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On the sets of maximum points for

generalized Takagi functions

Yasuhiro Fujita and Yusuke Saito

Abstract. Let φ be a continuous and periodic function on R with
period 1 and φ(0) = 0. We consider the generalized Takagi function

fφ defined by fφ(x) =
∞∑

n=0

1

2n
φ(2nx) and the set Mφ of maximum

points of fφ in the interval [0, 1]. When φ0(x) is the function defined
by the distance from x to the nearest integer, fφ0 is just the Takagi
function. Our aim is to seek a condition on φ in order thatMφ ⊂Mφ0 .

1. Introduction and the result

The Takagi function is defined by

fφ0(x) =

∞∑
n=0

1

2n
φ0(2

nx), x ∈ R, (1)

where φ0(x) is the function defined by the distance from x to the nearest

integer (cf. [1, 6]). It is a pathological function in the sense that it is

everywhere continuous but nowhere differentiable on R. Let Mφ0 be the

set of maximum points in the interval [0, 1] for the Takagi function fφ0 . By

Kahane [4], we have

Mφ0 =


∞∑
j=1

aj
4j

| aj ∈ {1, 2}

 . (2)
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Thus, Mφ0 is uncountable. It is important to note that minMφ0 = 1
3 and

maxMφ0 = 2
3 .

As a generalization of the Takagi function, we consider the function fφ

of the form

fφ(x) =

∞∑
n=0

1

2n
φ(2nx), x ∈ R, (3)

where φ is a continuous and periodic function on R with period 1. We call

the function of the form (3) a generalized Takagi function. The functions

of the form (3) have been considered since the work of [5]. Behrend [3]

studied non-differentiability of the functions of the form (3).

In the following, for the function fφ of (3), we use the notations

Mφ = {x ∈ [0, 1] | fφ(x) = mφ} , mφ = max
y∈[0,1]

fφ(y). (4)

Note that fφ is also periodic with period 1.

Our aim is to compare Mφ with Mφ0 . In particular, we are interested in

a condition on φ in order that Mφ ⊂Mφ0 .

For a function φ : R → R, we consider the following conditions:

(C1) φ is continuous and periodic on R with period 1 and φ(0) = 0.

Furthermore, φ ̸≡ 0.

(C2) φ(x) = φ(1− x), x ∈ [0, 1].

(C3) φ is concave on [0, 1], that is, for all x, y ∈ [0, 1] and θ ∈ [0, 1],

θφ(x) + (1− θ)φ(y) ≤ φ(θx+ (1− θ)y).

(C4) φ(x) < φ
(1
3

)
, x ∈

[
0,

1

3

)
.

There exist many functions φ with (C1), (C2), (C3) and (C4).

Example 1.1. Let α ∈
[
1
3 ,

1
2

]
. Define the periodic function ηα : R →

[0,∞) with period 1 by ηα(x) = min{φ0(x), α} for x ∈ R. Note that η1/2 ≡
φ0. It is easy to see that, for each α ∈

[
1
3 ,

1
2

]
, ηα fulfills (C1), (C2), (C3)

and (C4).
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Theorem 1.2. Let φ be a function with (C1), (C2), (C3) and (C4).

Then, Mφ ⊂Mφ0.

Now, we consider the conditions (C1), (C2), (C3) and (C4). The condi-

tion (C1) is natural. The condition (C2) implies that φ is symmetric with

respect to the line x = 1
2 . The condition (C3) is necessary in Theorem 1.2,

since we have an example of a function φ̂ with (C1), (C2) and (C4) such

that φ̂ does not fulfill (C3) and Mφ̂ ̸⊂ Mφ0 (see Example 3.1 below). The

condition (C4) is necessary in Theorem 1.2, since we have an example of a

function η̂ with (C1), (C2) and (C3) such that η̂ does not fulfill (C4) and

Mη̂ ̸⊂Mφ0 (see Example 3.2 below).

The contents of the present paper are as follows: In Section 2, we prove

Theorem 1.2. In Section 3, we provide two examples which show that the

conditions (C3) and (C4) for φ are necessary in order that Mφ ⊂Mφ0 .

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We use the notations of Section

1.

Lemma 2.1. Assume that φ fulfills (C1) and (C3). Then, φ > 0 in the

open interval (0, 1).

Proof. We derive a contradiction by supposing that there exists an x0 ∈
(0, 1) such that φ(x0) = 0. Since φ ̸≡ 0 by (C1), we find an x1 ∈ (0, 1)\{x0}
such that φ(x1) ̸= 0. First, we consider the case that 0 < x1 < x0. By

(C3), we have

φ(x1) = φ

(
x1
x0
x0 +

(
1− x1

x0

)
· 0

)
≥ x1
x0
φ(x0) +

(
1− x1

x0

)
φ(0) = 0.

Thus, φ(x1) > 0. On the other hand, let θ = 1−x0
1−x1 . Then, 0 < θ < 1 and

θx1 + (1− θ) · 1 = x0. Thus, we have

0 = φ(x0) = φ(θx1 + (1− θ) · 1) ≥ θφ(x1) + (1− θ)φ(1) = θφ(x1) > 0.

This is a contradiction. When x0 < x1 < 1, we can derive a contradiction

similarly. Therefore, φ > 0 in (0, 1).
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In the following, we assume that φ fulfills (C1), (C2) and (C3), otherwise

stated. We define the function pφ : R → R of period 1 by

pφ(x) = φ(x) +
1

2
φ(2x), x ∈ R. (5)

Note that

fφ(x) =
∞∑
n=0

1

4n
pφ(4

nx), x ∈ R. (6)

Let

E(n)
φ = {x ∈ [0, 1] | pφ(4nx) = µφ} , n ∈ N ∪ {0}, (7)

where µφ = max
y∈[0,1]

pφ(y). By (6) and (7), it is clear to see that

∞∩
n=0

E(n)
φ ⊂Mφ. (8)

It is also clear that if
∞∩
n=0

E(n)
φ ̸= ∅, the inclusion relation in (8) is reduced

to the equality.

Since the following two lemmas are clear, we omit their proofs.

Lemma 2.2. For each m ∈ N, there exist integers qm ∈ N and rm ∈
N ∪ {0} such that

1

3
(42m − 1) = 5qm,

1

3
(42m−1 − 1) = 20rm + 1.

Lemma 2.3. Assume that φ fulfills (C1), (C2) and (C3). Then,

fφ(x) = fφ(1− x), pφ(x) = pφ(1− x), x ∈ [0, 1].

Lemma 2.4. Assume that φ fulfills (C1), (C2) and (C3). Then,

pφ(x) ≤ pφ

(1
3

)
= pφ

(2
3

)
, x ∈ [0, 1].

Proof. Let 0 ≤ x ≤ 1
2 . By (C2) and (C3), we have

pφ(x) =
3

2

[
2

3
φ(1− x) +

1

3
φ(2x)

]
≤ 3

2
φ

(
2

3
(1− x) +

1

3
(2x)

)

=
3

2
φ

(
2

3

)
= φ

(
2

3

)
+

1

2
φ

(
2 · 1

3

)
= φ

(
1

3

)
+

1

2
φ

(
2 · 1

3

)
= pφ

(
1

3

)
.

By Lemma 2.3, we conclude the lemma.
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Proposition 2.5. Assume that φ fulfills (C1), (C2) and (C3). Then,

1

3
,
2

3
∈Mφ. (9)

Proof. By Lemma 2.4, we have 1
3 ∈ E

(0)
φ . Let n ∈ N. When n is even,

it follows from Lemma 2.2 that there exists an integer qn ∈ N such that

4n · 1
3 − 5qn = 1

3 ∈ E
(0)
φ . Thus, we have 1

3 ∈ E
(n)
φ . When n is odd, it fol-

lows from Lemma 2.2 that there exists an integer rn ∈ N ∪ {0} such that

4n · 1
3 − (20rn + 1) = 1

3 ∈ E
(0)
φ . Thus, we have 1

3 ∈ E
(n)
φ . Hence, 1

3 ∈ E
(n)
φ

for all n ∈ N. Therefore, 1
3 ∈Mφ by (8). By Lemma 2.3, we see that

2
3 ∈Mφ.

Proposition 2.6. Assume that φ fulfills (C1), (C2) and (C3). Then,

Mφ =
∞∩
n=0

E(n)
φ . Furthermore, mφ = 2φ

(
1
3

)
, where mφ is the constant of

(4).

Proof. Note that 1
3 ∈

∞∩
n=0

E(n)
φ by the proof of Proposition 2.5. Since

∞∩
n=0

E(n)
φ ̸= ∅, it is easy to see that Mφ =

∞∩
n=0

E(n)
φ by (8). Furthermore, by

(6), (8) and Proposition 2.5, we have

mφ =

∞∑
n=0

1

4n
pφ

(1
3

)
= 2φ

(1
3

)
.

Here, we used pφ
(
1
3

)
= 3

2 φ
(
1
3

)
.

Proposition 2.7. Assume that φ fulfills (C1), (C2), (C3) and (C4).

Then, minMφ = 1
3 and maxMφ = 2

3 .

Proof. Let 0 ≤ x < 1
4 . Then, by (C3) and (C4), we have

pφ(x) =
3

2

[
2

3
φ(x) +

1

3
φ(2x)

]
≤ 3

2
φ

(
2

3
x+

1

3
(2x)

)
=

3

2
φ

(
4

3
x

)

<
3

2
φ

(
1

3

)
= φ

(
1

3

)
+

1

2
φ

(
2 · 1

3

)
= pφ

(
1

3

)
.
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Thus, [0, 14) ∩ E
(0)
φ = ∅. By Proposition 2.6, [0, 14) ∩Mφ = ∅. For each

x ∈ [0, 14) and n ∈ N, we have

pφ

(
4n

( n∑
i=1

1

4i
+

x

4n
))

= pφ(x) < pφ

(
1

3

)
.

Thus,
[ n∑
i=1

1

4i
,

n+1∑
i=1

1

4i

)
∩E(n)

φ = ∅. By Proposition 2.6,
[ n∑
i=1

1

4i
,

n+1∑
i=1

1

4i

)
∩Mφ

= ∅. Since
∞∑
i=1

1
4i

= 1
3 , we conclude that [0, 13) ∩Mφ = ∅. Since 1

3 ∈Mφ by

Proposition 2.5, we have shown that minMφ = 1
3 . By Lemma 2.3, we have

maxMφ = 2
3 .

Lemma 2.8. Assume that φ and ψ fulfill (C1), (C2) and (C3). If E
(0)
φ ⊂

E
(0)
ψ , then Mφ ⊂Mψ.

Proof. Let x ∈ Mφ. Then, by Proposition 2.6, x ∈ E
(n)
φ for all n ∈

N ∪ {0}. Thus, pφ(4
nx) = pφ

(
1
3

)
for all n ∈ N ∪ {0}, which implies that

4nx− [4nx] ∈ E
(0)
φ for all n ∈ N∪{0}, where [y] denotes the greatest integer

not exceeding y ∈ R. Since E
(0)
φ ⊂ E

(0)
ψ , we have 4nx − [4nx] ∈ E

(0)
ψ for

all n ∈ N ∪ {0}. Then, x ∈ E
(n)
ψ for all n ∈ N ∪ {0}. Hence, x ∈ Mψ by

Proposition 2.6.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Let φ be a function with (C1), (C2), (C3) and

(C4). By the proof of Proposition 2.7, we have [0, 14) ∩Mφ = ∅, so that

E
(0)
φ ⊂

[
1
4 ,

3
4

]
by Lemma 2.3. Since E

(0)
φ0 =

[
1
4 ,

3
4

]
, we conclude the theorem

by Lemma 2.8.

3. Examples

In this section, we provide two examples which show that the conditions

(C3) and (C4) for φ are indispensable in order that Mφ ⊂Mφ0 .
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Example 3.1. Let φ̂ : R → R be the periodic function with period 1

such that φ̂(x) = (φ0(x))
2 in R. In this case, φ̂ fulfills (C1), (C2) and (C4).

However, φ̂ does not fulfill (C3). We show that Mφ̂ ̸⊂Mφ0 .

Indeed, we see that

∞∑
n=0

1

2n
(
φ0(2

nx)
)2

= x− x2, x ∈ [0, 1],

since ψ0(x) = x and ψn(x) = 2φ0(2
n−1x) (n ∈ N) in the notations of the

example of [8, p.335]. Thus, fφ̂(x) = x− x2 in [0, 1]. Hence, Mφ̂ =
{
1
2

}
.

Example 3.2. Define the periodic function η̂ : R → [0,∞) with period

1 by η̂(x) = min
{
φ0(x),

1
15

}
for x ∈ R. In this case, η̂ fulfills (C1), (C2)

and (C3). However, η̂ does not fulfill (C4). We show that Mη̂ ̸⊂Mφ0 .

Indeed, we have, on
[
0, 12

]
,

pη̂(x) =



2x, 0 ≤ x ≤ 1

30
,

x+
1

30
,

1

30
≤ x ≤ 1

15
,

1

10
,

1

15
≤ x ≤ 7

15
,

−x+
17

30
,

7

15
≤ x ≤ 1

2
.

Thus, E
(0)
η̂ =

[
1
15 ,

7
15

]
∪ [ 815 ,

14
15 ].

We show that 1
15 ∈Mη̂. Note that 1

15 ∈ E
(0)
η̂ . Fix n ∈ N arbitrarily.

When n is even, it follows from Lemma 2.2 that there exists a number

qn ∈ N such that 4n · 1
15 = qn +

1
15 . Since 1

15 ∈ E
(0)
η̂ , we have 1

15 ∈ E
(n)
η̂ .

When n is odd, it follows from Lemma 2.2 that there exists a number rn ∈
N ∪ {0} such that 4n · 1

15 = 4rn +
4
15 . Since 4

15 ∈ E
(0)
η̂ , we have 1

15 ∈ E
(n)
η̂ .

Therefore, 1
15 ∈ E

(n)
η̂ for all n ∈ N, and 1

15 ∈Mη̂. Since minMφ0 = 1
3 , we

see that 1
15 ̸∈Mφ0 . Thus, we conclude the assertion.
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