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Abstract 
 
The synthesis of CHA type zeolite using seed crystals was studied.  CHA zeolite could be 
obtained by seeded growth synthesis, where the initial seeds of CHA zeolite were prepared by 
the hydrothermal conversion of FAU zeolite.  However, the subsequent use of the resultant 
CHA zeolite as seed crystals resulted in a structure change to sanidine and analcine.   
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Research note 

 Zeolites have applications in a variety of fields including detergent builders, 

adsorbents/desiccants and catalysts [1].  Recently, chabazite type zeolites, comprising 8-

membered rings and assigned the framework type CHA by the International Zeolite Association 

[2], have been attracting new attention. This is because high silica CHA zeolite (so-called SSZ-

13) or silicoaluminophosphate (SAPO-34) catalyzes the methanol-to-olefin reaction with high 

olefin (ethylene and propylene) selectivity [3-5].  More recent studies have shown that CHA 

zeolite, especially, copper-ion exchanged SSZ-13 (Cu-SSZ-13), provides a high NOx reduction 

activity using NH3 as a reductant (NH3-SCR) [6-8].     

 There are two main methods for the synthesis of CHA zeolite.  One is a widely known, 

reliable method with potential applicability to the synthesis of SSZ-13, which uses N,N,N-

trimethyladamantammonium hydroxide as an organic structure directing agent (OSDA) [5,9-

11].  The other is the structure conversion method, where a well-defined zeolite is 

hydrothermally converted to CHA zeolite.  Using FAU type zeolite as the starting material is 

probably the most popular method for CHA synthesis [12].  We also prepared CHA zeolite 

(K+-type) from FAU (H-Y) zeolite, and found an intrinsic H2 and D2 sorption properties in 

subsequently Na+ or Ca2+ ion-exchanged CHA zeolites [13].   

 One drawback of this CHA zeolite synthesis, especially for SSZ-13, is the use of expensive 

OSDA.  This underscores the importance of developing CHA zeolite synthesis without 

requiring OSDA.  Using seed crystals of CHA zeolite in zeolite growth is a progressive 

process, and Imai et al. successfully achieved seed-assisted CHA zeolite growth [14].  Also, 

Liu et al. reported the ultrafast (within 10 min) synthesis of CHA zeolite by using a continuous-

flow reactor [15].  However, the initial seed crystals of CHA used in their experiments were 

prepared using OSDA.  In the present report, we studied the seed-assisted growth of CHA 

zeolite, where the initial CHA zeolite was prepared by structure conversion method from FAU 
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zeolite.    

 Potassium type CHA zeolite was prepared by 

the hydrothermal conversion of FAU zeolite as 

described in the literature [9,10]. To 16.1 mL of a 

KOH (45 wt%) aqueous solution, 15 g of HY-

zeolite (HSZ-320HOA, Tosoh Corp.) was added.  

Then, 119 mL of deionized water was poured, 

followed by vigorous shaking for 30 sec.  The 

mixed solution was kept static in an oven at 100 ºC 

for 4 days.  After cooling to room temperature, the 

precipitate was recovered by filtration, washed with 

water, and dried overnight at 100 ºC.  The white 

solid was calcined at 600 ºC for 3 h under air flow 

(ca. 100 cm3/min), with a ramp rate of 2 ºC/min.  

The obtained sample was denoted as CHA-HT.  

Figure 1 (a) shows the XRD (X-ray diffraction) 

patterns of CHA-HT.  The diffraction signals were 

assignable to those from the CHA structure [2], 

suggesting the successful preparation of CHA 

zeolite.   

 Using CHA-HT as seed crystals, the growth of CHA zeolite with an amorphous 

aluminosilicate gel under hydrothermal conditions was investigated.  Here, the mixed solution 

of fumed silica (1.0 g, Cab-O-Sil (M-5); Cabot Corporation, USA), NaAlO2 (0.13 g), NaOH 

(0.47 g), KOH (0.17 g; all from Wako Pure Chemical Industries, Ltd.) in H2O (30 mL) was used 

for preparing synthetic aluminosilicate gel according to the literature [14].  The molar 
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Fig. 1  XRD patterns of (a) CHA-HT, (b) 

CHA-Seed1, (c) CHA-Seed2 and (d) CHA-

Seed3.  The lengths of the arrows beside (a) to 
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are schematically drawn at the bottom.  
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composition of this synthetic aluminosilicate gel corresponded to 1.0 SiO2 : 0.1 NaAlO2 : 0.7 

NaOH : 0.18 KOH : 100 H2O.  To this synthetic solution, CHA-HT (20 wt%, corresponding 

to about 0.36 g) as the seed crystals was added, and the mixture was hydrothermally treated at 

170 ºC for 24 h with tumbling at 20 rpm using a hydrothermal synthesis reactor instrument 

(HIRO COMPANY).  The product, denoted as CHA-Seed1 (see Table 1 for a summary of 

sample names), was obtained by filtration, drying and calcination in the same manner as 

mentioned above.  The yield of CHA-Seed1 was higher than the weight of the seed crystals 

used, indicating that crystal growth from the synthetic alminosilicate gel had occurred.   

 The XRD pattern of CHA-Seed1 was as shown in Figure 1 (b).  The diffraction signals 

were assignable to those from the CHA structure.  Also, the diffraction signals were sharper 

and considerably more intense as compared with CHA-HT, suggesting that the crystallinity of 

CHA zeolite had been improved.  The crystalline morphology of CHA-Seed1 observed by FE-

SEM (JEM-6701F, JEOL) is represented in Figure 2 (b), together with that of CHA-HT (Figure 

2 (a)).  CHA-HT was composed from an aggregation of cube shaped crystals, the size of which 

generally ranging from several ten to 100 nm.  On the other hand, CHA-Seed1 comprised of 

a stack of slab shaped crystals.  The size of slabs was not uniform, ranging from several ten to 

several hundred nm.  These were significantly different from those of CHA-HT, and the large 

sizes of crystals were consistent with the intense diffraction signals from CHA-Seed1.   

 In this study, further growth of CHA zeolites was also studied.  CHA-Seed2 was prepared 

from the synthetic aluminosilicate gel in the same manner as mentioned above.  Here, 20 wt% 

of CHA-Seed1 was used as seed crystals (Table 1).  Subsequently, the resulting CHA-Seed2 

Table 1  Preparation and Si/Al ratio estimated by EDS and 29Si MAS NMR measurements  
 
 
 
 
 
 
 

 

CHA-HT
CHA-Seed1
CHA-Seed2
CHA-Seed3

Sample name

2.5
3.0
3.4
4.0

2.17
2.73
2.76
n.d.

EDS NMR
Hydrothermally synthesized
Synthesized using CHA-HT as a seed
Synthesized using CHA-Seed1 as a seed
Synthesized using CHA-Seed2 as a seed

Synthetic conditions
Si/Al ratioYield

/g
-

0.45
0.47
0.41
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was used as seed crystals for the preparation of CHA-Seed3.  The XRD patterns of the 

obtained CHA-Seed2 and CHA-Seed3 were as shown in Figure 1.  For the CHA-Seed2, 

although well-resolved and intense diffraction signals from the CHA structure could be 

confirmed, the diffraction signals assignable to sanidine (general formula; (K,Na)(Si,Al)4O8, 

JCPDS: 025-0618), for example, at 20.9, 23.5, 26.8, 27.7, 29.8 and 32.2º (2θ) were observed 

(marked signals in Figure 1 (c)).  The latter signals, as well as other signals that appeared 

newly or had been hidden in the signals from CHA-Seed2, dominated in CHA-Seed3 (Figure 1 

(d)).  The diffraction signals were assignable to sanidine and analcime (ANA, general formula; 

Na(Si2Al)O6·H2O, JCPDS: 041-1478) based on their peak positions illustrated in Figure 1.  

The drastic change of crystalline structure in CHA-Seed3 could be confirmed by FE-SEM study.  
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Fig. 2  FE-SEM pictures of (a) CHA-HT, (b) CHA-Seed1, (c) CHA-Seed2 and (d) CHA-Seed3.   
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The crystalline morphology of CHA-Seed3, an aggregation of nonuniform ellipsoid-shaped 

crystals with the size of about several hundred to 1,000 nm, was totally different from that of 

CHA-HT or CHA-Seed1 (Figure 2).  Thus, it was found that the seeded growth of CHA zeolite 

under hydrothermal conditions caused the collapse of specific CHA structures.  Actually, the 

FE-SEM study of CHA-Seed2 showed large ellipsoid-shaped crystals rarely (e.g. on the right 

side in Figure 2 (c)), while the main product was slab shaped crystals.   

 The Si/Al ratio estimated by EDS (Energy-dispersive) spectroscopy (JEOL, JED-2300) 

combined with FE-SEM increased from 2.48 in CHA-HT to 2.97, 3.44 and 3.96 in CHA-Seed1, 

CHA-Seed2 and CHA-Seed3, respectively, showing an increase in Si content by the 

subsequence growth of CHA zeolite (Table 1).  Imai et al. reported that the seed crystals 

mostly dissolved in this synthetic aliminosilicate gel in 1 h (170 ºC) [14].  Thus, the above 

results are consistent with the dissolution-recrystallization growth of CHA zeolite.  Also, 

zeolites are not in a thermodynamically stable phase but in a metastable phase [16].  Therefore, 

the non-optimal synthetic conditions in this study is considered to have resulted in the formation 

of undesired aluminosilicates from CHA zeolite during repeated synthesis.  It should be noted 

that the hydrothermal synthesis of aluminosilicate gel without seed crystals resulted in the 

formation of PHI type zeolite [2,14].   

 The growth and the structural change of CHA zeolite were investigated by using MAS 

(magic-angle spinning) NMR spectroscopy (at 6 kHz spinning, ECX-500, JEOL).  Figure 3 

shows the single-pulse spectra of 29Si MAS NMR.  Mainly, the resonance signals were 

observed at about -88, -92, -98, -103 and -108 ppm.  These signals were assignable to Si(4Al), 

Si(3Al), Si(2Al), Si(1Al) and Si(0Al), respectively.  Here, n in Si(nAl) indicates the number 

of Al atoms bonding to Si via O.  One interesting point is that the relative intensities of Si(0Al) 

and Si(1Al) of CHA-Seed1 increased in comparison with those of CHA-HT.  In addition, the 
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relative intensities of Si(3Al) and Si(4Al) decreased 

in CHA-Seed1.  This suggests an increase in the 

number of Si-O-Si bonds in CHA zeolite made by 

seeded growth.  CHA-Seed3, on the other hand, 

showed broadening of signals.  As the XRD 

measurement revealed, CHA-Seed3 was a mixture 

of sanidine and analcime.  Thus, the overlapping 

of Si(2Al) signals from two different 

aluminosilicates gave rise to the broadening of 

signals.  Besides, sanidine is a polymorph crystal.  

This suggests that the heterogeneity of the Si 

tetrahedral environment led to the broadening of 

resonance signals.  

 The framework Si/Al ratio can be determined 

from signal intensities using the following equation 

[17]: 

(Si Al⁄ ) = ∑ ASi (n Al)

4

n = 0

∑
n
4

4

n = 0

⁄ ASi (n Al) 

Here, A is the signal area of Si(nAl).  The Si/Al ratio was estimated to be 2.17, 2.73 and 2.76 

for CHA-HT, CHA-Seed1 and CHA-Seed2, respectively (Table 1).  An increase in the Si/Al 

ratio from CHA-HT to CHA-Seed1 was clearly observed, corresponding to the increase in 

signal intensity of Si(0Al) and Si(1Al).  Also, it was found that these values were close to the 

ones obtained by EDS study (Table 1).  However, a large difference was found between the 

Si/Al ratios determined by EDS and MAS NMR for CHA-Seed2, due to the presence of 

sanidine as evidenced by XRD.   
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Fig. 3  29Si MAS NMR spectra of (a) CHA-

HT, (b) CHA-Seed1, (c) CHA-Seed2 and (d) 

CHA-Seed3.   
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 Figure 4 shows the 27Al MAS NMR spectra 

of CHA zeolites.  The chemical shift of 

tetrahedrally coordinated Al atoms was found at 

58.1, 58.6, 58.6 and 59.1 ppm for CHA-HT, CHA-

Seed1, CHA-Seed2 and CHA-Seed3, 

respectively.  The absence of the signals from 

octahedrally coordinated Al (around 0 ppm) 

suggests that Al atoms exist in the zeolite 

framework.  The signal width became wider in 

CHA-Seed3 (9.108 ppm) as compared with CHA-

HT (4.060), CHA-Seed1 (3.992) and CHA-Seed2 

(4.449).  Such broadening of resonance signals 

in CHA-Seed3 was consistent with the results of 

the 29Si MAS NMR study.   

 Finally, the N2 adsorption isotherm of CHA 

zeolites at 77 K (Autosorb-1MP, Quantachrome 

Instruments, USA) were shown in Figure 5.  

The N2 adsorption isotherm of CHA-HT did not 

indicate the occurrence of micropore filling (P/P0 

below 0.1), but showed a linear increase in N2 

adsorption up to about 0.8 (P/P0) [13], suggesting 

the hindered access of N2 molecules to 

micropores due to the presence of relatively large 

potassium cations (K+).  The K/Al ratio 

estimated by EDS was 1.1, 0.7 and 0.6 for CHA-HT, CHA-Seed1 and CHA-Seed2, respectively, 
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Fig. 4  27Al MAS NMR spectra of (a) CHA-HT, 

(b) CHA-Seed1, (c) CHA-Seed2 and (d) CHA-

Seed3.   
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Fig. 5  Nitrogen adsorption isotherm of (a) 

CHA-HT, (b) CHA-Seed1, (c) CHA-Seed2 and 

(d) CHA-Seed3.   
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suggesting K+ ions were filled almost fully in the cages of CHA-HT.  As expected, CHA-

Seed1 and CHA-Seed2 with lower K/Al ratios showed obvious micropore filling (type I by 

IUPAC classification) [18].  The N2 sorption amount of CHA-Seed2 was slightly smaller than 

that of CHA-Seed1.  This is due to the presence of non-porous sanidine in CHA-Seed2.  For 

the mixture of sanidine and analcime (CHA-Seed3), the N2 sorption amount was low in the 

whole (P/P0) region.  The BET (Brunauer-Emmett-Teller) surface area for CHA-HT, CHA-

Seed1 and CHA-Seed2 was estimated to 14.0, 389.2 and 344.0 m2/g, respectively.  The surface 

area of CHA-Seed3 was lower than the value for detection limit (below 10 m2/g).   

 In conclusion, CHA type zeolite was synthesized by seeded growth method, where OSDA-

free CHA zeolite was used as seed crystals.  The XRD measurements and 29Si and 27Al MAS 

NMR studies revealed that the obtained CHA zeolite were highly crystalized as compared with 

the initial material.  However, the subsequent use of resultant CHA zeolite as seed crystals was 

found to be inappropriate, since other aluminosilicates – sanidine and analcime – were formed, 

resulting in a structure change.   
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