and Pareto optimal ones, but also 

takes into account the distribution of these solutions. Thus we concentrate on the 

comparison of the optimal solutions collected by the two algorithms. 

 Take Table 2.1 as the test instance first. IMVL is based on the individual 

evolution and the parameters are set to values suggested in [57]. The algorithm 

generates 100 initial individuals to take part in the evolution and each individual has 

1000 iterations. The process is repeated for 10 times. 1000 optimal solutions are thus 

collected. On the other hand, BOEDE is an evolutionary algorithm based on 

population, and the population size is set to 300, the iteration number is set to 5000, 

and 450 optimal solutions are thus collected. Because of the need to analyze the 

genotypes of the solutions, we choose the first running results that are similar to the 

average one as the compared objective. In addition, it is necessary to note that the 

iteration count 1000 in IMVL is sufficient as the evolution has been convergent due to 

its inherent local search property, while the iteration count 5000 in BOEDE is a 

starting line of reaching the best solutions. 

 Fig. 6.5 shows the comparison results of the elite solutions obtained by IMVL 

and BOEDE. IMVL can find only 2 elite solutions, and their phenotypes are the same 
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(E = 5). BOEDE can find 170 solutions with different optimality and there are 7 

phenotypes E ∈ {5, 6, 7, 8; 9, 10, 11}. More importantly, those solutions with the 

same G obtained by BOEDE can possess several different genotypes. For example, 

the solutions with E = 0 and G = 5 have 4 genotypes, the ones with E = 0 and G = 6 

have 30 genotypes, and the ones with E = 0 and G = 11 have 17 genotypes. From Fig. 

6.5, it is clear that BOEDE can obtain more fruitful solutions than IMVL, thus 

providing more decision supports for practical applications of MVL. 

 

 

 Fig. 6.5. Comparison of the elite solutions obtained by IMVL and BOEDE. 

 

 Moreover, Table 6.3 illustrates the comparison of all the valid solutions obtained 

by IMVL and BOEDE. It is sorted by E in an ascending order. The valid solutions 

means that the solutions have different genotypes. In IMVL there are 8 valid solutions 

with E = 1 and their corresponding G are 4 and 5. In BOEDE there are 16 valid 

solutions with E = 1 and their corresponding G are 4, 5, 12, 13 and 14. It is clear that 
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BOEDE can obtain much more valid and diverse solutions than IMVL for instance 

Test01_11 _18. This table also clearly shows that the solutions of IMVL with different 

E values have a few types of G while the solutions of BOEDE, not only the elite but 

also the Pareto optimal ones, have a wide range of G, and their quantity is enough, 

their distribution is balanced, and they can meet the need for various applications. In 

addition, it is worth noting that only 65 out of 1000 solutions are valid in IMVL, 

while 296 out of 450 solutions are valid in BOEDE. There are a large number of 

repeated solutions in IMVL and additional analysis on the same genotype must be 

performed in order to delete all the repeated solutions, which will consume additional 

computational time. 

 

 Table 6.3 Comparison of all the solutions with different Ec. 

 

 

 Finally, for all tested 30 MVL instances, the elite solutions obtained by IMVL and 

BOEDE are compared as shown in Fig. 6.6 and Table 6.4. In IMVL the elite solutions 

can be found for 15 instances and the success rate is 50%, while BOEDE can find 

elite solutions for 18 instances and its success rate is 60%. Averagely, BOEDE can 

find 57.57 elite solutions which is much much more than those (1.47) found by IMVL. 
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Fig. 6.6 shows the number of elite solutions of 30 instances in a box-and-whisker 

diagram, which clearly illustrates that BOEDE can find more elite solutions for MVL 

networks than IMVL. 

 

 

 Fig. 6.6. Comparison of the solutions with E = 0 obtained by IMVL and BOEDE. 

 

Table 6.4 Comparison of the number of elite solutions found by IMVL and BOEDE 

for all tested MVL instances. 

 

2) The average number of MIN gates 

 DC technique is used to obtain optimal or near-optimal covers of MVL networks. 
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ACO-DC is a hybrid algorithm which utilizes both the greedy search feature in large 

solution space of ACO and the exact search feature in local area of DC. It can 

optimize MVL networks effectively, aiming at the accuracy metric in essential, and at 

the same time concentrating on the optimality of MVL networks, i.e., the number of 

valid MIN gates. In [41], it is tested against 50000 randomly generated 2-variable 

4-valued truth tables, and calculates the average number of MIN gates after these 

networks are optimized, and then compares the average number to other algorithms. 

Those simulations show that ACO-DC is better than the fuzzy-based direct cover 

algorithm [39] and the multiple connected pseudo minterms algorithm [40]. Therefore, 

BOEDE is compared with ACODC only in this study. It is noted again that BOEDE is 

a bi-objective algorithm, which focuses on the accuracy and optimality metrics during 

the process of optimizing MVL networks. It collects many solutions, including elite 

and Pareto optimal ones. Our algorithm also generates 50000 2-variable 4-valued 

truth tables randomly and optimizes them, then calculates the average optimality G to 

compare with that obtained by ACO-DC. The result is shown in Table 6.5, which 

indicates that the average number of MIN gates obtained by BOEDE is less than the 

number obtained by ACO-DC. 

Table 6.5 Comparison of the average number of MIN gates. 
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Chapter 7                    

Conclusion 

 

 In this paper we propose a novel bi-objective algorithm BOEDE to optimize 

MVL networks. The two objective functions, incorrectness and optimality, are 

considered as the optimization targets independently and equally. To effectively 

maintain the diversity of non-dominated solutions, we design a unique structure and a 

novel updating method for archive population that is used to store elite solutions with 

different optimality and Pareto optimal ones with different ranks. Simulations based 

on 30 truth tables with 2 variables and 4 values show that BOEDE outperforms the 

traditional algorithms in terms of the number of elite solutions found and the diversity 

of solutions. Simulations based on 50000 truth tables with 2 variables and 4 values 

show that BOEDE also superior to the traditional algorithms in terms of optimality. 

These merits of BOEDE can provide better decision supports for real MVL 

applications than any existing methods.  

In the future we plan to study the influence of user-defined parameters of 
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BOEDE and try to incorporate the effective direct cover method as a local search 

technology into BOEDE to further improve its performance. We also plan to use other 

computational intelligence methods, such as artificial immune algorithms [89-102], 

gravitational search algorithms [103-107], ant colony optimization [108], imperialist 

competition algorithms [109-111], and brain storm optimization methods [112-114], 

to learn MVL networks. Also, the multivalued dendritic neuron models [115-123] will 

be designed to verify the effectiveness of a single neuron model. 
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