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Abstract

Nature-inspired algorithms are new optimization ones which are on the basis of syn-

ergetic evolution in recent years. They provide new ways to find solutions of complex

problems. Because of intelligence, versatility, essence parallelism and global search

ability of them, they have shown potential and charm in the field of computer sci-

ence, knowledge discovery, communication network, robot and so on. They have

become research hotspots in the field of intelligent computing. In this paper, several

nature-inspired intelligent algorithms are proposed to solve different prediction and

optimization problems.

The thesis is organized as in the following.

In chapter 1, we systematically reviewed Natural computing, Artificial intelligence,

Machine learning, Heuristic and Metaheuristic.

In chapter 2, we introduce two kinds of nature-inspired algorithms: Decision tree

and Gray wolf optimization.

In chapter 3, we built a decision tree as a quick and reliable method adapted in

all road segments, and propose a new method to make the vehicle state prediction

based on the decision tree.

In chapter 4, we investigate twelve different kinds of chaotic maps to give some

insights into the influence of Chaotic Local Search (CLS) on Grey Wolf Optimization
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(GWO). Experimental results based on 29 widely used benchmark functions suggest

that CLS indeed enables GWO to reach better performance in terms of accuracy,

distribution and convergence property of solutions.

In chapter 5 , there are conclusions and future research. We introduced Nature-

inspired intelligent algorithms for optimization and prediction problems. And in

the future, I will go a step further on various kinds of algorithm mechanisms of

Nature-inspired intelligent algorithms. Then, improve the performance of the current

existent Nature-inspired intelligent algorithms and apply them to solve problems in

new fields. Last but not least, Nature-inspired intelligent algorithms can combine

with other computational intelligence algorithms for solving much complex problems.
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Chapter 1

Introduction

Natural computing [2], also known as natural computation, is a term that encompasses

three types of methods: 1) inspiration from nature for developing new problem-

solving techniques; 2) computer-based synthesis of natural phenomena; and 3) the

use of Natural materials (e.g., molecules) are those calculated [3]. The main research

areas that make up these three branches are artificial neural network, evolutionary

algorithm, group intelligence, artificial immune system and so on.

The computational paradigm of natural computational research is abstracted from

many natural phenomena such as self-replication, brain function, Darwinian evolu-

tion, group behavior, the immune system, the defining properties of life forms, cell

membranes and morphogenesis. People can think of what happens in nature as in-

formation processing.

1.1 Artificial Intelligence

Artificial Intelligence (AI), is the intelligence displayed by a machine, as opposed

to the Natural Intelligence (NI) shown by humans and other animals, to the intelli-

gence shown by machines made by humans. In computer science, artificial intelligence
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research is defined as ”intelligent agent” research: any device that perceives its en-

vironment and takes action to maximize the chance of success with a given goal [4].

Usually artificial intelligence refers to the human-like intelligence technology that is

realized by a common computer program. The term also refers to the field of science

that investigates whether such intelligent systems are achievable and how they are

implemented.

The traditional problems (or goals) of artificial intelligence research include rea-

soning, knowledge, planning, learning, natural language processing, the ability to per-

ceive and move and manipulate objects. General information is one of the long-term

goals of the field [4]. Methods include statistical methods to compute intelligence and

traditional symbolic AI [5]. Artificial intelligence is now playing a more extensive role

in the field of computers. And in the robot, economic and political decision-making,

control systems, simulation systems have been applied.

Earlier researchers developed algorithms that mimic the step-by-step reasoning

people use to solve puzzles or logical inferences [6]. By the late 1980s and 1990s,

artificial intelligence research had developed methods of dealing with uncertain or

incomplete information, using concepts of probability and economics [7].

For difficult problems, the algorithm may require huge computational resources.

Searching for more efficient problem solving algorithms is a high priority [8]. During

more than 60 years of research, AI has developed numerous tools to solve the thorniest

issue in computer science. The following is a discussion of the most common of these

methods.
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1.1.1 Search and Optimization

Many of the problems in artificial intelligence can theoretically be solved by intelli-

gently searching for many possible solutions: Inference can be simplified to performing

a search. Many learning algorithms use optimization-based search algorithms. The

solution to many problems is to use ”heuristics” or ”rules of thumb” to prioritize

choices that are more likely to achieve their goals, and take shorter steps [9]. In some

search methods, heuristics can also completely eliminate some choices that are less

likely to result in a goal (called ”pruning search trees”). Heuristic methods provide

”best guess” for the path where the solution is located. Heuristic methods limit the

search solution to a smaller sample size.

1.1.2 Logic

Logic is used for knowledge representation and problem solving, but it can also be

applied to other problems. There are several different forms of logic used in AI

research [6]. Proposition or sentence logic is the logic of a statement that can be true

or false. First-order logic also allows the use of quantifiers and predicates, and can

express facts about objects, their properties, and the relationships between them [9].

Fuzzy logic is a version of first-order logic that allows the truth value of a statement

to be represented as a value between 0 and 1, not just true (1) or false (0). Subjective

logic simulates uncertainty in a more explicit way than fuzzy logic: a given binomial

perspective satisfies belief + untrusted + uncertainty = 1 within the Beta distribution

[10]. In this way, ignorance can be distinguished from probabilistic statements made

highly by agents. Default Logic, Non-monotonic Logic and Limitations are logical
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forms designed to help with default reasoning and qualification issues.

1.1.3 Classifier and Statistical Learning Methods

The simplest AI applications can be divided into two types: classifiers and controller-

s. However, the controller also sorts the conditions before inferring the action, so

classification is a central part of many AI systems. A classifier is a function that uses

pattern matching to determine the closest match. They can be adjusted according to

the instance, making it very attractive in the AI. In supervised learning, each pattern

belongs to a predefined category. A class can be seen as a decision that must be

made [11]. All the observations combined with their class labels are called datasets.

When new observations are received, the observations are categorized based on past

experience. Classifiers can be trained in a variety of ways; there are many methods of

statistics and machine learning. The most widely used classifiers are neural network-

s, kernel support vector machines, k-nearest neighbor algorithms, Gaussian mixture

models, naive Bayesian classifiers, and decision trees. The performance of these clas-

sifiers has been compared over a wide range of tasks. The performance of a classifier

depends very much on the nature of the data to be classified. No classifier works best

for all given problems; it’s also known as the ”no free lunch” theorem. Determining

a suitable classifier for a given problem is still an art rather than a science [12].

AI is related to any mental task. Modern artificial intelligence technology is every-

where. Often, when a technology reaches mainstream use, it is no longer considered

artificial intelligence; this phenomenon is described as an AI effect [13].
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1.2 Machine Learning

Machine learning is a branch of artificial intelligence. As a scientific work, machine

learning stems from the pursuit of artificial intelligence. Artificial intelligence is from

a ”reasoning” as the focus, to ”knowledge” as the focus, to ”learning” as a focus,

a naturally clear context. Obviously, machine learning is a way to achieve artificial

intelligence, which is to solve the problem of artificial intelligence by means of machine

learning.

In the early days of AI as a discipline, some researchers were interested in learning

the machine from data. They try to solve this problem in a variety of symbolic

ways, as well as what are called ”neural networks.” These are mainly perceptron

and other models that were later considered as a reengineering of the generalized

linear statistical model. Probabilistic reasoning has also been applied, especially in

automated medical diagnostics [4].

Computer analysis of machine learning algorithms and their performance is a

branch of theoretical computer science, known as computational learning theory [14].

Machine learning theory is the main design and analysis of some of the computer can

automatically ”learn” algorithm. Machine learning algorithm is a kind of automatic

analysis from the data to obtain the law, and use the law of unknown data to predict

the algorithm.

Tom M. Mitchell provided a widely quoted, more formal definition of the algo-

rithms studied in the machine learning field: ”A computer program is said to learn

from experience E with respect to some class of tasks T and performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.” [15]
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Machine learning has the following definitions:

1. Machine learning is a science of artificial intelligence whose main object of study

is artificial intelligence, and in particular how to improve the performance of concrete

algorithms in empirical learning.

2. Machine learning is a study of computer algorithms that can be automatically

improved by experience [16].

3. Machine learning uses data or past experience to optimize the performance

standards of computer programs.

Machine learning is widely used in biochemical informatics, computer networks,

information retrieval, machine perception, economics, financial market analysis, nat-

ural language processing, search engines, sequence mining, software engineering and

other fields.

1.2.1 Classification

1.2.1.1 Supervised / Unsupervised Learning

1.Supervised: classification, regression

1).Calibration training data

2).training process: According to the target output and the actual error signal

output to adjust the parameters

3).typical method

• Global: BN, NN, SVM, Decision Tree

• Local: KNN, CBR (Case-base reasoning)
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2.Unsupervised: probability density estimation, clustering, dimension reduction

There is no calibration training data

1).Learning machine adjusts the system parameters according to the statistical

rules of external data, so that the output can reflect some characteristic of the data.

2).typical method

• K-means, SOM, ... .

3.Semi-supervised: EM, Co-training

1).Learning (a small amount of) calibration training data and (a large number of)

uncalibrated data

2).typical method

• Co-training, EM, Latent variables, ... .

1.2.1.2 Other Learning Methods

1.Reinforcement Learning

1).The external environment only gives the evaluation information rather than the

correct answer to the output. The learning machine improves its performance by

strengthening the rewarded actions.

• The training data contains some learning target information

2.Multi-task learning (Multi-task learning)

1).Learns a problem together with other related problems at the same time, using

a shared representation.

Machine learning began to flourish in the 1990s and became an independent area.

This area has shifted from the realization of artificial intelligence to the goal of solving
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practical problems. It shifted the focus from the symbolic approach it inherited from

AI to the methods and models borrowed from statistics and probability theory [4,17].

Increasingly digital information, and the possibility of distribution via the Internet,

also benefit.

Machine learning and data mining generally take the same approach and overlap,

but machine learning focuses on predictions and data mining focuses on the discovery

of (previously) unknown data attributes based on known attributes learned from the

training data (this is knowledge discovery in the database Analysis step) [17,18].

1.2.2 Specific Machine Learning Algorithm

1.2.2.1 Decision Tree Learning

Decision tree learning uses a decision tree as a predictive model that maps the obser-

vations about the project to the conclusions about the project’s target value [19].

1.2.2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) learning algorithm, commonly referred to as

a ”Neural Network” (NN), is a learning algorithm that is inspired by the structure

and function of biological neural networks [20]. Computation is based on interrelated

sets of artificial neurons that process information using connection methods. Modern

neural networks are nonlinear statistical data modeling tools. They are often used

to model the complex relationships between inputs and outputs, find patterns in

the data, or capture statistical structures of unknown joint probability distributions

between observed variables [20].
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1.2.2.3 Deep Learning

The recent decline in hardware prices and the development of personal-use GPUs have

led to the development of deep learning concepts consisting of multiple hidden layers

in an artificial neural network. This method attempts to simulate the way humans

handle the light and sound of the brain, both visually and aurally. Some successful

applications of deep learning are computer vision and speech recognition [21].

1.2.2.4 Bayesian Networks

Bayesian networks, belief networks or directed acyclic graph models are probabilistic

graph models that represent a set of random variables and their conditional indepen-

dence via a directed acyclic graph (DAG) [22]. For example, a Bayesian network can

represent the probability relationship between a disease and a symptom. Given the

symptoms, the network can be used to calculate the probability of various diseases

occurring. There are effective algorithms for performing reasoning and learning.

1.2.2.5 Genetic Algorithms

Genetic Algorithm (GA) is a search heuristic that mimics the natural selection process

[23]. It uses mutation and crossover methods to generate new genotypes and hopes to

find a good solution to a given problem. In machine learning, genetic algorithms found

some uses in the 1980s and 1990s [24]. In contrast, machine learning techniques have

been used to improve the performance of genetic and evolutionary algorithms [24].
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1.3 Heuristic

Heuristic is a technique, in computer science, artificial intelligence, and mathematical

optimization that is a solution to problems, learning, or discovering. Used to solve

problems more quickly when the classical method is too slow, or when the classic

method fails to find any exact solution, they find an approximate solution. Although

not guaranteed to be the best or perfect practical method, but for the immediate

goal is sufficient. This is done by the best of deals, completeness, accuracy or speed

accuracy. Heuristics are a strategy derived from the experience of previous similar

problems. To some extent, it can be considered as a shortcut. The most basic heuristic

is trial and error.

Rudolf Groner analyzes the heuristic history from the origins of ancient Greece to

the contemporary work of cognitive psychology and artificial intelligence and proposes

a heuristic approach to thinking, Can be verified by a confirmatory questionnaire [25].

Heuristic algorithms can be used in artificial intelligence systems while searching

for solution spaces. Heuristics are derived by using some of the functions that the

designer enters into the system or by adjusting the weights of the branches based on

the likelihood that each branch will reach the target node.

1.4 Metaheuristic

In computer science and mathematical optimization, metaheuristic is a more ad-

vanced process or heuristic design for finding, generating, or selecting heuristics (par-

tial search algorithms) that may provide a sufficiently good solution to an optimization
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problem, in particular In the case of incomplete or imperfect information or limit-

ed computing power [26]. Metaheuristics samples a solution that is too large to be

completely sampled. Metaheuristics may make very few assumptions about the opti-

mization problems being solved, so they may be used for a variety of problems [27].

Compared with the optimization algorithm and the iterative method, metaheuris-

tics does not guarantee that the global optimal solution can be found on some kinds

of problems [27]. In combinatorial optimization, metaheuristics usually find few-

er optimization algorithms, iterative methods, or simple heuristics than those with

less computational complexity by searching for a large number of feasible solutions.

Therefore, they are a useful way to optimize the problem [26].

These are the characteristics of most metaheuristics [27]:

1.Metaheuristics is to guide the search process strategy.

2.The goal is to effectively explore the search space to find near-optimal solutions.

3.Constitute meta-heuristic algorithm from simple local search process to complex

learning process.

4.Meta-heuristic algorithm is approximate, usually nondeterministic.

5.Metaheuristics is not problem-specific.

1.4.1 Classification

These are the classification of metaheuristics [27]:

1.Local search vs. Global search

2.Single-solution vs. Population-based

3.Hybridization and memetic algorithms
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4.Parallel metaheuristics

5.Nature-inspired metaheuristics

Many recent metaheuristics includes simulated annealing, evolutionary algorithm-

s, ant colony optimization and particle swarm optimization,are inspired by natural

systems [27].

In our previous research, we studied (1) Artificial neural networks which include

multiple-valued logic networks [28–31], multilayered neural networks [32–41], and den-

dritic neuron models [42–48], (2) Evolutionary computation which involves artificial

immune systems [49–61], multi-objective optimization applications [62–64], gravita-

tional search algorithms [65–68], ant colony optimization [69], imperialist competition

algorithm [70, 71], differential evolution [72], and brain storm optimization [73, 74],

(3) Complex networks [75, 76], (4) Machine learning technologies [77–82], and (5)

Internet of things [83, 84]. All these results give foundations and motivations of the

current research of this work.
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Chapter 2

Nature-inspired Algorithms

2.1 Decision Tree

Machine learning techniques that generate decision trees from data are called decision

tree learning, which is commonly referred to as decision tree. Decision tree to establish

and use to assist decision-making, is a special kind of tree structure. Decision tree is

a decision support tool that uses a tree-like graph or decision model.

Decision tree learning is one of the predictive modeling methods used in statistics,

data mining and machine learning [19]. Decision tree is a similar structure of the

flow chart, he represents the object attributes and object values between mappings.

Decision tree only a single output, we can establish different independent decision

trees to handle complex outputs.

2.1.1 Decision Tree Types

There are two main types of decision trees used in data mining:

1.Classification tree analysis means that the forecast result is the category to which

the data belong.

2.Regression tree analysis is when the predicted result can be considered a real
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number.

Classification and Regression Tree (CART) analysis terms are used to refer to the

general term for the above two procedures, first proposed by Breiman et al [85]. A tree

model whose target variable can take a set of discrete values is called a classification

tree; a decision tree whose target variable can take continuous values (usually real

numbers) is called a regression tree. The algorithm for building a decision tree is

usually top-down by choosing a variable that best divides the project set in each

step.

2.1.2 A Decision Tree Contains Three Types of Nodes

1. Decision nodes : typically represented by squares

2. Chance nodes : typically represented by circles

3. End nodes : typically represented by triangles [86]

2.1.3 The Advantages of Decision Trees

Compared with other data mining algorithms, decision trees have advantages in the

following aspects:

1. Decision tree is easy to understand and explain. People can understand the

decision tree model with a brief explanation.

2. For decision trees, data preparation often requires data normalization with little

data preparation.

3. Can handle both data type and regular type properties. Other technologies

tend to deal with only one type of data.
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4. Use the white box model. Given a model for observation, it is easy to derive

the corresponding logical expression based on the resulting decision tree.

5. Easy to test the model by static test. The stability of the model can be

measured.

6. Can handle large-scale data well.

2.1.4 Shortcomings of Decision Trees

1. The overly complex decision tree creation can lead to inability to predict well

beyond the training set, which is called over-fitting.

2. Some problems Decision tree cannot be a good solution, such as: XOR problems.

When solving this problem, the decision tree can become overly large. To solve

this problem, you can only change the area of the problem or use other more time-

consuming learning algorithms.

3. Training an optimal decision tree is a complete NP problem. Therefore, the

practical application of decision tree training using heuristic search algorithm to

achieve local optimal. Such an algorithm cannot get the optimal decision tree.

4. For data with inconsistent numbers for each category, the result of the infor-

mation gain in the decision tree is biased towards those with more values.

The actual decision tree learning algorithm is based on the heuristic algorithm.

2.2 Gray Wolf Optimization

Canis lupus belongs to the Canidae family. Gray wolves are considered top predators,

meaning they are at the top of the food chain. Gray wolves like to live in a bag. The
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average number of groups is 5-12 people. Of particular interest are their very strict

social leadership hierarchy, as shown in Fig. 1 [1].

The wolf at the top of the pyramid, called α, is responsible for making decisions

about hunting practices, habitat and food distribution. The wolf is not necessarily

the strongest wolf, but the best leader. Located on the second level of the pyramid,

called β, is the successor to the alpha that helps α in decision-making or other group

activities when the entire wolves are missing. Located on the third floor is the δ,

obey and instructions, old (poor fitness) and will be reduced to level. The lowest ω

is responsible for balancing the internal relationships of the population.

GWO algorithm simulates the graying system and hunting behavior of wolves in

nature. As shown in Fig. 2 [1], the entire wolves are divided into four groups: α, β,

δ, ω. The first three groups are, in turn, the three most well adapted groups, and

the three groups direct the other wolves (ω) toward the target search. During the

optimization, the wolves update the positions of α, β, δ, ω.

As mentioned above, the gray wolf surrounds prey during the hunt. In order to

simulate the surrounding behavior, the following formula is proposed:

D⃗ = |C⃗ · X⃗p(t)− X⃗(t)|, (2.1)

X⃗(t + 1) = X⃗p(t)− A⃗ · D⃗, (2.2)

A⃗ = 2a⃗ · r⃗1 − a⃗, (2.3)
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Figure 2.1: Hierarchy of grey wolf (dominance decreases from top down) [1].

C⃗ = 2 · r⃗2. (2.4)

D⃗ represents the distance between the individual and the food, t represents the

number of current iteration, when |A⃗| < 1, the gray population shrinks the encir-

clement, which corresponds to the local search, X⃗p is the prey position, X⃗ is the

wolf’s position. The convergence factor a⃗ is linearly decreasing from 2 to 0 with the

number of iterations. r⃗1, r⃗2 are random vectors in [0, 1].

When the gray wolf to determine the location of the prey, α lead β and δ guiding

prey surrounded, because α, β, and δ are closest to the prey, so the use of the

location of the three wolves to determine the approximate location of prey, Gradually

approaching the prey, mathematical description [1] is as follows:
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Figure 2.2: Position updating in GWO [1]

D⃗α = |C⃗1 · X⃗α − X⃗|, (2.5)

D⃗β = |C⃗2 · X⃗β − X⃗|, (2.6)

D⃗δ = |C⃗3 · X⃗δ − X⃗|, (2.7)

X⃗1 = X⃗α − A⃗1 · (D⃗α), (2.8)
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X⃗2 = X⃗β − A⃗2 · (D⃗β), (2.9)

X⃗3 = X⃗δ − A⃗3 · (D⃗δ), (2.10)

X⃗(t + 1) = (X⃗1 + X⃗2 + X⃗3)/3. (2.11)

X⃗α represents the current position of α, X⃗β represents the current position of β,

and X⃗δ represents the current position of δ. C⃗1, C⃗2, C⃗3 represent a random vector,

X⃗ represents the current wolf position vector. Equations (8), (9), (10) define the

step and direction of wolf (ω) advancing toward α, β, δ, respectively. Equation (11)

defines the final position of the wolf (ω). A⃗ and C⃗ these two vectors are random

vector and adaptive vector.
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Chapter 3

A Novel Intelligent Method for
Predicting Vehicle State in
Internet of Vehicle

In the fields of advanced driver assistance systems (ADAS) and Internet of Vehicles

(IoV), predicting the vehicle state is essential, including the ego vehicle’s position,

velocity and acceleration. In ADAS, an early position prediction helps to avoid traffic

accidents. In IoV, the vehicle state prediction is essential for the required calculation

of the expected reliable communication time between two vehicles. Many approaches

have emerged to perform this vehicle state prediction. However, such approaches

consider limited information of the ego vehicle and its surroundings, and they may

not be very effective in practice because the real situation is highly complex and com-

plicated. Moreover, some of the approaches often lead to a delayed prediction time

due to collecting and calculating the substantial history information. By assuming

that the driver is a robot driver, which eliminates distinct driving behaviors of dif-

ferent persons when facing the same situation, this paper creates a decision tree as a

new quick and reliable method adapted to all road segments, and it proposes a new

method to perform the vehicle state prediction based on this decision tree.
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3.1 Introduction

Advanced driver assistance systems (ADAS) installed in vehicles use sensing and

computing technologies to assist drivers in avoiding traffic accidents. Predicting the

positions of surrounding vehicles is a crucial problem, and it facilitates the early

detection of potential collisions. In Internet of Vehicles (IoV), one of the most im-

portant foundations for the network connectivity is the vehicle state, including its

position, velocity and acceleration. This importance is because the vehicle state is

a deterministic characteristic for communicating among vehicles and infrastructures.

Therefore, a common requirement is to calculate the expected reliable communication

time quickly in various road segments when two vehicles are to communicate with

each other. The vehicle state can influence the network topology of IoV where the

location between two vehicles determines the communication range and their veloc-

ities and accelerations affect the stability of network topology [87], [88], [89]. The

routing protocol based on location is particularly important due to its adaptability

for frequently changing IoV [90]. Alsaqour et al. found that the inaccurate location

obviously decreased the efficiency of routing protocol [91]. Thus, a neighbor wireless

link break prediction was proposed to predict the neighbor node’s location so as to

detect the ineffective node by using their velocities and accelerations [92]. However,

this method is just suitable for short-time and short-distance prediction because the

accelerations of vehicles may significantly change according to changing environments.

Consequently, the vehicle state prediction is necessary and essential for IoV.

A decision tree is an effective method for evaluating the behaviors of vehicle drivers,

some studies include a decision tree to predict or monitor vehicle drivers [93], [94].
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Ahmed presented a method to predict the vehicle state, in which a decision tree was

used to determine whether the vehicle changed its lane and to obtain the lane after

the vehicle changed lanes [95]. Kedowide et al. used a decision tree to monitor the

vehicle driver and log the driving activities, such as to evaluate whether the driver

was performing the blind spot check, integrated with the behaviors of the driver [96].

The aforementioned methods are primarily used in advanced driver assistance sys-

tems (ADAS) to avoid collisions on the planned trajectories of vehicles and considering

limited information about the ego vehicle and its surroundings. Moreover, a delayed

prediction time will arise when history data need to be collected. Although some stud-

ies have employed a decision tree to quickly make judgments, the decision tree does

not use much road and environment information and does not perform predictions

across all road segments.

This paper proposes a new approach based on a decision tree that considers more

information about the ego vehicle, its surroundings and driver behaviors in varieties

of road segments and without a delayed prediction time because no history data are

collected as in some previous methods.

This approach saves time and reduces the precious prediction time. According to

information of the ego vehicle, roads, traffic lights, other surrounding vehicles and so

forth, our approach pre-judges the driving behaviors of the ego vehicle, and then a

decision tree is adapted to all road segments. Thus, the state of the ego vehicle, in-

cluding its position, velocity and acceleration, can be predicted based on a previously

created decision tree. Such a decision tree with considerable useful information includ-

ing more road surrounding cases helps to predict the vehicle state more accurately in
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some complex and complicated environments and without a delayed prediction time.

The decision tree has advantages such as quick situation judgment and easy extension

to more complicated problems with more determination conditions to be adapted to

all road segments.

The contributions of this paper can be summarized as following: (1) This paper

defines three varieties of road segments: section, intersection and transition. Based

on the definitions in the System Representation section, this work extracts different

behaviors in distinct road segments. These defined behaviors are introduced in the

Driving Behavior Modeling section. (2) To predict the vehicle state from the behavior,

we use a decision tree in all road segments, which is illustrated in the State Prediction

section. The decision tree includes the pre-defined road segment situations and has

advantages such as fast situation judgment and easy extension to more complicated

problems with more determination conditions to be adapted to more road segments.

We discuss the state prediction by taking advantage of the decision tree, which allows

our work to predict the vehicle state through the decision tree.

The remainder of this paper is organized as follows. Section II gives the past works

in vehicle state. Section III presents an overview of the system. Section IV delineates

several models of driving behaviors. Our prediction approach is described in Section

V. The numerical results are presented in Section VI. Finally, the conclusions of this

paper are drawn in Section VII.
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3.2 Related Works

Researches about vehicle state can be classified as three parts, i.e., environments,

maneuvers and trajectories [97]. Environments are components of conducting vehicle

behaviors. Various approaches have been done to discuss vehicle behaviors in different

driving environments. In [98], a detection-by-tracking method was used to detect

vehicles in a spatiotemporal environment. In [99], intersection and nonintersection

driving were distinguished by histograms of scene flow vectors. In [100], a dynamic

driving environment was established for detecting the vehicle motion. Maneuvers such

as overtaking [101], turning [102] and changing lanes [103] are investigated to analyze

vehicle motion on the path. Overtaking behavior is implemented generally by using

some devices to detect vehicles in front of the ego vehicle [101], [104], [105]. When

overtaking conditions are satisfied in search space, vehicles will realize an overtaking

maneuver. Turning behavior is another usual maneuver for vehicles. Detecting the

yaw rate can judge the vehicle turning behavior [106]. Adopting a clustering of 3-D

points to analyze vehicle’s shape can also handle a turning behavior [107]. In [103],

changing lanes was achieved by establishing a dynamic Bayesian network based on

practical data. Trajectories composed of a set of sequences of positions and velocities

with a time window are used to extract vehicle behaviors in the past few years.

In [108], A Gaussian mixture model was utilized to predict long-term trajectories

of vehicles. On the highway, trajectories were constructed using a stereo vision and

clustering method [109].

Besides the study of practical vehicle state, many approaches have emerged to

obtain a credible vehicle state prediction. Hermes et al. predicted the position of a
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vehicle after several seconds using the history information of the vehicles [110]. Her-

mes et al. extracted a large number of vehicle trajectories to perform data training

based on trajectory classification technology, in which trajectories were classified in-

to several behaviors, such as left-handed rotation, right-handed rotation and so on,

and then they classified the existing trajectories [111]. In addition to objectivities,

some researches added drivers’ subjective purposes such as left turn, right turn and

changing lanes into the prediction models [112], [113]. A prediction technology for

a motorcade formed by several vehicles was proposed by Pandita et al., and in their

approach, how a car follows was simulated using the smart driver model [114]. Ad-

ditionally, a technology that combined the motion model and maneuver recognition

was validated, in which probabilistic finite-state machines, fuzzy logics and driving

context recognitions were involved to predict a vehicle trajectory [115], [116], [117].

Petrich et al. used additional information from a digital map to enable a stochastic

filter to select a representative set of reasonable trajectories [118]. Kumar et al. pre-

dicted the lane change intention online using a support vector machine and Bayesian

filtering [119]. Yao et al. learned a simplified trajectory set using a collection of lane

change trajectories from real driving data [120]. By introducing essential maneuver

recognition, Houenou et al. predicted the vehicle trajectory using the constant yaw

rate and acceleration motion model [117], which was widely and importantly used

in [121], [122] and [123]. These prediction technologies need numerous history in-

formation of vehicles, meanwhile, the impact of lane and traffic light on trajectories

of vehicles is ignored. The trajectories of vehicles are restricted by lanes, however,

a digital map based on routing protocol can offer information of lanes to improve
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routing efficiency of IoV. Vehicle state prediction can also use the digital map and

traffic light to enhance the accuracy of location prediction of vehicles [124], [118].

3.3 System Overview

3.3.1 Motivation

Vehicle state prediction is suitable for IoV in city scenario, integrating the digital

map, traffic light and surrounding vehicles. It models the driver’s behavior in different

traffic environments. In this paper, according to the driver’s behavior, a decision tree

is established to describe vehicle state in diverse conditions. Vehicle state prediction

is an important part of connectivity model in IoV, which is proper for predicting the

positions of vehicles and dynamic changes of links. Taking advantage of information

IoV provides, vehicle state can be predicted to further guide the driver to adopt

several operations in order to implement a better trajectory of vehicle and save time.

Nevertheless, the primary purpose of vehicle state prediction is not to find an optimal

route but to predict the vehicle state in next seconds. The vehicle state contains the

position, velocity and acceleration of vehicle. The change of vehicle state can influence

the topology of IoV. For example, position can determine whether two vehicles are

accessible to communicate with each other, whereas velocity and acceleration influence

the stability of network topology. These factors could finally affect the survival time

of links among vehicles. Hence, vehicle state prediction is mainly to calculate the

survival time of links so as to guarantee to achieve a better communication among

several vehicles and maintain a steady structure of IoV. Meanwhile, it also offers an

effective method to construct a reasonable route.
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3.3.2 System Architecture

The vehicle state prediction proposed in this paper is designed specifically to be used

in Internet of Vehicles (IoV). It is assumed that the state prediction is hosted by

the server that maintains the states of vehicles on the Internet. This assumption

is often considered to be a reasonable assumption. Each vehicle manages its state

prediction via a virtual object. Nowadays, the virtual object plays an important

role in Internet of Things to implement its virtualness and service [125]. For IoV,

virtual objects implement the communication among vehicles and provide a practical

application for managing vehicles. Position-based and map-based routing protocols in

the previous literature are widely accepted routing protocols in IoV based on position

and path. Cheng et al. [83] classify notable routing protocols into routing categories

for performing routing. Both position-based and map-based routing protocols require

vehicles to send their state information to the server, which is generally distributed,

when a source vehicle needs to communicate with other vehicles periodically. The

server destination node first queries the state information of the destination from
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the server and then sends data toward the vehicle at the position. The position of

the destination will often change during data forwarding; thus, if the position of the

destination could be predicted, it would improve the routing performance. Moreover,

by predicting vehicle states in a forward routing path, the server has the ability to

calculate the expected reliable communication time between two vehicles and then

calculate the connectivity of the path, which helps to select a stable path from multiple

paths. When a source queries for the position of a destination, the server could send

the predicted state and the optimal forward routing to the source, which will also

improve the routing performance.

3.3.3 System Representation

The following describes the vehicle information that will be used in this work.

• The position of a certain vehicle at a certain time can be represented using a

two-dimensional column vector:

p (t) = (x (t) , y (t))T ; (3.1)

• The velocity of a certain vehicle at a certain time can be represented as follows:

v (t) = (vx (t) , vy (t))T ; (3.2)

• The acceleration of a certain vehicle at a certain time can be expressed as follows:

a (t) = (ax (t) , ay (t))T ; (3.3)



29

Table 3.1: Variable Summary

Variable Explanation
p(t) the position of a vehicle at time t
v(t) the velocity of a vehicle at time t
a(t) the acceleration of a vehicle at time t

state(t) the vehicle state of a vehicle, including its position, velocity and acceleration
intersec an intersection, which is defined by a point

sec a section, which is defined by two intersecs
lane a lane, which is defined by intersec and its lane number
trans a transition, whose definition is similar to sec

• The length of a certain vehicle, l. Specifically, the length of the ego vehicle is lα;

• The number of vehicles in front of a certain vehicle at a certain time, n (t);

• α refers to the ego vehicle, and α− k refers to the kth vehicle that is in front of

the ego vehicle. For example, the directly previous vehicle is α− 1;

• dα−k refers to the distance between the ego vehicle and the kth vehicle in front

of the ego vehicle. For example, the distance between the ego vehicle and the

directly previous vehicle α− 1 is dα−1.

Hence, the vehicle state in this work is defined as a triple:

state (t) = ⟨p (t) , v (t) , a (t)⟩ , (3.4)

where p (t), v (t) and a (t) are all mentioned above.

Additionally, the road information and vehicle surroundings should also be ex-

tracted and represented. Before extracting and representing the road information

and vehicle surroundings, this work introduces a new concept of a transition between

a section and an intersection. The road is divided into three segments, as shown in

Fig. 3.1. All predictions in the three segments are integrated into one decision tree.
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A transition is a special part of a section with information of the intersection that

needs to be considered. In other words, when a vehicle is at a transition, the driver

faces the intersection and is able to obtain information such as traffic lights and so

forth.

• A certain intersection is defined as a two-dimensional point:

intersec = (x0, y0) , (3.5)

where (x0, y0) is its position. On an intersection, we just consider three behav-

iors of each vehicle, i.e., left turn, right turn and pass through. Therefore, the

intersection is expressed by a point.

• A certain section between two consecutive intersections intersec1 and intersec2

that are the ends of the certain section is defined as follows:

sec = ⟨intersec1, intersec2, 0⟩ , (3.6)

where the direction of the vehicle is from intersection intersec1 to intersection

intersec2.

• Consequently, a certain lane is

lane = ⟨sec, n⟩ , (3.7)

where sec is the section to which the certain lane belongs and n is the number

of the lane. In this work, the width of every lane is the same, and it is a
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known constant. When a vehicle faces an intersection, the driver can see three

directions. Additionally, this work defines three directions: laneN is the direction

of the lane in which the driver faces straight forward, laneW is the direction of

the lane that the driver turns right into, and laneE is the direction of the lane

that the driver turns left into.

• A certain transition between a certain section and a certain intersection that is

an end of the certain section is

trans = ⟨intersec1, intersec2, 1⟩ , (3.8)

where trans is very similar to sec because a transition is a special part of a

section, and when the vehicle is in the transition, the driver is facing intersection

intersec2 and sees the traffic lights in the intersection. The purpose of 0 and 1

in sec and trans is to distinguish both mathematical definition.

Table 3.1 presents a summary of the aforementioned variables, including the def-

initions of the position, velocity, acceleration, and vehicle state of a vehicle and of

several elementary road environments, such as an intersection, a section, a lane, and

a transition.

Note that in this work, the number of lanes is based on zero, and the lane number

starts from the central line of the section to which the lane belongs.



32

3.4 Driving Behavior Modeling

In this work, the driving behaviors of a vehicle are considered as the mean motions of

the vehicle, such as some sudden changes including accelerating, decelerating, chang-

ing lanes and turning at an intersection. These driving behaviors lead to discontinuous

acceleration, which causes the acceleration, velocity and position of the vehicle to be

difficult to predict using their history states. The early detection of sudden changes

is necessary for predicting the vehicle state. Driving behaviors can be defined as el-

ements in a set, and each behavior is an element of the set. To create the decision

tree in all road segments in this work, it is necessary to model the driving behaviors

of a vehicle. The driving behavior is divided into three cases: section prediction,

intersection prediction and transition prediction. At sections, vehicles accelerate or

decelerate, which is caused by the influence of the front vehicles. Additionally, ve-

hicles may change lanes to leave an upcoming jam or to avoid a slow vehicle that is

directly in front. Only when adjacent lanes have spacing can lane changes occur. A

transition, with some specific characteristics, is a certain area between a section and

its intersection. Vehicles at a transition are forbidden from changing lanes, and their

behaviors are mainly dependent on the traffic lights. At intersections, vehicles may

turn left or right or pass through, depending on the out direction of the lane that the

vehicle is in and on the traffic light.

According to the aforementioned road in various situations, this paper classifies

driving behaviors into three models: section behaviors, intersection behaviors and

transition behaviors. Section behaviors occur in the section, which are relatively

simple without considerations of orientation changing. Considerations of intersection
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behaviors include changing direction. Transition behaviors are relatively complicated.

The transition situation is between section and intersection, and it contains possibili-

ties of section’s and intersection’s behaviors; thus, it is difficult to predict the coming

driving behavior due to the various possibilities.

3.4.1 Section Behaviors

Section behaviors are always when the vehicle is far away from the front intersection

and the traffic light is out of the range of the driver.

1) Jam Leaving Intent: When a driver realizes that a jam has occurred in the

front of his current lane, he will attempt to enter adjacent lanes to avoid the jam.

Lane changing behavior is an important intent and has already been considered in

the previous literature, such as by Ahmed [95]. In this work, α refers to the ego

vehicle, and α−m refers to the mth vehicle in front of the ego vehicle, for example,

the vehicle directly in front of the ego vehicle is α − 1. Here, rα is the range of the

driver in the ego vehicle α. The driver could see τα vehicles α − 1, α − 2, . . . , α − τα

in the driver’s range rα, but the vehicle α− τα− 1 is out of the driver’s range. Thus,

τ could be represented mathematically by

τα = max
i

dα−i < rα, (3.9)

where dα−i is the distance between the vehicle α and the ith front vehicle α − i.

The jam density ρα, which defines an indicator to quantify the congestion level, is as

follows:
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ρα = τα

rα

. (3.10)

The driver will have a jam leaving intent if the driver cannot tolerate such a jam that

ρα > ρ∗
α, where ρ∗

α is a tolerance threshold for the driver. In this paper, the length of

vehicle is 4.3-4.7 meters, we set one vehicle within 5 meters as a tolerance threshold.

Thus, this paper uses ρ∗
α = 0.2 and rα = 400m in our later numerical experiments.

Then, the driver will change lanes if the condition for changing lanes is satisfied. The

driver always prefers to change to the right lane, and when the condition for changing

to the right lane is not satisfied, the driver considers changing to the left lane.

2) Overtaking Intent: For this intent, this work considers two aspects: the sizes of

and the velocities between the front vehicle and the ego vehicle.

When the front vehicle, such as a truck, is considerably larger than the ego vehicle,

the driver always tends to avoid following it. This work simply assumes that the width

of every vehicle is the same; thus, this case is simply to compare the lengths and is

presented by

lα−1 > λlengthlα, (3.11)

where λlength > 1 is the tolerance threshold for the ratio of the length of the directly

previous vehicle to the length of the ego vehicle.

In the other case, if the speed of the vehicle ahead is too slow, the driver often

attempts to change lanes and overtake the slow vehicle. Mathematically,
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vα−1 < λvelocityvα, (3.12)

where λvelocity < 1 is the tolerance threshold. This paper uses λlength = 1.5 and

λvelocity = 0.8.

3) Following Intent: In general, the driver of the ego vehicle will follow the front

vehicle. However, when the driver follows the front vehicle, the driver will also adapt

the ego vehicle such that it will be more comfortable and safe. For example, when

the ego vehicle is too close to the front vehicle, the driver tends to brake to avoid

driving into it. Mathematically,

tbrake = dα−1

vα − vα−1
. (3.13)

Here, we select a safety braking time tsafety as a threshold for the ratio of the velocity

of the directly previous vehicle to the velocity of the ego vehicle. When tbrake ≤

tsafety is satisfied, the driver will decelerate with an acceleration value. In this paper,

tsafety = 1.5s and δ = 2 is a correlation coefficient.

a = −δ
vα − vα−1

dα−1
. (3.14)

4) Free Driving Intent: Otherwise, the state of the driver will be maintained. This

case is called free driving intent. For free driving, this work will consider that if the

velocity of a vehicle is less than the speed limit, then the driver tends to accelerate

with a constant acceleration to reach the speed limit.



36

lanee lanew

lanen

lanes

Figure 3.2: Intersection

3.4.2 Intersection Behaviors

Intersection behaviors are to predict the motions when the vehicle is close to or facing

the front intersection. In such cases, the driver should consider the information of

the front intersection, such as traffic light and so on. Behaviors at intersections

are difficult to detect without information, including the out directions of the lane

where the ego vehicle is located and the traffic lights. Existing studies always use

history trajectories to recognize vehicle behavior using pattern classifications, fuzzy

logics, probabilistic finite-state machines or other technologies [115]. However, these

technologies all require sufficiently long trajectories, which lead to delayed time, and

these technologies have considerable computational requirements, which makes them

unsuitable for performing recognition of behaviors at a server with a massive number

of vehicles. According to the out direction of the driving lane and traffic light, it is

simple and accurate to achieve early detection of whether the vehicle is going to turn
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left, right or pass through. However, there is a case in which the motion cannot be

detected only using the out direction and traffic lights. This situation arises because

the traffic light may occasionally allow the three directions simultaneously. In this

case, the motion cannot be determined only by the directions of the lane and the

traffic light. As shown in Fig. 3.2, the lanes has three out directions: S/E, S/W

and S/N. Here, S is marked as the directing lane toward the south, E is marked as

the left lanes of the intersection toward the east, W is marked as the right lanes of

the intersection toward the west, and N is marked as the lanes across to the north.

Hence, S/E means that the driver turns left from the current lane to the east lanes,

and S/W and S/N have similar meanings. The motion may be to turn left or right or

pass through with the trajectories
⌢

PsPe,
⌢

PsPw, and
⌢

PsPn, as shown in Fig. 3.3. Here,

Pe, Ps, Pw, and Pn are four positions standing for positions to the east, south, west,
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and north, respectively, of the certain transition. For simplicity, this work considers

the curve trajectory of the motion from the ego vehicle, which is similar to 1/4 part

of an ellipse, as illustrated in Fig. 3, due to two accelerations changing, in which

one’s direction is the original direction and the other’s direction is the terminal one.

The details of the calculation of the two accelerations and corresponding velocity and

position will be discussed in Section IV, State Prediction. When a vehicle is arriving

from the south, it will have three probabilities: to turn left (go transe in Fig. 3), to

turn right (go transw in Fig. 3) and to go straight (go transn in Fig. 3). We will

discuss these three cases in the following. If

∣∣∣∣∣aT · v
|a| |v|

∣∣∣∣∣ > 1− ϵ, (3.15)

the motion is to pass through. If

aT · laneE > ϵ or aT · laneW < −ϵ, (3.16)

the motion is to turn left. If

aT · laneW > ϵ or aT · laneE < −ϵ, (3.17)

the motion is to turn right. laneE and laneW are column vectors. The aforementioned

ϵ is a positive value close to zero, indicating that it is sufficiently small. In this paper,

ϵ = 0.01.
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3.4.3 Transition Behavior

When a vehicle is in a transition, the driver can see the traffic light. Different traffic

lights can lead to distinct behaviors of the vehicle. Here, we consider that when a

driver faces a red or yellow traffic light, the driver will give the vehicle a constant

acceleration aδ. We also provide a vector e to represent the traffic light information:

e =



(1, 0, 0)T , if the traffic light is red

(0, 1, 0)T , if the traffic light is yellow

(0, 0, 1)T , if the traffic light is green

.

Thus, the constant acceleration vector can be represented as

δa = (aδ, aδ, 0)T , (3.18)

where each dimension indicates the acceleration of vehicle in corresponding traffic

light.

Hence, when the driver faces the traffic light, the acceleration that the driver will

provide is

a∆ = δT
a · e. (3.19)

3.5 State Prediction

Now, driving behaviors are modeled, and a decision tree can be created based on the

surroundings and driving behaviors in varieties of road segments. Our decision tree
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Figure 3.4: Decision tree based on driving behaviors

is illustrated in Fig. 3.4. The decision tree in Fig. 4 represents the aforementioned

situations in various road segments and their judgment conditions, and it will help

provide quick and easy determination and extension. First, it will be considered that

the ego vehicle is in a section, an intersection or a transition, and these cases will

be discussed individually. Note that in this work, when the ego vehicle is in the

intersection, it means that the ego vehicle has passed the beginning line and will no

longer consider traffic lights.

3.5.1 Prediction in Section

When the ego vehicle is in a section, it is considered whether the vehicle is changing

lanes. This is because if the vehicle is changing lanes, its velocity and acceleration are

not in the same direction, which will lead to a different trajectory. If the ego vehicle

is not changing lanes, it is considered whether the vehicle will change lanes based on

the aforementioned jam leaving intent and overtaking intent. These two intents are
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very common in reality. If the ego vehicle does not choose to change lanes, then there

are two intents for the driver of the ego vehicle: free driving intent and following

intent. To summarize, the prediction in a section could have four cases, A, B, C and

D, as indicated in Fig. 4.

1) A: When a vehicle is in a section sec and it is changing lanes, it has a velocity

v⊥ (t) and an acceleration a⊥ (t) whose directions are both perpendicular to sec.

During the lane change, the vehicle is supposed to have an acceleration a⊥ to first

accelerate and then −a⊥ to decelerate, where |a⊥| > 0 could be calculated from the

data set. Therefore,

a⊥ (t) =


a⊥ , t < t0

−a⊥ , t > t0

,

where t0 is the time point between accelerating and decelerating and t is during the

lane change. Moreover, v (t) = v⊥ could be calculated from the data set, and the

distance of changing the lane equals the lane width, which is also a known constant

mentioned in the previous discussion. Hence, the p(t) during the lane change and

the current time point could both be calculated. Then, the position after t∆ can be

determined as follows:

p∆ =


p (t + t∆) , if still changing

p (t + t′) +
∫ t+t∆

t+t′ v (t) dt , if changing is done

,

where p∆ is the position at time point t + t∆ and t + t′ is the time point when the

vehicle completes the lane change.
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2) B: This case is very similar to Case A, but the time point t is not during

the lane change but rather when starting to change lanes. Moreover, in Case A,

the acceleration could be calculated from the data set, whereas in this case, the

acceleration a⊥ (t) cannot be calculated from the data set. In this case, this work

assumes that the time for changing lanes is a known constant; then, the a⊥ (t) could

be calculated according to the distance of changing the lane, which equals the lane

width. Thus, the position after t∆ could be predicted by the method in Case A.

3) C: When a vehicle faces this case, the driver will choose free driving intent,

which was previously mentioned.

4) D: When a vehicle faces this case, the driver will choose following intent, which

was previously mentioned.

3.5.2 Prediction in Intersection

1) E: When a vehicle is in an intersection intersec, the driver could have three options:

to drive straight forward, to turn left and to turn right. The velocity vt at the current

time point can be calculated from the data set, and it will be compared with laneN ,

laneW and laneE to determine which direction the vehicle will go. Mathematically,

the direction that the vehicle will go is

direction =



laneW , v (t) · laneW > ϵ

laneE , v (t) · laneE > ϵ

laneN , otherwise

,
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where ϵ > 0 is a positive value that is sufficiently small, as previously mentioned.

ϵ = 0.01 in this paper. If direction = laneN , then the intersection intersec could

be considered as a section. If direction = laneW or direction = laneE, then

the vehicle has two accelerations that have the straight forward direction and the

direction the same as laneW or laneE, respectively. This work denotes the first

mentioned acceleration as ao (t) and the second mentioned acceleration as al (t). This

work assumes that in the intersection intersec, ao (t) is linearly increasing from zero

and al (t) is linearly decreasing to zero. That is, |ao (t)|+ |al (t)| is a constant during

turning. At some certain time point t0, ao (t0) and al (t0) could be calculated from

the data set; thus, we let

aΣ = |ao (t0)|+ |al (t0)| . (3.20)

From the data set of the map, the distance between the current time point and the

time point when the vehicle completes turning can be calculated. Hence, the time ts

remaining for turning can be obtained. Therefore,

ao (t0 + t) =
(
|ao (t0)| −

|ao (t0)|
ts

t

)
eo, t < ts, (3.21)

al (t0 + t) =
(
|al (t0)|+

|aΣ − al (t0)|
ts

t

)
el, t < ts, (3.22)

where eo is the direction of the original direction and el is the direction of direction.

The position after t∆ is
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p (t0 + t∆) =


p (t0) +

∫ t∆
0 v0 + a (t0 + t) dt , t < ts

p (t0 + ts) + (t∆ − ts) v′ , t > ts

,

where v′ is the velocity when the vehicle completes turning.

3.5.3 Prediction in Transition

1) F: When the driver faces a green traffic light and the vehicle could pass in time,

the case could be in a section (when the requested time point is not sufficient to pass)

or in a intersection (when the requested time point is sufficient to pass).

2) G: When the driver faces a green traffic light and the vehicle cannot pass in

time, the driver will stop the vehicle. The vehicle knows if some vehicle is in front of

it. If some vehicle is in front of it, the driver will have following intent. If no vehicle

is in front of it, the vehicle will calculate the distance between the current position

and the final stopped position, which is denoted as ds. This work assumes that the

vehicle will be stopped by a constant acceleration. The constant acceleration can be

calculated as

a = −|v (t0)|2

2ds

e, (3.23)

where e is the direction of the vehicle. Thus, the velocity and position are

v (t0 + t∆) = v (t0) + a · t∆, (3.24)
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p (t0 + t∆) = p (t0) +
∫ t∆

0
v (t0 + t) dt. (3.25)

3) H: This case could be separated into two time intervals: before and after the

traffic light turns green. Before the traffic light turns green, the driver would choose

following intent, while after the traffic light turns red, the case would be Case F.

4) I: Because the vehicle will stop as Case G, irrespective of whether some vehicle

is in front of it, the vehicle have the same intent as Case G.

3.5.4 Prediction Summary

We call the above proposed method as driver behavior decision tree (DBDT), which

obtains the relatively accurate trajectories of vehicles in a long term according to the

sudden changes such as acceleration, deceleration and turn. Moreover, to prevent

the prediction from going too far, this work includes the constant yaw rate and

acceleration (CYRA) [117] into our approach. CYRA is a physical kinematic-based

prediction method. It assumes that within a very short term, the force on a vehicle

remains unchanged and the vehicle would keep a constant accelerate vector, including

its accelerate direction and value. Thus, CYRA model regards the acceleration and

direction of vehicle as a constant to predict the vehicle state. Its constant acceleration

at is formulated as follows:

at = a0, (3.26)

where a0 is a constant value. Next, its velocity and position are calculated as follows:

vt =
∫ t

0
atdt, (3.27)
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pt =
∫ t

0
vtdt. (3.28)

The linearity of its state equation achieves a transmission of state probability dis-

tribution. The next vehicle state could be predicted based on this kind of constant

accelerate vector.

For a short term, the acceleration of vehicle can be considered as a constant,

CYRA can effectually adapt to this situation according to its constant acceleration

characteristics. Hence, CYRA can effectively handle the vehicle state prediction in

a short term so as to obtain more accurate results. However, it could result in a

great error for predicting the vehicle state in a long term because the acceleration of

vehicle continually changes. On the contrary, DBDT can detect the sudden change

of acceleration of vehicle to instantly adapt to current state so as to obtain better

results and avoid a great error, suggesting it is more suitable for predicting the vehicle

state in a long term. On the basis of both characteristics, this work finally adopts

the following formula to evaluate their performances.

TDBDT (t) = f (t) T
′

DBDT(t) + (1− f (t)) TCYRA(t), (3.29)

where T
′
DBDT(t) is the result of our approach and TCYRA(t) is the result of another

approach. f(t) is an increasing function, which means driving behavior recognition

is more suitable for long-term prediction and CYRA is more accurate for short-term

prediction. In this paper, f(t) = 1
4t.
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3.5.5 Time complexity

A time complexity comparison between DBDT and CYRA is discussed in this sub-

section. For DBDT, we set C to be the number of vehicles in the same lane. The time

complexity regarding prediction in section, intersection and transition is calculated

as follows:

1. Prediction in section

• Motion prediction

1) Jam Leaving Intent: Scanning vehicles in front of itself in the same lane needs

the time complexity Cm1 = O(c).

2) Overtaking Intent: Considering the vehicle in front of itself requires Cm2 =

O(1).

3) Following Intent: Calculating the vehicle in front of itself needs Cm3 = O(1).

4) Free Driving Intent: This situation takes Cm4 = O(1).

• Vehicle state prediction

A) Computing the location data of the lane and state of itself costs Cs1 = O(1).

B) Computing the location data of the lane and vehicle states in front of itself

needs Cs2 = O(c).

C) Computing the vehicle state in front of itself requires Cs3 = O(1).

D) Computing the state of itself takes Cs4 = O(1).
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Thus, the time complexity of prediction in section is

Csec =(Cm1 + Cm2 + Cm3 + Cm4) + max(Cs1, Cs2, Cs3, Cs4)

= O(c)
. (3.30)

2. Prediction in intersection

• Motion prediction

Predicting the vehicle motions by the traffic light data and the location data of

intersection lanes costs the time complexity Cm = O(1).

• Vehicle state prediction

E) Computing the vehicle state of itself and intersection lanes data needs Cs =

O(1).

Therefore, the time complexity of prediction in intersection is

Cintersec = Cm + Cs = O(1). (3.31)

3. Prediction in transition

• Motion prediction

When a vehicle is in a transition, its motion is predicted by the traffic light. This

operation needs Cm = O(1).

• Vehicle state prediction

F) When the driver faces the green traffic light and the vehicle could pass in

time, computing the state of itself needs Cs1 = O(1).
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G) When the driver faces the green traffic light and the vehicle could not pass

in time, computing the vehicle state and traffic light time requires Cs2 = O(1).

H) When the driver faces the red traffic and the traffic light turns to green before

it passes the transition, computing the vehicle state and traffic light time requires

Cs3 = O(1).

I) When the driver faces the red traffic and the traffic light keeps red before

it passes the transition, computing the vehicle state and traffic light time costs

Cs4 = O(1).

Thus, the time complexity of prediction in transition is

Ctrans = Cm + max(Cs1, Cs2, Cs3, Cs4) = O(1). (3.32)

The number of vehicles is set to be n for prediction. Consequently, the whole time

complexity about DBDT is C = max(Csec, Cintersec, Ctrans) = n ∗ O(c) = O(n). For

CYRA, each vehicle is predicted by the data of itself. Hence, its time complexity is

O(n) [117]. According to both time complexity, we can find that DBDT and CYRA

have the same time complexity, suggesting they possess the same efficiency.

3.6 Results and Analysis

To test whether our work is valid, experiments are conducted in a real environment,

which is based on the Lankershim Boulevard Dataset of the Next Generation Simu-

lation (NGSIM) program [126]. The Lankershim Boulevard Dataset collects detailed

vehicle trajectory data from Lankershim Boulevard in the Universal City neighbor-
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Table 3.2: Data Set Parameters

Lankershim Boulevard Dataset Parameters
Address Lankershim Boulevard in Los Angeles

Time 8:28-8:45 am & 8:45-9:00 am on 2005.6.16
Road Length 490 m

Intersection Number 4
Sampling Time 1/10 s

Lane Number (Same direction) 1-6
Provides Traffic Light Data Yes
8:28-8:45 am Data Amount 705294 Records

8:28-8:45 am Vehicle Number 1375
8:45-9:00 am Data Amount 902025 Records

8:45-9:00 am Vehicle Number 1601

hood of Los Angeles. It provides the map of an area of Lankershim Boulevard, includ-

ing three to four lane segments and covering three signalized intersections. Moreover,

the traffic light data and the precise vehicle position, velocity and acceleration in the

periods of 8:30 a.m. and 8:45 a.m. on June 16, 2005, are available. The Lankershim

Boulevard Dataset covers the driver behavior of lane changing on congested segments,

overtaking and behavior at traffic lights, which fits the experimental requirements of

this work. The details of the Lankershim Boulevard Dataset are listed in Table 3.2.

This work creates a model for the provided map in the Lankershim Boulevard Dataset

to extract location data of sections, intersections and transitions. Then, this work ex-

tracts traffic light information, and thus, it obtains all road information. By inputting

trajectory information of vehicles, this work will compare our approach (DBDT for

short) to CYRA [117], DT which is a variant of DBDT by setting f(t) = 1 in Eq.

(29), and SDT [93,94] which is a self-selection threshold decision algorithm based on

decision tree in four cases: t∆ = 1s, t∆ = 2s, t∆ = 3s and t∆ = 4s, respectively.

The results for the accuracy of position prediction are shown in Fig. 3.5, those for

the accuracy of velocity prediction are shown in Fig. 3.6, and those for the accuracy
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Figure 3.5: Accuracy of position prediction.

of acceleration prediction are shown in Fig. 3.7. The results show that although

the state predicted by our approach is not very accurate at the beginning, the state

is more accurate than that of CYRA as time passes. This is because our approach

provides early detection of the driving behavior, which leads to changing the state at

the very beginning of the prediction time point. Moreover, the vehicle state includes

the ego vehicle’s position, velocity and acceleration, for which the importances are

decreasing in many fields. For example, to avoid traffic accidents, the vehicle position

prediction is the most essential. Considering the discontinuous acceleration, the three

vehicle state components, which are the position, the velocity and the acceleration,

are becoming more difficult. Thus, it is expected that from the numerical results, the
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position prediction is the best, the velocity prediction is not good when ∆t = 1s, and

the acceleration prediction is not good when ∆t = 1s or ∆t = 2s. As time passes, the

numerical results become better. From the results, the difference value between the

previous one second and the next one second becomes increasingly smaller. Thus, as

time lasts past a certain range, the state prediction will be more accurate than that

of CYRA.

Additionally, the results of DBDT are better than those of DT, suggesting that the

key to the good performance of our proposal is the incorporation and extension of the

decision tree and CYRA. In comparison with SDT which generally utilizes thresholds

to determine the state selection in a decision tree, our proposal performs better with

the aid of accurate modelling of the driving behaviors. Moreover, in light of the
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results, we believe that more research on how to use driving behaviors of vehicle in

the varieties of the all road segments to predict or monitor vehicle drivers by decision

trees is warranted.

3.7 Conclusion

This paper highlights that the previous approaches for predicting the vehicle states

using the substantial history information have a delayed prediction time. Some trajec-

tory prediction methods based on lane changing recognition are proposed. Although

a validation method for complicated environments such as multi-lanes and intersec-

tions is not currently available, this paper proposes a new method for the prediction
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by using a decision tree in varieties of road segments generated by the driving be-

haviors. This decision tree helps to detect driving behaviors and predict the vehicle

state in all road segments, including sections with multi-lanes, transition segments

and intersections. The driving behavior recognition improves the accuracy of vehicle

state prediction in long-term cases. Our approach shows advantages in the provided

real environments.

Social Internet of Vehicles is an important and intelligent transport network [127].

It has more characteristics and more complicated circumstances. Thus, to predict

this kind of IoV is more meaningful and challenging in the future work. Furthermore,

the proposed technique might lead to the development of vehicle networking and

intelligentialization [128], as well as to provide effective methods to solve vehicle

routing problems in dynamic environments [69].
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Chapter 4

Chaotic Grey Wolf Algorithm for
Numerical Optimization Problems

Grey wolf optimization algorithm (GWO) is a recently proposed meta-heuristics and

has shown promising performance in solving complex function optimization and en-

gineering problems. To further enrich the search dynamics of GWO, the chaotic local

search (CLS) mechanism is incorporated into GWO to enhance the search by taking

the properties of ergodicity and randomness of chaotic maps. Twelve different kinds

of chaotic maps are investigated to give some insights into the influence of CLS on

GWO. Experimental results based on 29 widely used benchmark functions suggest

that CLS indeed enables GWO to possess better performance in terms of solution

accuracy, solution distribution, and convergence property. Summarized results also

reveal that the performance of the resultant chaotic grey wolf optimization (CGWO)

algorithm is effected not only by the characteristics of the embedded chaotic map,

but also by the landscape of the solved problems.
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4.1 Introduction

In the past two decades, various meta-heuristics have been proposed by taking inspi-

rations from evolutionary theories, physical phenomenon, immunological mechanism,

social behaviors, etc. Some famous ones can be listed as follows: genetic algorithm,

evolution programming, differential evolution, ant colony optimization, scatter search,

simulated annealing, particle swarm optimization [129]. These meta-heuristics can

be categorized into classes according to: single-solution-based or population-based,

model-based or instance-based, with or without memory. Regardless the differences

among meta-heuristics, the unity procedure of their implementation involves four

steps: (1) initialization of parameters and solutions and set iteration number to be

zero; (2) generate candidate solution set according to generation rules and sampling

distributions; (3) Update solution and parameter set; and (4) If termination condi-

tions are satisfied, stop and exit; otherwise return to step (2). Following this general

implementation process, meta-heuristics have achieved great success in solving various

problems arisen from engineering, bio-informatics, complex networks, etc.

Although dozens of meta-heuristics have been proposed in the literature, it is still

a great demand and challenging to design more new meta-heuristics. The famous No

Free Lunch theorem [130] demonstrates that there is no meta-heuristics best suited

for solving all optimization problems. New meta-heuristics can bring new inspira-

tions, mechanisms, motivations and characteristics for the problem-solving research

community. Grey wolf optimization algorithm (GWO) is such an answer for this

request. By mimicking the social leadership and hunting behavior of grey wolves in

nature, GWO performs the search in problem’s landscape with a distinct character-
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Table 4.1: Typical meta-heuristics and the corresponding chaotic meta-heuristics.

Algorithm Reference
Original Chaotic Version

Evolutionary Algorithm [131] [132]
Differential Evolution [133] [134,135]
Artificial Bee Colony Algorithm [136] [137–139]
Ant Colony Optimization [69] [140]
Artificial Fish-Swarm Algorithm [141] [142–144]
Monkey Search Algorithm [145] [146]
Cuckoo Search Algorithm [147] [148–150]
Firefly Algorithm [151] [152–155]
Krill Herd Algorithm [156] [157]
Biogeography-Based Optimization [158] [159–161]
Particle Swarm Optimization [162] [163–165]
Gravitational Search Algorithm [166] [167–169]
Bat Swarm Optimization [170] [171,172]

istic of well-balance of exploration and exploitation, and has shown very competitive

results compared to other well-known meta-heuristics [1]. Nevertheless, compared to

some state-of-art optimization algorithms, GWO is usually outperformed due to its

oversimplified search dynamics. Thus, in this study we for the first time incorporate

chaotic search mechanism into GWO to further improve its performance.

In the field of optimization, it is widely accepted that the ergodicity and random-

ness of chaos are powerful mechanisms to avoid falling into the local search process.

In the literature, most meta-heuristics have been attempted to combine with chaotic

mechanisms. Table 4.1 summarizes some typical meta-heuristics and their improved

ones by incorporated chaos. It should be pointed out that Table 4.1 is not aiming

to give a comprehensive summary of such chaotic combinations, but to reveal that

chaotic mechanisms indeed enable algorithm to possess better performances. Thus, it

is natural and interesting to find out the effect of chaos on GWO. This work considers

12 kinds of chaotic maps to perform the chaotic local search (CLS). It is apparent

that different chaotic maps have distinct distribution characteristics and the related
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CLS thus manipulates different search dynamics. The motivation of this study is

two-fold: (1) the verification of the effects of CLS on GWO should be made; and

(2) the insights of which chaotic map is most suitable for GWO should also be giv-

en. To realize these, extensive experiments are conducted based on 29 widely used

benchmark functions. Simulation results suggest that CLS indeed enables GWO to

possess better performance in terms of solution accuracy, solution distribution, and

convergence property. Further discussions also reveal that the performance of CGWO

is effected not only by the characteristics of the embedded chaotic map, but also by

the landscape of the solved problems.

4.2 Grey Wolf Optimization

GWO is a population-based meta-heuristic which is inspired by the mechanism of

the hunting behavior and social leadership rule of grey wolves. GWO involves five

procedures to perform the search for an optimization problem: social hierarchy di-

vision, encircling prey, hunting, attacking prey, and search for prey. Fig. 4.1 gives

a conceptual graph of GWO. In social hierarchy procedure, the whole population of

wolves is divided into four groups. The first three leader wolves (i.e., with highest

fitness for an optimization problem) α, β, and δ can guide other wolves (denoted by

ω) to move toward promising search areas. In encircling prey procedure, grey wolves

encircle prey during the hunt (as shown in Fig. 4.1) according to the following rules:

D⃗ = |C⃗ · X⃗p(t)− X⃗(t)|, (4.1)
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Figure 4.1: Conceptual graph of the mechanism of grey wolf optimization.

X⃗(t + 1) = X⃗p(t)− A⃗ · D⃗, (4.2)

where t denotes the iteration number, X⃗p and X⃗ indicates the position of the prey

and a grey wolf respectively. A⃗ = 2a⃗ · r⃗1 − a⃗, C⃗ = 2r⃗2, the components of parameter

a⃗ are linearly decreased from 2 to 0 along with the iteration, and r⃗1, r⃗2 are random

vectors in [0, 1].

After recognizing the position of the prey, a hunting process is carried out by

moving the ω wolves which are guided by the leader wolves based on the following
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equations:

D⃗i = |C⃗i · X⃗i(t)− X⃗(t)|, i = {α, β, δ}, (4.3)

X⃗(t + 1) =
∑

i={α,β,δ} X⃗i(t)− A⃗i · D⃗i

3
, (4.4)

where X⃗i (i = {α, β, δ}) denotes the position of the leader wolves α, β, and δ re-

spectively. C⃗i and A⃗i are random vectors. After hunting, the ω wolves update their

positions randomly around the prey by the guided leader wolves who estimate the

position of the prey.

The attacking prey and search for prey procedures are automatically realized de-

pending on the values of two vectors A⃗ and C⃗. From the optimization perspective,

the attacking prey is an exploitation process which aims to make the search converge

to promising solutions, while the search for prey process is an exploration to diverge

the search and thus has ability of jumping out of the local optimal solution. As illus-

trated in Fig. 4.1, the exploration takes place when A⃗ is greater than 1 or less than

-1, or when C⃗ is greater than 1. On the contrary, the exploitation is performed when

|A| < 1 and |C| < 1. More details of GWO should be referred to as in [1].

4.3 Chaotic Grey Wolf Optimization

In this paper, we for the first time incorporate chaotic search mechanisms into GWO

to further improve its search performance. Twelve different chaotic maps shown in

Table 4.2 are utilized to generate chaotic variable sequences. In the literature, there



61

Table 4.2: The definition of twelve chaotic maps.

Name Equation
Logistic map zk+1 = 4zk(1− zk)

PWLCM zk+1 =
{

zk/0.7, zk ∈ (0, 0.7)
(1− zk)(1− 0.7), zk ∈ [0.7, 1)

Singer map zk+1 = 1.073(7.86zk − 23.31z2
k + 28.75z3

k − 13.302875z4
k)

Sine map zk+1 = sin(πzk)
Sinusoidal map zk+1 = 2.3z2

ksin(πzk)

Tent map zk+1 =
{

zk/0.4, 0 < zk ≤ 0.4
(1− zk)/0.6, 0.4 < zk ≤ 1

Bernoulli map zk+1 =
{

zk/0.6, 0 < zk ≤ 0.6
(zk − 0.6)/0.4, 0.6 < zk < 1

Chebyshev map zk+1 = cos(0.5 cos−1 zk)
Circle map zk+1 = zk + 0.5− 1.1

π sin(2πzk)mod(1)
Cubic map zk+1 = 2.59zk(1− z2

k)

Gaussian map zk+1 =
{

0, zk = 0
(1/zk)mod(1) zk ̸= 0

ICMIC zk+1 = sin(70/zk)

are two kinds of incorporation schemes of chaos when embedding into meta-heuristics.

One is to use chaotic maps to generate chaotic sequences to substitute the random

numbers in the original algorithm, e.g. [132]. The other scheme which is usually

considered to be more effective is to use chaos to perform a chaotic local search

(CLS). In this study, twelve variants of CLS derived from twelve different chaotic

maps are proposed to embed into GWO. The pseudo code of CLS is shown as in

Algorithm 1.

Algorithm 1: CLS
begin

Set the parameters of a chaotic system;
According to the selected chaotic system, get a chaotic sequence;
Choose the best individual X⃗α in the current population;
Superimpose an item of the chaotic sequence on X⃗α in any dimension to form a new
individual that is marked as X⃗n, using
X⃗n = X⃗α + r(U − L)(z − 0.5);
Calculation the fitness value of the new individual X⃗n;
for the optimization function f do

if f(X⃗α) > f(X⃗n) then
X⃗α ← X⃗n
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In Algorithm 1, the search neighborhood of X⃗n is conducted in a hypercube whose

center is X⃗α with a radius r. U and L are the search upper and lower boundary

of the search space respectively. z is a chaotic variable generated by the selected

chaotic map. The search range is narrowed along with the iteration of the algorithm

via r(t + 1) = 0.988r(t). Based on the GWO and CLS, the CGWO is proposed as

shown in Algorithm 2. It is worth emphasizing that the local search is only applied to

the current best wolf X⃗α obtained from the GWO. Compared with carrying out local

search on all wolves, it is expected that this scheme can not only save computational

times, but also produce competitive good solutions.

Algorithm 2: CGWO
begin

Initialize the grey wolf population X⃗i(i = 1, 2, ..., N);
Initialize a⃗, A⃗, and C⃗;
Calculate the fitness of each search agent;
X⃗α = the best search wolf;
X⃗β = the second best search wolf;
X⃗δ = the third best search wolf;
while t < Maximal number of iterations do

for Each search wolf do
Update the position of the current search wolf by Eq. (4);

Update a⃗, A⃗, and C⃗;
Calculate the fitness of all search wolves;
Update X⃗α, X⃗β , and X⃗δ;
Implement chaotic local search approach (CLS) based on a selected chaotic map;
Decrease chaotic local search radius using r(t + 1) = 0.988r(t);
t = t + 1;

Return X⃗α;

4.4 Experimental Results and Discussions

To verify the performance of the proposed CGWO, 29 widely used benchmark func-

tions are used where the fist 23 ones are classical functions [173] and the last 6 ones
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are taken from CEC 2005 [174]. To be specific, F1 and F5 are unimodal functions;

F6 is a step function which has only one minimum and is discontinuous; F7 is a noisy

quartic function; F8-F13 are multimodal functions with plenty of local minima and

the number of the local minima in these functions increase exponentially with the

dimension of the function; F14-F23 are low dimensional functions which only have

a few local minima. These functions can successfully test the searching capacity of

algorithms in terms of convergence speed and global exploration ability. In other

words, unimodal functions are able to reflect the convergence speed of the algorithm

in a direct manner, and multimodal ones are likely to estimate the algorithms’ ability

of escaping from local minima. F24-F29 are shifted or rotated functions where global

minima lie at a fixed location of the search range (difficult to be predicted in advance)

and linkage among the variables exists to make these variables are non-separated, and

thus make the optimal solutions for these functions hard to be found.

The GWO algorithm and the proposed 12 variants of CGWO algorithms are imple-

mented for 30 independent runs to make a performance comparison. The parameters

in these algorithms are set to be identical. That is: the population size of wolves is

N = 30, the maximal number of iteration is Tmax = 500, the parameter a = 2−t× 2
Tmax

where t denotes the iteration number, the initial value of chaotic number z0 = 0.152,

and the initial search radius r(0) = 0.0001. The experimental results for 29 functions

are summarized in Tables 4.3- 4.7, where average values (Average) and standard de-

viation (SD) of 30 runs are recorded in the form of “Average ± SD”. The best values

among all compared 13 algorithms are emphasized using bold fonts. From Tables

4.3- 4.7, it is apparent that CGWO outperform GWO on 27 out of 29 functions in
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terms of solution accuracy. It suggests that CLS indeed enables GWO to find better

solutions by enriching the search dynamics in a local search manner. Not surprisingly,

it is difficult to find out which chaotic map consistently improve the performance of

GWO over all tested functions, inferring that the search performance of CGWO is

effected not only by the characteristics of the embedded chaotic map, but also by the

landscape of the solved problems.

To further give some insights into the search results of the compared algorithms,

the final solutions’ distribution obtained from 30 runs for F27 and F29 are plotted

in Fig. 4.2 using the box-and-whisker diagram. Both two functions are very hard

to be solved, thus the robustness of all algorithms is sensitive, i.e., many outlier

solutions exits. Nevertheless, CGWO generally possesses smaller values in terms of

minimum, median, first quartile, third quartile and maximum. On the other hand,

Figs. 4.3 and 4.4 depict the convergence graph of all compared algorithms for F27

and F29 respectively. From Figs. 4.3(a) and 4.4(a), it is clear that all algorithms

converge quickly in the early search phases and slow down in latter phases, and

CGWO generally converges faster than GWO. In addition, we define the ratio of

best-so-far solutions found by 12 chaotic maps to those found by GWO verse the

iteration. For Figs. 4.3(b) and 4.4(b), the values above the horizontal line (i.e.,

represented GWO) means worse solutions found by the chaotic algorithm than those

by GWO, and below the line indicates a better performance. These two figures clearly

show that CGWO significantly outperform GWO in the latter search phases, and thus

overall has a better performance in terms of solution accuracy, solution distribution,

and convergence property.
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Figure 4.2: Solution distribution for (a) F27 and (b) F29.



66

0 50 100 150 200 250 300 350 400 450 500
200

400

600

800

1000

1200

Generation

A
v

e
ra

g
e

 b
e

st
−

so
−

fa
r

Convergence Graph: F27

 

 

 

 

 

 

 

 

GWOLogistic

PWLCM

Singer

Sine

Sinusoidal

Tent

Bernoulli

Chebyshev

Circle

Cubic

Gauss

ICMIC

0 50 100 150 200 250 300 350 400 450 500
0.85

0.9

0.95

1

1.05

1.1

Generation

R
a

ti
o

 o
f 

b
e

st
−

so
−

fa
r 

so
lu

ti
o

n

 

 

 

 

 

 

 

 

(a)

(b)
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4.5 Conclusion

In this paper, we incorporated twelve kinds of chaotic maps into grey wolf optimization

(GWO) to further improve its search performance. Experimental results suggested

that chaotic local search definitely improves the search capacity of GWO by taking

advantage of the ergodicity and randomness of chaos, especially on latter search

phases. The resultant chaotic grey wolf optimization (CGWO) thus is more capable

of jumping out the local minimum and well balance the exploration and exploitation.

The results motivated us to further investigate the different influence of different

chaotic maps on GWO, and thereafter give some insights into the design of other

chaotic meta-heuristics.
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Chapter 5

General Conclusions and Remarks

Natural Computing is a field of research in the field of computational computing

technology for human beings. This computing technology is inspired both by nature

and by computers in nature, that is, it studies naturally inspired models and com-

putational techniques, studies information processing what happened in nature. The

field of natural computing has been the focus of much research in recent decades.

In this dissertation, I will give a brief review of the natural algorithms and artificial

intelligence.

In chapter 1, we systematically reviewed Natural computing, Artificial intelligence,

Machine learning, Heuristic and Metaheuristic.

In chapter 2, we introduce two kinds of nature-inspired algorithms: Decision tree

and Gray wolf optimization.

And in this dissertation, we introduced two nature-inspired intelligent algorithms

for optimization and prediction problems. They are summarized as follows.

In chapter 3, points out that the previous approaches for predicting the vehicle

states by the heavy history information and has a delayed prediction time. Some

trajectory prediction methods based on lane changing recognition are proposed. While
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a validation method for complicated environment such as multi-lanes and intersection

is not available now, this paper proposes a new method for the prediction by using a

decision tree in varieties of road segments generated by the driving behaviors. Such

decision tree helps to detect driving behaviors and predict the vehicle state in all road

segments including sections with multi-lane, transition segment and intersections.

The driving behavior recognition improves the accuracy of vehicle state prediction in

long term case. Our approach shows advantages in the provided real environments.

Furthermore, the proposed technique might lead to the development of vehiclesąŕs

networking and intelligentialization, and also for providing effective methods to solve

vehicles routing problems in dynamic environments.

In chapter 4, we incorporated twelve kinds of chaotic maps into gray wolf opti-

mization (GWO) to further improve its search performance. Experimental results

suggested that chaotic local search definitely improves the search capacity of GWO

by taking advantage of the ergodicity and randomness of chaos, especially on latter

search phases. The resultant chaotic grey wolf optimization (CGWO) thus is more

capable of jumping out the local minimum and well balance the exploration and ex-

ploitation. The results motivated us to further investigate the different influence of

different chaotic maps on GWO, and thereafter give some insights into the design of

other chaotic meta-heuristics.

Based on the work I have done, I will focus on the following points in my future

research.

First of all, go a step further on various kinds of algorithm mechanisms of Nature-

inspired intelligent algorithms. That is because only with deeper understanding of
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Nature-inspired intelligent algorithms, it could be possible to keep digging in the

study of the construction (or architecture) of new algorithm. Then, improve the

performance of the current existent Nature-inspired intelligent algorithms and apply

them to solve problems in new fields.

Last but not least, Nature-inspired intelligent algorithms can combine with other

computational intelligence algorithms for solving much complex problems.
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