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On the sets of maximum points for
generalized Takagi functions

Yasuhiro FuJiTA and Yusuke SAITO

Abstract. Let ¢ be a continuous and periodic function on R with
period 1 and ¢(0) = 0. We consider the generalized Takagi function

oo

1
fo defined by f,(z) = Z on ©(2"z) and the set M, of maximum
n=0

points of f, in the interval [0,1]. When ¢¢(z) is the function defined
by the distance from x to the nearest integer, f,, is just the Takagi
function. Our aim is to seek a condition on ¢ in order that M, C M.

1. Introduction and the result

The Takagi function is defined by

o

fl®) =Y 5npo@'a), zER, )

n=0
where po(z) is the function defined by the distance from x to the nearest
integer (cf. [1, 6]). It is a pathological function in the sense that it is
everywhere continuous but nowhere differentiable on R. Let M, be the
set of maximum points in the interval [0, 1] for the Takagi function f,,. By

Kahane [4], we have

o0
Qs
_ J .
My, = Zﬂ|a]e{1,2} : (2)
Jj=1
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Thus, M, is uncountable. It is important to note that min M., = % and
2
g.
As a generalization of the Takagi function, we consider the function f,

max My, =

of the form

fole) =Y o 0@'), zER (3)
n=0

where ¢ is a continuous and periodic function on R with period 1. We call
the function of the form (3) a generalized Takagi function. The functions
of the form (3) have been considered since the work of [5]. Behrend [3]
studied non-differentiability of the functions of the form (3).

In the following, for the function f, of (3), we use the notations

My ={x € [0,1] | fo(x) =me}, my= y%%ﬁ} fe(y). (4)

Note that f, is also periodic with period 1.
Our aim is to compare M, with M. In particular, we are interested in
a condition on ¢ in order that M, C M,,.

For a function ¢ : R — R, we consider the following conditions:

(Cl) ¢ is continuous and periodic on R with period 1 and ¢(0) = 0.
Furthermore, ¢ # 0.

(C2) (@) =¢(1—-1), zel0,1].
(C3) ¢ is concave on [0, 1], that is, for all z,y € [0,1] and 6 € [0, 1],

Op(z) + (1 = 0)p(y) < p(0x + (1 - 0)y).

(C4)  px) < go(%), x € [O, é)

There exist many functions ¢ with (C1), (C2), (C3) and (C4).

Example 1.1. Let a € [%, %] Define the periodic function 7, : R —
[0, 00) with period 1 by 7a(7) = min{po(z), a} for x € R. Note that 1/, =
©p. It is easy to see that, for each o € [%, %], ne fulfills (C1), (C2), (C3)

and (C4).
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Theorem 1.2.  Let ¢ be a function with (C1), (C2), (C3) and (C4).
Then, M, C M.

Now, we consider the conditions (C1), (C2), (C3) and (C4). The condi-
tion (C1) is natural. The condition (C2) implies that ¢ is symmetric with
respect to the line z = 1. The condition (C3) is necessary in Theorem 1.2,
since we have an example of a function ¢ with (C1), (C2) and (C4) such
that ¢ does not fulfill (C3) and My ¢ M, (see Example 3.1 below). The
condition (C4) is necessary in Theorem 1.2, since we have an example of a
function 1 with (C1), (C2) and (C3) such that 7 does not fulfill (C4) and
My & My, (see Example 3.2 below).

The contents of the present paper are as follows: In Section 2, we prove
Theorem 1.2. In Section 3, we provide two examples which show that the

conditions (C3) and (C4) for ¢ are necessary in order that M, C M.

2. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We use the notations of Section

Lemma 2.1.  Assume that ¢ fulfills (C1) and (C3). Then, ¢ > 0 in the

open interval (0,1).

Proof.  We derive a contradiction by supposing that there exists an xg €
(0,1) such that ¢(xg) = 0. Since ¢ #Z 0 by (C1), we find an z; € (0,1)\{xo}
such that ¢(z1) # 0. First, we consider the case that 0 < z; < zy. By
(C3), we have
ot = o Lo+ (1-2)0) = Zptan) + (1- 2 pt0) =0
X0 Zo

o

Thus, ¢(x1) > 0. On the other hand, let § = i:i? Then, 0 < 8 < 1 and
Ox1 + (1 —0)-1=xq. Thus, we have

0= ¢(z0) = p(fz1 + (1 = 0) - 1) = Op(z1) + (1 — 0) (1) = bp(x1) > 0.

This is a contradiction. When zg < x1 < 1, we can derive a contradiction
similarly. Therefore, ¢ > 0 in (0, 1). O
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In the following, we assume that ¢ fulfills (C1), (C2) and (C3), otherwise
stated. We define the function p, : R — R of period 1 by

po(@) = p(z) + %@(21‘), zeR. (5)

Note that -
-y 4% zeR. (6)

Let -
EWM = {ze0,1]]p,(4"2) = py}, neNU/{0}, (7)

where p, = m[%}i] Po(y). By (6) and (7), it is clear to see that
(B c M,. (8)
n=0

[e.e]
It is also clear that if ﬂ Eé”) # (), the inclusion relation in (8) is reduced

n=0
to the equality.

Since the following two lemmas are clear, we omit their proofs.

Lemma 2.2.  For each m € N, there exist integers q,, € N and r,, €
NuU {0} such that

1 1
" = 1) =5gm, ST 1) = 20r 1.

Lemma 2.3.  Assume that ¢ fulfills (C1), (C2) and (C3). Then,
fo(@) = fo(1—x), py(z) =pp(1—2x), z€l0,1].
Lemma 2.4.  Assume that ¢ fulfills (C1), (C2) and (C3). Then,

Py () Spg;(%) =pgp<§>, r € [0,1].

Proof. Let 0 <z < 1. By (C2) and (C3), we have

po() =3 |30 -0+ got2n)| < 2o (S -0+ je0)

3ol ) o) )

By Lemma 2.3, we conclude the lemma. O

N W
wl
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Proposition 2.5.  Assume that ¢ fulfills (C1), (C2) and (C3). Then,

1 2
3 3 € M,. (9)

Proof. By Lemma 2.4, we have % € E&O). Let n € N. When n is even,

it follows from Lemma 2.2 that there exists an integer ¢, € N such that
4n . % — bgn = % € El(po). Thus, we have % € Eé,"). When n is odd, it fol-
lows from Lemma 2.2 that there exists an integer r, € NU {0} such that
Am. 3 —(20r, +1) =1 € Eg)). Thus, we have 1 € Es(pn). Hence, 1 € Egb)
for all n € N. Therefore, % € M, by (8). By Lemma 2.3, we see that
2eM,. O

Proposition 2.6.  Assume that ¢ fulfills (C1), (C2) and (C3). Then,
M, = ﬂ ES(D”). Furthermore, my, = 2 ¢ (%), where my, is the constant of

(4).

n=0

(o]
Proof.  Note that % € ﬂ Efp”) by the proof of Proposition 2.5. Since
n=0

oo o0
ﬂ ES(D”) # 0, it is easy to see that M, = ﬂ Eg‘) by (8). Furthermore, by
n=0 n=0
(6), (8) and Proposition 2.5, we have

1 1 1
me =2 3ire(3) =2¢(3)
Here, we used p¢(%) = %(p(%) ]

Proposition 2.7.  Assume that ¢ fulfills (C1), (C2), (C3) and (C4).
Then, min M, = % and max M, = %
Proof.  Let 0 <z < 1. Then, by (C3) and (C4), we have

polo) = 5 |30t) + o] < So(Go+ 500) = S50
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Thus, [0, 1) ﬂES(OO) = (. By Proposition 2.6, [0,1) N M, =0. For each
z €[0,%) and n € N, we have

p@(‘l"( y %ﬂ%)) = py(2) <P<ﬂ(;>-

=1
n 1 n+1 1 n 1 n+1 1
Thus, [ & E) NEL) = 0. By Proposition 2.6, { o E> nM,
=1 =1 =1 =1
o0

= (). Since Z + =1, we conclude that [0,1) N M, = 0. Since £ € M,, by

Proposition 2.5, we have shown that min M, = % By Lemma 2.3, we have

— 2
maxM@—S. OJ

Lemma 2.8.  Assume that ¢ and v fulfill (C1), (C2) and (C3). IfES(OO) C
E), then M, C My.

Proof. Let x € M,. Then, by Proposition 2.6, z € Eg(on) for all n €
NU{0}. Thus, p,(4"z) = p, (3) for all n € NU {0}, which implies that
4"y —[4"x] € E&O) for all n € NU{0}, where [y] denotes the greatest integer
not exceeding y € R. Since EQ(OO) - Eq(po), we have 4"x — [4"x] € Efpo) for
all n € NU{0}. Then, z € Eé}n) for all n € NU {0}. Hence, z € My by

Proposition 2.6. O
Now, we prove Theorem 1.2.

Proof of Theorem 1.2.  Let ¢ be a function with (C1), (C2), (C3) and
(C4). By the proof of Proposition 2.7, we have [0,1) N M, = 0, so that
Eé,o) - [i, %] by Lemma 2.3. Since Ec(p%) = [%, %], we conclude the theorem
by Lemma 2.8. O

3. Examples

In this section, we provide two examples which show that the conditions
(C3) and (C4) for ¢ are indispensable in order that M, C M, .
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Example 3.1. Let ¢ : R — R be the periodic function with period 1
such that ¢(z) = (@g(x))? in R. In this case, ¢ fulfills (C1), (C2) and (C4).
However, ¢ does not fulfill (C3). We show that My ¢ M.

Indeed, we see that
=1
22— ¢o(2"z)) —x—mZ, z € [0,1],

since 1%(z) = z and ¥"(x) = 2pp(2" 'x) (n € N) in the notations of the
example of [8, p.335]. Thus, fs(z) =z — 2% in [0,1]. Hence, My = {%}

Example 3.2.  Define the periodic function 7 : R — [0, 00) with period
1 by 7(z) = min {¢g(z), 1=} for € R. In this case, 7 fulfills (C1), (C2)
and (C3). However, 7 does not fulfill (C4). We show that M; ¢ M.

Indeed, we have, on [0, %},

, 1
P 0<z<—
“ =T=3p
L1 L1
I TS 30 == 15
P®) =9 4 1 7
- —<r< -,
10 5-">15
Y T 1
-+ — — <z <.
( 300 15002

Thus, EEO) = [115’ 175] U [1857 %é]

We show that i € My. Note that ;= € E(O). Fix n € N arbitrarily.
When n is even, 1t follows from Lemma 2.2 that there exists a number
qn € N such that 4™ - ﬁ =qn + 15 Since % € E( ), we have 15 € E(n)
When n is odd, it follows from Lemma 2.2 that there exists a number 7, €
N U {0} such that 4" - £ = 4r, + . Since s ESO), we have = € ET%").

Therefore, i € E(n) for all n € N, and 1z € Mj. Since min My, = i

3, we

see that 15 4 M%. Thus, we conclude the assertion.
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