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Abstract 

 

Diabetic retinopathy (DR) is a leading cause of blindness. DR is recognized as a 

microvascular disease and inner retinal neurodegeneration. In the course of retinal 

neurodegeneration, N-methyl-D-aspartate receptor (NMDAR)-mediated excitotoxicity is 

involved. Full activation of NMDAR requires binding of agonist glutamate and 

coagonist glycine or D-serine. D-Serine is produced from L-serine by serine racemase 

(SRR) and contributes to retinal neurodegeneration in rodent models of DR. However, 

the involvement of SRR in both neurodegeneration and microvascular damage in DR 

remains unclear. Here, I established diabetic model of SRR knockout (SRR-KO) and 

control wild-type (WT) mice by streptozotocin injection. Six months after the onset of 

diabetes, the number of survived retinal ganglion cells was higher in SRR-KO mice 

than that of WT mice. The reduction of thickness of inner retinal layer (IRL) was 

attenuated in SRR-KO mice than that of WT mice. Moreover, the number of damaged 

acellular capillaries was lower in SRR-KO mice than that of WT mice. My results 

suggest the suppression of SRR activity may have protective effects in DR. 
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Introduction 

 

   Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus 

that results from damage to the blood vessels of the retina. DR involves microvascular 

changes, such as blood-retinal barrier breakdown and death of endothelial cells and 

pericytes [1]. Abnormalities in the retinal vessels including basement membrane 

thickening and pericyte loss are early signs of the development of DR in human [2]. 

Furthermore, acellular capillaries, which have empty basement membrane sleeves, are 

caused by the damage to the vessels due to obliteration of retinal microvessels [2]. The 

apparance of acellular capillaries is reported as an irreversible result of diabetes-induced 

endothelial cell apoptosis [3]. DR is not only a microvascular disease but also a 

neurodegenerative disease. Rodent models have been used to investigate the 

mechanisms of retinal cell damage in diabetes. The streptozotocin (STZ)-induced 

diabetes resulted in increase in neural cell apoptosis in the retina and reduction in the 

thickness of the inner retinal layer as a consequence of diabetes [4, 5].  

  Glutamate is the major excitatory amino acid which plays an important role as a 

neurotransmitter in the mammalian central nervous system [6]. Functions of glutamate 

are mediated by glutamate receptors. Glutamate excitotoxicity has been proposed to 
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contribute to the death of retinal ganglion cells (RGCs) in glaucoma and DR [7, 8]. 

Glutamate excitotoxicity on RGCs are predominantly mediated by the overstimulation 

of N-methyl-D-aspartate receptor (NMDAR) [9]. NMDARs are composed of 

glycine-binding subunit (GluN1) and glutamate-binding subunit (GluN2) [10].  

D-Serine acts as an endogenous co-agonist for the glycine-binding site of the NMDAR 

[11]. In the retina, D-serine is present in the inner retina and serves as an endogenous 

co-agonist of NMDAR [12]. The synthesis of D-serine from L-serine is catalyzed by 

serine racemase (SRR) [13]. I reported previously that the genetic disruption of SRR 

(SRR-KO) attenuates NMDA-mediated excitotoxicity in the forebrain [14]. SRR also 

has been detected in retina [15], and expression of SRR is increased in DR rat retina 

[16]. Recently, it also has been reported that SRR mutation in mouse attenuates the 

NMDAR-mediated acute excitotoxicity in the retina [17]. However, whether SRR is 

involved in both neurodegeneration and microvascular damage in long-term DR 

remains unclear. 

   In this study, I examined the expression of SRR in mouse retina, and compared the 

degeneration of retinal neuronal cells and retinal microvascular damage between 

diabetic wild type (WT) and SRR knockout (SRR-KO) mice in long-term diabetes. My 

results showed the attenuation of degeneration of retinal neuronal cells and 
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microvascular damage induced by diabetes in SRR-KO retinas. 

 

Materials and methods 

 

Induction of experimental diabetes in mice 

 

   SRR-KO mice with 100% C57BL/6 genetic background were generated as 

previously described [18]. Animal care and experimental protocols were carried out 

basically in accordance with“Guidelines for the Care and Use of Laboratory Animals, 

DHEW, publication no. (NIH) 80-23, revised 1996” and approved by the Experimental 

Animal Committee of the University of Toyama (Authorization No.2015-MED-61). 

Diabetes was induced at eleven week-old C57BL/6 WT mice and SRR-KO mice. Mice 

were received intraperitoneal injections of 60 mg/kg STZ (Sigma-Aldrich, St.Louis, 

MO) dissolved in sodium citrate buffer (0.05 M, pH 4.5) on three successive days. After 

STZ injection, mice were weighed and measured blood glucose levels with a 

glucometer (STAT STRIP XPRESS; Nova biomedical, Japan). Mice with blood glucose 

levels higher than 300 mg/dl at 1 weeks after the STZ injection were considered to be 

diabetic. Mice were weighed for 24 weeks post-STZ treatment. Age-matched, 
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non-treated WT and SRR-KO mice were used as the control. Mice were sacrificed after 

6 months from the onset of diabetes.  

 

Western blot analysis 

 

   Non-treated control and STZ-injected WT and SRR-KO mice were anesthetized 

with pentobarbital sodium (100 mg/kg body weight) by intraperitoneal injection and 

perfused with phosphate buffered saline (PBS, pH 7.4). Eyes were enucleated and 

retinas were collected. Retinas were homogenized in mammalian protein extraction 

reagent (Pierce, Rockford, IL). Protein concentration was measured by using a 

Bicinchoninic acid (BCA) Protein Assay kit (Thermo Scientific, USA). Extracted 

protein was subjected to SDS-PAGE and transferred onto polyvinylidene difluoride 

membrane. The membranes were blocked with 5% skim milk in PBS containing with 

0.1% Tween 20 (PBS-T) and then incubated with rabbit polyclonal anti-SRR (1:500)  

[19], or anti-actin antibodies (1:2000, Santa Cruz, CA) for overnight at 4°C. After 

washing in PBS-T for three times, the membranes were incubated with HRP-conjugated 

goat anti-rabbit IgG antibody (1:5000, Invitrogen, Carlsbad, CA) for 1 h at room 

temperature (RT). Protein bands were detected using an ECL chemiluminescence 
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detection system and Image Quant LAS-4000 Mini (GE Healthcare, Uppsala, Sweden). 

 

Immunofluorescence staining of mouse retina 

 

   For the preparation of frozen sections, the enucleated eyes were fixed in 0.1 M 

phosphate buffer (PB, pH 7.4) containing 4% paraformaldehyde (PFA) for overnight at 

4°C and dipped in 0.1M PB containing 30% sucrose for 36 h at 4°C. Eyes were placed 

into the cryomold which was filled with tissue freezing compound (OCT, Sakura 

Finetek, USA) and were frozen in dry ice. Cryosections (20 μm) including a full length 

of retina passing through the optic nerve were prepared using a freezing microtome. For 

SRR immunostaining, sections of retina were washed in PBS, and blocked with Protein 

Block Serum-Free (DakoCytomation, Carpinteria, CA) for 10 min, and incubated with 

rabbit polyclonal anti-SRR antibody (1:200) [19], diluted in PBS containing 0.1% 

Triton X-100 for overnight at 4°C. On the following day, the samples were washed 

three times in PBS and incubated with a secondary antibody, 

Alexa-Fluor-488-conjugated donkey anti-rabbit IgG (1:500, Invitrogen, Carlsbad, CA) 

for 1 h at RT. The sections were washed in PBS, and stained with DRAQ5 (Thermo 

Scientific, USA) for nuclear counterstain. After washing in PBS, the sections were 
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coverslipped. 

  For the preparation of flatmount retinas, eyes were fixed in PBS containing 4% PFA  

for 30 min and were dissected as flattened wholemounts by making four radial cuts, 

then permeabilized in PBS containing 0.1% Triton-X for 30 min. After blocking with 

the Protein Block Serum Free, the retinas were incubated with goat anti-Brn3 antibody 

(1:200, Santa Cruz, CA) diluted in PBS containing 1% bovine serum albumin (BSA) or 

rabbit anti-collagen IV antibody (1:200, Chemicon, USA) and isolectin B4 (1:100, Enzo 

Life Sciences, Switzerland) diluted in PBS containing 0.1% horse serum overnight at 

4 °C. After washing three times in PBS, retinas were incubated with Alexa-Fluor-647 

conjugated species-specific secondary antibodies (1:500, Invitrogen, Carlsbad, CA) for 

2h at RT. The retinas were then washed in PBS, flattened and mounted on a glass slide, 

and coverslipped. Images were taken using a confocal laser scanning microscope (Leica 

TCS-SP5, Leica Microsystems, Mannhein, Germany). The number of Brn3 

immunopositive cells in proximal and distal area of each retina images were quantified 

using MetaMorph software (Universal Imaging Corp, West Chester, PA). Acellular 

capillaries were visualized by continuance of collagen IV positive and isolectin-B4 

negative. Fifteen images per retina were analyzed to count acellular capillaries. All 

measurements were conducted in a mouse genotype-blind manner. 
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Hematoxylin and eosin staining in eyeball cryosections 

 

   Cryosections of retinas were prepared as described above and stained with 

hematoxylin and eosin (H&E). Images of H&E-stained sections were taken with 

Keyence BZ-X700 microscope (Keyence, Osaka, Japan). The thickness of the inner 

retinal layer (IRL) was measured at a distance of 0.5 to 1.0 mm from optic disc. 

 

Statistical Analysis 

 

   Statistical analyses were performed using two-tailed Student's t-test for comparison 

of two groups or one-way ANOVA followed by Turkey's post hoc test for comparison of 

multiple groups. All results are expressed as mean ± S. E. M. Values of p < 0.05 were 

considered to be statistically significant. 

  

Results 

 

Establishment of DR mouse model 
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  To establish the DR model in WT and SRR-KO mice, I injected STZ to the mice at 

the age of 11 weeks and monitored their body weight and blood glucose level. There 

was no significant difference between WT and SRR-KO mice in body weight and blood 

glucose level before STZ injection. After the STZ injection, WT and SRR-KO mice 

gained body weight slightly (Fig 1A). They exhibited an elevation of blood glucose 

level over 300 mg/dl (our definition of diabetes in this study) 1 week after the STZ 

injection and maintained high blood glucose levels thereafter (Fig 1B). There was no 

significant difference in body weight and blood glucose level after STZ injection 

between WT and SRR-KO mice. 

 

Fig 1. Generation of STZ-induced diabetic mice. Eleven week-old wild type (WT) (n 

= 10) and serine racemase knockout (KO) mice (n = 10) were injected with STZ (60 

mg/ kg) for 3 consecutive days. Body weight (A) and blood glucose levels (B) were 

measured for 24 weeks post-STZ treatment.  

 

Expression of SRR in the retina of mice 
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I examined the expression of SRR in the retina using western blot analysis and 

immunohistochemistry (IHC). I detected the band of SRR with expected molecular 

weight of ~38 kD in WT mice but not in SRR-KO mice (Fig 2A). I examined the 

localization of SRR in the retina of control and diabetic mice (6 months after STZ 

injection) using anti-SRR antibody. Immunopositivity of SRR was detected in the GCL 

of the retina in WT but not in SRR-KO mice. Immunopositivity of SRR was increased 

in the GCL and IPL in diabetic WT mice (Fig 2B). The specificity of SRR 

immunopositive signal was evaluated by using SRR-KO mice as negative controls (Fig 

2B). 

 

Fig 2. Expression of SRR in mouse retina. (A) Western blot analysis of retina proteins 

in control (non-treated) WT and KO mice using anti-SRR (upper) and anti-actin (lower) 

antibodies. The position of protein size markers are indicated on the right side.  

(B) Immunofluorescence staining of mouse retina from non-treated (Control) and 

STZ-induced diabetes mellitus (DM) mice using anti-SRR antibody (magenta). Nuclei 

were counterstained with DRAQ5 (blue). Arrows indicate the SRR-immunopositive 

signals. Scale bar = 50 m. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, 

inner nuclear layer; ONL, outer nuclear layer. 
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Attenuation of retinal neuronal cell loss in diabetic SRR-KO mice  

 

To examine the role of SRR in retinal neurodegeneration in diabetic mice, I 

quantified the number of RGCs expressing Brn3 in WT and SRR-KO mice. There was 

no significant difference in the number of RGCs between control WT and SRR-KO 

mice (Fig 3A, 3B). Six months after the onset of diabetes, in the proximal area of retinas, 

I found that the number of RGCs expressing Brn3 was significantly lower in diabetic 

WT and SRR-KO mice than those of control mice (Fig 3A, 3B). The number of RGCs 

expressing Brn3 of diabetic SRR-KO mice was significantly higher than that of diabetic 

WT mice (Fig 3A, 3B). In the distal area of retina, the number of RGCs expressing 

Brn3 was significantly lower in diabetic WT than those of control WT mice (Fig 3C, 

3D). There was no significant difference in the number of RGCs expressing Brn3 

between diabetic WT and SRR-KO mice (Fig 3C, 3D). 

 

Fig 3. Brn3-immunopositive retinal ganglion cells in non-treated (Control) and 

diabetic (DM) WT and SRR-KO mice. Immunofluorescence staining of retinal 

ganglion cells in flat-mount retinas using anti-Brn3 antibody. (A) Brn3-labeled retinal 



12 

 

ganglion cells in the proximal area of retina in Control and DM mice. (B) Graph shows 

the number of Brn3-immunopositive cells in the proximal area of retina in Control and 

DM mice. (C) Brn3-labeled retinal ganglion cells in the distal area of retina in Control 

and DM mice. (D) Graph shows the number of Brn3-immunopositive cells in the distal 

area of retina in Control and DM mice. We counted the number of Brn3 positive cells in 

a 0.09 mm² field area. Scale bar = 100 µm. Data are presented as mean ± S. E. M. n = 5 

mice per group. *p < 0.05; one-way Analysis of Variance (ANOVA)  

 

Reduction of thickness of inner retinal layer is attenuated in diabetic 

SRR-KO mice  

 

  I next analyzed the thickness of inner retinal layer (IRL) with H&E staining. There 

was no significant difference in the thickness of IRL between control WT and SRR-KO 

mice (Fig 4A). Six months after the onset of diabetes, the thickness of IRL in diabetic 

WT and SRR-KO mice was significantly reduced than that of control mice (Fig 4A, 4B). 

The reduction of thickness of IRL in diabetic SRR-KO mice was less than that of 

diabetic WT mice (Fig 4B).  
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Fig 4. Hematoxylin and eosin (H&E) staining of retinas from non-treated (Control) 

and diabetic (DM) WT and SRR-KO mice. (A) Representative images of H&E 

staining. (B) Graph shows the thickness of the inner retinal layer (IRL). Scale bar = 100 

µm. Data are presented as mean ± S. E. M. n = 5 mice per group. *p < 0.05; one-way 

ANOVA. 

 

Reduced number of acellular capillaries in diabetic SRR-KO mice 

  

  Diabetes leads to microvascular damage such as acellular capillary formation. 

Acellular capillaries have naked basement membrane can be detected as anti-collagen 

IV
 
antibody-positive and isolectin-B4-negative features [20]. To evaluate the 

microvascular damage in diabetic WT and SRR-KO mice six months after the onset of 

diabetes, we counted the number of acellular capillaries (Fig 5A, 5B). I found that the 

number of acellular capillaries in diabetic SRR-KO mice was significantly smaller than 

that of diabetic WT mice (Fig.5B). 

 

Fig 5. STZ-induced microvascular changes in diabetic (DM) WT and SRR-KO 

mice. (A) The retinal vasculature were dual-labeled with isolectin-B4 (green) and 
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anti-collagen IV antibodies (red) in flat-mount retinas. Arrows in the merged images 

indicate collagen IV
 
positive and isolectin

 
negative acellular capillaries. (B) Graph 

shows mean number of acellular capillaries in diabetic WT and SRR-KO mice. I 

counted the number of acellular capillaries in a 0.09 mm² field area. Scale bar = 50 µm. 

Data are presented as mean ± S. E. M. n = 15 fields/mouse, 5 mice per group. *p < 0.05; 

two-tailed Student’s t-test.  

 

Discussion 

 

   In the present study, I established STZ-induced diabetic model in WT and SRR-KO 

mice. Six months after the onset of diabetes, I found that the number of RGCs was 

higher and the number of acellular capillaries was lower in SRR-KO mice than those of 

WT mice. Furthermore, the reduction of thickness of IRL in SRR-KO mice was smaller 

than that of WT mice. These results indicate the degeneration of retinal neuronal cells 

and microvascular damage induced by diabetes were attenuated in SRR-KO retinas. 

   I characterized STZ-induced DR of WT and SRR-KO mice 6 months after the onset 

of diabetes. I found the attenuation of RGC loss in SRR-KO mice, which is in consistent 

with the previous study that RGCs in WT mice are more vulnerable to acute NMDA 
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toxicity than that of SRR-KO mice [17]. The difference of NMDA-mediated 

excitotoxicity between WT and SRR-KO mice might attribute to the differential level of 

D-serine in retinas. In proximal area of retina, the number of RGCs expressing Brn3 was 

significantly lower in diabetic SRR-KO mice than that of control SRR-KO mice, but 

this difference was not observed in the distal area of retina. This regional different effect 

of RGC loss might be attributed to the SRR/D-serine independent neurodegeneration 

mechanism. 

   In my study, increased immunopositivity of SRR was found mainly in GCL in 

diabetic WT mice as reported [16]. The specificity of SRR immunopositive signal was 

evaluated by using SRR-KO mice as negative controls. As the expression of SRR is 

enhanced by inflammatory stimuli in vivo [21], increased expression of SRR might be a 

result from inflammation occurring in diabetes. In my hand, I could not evaluate cellular 

distribution of SRR signals localized in neurons or glial cells in the retina. 

   In this study, I demonstrated for the first time that reduction of acellular capillaries 

formation in SRR-KO mice under long-term diabetic condition. Appearance of acellular 

capillaries is reported as the damage to the vessels by ischemia due to obliteration of 

retinal microvessels [2]. The interactions among neurons, glial cells, and vascular cells 

are important for maintaining the vascular structure in retinas [22]. Retinal 
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neurodegeneration has been found in diabetic retinas without any abnormalities of 

capillaries, suggesting that retinal neurodegeneration precedes acellular capillary 

formation [23]. The RGCs express growth factor such as platelet-derived growth factor 

(PDGF-A), and retinal astrocytes express it’s receptor (PDGFαR) [24]. PDGF-A 

induces migration and proliferation of retinal astrocytes, which promote the survival of 

endothelial cells [25]. Thus, retinal neurodegeneration is thought to attribute to the 

endothelial cells loss, which causes acellular capillaries observed in diabetic WT mice.  

   In conclusion, I found the retinal neurodegeneration and microvascular damage 

induced by diabetes was significantly attenuated in SRR-KO mice. Thus, the 

suppression of SRR activity may have protective effects on the retinal neurons and 

vasculature in diabetes. Further studies will need to clarify the mechanisms that SRR 

plays a role in retinal microvascular damage in diabetes.  
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