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Existence and stability of singularly perturbed standing
pulse solutions of a three-component FitzHugh-Nagumo
system

Hideo IKEDA and Yuki AKAMA

Abstract. In this article, a singularly perturbed three-component
FitzHugh-Nagumo system, which is proposed in [2], is considered. As
a simple localized pattern, the existence of standing pulse solutions
with high accurate approximations for a small parameter and their
stability are shown by using an analytic singular perturbation tech-
nique.

1. Introduction

Various localized patterns are observed in many reaction-diffusion sys-
tems. Here we focus our attention on the type of FitzHugh-Nagumo sys-
tems. The two-component FitzHugh-Nagumo system (1.1), which describes
the conduction of nerve impulse along nerve axons originally ([14], [5]), is

very famous and has been studied energetically.

_ 2 -
{“t Flaz FUTWTY 4 Y e (0,00) x R. (1.1)

TV = Dugy +u — v,

Here we assume 0 < ¢ << 1, 7 > 0, D > 0 (Originally D = 0 in

the FitzHugh-Nagumo model). Let us consider standing pulse solutions
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(u,v)(z;¢) of (1.1), which satisfy

0 = 2Uge +u —ud — v,
0= Duvgy +u—w,
u(—00) =0 = u(+00), v(—00) =0 = v(400).

x € R,

In [12], it was shown that there exist two types of destabilization of standing
pulse solutions when 7 increases. One is the appearance of traveling pulse
solutions via the drift bifurcation at 7 = 7p and the other is that of standing
breathers via the Hopf bifurcation at 7 = 7. For (1.1), it is believed that
0 < 7y < 7p (see [12], [17] for example). That is, for 0 < 7 < 7p,
(u,v)(x;e) are stable and at 7 = 7y, stable standing breathers bifurcate
and then, (u,v)(x;e) become unstable for 7 > 7. Though traveling pulses
bifurcate at 7 = 7p (> 7 ), these bifurcated solutions are unstable because
(u,v)(x;€) become still unstable for 77 < 7 < 7p. This observation implies
that stable traveling pulse solutions never bifurcate from the branch of
stable standing pulse solutions.

But in the papers [6] and [1], they introduced a three-component system
as a phenomenological model of gas-discharge patterns and showed that the
additional third component can stabilize standing pulse solutions and yield
stable traveling pulse solutions. By using this three-component system, [15]
and [16] showed rich dynamics numerically, which include pulse collision,
pulse scattering, pulse annihilation among others.

In 2009, motivated by these works, Doelman et al [2] and [7] proposed the
following three-component FitzHugh-Nagumo system with special scaling

for small € > 0:

up = €2y +u —ud — e(av + fw +7),
TVt = Vgg + U — 0, (t,z) € (0,00) xR (1.2)

Ow; = D?*way +u — w,

where 0 < e << 1, 7,0 >0, D > 1 and o, 3,7 € R. This system seems to
be the natural extension of (1.1) with the small inhibitors v and w in the
first equation of (1.2). Furthermore they gave two cases numerically, the
bifurcation of a stable traveling pulse from a stable standing pulse in the left

panel and that of a stable standing breather from a stable standing pulse
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in the right panel of Figure 1. In [2] and [7], they showed the existence and
the stability of standing pulse solutions of (1.2) by using geometric singular

perturbation method.

Figure 1: Numerical solutions of (1.2) for (a,f,v,D,0,e,7) =
(6,3,4,2,10,0.1,120) in the left panel and for («,B,v,D,0,e,7) =
(6,3,4,2,23,0.1,80) in the right panel, respectively.

The aim of this paper is to show the same results as that in [2] and [7]
by using analytic singular perturbation method. In Section 2, we construct
standing pulse solutions of (1.2) with approximate solutions up to O(g?),
in which outer and inner approximations are included, by using analytic
singular perturbation method. This information is of very importance for
analyzing linearized eigenvalue problems. In Section 3, we solve two lin-
earized eigenvalue problems depending on two types of destabilization, the
out-of-phase and the in-phase modes. Based on the analytic singular per-
turbation method, we construct the Evans functions (algebraic equations
with respect to unknown eigenvalues). In Section 4, we give the proof of

lemmas. Finally in Section 5, we give a few comments on our results.

2. Existence of standing pulse solutions

Let us consider the three-component FitzHugh-Nagumo system

U = 2Uge +u — ud — (v + Bw +7),
TV = Vg + U — 0, (t,z) € (0,00) xR  (2.1)

Owy = D*wyy + u — w.
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The constant solutions of (2.1) are given by the relation

u—u?—e(av+ fw+7) =0,
u—v =0,

u—w =0,

which is reduced to u® + (—1+4¢ca+eB)u+ey = 0. This equation has three
roots and we write them as wug(e),us(e), where up(e) = O(e), us(e) =
+1+0(e) (e — 0). We can find that (u,v,w) = (us(e),us(e),us(e)) are
stable and (u,v,w) = (uo(€),uo(€), uo(e)) is an unstable solution of (2.1).
Then, the system (2.1) is called a bistable one. For example, (u,v,w) =
(u—(g),u—_(g),u—_(g)) is asymptotically stable. If we give a suitable large
local perturbation to this constant state, we can find that this state is
destabilized and develops into a standing pulse solution (see Figure 2),

which satisfies the stationary problem

Uy +u — ud — e(av + Bw + ) =0,

Vge +u —v =0, z €R
D?wyy +u —w =0,

(u, v, w)(£o0) = (u—(g),u—_(g),u—_(g)).

(2.2)
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Figure 2: A standing pulse solution of (2.1)

Since this solution has a symmetric property at x = 0, it suffices for us
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to consider the following problem on the half interval [0, co):

,

e2Ugy +u — ud — e(av + Bw + ) =0,

Ugg +u—v =0, x € (0,00)

D?wyy +u —w =0, (2.3)
(ug, v, we ) (0) = (0,0,0),

(u, v, w)(00) = (u-(g), u—(e),u—(¢)).

Since the highest derivative of the © component contains a small parameter
e in (2.3), we can expect that the component of u has a sharp transition
layer. Then we define a position of the layer z = I(¢) by u(l(¢)) = 0 and
values of a(¢) and b(e) by v(i(e)) = a(e) and w(l(e)) = b(e), respectively
(see Figure 3). Moreover we divide [0, c0) into two parts I; = [0, £(¢)] and
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Figure 3: The layer position I(¢) of a standing pulse solution for sufficiently

small ¢ > 0
Iy = [((e),00) and write (2.3) as

[ 2upy +u—ud — e(aw + fw +7) =0,
Vg +u —v =0, z € (0,1(¢))
D?wyp +u —w = 0, (2.4)
(Us, vz, wg)(0) = (0,0,0),

[ (u,v,w)(U(g)) = (0, a(¢),b(e))
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and

2Uge +u — ud — (v + Bw +v) = 0,

Vgr +u—v =0, x € (I(g),00)

D?wyy +u —w =0, (2.5)
(u, v, w)(I(e)) = (0,a(e), b(e)),

[ (w,v,w)(00) = (u—(e),u-(e),u-(e)).

Here we note that ¢(¢), a(¢) and b(¢) are unknown constants.

The standard classical singular perturbation process is as follows: First,

to solve (2.4) and (2.5) independently under the assumption that

l(6)2l0+8l1+82l2+"', (l0>0)
a(e) = ag +eay +e%ag + -+ -, (2.6)
b(E) Zbo+€b1+€252+"'

are known. Second, to match these solutions smoothly at © = [(¢) and then
determine these parameters [(¢), a(e) and b(e). Here we emphasize that
we need approximate solutions of (2.3) at least up to O(g?) to examine the

stability property of a standing pulse solution (see §3).

2.1. Solutions of (2.4) on the interval I; = [0, /()]
Using the transformation y = z/I(¢), we have

£ uyy—H( )2 (u —u? —5(ow+ﬁw+’y)) 0,

Vyy + (e ) (u—v)= y e (0,1)
D?wyy, 4 1(e)*(u — ) =0, (2.7)
(uy, vy, wy)(0) = (0,0,0),

[ (u,v,w)(1) = (0,a(e),b(e)).

2.1.1. Construction of outer approximations of (2.7)

We begin with constructing outer approximations (u,v,w)(y;e) of the

form

u(y;e) = Uo(y) + eUi(y) + €2Us(y) + - -,
v(y;e) = Voly) +eVi(y) +e*Valy) +-- -, (2.8)
w(y;e) = Woly) +eWi(y) + e*Wal(y )
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Substituting (2.6) and (2.8) into (2.7), we equate the coefficients of the

same powers of e.
O(eY) :

Up— U3 =0,

V' + 13Uy — Vo) =0, y € (0,1)
D2WY + 13(Uy — Wo) =0

V5(0) =0, Vo(1) = ao,

W5(0) = 0, Wo(1) = bo.

From Figure 3, we take Uy = 1. Then V} satisfies

Vi - BVo=-13,  ye(01)
Vy(0) = 0, Vo(1) = ag

and we easily have Vy(y) =1+ (ap — 1) cosh(lpy)/ cosh(lp). Similarly we
also have Wy(y) = 1+ (byp — 1) cosh(loy/ D)/ cosh(ly/D).

O(e!) :

(1—=3U3)U; — (aVo + BWy +7) =0,

V' + 12(Uy — Vi) + 21001 (Uy — Vo) = 0, y € (0,1)
D2W{ + 12(Uy — Wh) + 2lol1 (Ug — Wo) = 0,

Vi(0) =0, Vi(1) = a1,

W{(0) =0, Wi(1) = by.

By the first equation, we obtain Ui (y) = —(aVy(y) + BWo(y) +v)/2. The

next lemma directly follows from the constant variation method.

Lemma 2.1. A solution of the following boundary value problem:

V' -BV =f(y), ye(0,1)
V'(0) =0, V(1) =

is given uniquely by V(y) =
oy {ﬁ [¥elos f(s)ds + W fO cosh (lps) f(s)ds + ﬁh(lo)}

L e—loy { Y elos f(s)ds m fo cosh (los) f(s)ds + 5o (lo)} :
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Using this lemma, we have

Vi(y) = elov {2%0 e~lsfy(s)ds + m fol cosh (lps) fi(s)ds
+ 2cosh(lo)} +e oy { 2% 1 losfl( )

2 cosh(lo fo cosh (los) f1(s)ds + 2cosﬁ(zo)}v
Wily) = elov/P { B [ e~1o5/Dg, (s)ds

De~lo/P b
+ 2lp cosh(()lo/D) fO COSh lOS/D)gl(S)dS + 2 cosh (llo/D)}
+ e~loy/D {—% [ €03/ gy (s)ds

elo/D 1
~ 2 c[())sho(lo/D*) Jo cosh (los/D)gu(s)ds + 2coshb(1lo/D)} g

where fi(y) = —I5U1(y ) 200l (1 = Vo(y)) = I§(aVoly )+5W0( )+7)/2 -
21l (1-Vo(y)) and g1 (y) = — {I§U1(y) + 2lola (1 — Wo(y)) } /D? = B§(aVo(y)+
BWo(y) +7)/(2D )—210l1(1—Wo( ))/D?.

O(e?) :

([ (1-3U3)U, — 3UU2 — (aVi + BW1) =0,
VQH + l%(UQ — Vo) + 20001 (U — V1) + (l% + 2lpl2)(Up — Vp) =0, y € (0,1)
DZWZ// + l%(UQ — Wg) + 2l0l1(U1 — Wl)
+(I3 + 2lply) (Up — Wp) = 0,
V5(0) =0, Va(1) = az — 10(0),
W;3(0) = 0 Wa(1) = b2 — po(0),

where 10(0) and po(0) will be determined later (see §2.1.2). Similarly to

the case of O(e!), we have

Uay) = —(3U12( ) +aVi(y )+5W1( ))/2
Va(y) = {% [V e70s fo(s)ds + m [ cosh (lgs) fa(s)ds
+;‘io:ﬁ°<$03} et {—% e fo(s)ds
m fo cosh (lps) f2(s)ds + gi;sﬁo(gg))},
Waly) = /DD [ehos/Dgy(s)ds
+% fo cosh (lps/D)ga(s)ds + 253%(‘25(/)}))}
_i_efloy/D{_Q J¥ €los/D gy (s)ds

elo/D ba—po (0
~ 3 252y Jy cosh (los/ D) ga(s)ds + 52559 |
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where fo(y) = —I§Ua(y) — 2lol1(U1(y) — Vi(y)) — (17 + 2lol2)(1 = Vo(y)) =
5BUT 4+ aVi+ fW1) /2 — 210l (Ui (y) — Vily)) — (I3 + 2lol2) (1 — VO( )) and
92(y) = — {I§U2(y) — 2lol1 (U1 (y) — Wi(y)) — (I + 2lol2)(1 — Wo(y)) } /D* =
BBU+aVi+W1)/(2D?)—{2lol (Ur(y) — Wi(y)) + (1 + 2lol2) (1 — Wo(y)) }
/D2,

2.1.2. Construction of inner approximations of (2.7)

Since the u component of the outer approximations constructed in §2.1.1
dose not satisfy the boundary condition at y = 1, we have to modify this
defect. Hence, we introduce the stretched variable £ = (y — 1) /e and look
for inner approximations ¢;, ¥;, p; (i = 0,1,2) of the following form in a

neighborhood of y = 1:

u(y) = Uo(y) +eUi(y) +e*Ua(y) +
+ do(Lh) +edr (M) + 2o (L) + -+,
o(y) = Voly)+eValy) +*Va(y) + (2.9)
+ e2o(L2h) + 31 (1) + et () + -, '
w(y) = Woly )+5W1( )+ e2Wa(y) +
+ 20 (1) + 2o (V) + et pa () + -,

so that (u,v,w)(y) satisfies the boundary condition at y = 1. Substituting
(2.9) into (2.7) and using £ = (y — 1)/e, we equate the coefficients of the

same power of €.

O(e%) :
é_g_o —I§¢0(d0 + 1)(do +2) = 0,
QPO + l%¢0 = 0 § € (_0070)
2;
D% + g0 = (2.10)
¢o(—00) = 0, (;5_0( ) =—1,
Yo(—o0) =0, Po(—oc) =0,
[ p0(—00) =0, jo(~o0) =0,
Here we use the notations ¢ = @ and gb = %. From the first and

fourth equations, we have ¢g(§) = —1 — tanh(lp&/+v/2). And then 9)y(€) =
18 2o 7o @0(C)dgdn and po(€) =~ [£ [, d0(C) dCdn/D?.
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¢1 + 13 {UL(1) + ¢1 — 3(Uo(1) + ¢0)? (U1 (1) + ¢1)
— (aVo(1) + BWo(1) + )}
+ 2ll1 {Uo(1) + ¢o — (Uo(1) + ¢0)*} = 0,

Y1 + Bt + 2lolido = 0, § € (—00,0)

D?py + 131 + 2lolido = 0,

¢1(—00) =0, ¢1(0) = U (1),

P1(—00) = 0, ¥1(—00) =0,

p1(—00) =0, p1(—oc) = 0.

(2.11)

Since ¢ satisfies

+ 2lol1do(¢o + 1) (o +2), €€ (—00,0)  (2.12)

{ ¢1 — 3(2 + 660 + 3¢3) 1 = —313(cwap + Bbo + 7)do(¢o + 2)/2
¢1(—00) =0, ¢1(0) = §(aag + Bbo +7),

applying the method of constant variation to (2.12) we obtain

1 . . . U o,
1) = 5000+ 5+ )0(€)/00) +0(©) [ Got)* [ énf0

x {315 (avag + Bbo + 7)do(¢o + 2)/2 — 2loligo(do + 1)(¢o + 2) } d(dn.

Furthermore we have

£ n
b6 = - /_ /_ {261(0) + 2lol160(C) Ydcdn,

3 n
p1(§) = —1;2/_ /_ {l51(C) + 2lol1¢o () }dCdn.
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O(£?) :

2 = 15(2 + 60 + 303)d2 = 13 {(U1(1)€ + Un(1)

—3(1+ ¢0)* (U1 (1)€ + Uz(1)) = 3(1 + ¢0) (U1 (1) + ¢1)?
—aVy(1)€ — aVi(1) = BW(1)€ — BW1i(1)} — 2loly {U1(1) + ¢1
=3(1+ ¢0)*(U1(1) + ¢1) — (aVo(1) 4+ BWo(1) +7)}

+(2lola + 1) do(do + 1)(do +2),

Po 4 B(d2 — o) + 2ol + (12 + 2lpla) o = 0, € € (—00,0)
Dzﬁg + Zg(gﬁg — pg) + 2lgl1 1 + (l% + 2[0l2)¢0 =0,

pa(—00) = 0, ¢2(0) = (BUF(1) + cwar + fb1)/2,

Pa(—00) = 0, 1ha(—00) =0,

p2(—00) =0, pa(—o0) = 0.

(2.13)

\

Similarly to the case of O(e!), we have

62(€) = HBUR() + aar + B51)do(€)/0(0) — do(©) JC (do(m) S0 do(©)
x [ {(UT(1)¢ + Ua(1))(2 + 6¢0 + 3¢5) + 3(1 + ¢0)(U1( )+ ¢1) + aVg(1)¢

+ BWH(1)C + aar + Bbi} — 2loly {UL(1) + ¢1 — 3(1 + ¢0)>(U1(1) + ¢1)

— (cag + Bbo +7)} + (ol + 1) do(do + 1)(do + 2)] dCdn,

P2(§) = — ffoo J7 A{18(d2 — o) + 2loli g1 + (13 + 2lol2) o FdCdn,

pa(€) = — [S J" {13(d2 — po) + 2olidy + (I3 + 2lols) do ydCdn/ D2.

2.1.3. Exact solutions of (2.7)

Using the above outer and inner approximations, we can construct uni-

form approximations of (2.7) up to order O(g?), which take the form
[ Ulyse) = Un(y) + €Ui(y) +*Va(y)
+0(y) (d0(Y2) + 261 (2!

).
V(y;e) = Vo(y) +eVily) + e*Va(y) )
+0(y) (200(12) + Bun (L21) + et (1))
W(y;e) = Wo(y) +eWily )+€2W2( )
+0(y) (2p0(12) + 3o (U1) + ehpa(15Y)),

where 0(y) € C*°[0, 1] satisfies

)+ 26 (

f(y) =0, 0<y

IN
N

; 0<0(y) <1
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Moreover we assume that (), a(e) and b(e) are given in the following form:
I(e) = lo + ely + €21y + £31(e),
a(e) = ag + a1 + 2ay + 3a(e),
b(e) = by + eby + €2by + £3D(e).
We can easily find that (U, V, W)(y;¢) satisfies the boundary condition of
(2.7) at y = 0 exactly, but at y = 1 it becomes
U(1;e) =0,
V(Le) = ag + cay + £2az + 31 (0) + e*42(0),
W (1;€) = b + by + €2by + &3p1(0) + e%p2(0).
So we modify (U, V,W)(y;¢) a little to satisfy the boundary condition at
y = 1 exactly and add the remainder term (52U ,e2V, EQW), we seek exact
solutions of (2.7) of the form

u(y;e) = Ulyse) +°Uy;e),
v(ye) = V(yie) +a*(e) +eV(yse), (2.14)
w(yse) = Wyse) +b%(e) + 2 W(yse),

where a*(¢) = e(a(e) —¢1(0) —e¢2(0)) and b* () = *(b(e) —p1(0) —£p2(0)).
Substituting (2.14) into (2.7), we obtain

e2(Uyy + €2U,,) + 1(e)? [U +&2U — (U 4+ 20)?

—¢ (a(v +a* 4+ 2V) + B(W +b* + W) + 7)} =0,

Vi + €2V + 1(e)? (U +e2U — (V+a*+ 5217)) =0, (2.15)
DX (Wyy + W) +1(e)” (U + €20 — (W + b + 2W) ) =

(Uy, Vy, Wy)(0;¢) = (0,0,0), (U,V,W)(1;¢) = (0,0,0).

Then, we define the following operator T(U,V,W;¢e) = (T1, Ty, T3) (U, V, W

;€):

TW(U,V,W;e) = 2U,, + (e )2<U 3U%U — 382UU? — 40U
— eaV — aﬂW)—i- 5 Uy
U -U? —6( (V+a*) = BW +b*) +)}],
(U, V, W;a) = f/yy +1E)* U -V)+ 52 [Vyy +1(e)*(U -V — a*)},
W;e) = D*W,, + 1(e)*(U — W)
+ Ei? [DQWyy FUE2U - W — b*)]
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from X = A, x Bx BtoY = C[0,1] x C[0,1] x C[0,1], where A, = {U €
052[07 1] | Uy(o) = OaU(l) =0}, B= {V € CQ[Oa 1] | Vy(o) = 07‘7(1) = 0}

and '
d 1
|wwmu_ﬁm§j(s:)MW<+w}.

@muz%mc%u
y€[o

We find that T(U VLW ¢) is the continuously differentiable operator and
(2.15) is equivalent to T'(U,V,W;¢e) = 0.

Lemma 2.2. There exist g > 0 and a positive constant C such that for

any ¢ € (0,e9) the followings hold:

() [ Ti(trse) — Ti(tas ) x—y < Cllty —tol[x  for any ty,ts € X,
(i) [[T(0;e)]ly < Cé,
(ii)) 771 (0;8)ly»x < C.
The proof is given in §4.
By this lemma, we can apply the Implicit Function Theorem to T'(U,V, W ;)
= 0 and find that T(U,V,W;e) = 0 has solutions (U(e),V(e), W(e)) € X
satisfying ||(U(e), V(e), W (e))||x = o(1) (¢ = 0). Thus we have the exact
solutions of (2.7) on [0, 1]

u(y;e) = U(y;e) + €20 (ys ),
v(yie) = V(y;e) + a*(e) + €2V (yse), (2.16)

w(yse) = Wyse) +b%(e) + 2 W(yse),
which implies that (2.4) has the following exact solutions on I; = [0,1(¢)]:
u(z;e) = Uz /l(e);e) + e2U (z/1(e); €),
v(w;e) = V(w/l(e);e) + a*(e) + eV (w/l(e)se), (2.17)
w(z;e) = W(x/l(e);e) +b*(e) + 2W(z/l(e); 2).

2.2. Solutions of (2.5) on the interval Iy = [i(g), o0)
Using the transformation y = = — I(¢) in (2.5), we have
( 2y +u—u® — e(av + Bw +7) =0,
Vyy +u—v =0, y € (0, 00)
D?wyy +u—w =0, (2.18)
(u, v, w)(0) = (0, a(e), b(e)),
[ (u,0,w)(00) = (u—(e), u—(¢),u(¢)),
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where u_(g) has the following asymptotic expansion:

u_(e) = wuf+ufe+uje®+--

= —1+%(a+ﬁ—v)s+%(a+5—v)(a+6—3fy)€2+--~-

2.2.1. Construction of outer approximations of (2.18)

We begin with constructing outer approximations (u,v,w)(y;e) of the

form

(y) = Uo(y) + eUr(y) +eUs(y) + - -,
v(y) = Voly) +eVily) + e Va(y) + -+, (2.19)
w(y) = Wo(y) +eWi(y) +*Waly) +---.

U

Substituting (2.19) into (2.18), we equate the coefficients of the same powers
of €.

O(e%) :

Uo—Ug =0,

Vo' + Uy — Vo =0, y € (0, 00)
D2WY + Uy — Wy =0,

Vo(0) = a0, Vo(oo) = uf;

Wo(0) = by, Wo(o0) = ug.

\

From Figure 3, we take Uy = —1. Then V| satisfies

‘/8,_%:17 yE(0,00)
Vo(0) = ag, Vo(oo) = ufy = —1.

We easily find Vp(y) = —1 + (ap + 1)e Y. Similarly we also have Wy(y) =
—1+ (bg+1)e ¥/P.

O(el) :

;

(1-3U3)U1 — (aVo + Wy +7) =0,

V/'+U; — V4 =0, y € (0, 00)
D*W{ +U; — W =0,

Vi(0) = a1, V(o) = uf,

W1(0) = b1, Wi(o0) = uj.
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By the first equation, we have Uy (y) = —(aVo(y)+8Wo(y)+7)/2. Applying
the method of constant variation, we have

Y o]
Vily) = ui+e¥(ar—up)—e™? / e / e~ f3(s)dsdz,

Wi(y) = uj+e ¥Pby—uj) - —5ev/P / e2r/D / e=*/D f3(s)dsd,

where f3(y) = —Ui(y) +uj = (a(Vo(y) + 1) + B(Wo(y) +1))/2.

/

(1 —3U3)Uz — 3UgU? — (Vi + W) =

V' + Uy — Vo =0, y € (0,00)
D2Wé’ + Uy — Wy =0,

V2(0) = a2 — ¢0(0), Va(oo) = ul,

[ W2(0) = b2 — po(0), Wa(co) = u3,

where y(0) and pp(0) will be determined later (see §2.2.2). Similarly to
the case of O(e!), we have Us(y) = —(—3UZ(y) + aVi(y) + BWi(y))/2,

Valy) = ub+e(az —o(0) — u3) — e / / e fa(s)dsd,

Wa(y) = U2+€ /P (by — po(0) — u3)
—y/D/ Qm/D/ —S/Df4 del‘

where fi(y) = —Us(y) +u3 = (=307 (y) + aVi(y) + BWi(y))/2 + us.

2.2.2. Construction of inner approximations of (2.18)

Since the u component of the outer approximations constructed in §2.2.1
does not satisfy the boundary condition at y = 0, we have to modify this
defect. Hence, we introduce the stretched variable £ = y/e and look for

inner approximations ¢;, 1;, p; (1 = 0,1, 2) of the following form in a neigh-
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borhood of y = 0:

u(y) = Us(y)+eUi(y) +e2Us(y) + - -
+oo(L) + 1 (L) +2pa (L) + -+,
v(y) = Voly) +eVily) + €2V2(y) 4.

+e20(L) + 3y (L) + elha(¥) + -+, (2.20)

w(y) = Woly) +eWi(y) +&2Waly) + - -
+e%po(2) +lpr(L) +etpa(t) + -,

so that (u,v,w)(y) satisfies the boundary condition at y = 0. Substituting
(2.20) into (2.18) and using £ = y/e, we equate the coefficients of the same

powers of €.

O(eY) :
[ o — d0(d0 — 1)(¢0 —2) = 0,
Yo + ¢o = 0, £ €(0,00)
Do + ¢o = 0,

$0(0) =1, ¢0.(00) =0,
Yo(00) = 0, o(00) =0,
po(00) =0, po(c0) = 0.

From the first and fourth equations, we obtain ¢o(£) = 1—tanh(¢/v/2). And
then we have ¢o(€) = — [ [, ¢o(¢)dCdn, po(§) = — [° [} do(C)dCdn/D?.
O(e') :

¢1 + U1(0) + ¢1 — 3(Un(0) + ¢0)*(U1(0) + ¢1)
—(aVp(0) + BWo(0) +v) =0,
1+ 61 =0, € € (0,00)
D?p1 + ¢1 =0,
$1(0) = ~U1(0), 1(c0) =0,
1(00) =0, 11 (o) =0,
p1(o0) =0, p1(c0) = 0.

Since ¢ satisfies

$1 — (2 — 6 + 3¢3) b1 = —3(wag + Bbo +7)do(¢o — 2)/2, € € (0,00)
$1(0) = L(aao + Bbo + ), ¢1(c0) =0,
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applying the method of constant variation, we obtain

61(6) = 5(aan+ by +2)30(€)/30(0)
+ 3(ado + Bho +1)do() /5@ ) | " d0(O)o(do — 2)dCd
5 0 0T )P0 ) o\ g 0 0\ Po .

Then we have 11 (§) = — fgoo fnoo $1(¢)dCdn, pi(§) = — fgoo fnoo ¢1(§)dfd77/D2'
O(e?) :

P2 — (2 — 660 + 3¢03) 2 = — {3 (aar + Bb1)do(o — 2)
— EU1(0)(2 — 6¢0 + 363) — 3UF(0)(2 — 660 + 367)
— 3(go — (U1 (0) + ¢1)* — a€V5(0) — BEWH(0)}, € € (0,00)
s + o — o = 0,
D?py + ¢o — po = 0,
$2(0) = (=3U%(0) + aar + Bb1)/2, ¢a(cc) =0,
Pa(00) = 0, ta(00) =0,
| p2(00) =0, p2(o0) = 0.

Similarly to the case of O(e!), we have

ho(E) = 1<—3U%<o>+aa1 1 Bb1)do(€)/0(0)

+ / /¢o { (aar + Bby)

X ¢0(¢0 2) — CU7(0)(2 — 660 + 367)
- §U1< )(2 = 660 + 305) — 3(¢0 — 1)(U1(0) + 1)*

— aCV(0) — ACWH(0)) dCdn,

- dcdn,
a(6) /E /ﬂ 62(C))dCdn
() = /€ | 0nl€) = oa(¢)dcdn D,

n
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2.2.3. Exact solutions of (2.18)

Using the above outer and inner approximations, we can construct uni-

form approximations of (2.18), which take the form

Uy;e) = Uo(y) + eUr(y) + €*Ua(y) + do(L) +epr(L) + e2pa(Y),

V(yse) = Voly) +eVily) + e2Va(y) + e2o(L) + 391 (L) + e*ya(Y),

W(yse) = Woly) + eWily) + 2Wa(y) + e2po(L) + e3p1 (L) + etpa(L).
(e

Here it is assumed that u_(g) = uf + uje + ube? + a_(g)e® and

I(e) = lo +ely + 21y + £%1(e),
a(e) = ag + eay + 2as + £3a(e),
b(e) = bg + by +e%by + 535(5)
are given. (U, V,W)(y; ) satisfy the following conditions at y = 0,

U(0;¢) =0,
V(0;€) = ag + cay + e2ag + £3¢1(0) + £112(0),
W(0;¢€) = by + by + £2by + €3p1(0) + p2(0)
and at y = 0o, U(00) = V(00) = W(00) = ufj + ule + ube?.
Here we modify these a little to satisfy the both boundary conditions at
y = 0 and y = oo exactly and add the remainder term (620, 2V, 52W), we

seek exact solutions of (2.18) of the form

u(yie) =Ulye) +ul(yse) +°U(yse),
v(gie) = V(ye) +a'(e) +ullyie) +*V(yse), (2:21)
w(y;e) = Wy;e) +b*(e) + u* (y;e) + *W(y; €),

() = ¥1(0) —92(0)), b*(e) = £%(b(e) — p1(0) — £p2(0)),

where a*(g) = &3(a
u* (y;e) = 3u_(e)(1 — e7Y). Substituting (2.21) into (2.18), we obtain

([ 2(Uyy +uty, +20yy) + U+ ut + 20
—(U +ur +20)% —¢ {a(V +a* +ut + V)

+B(W 4 b* + u* + W) +7} =0,

Vg +u*y, +*Vyy + U +ut +°U ) (2.22)
—(V+a* +u* +£2V) =0,

D2(Wyy + u*, +e2Wyy) + U + u* 42U
—(W +b* +u* + W) =0,

(U.V,W)(0:¢) = (0,0,0), (U, V,W)(c0;¢) = (0,0,0).
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Then, we define the following operator T(U,V,W;e) = (T1, Ty, T3) (U, V, W
;e):

TW(U,V,W;e) = e2Uy, + U — 3U%U — 362UU? — *U? — caV — efW
1
+ 5 Uy +ulyy +U - U
—e{a(V+a* +u*) + (W +b" +u" )+ v},
To(U,V,W;e) = Vyy + (U - V)
1
S [Viy + 0y, + (U =V —a)],
T3(U,V,W;e) = D2Wyy + (U -W)
1 * >k
+— [D*Wyy + D*u* 4+ (U = W — b%)]

_yy

from X = A. x Bx BtoY = X,[0,00) x X,[0,00) x X,[0,00), where A, =
{U € X2.[0,00) | U(0) = 0,U(c0) =0}, B={V € X2[0,00) | V(0) =

0,V (00) = 0}, Xx[0,00) = {u € C?[0,00) | [Jullx,o,00) = sup €u(y)| < +oo }

y€[0,00)

X2[0,00) = {UGCQ[O,OO) [ull x2(0,00) = sup Ze“y< ) (y)] <+oo}

y€[0,00) =0
X3 [0, 00)

2 d\
— 2 — K
= {u € C7[0,00) | llullxz 0,00) = y:[lolrio)ze Y| <€dy> u(y)| < +oo} and

’ 1=0

> 0. We find that T(U,V,W;e) is the continuously differentiable oper-
ator and (2.22) is equivalent to T'(U,V,W;e) = 0.

Lemma 2.3. There exist g > 0 and positive constants k and C such that
for any € € (0,g¢) the followings hold:

() Ti(ts;0) = Tiltas )| x oy < Cllts —tallx for any t1,t2 € X,
(i) [T(0;¢)lly < Ce,
(iii) |73 (0s)[lyox < C.

The proof is similar to that of Lemma 2.2, so we omit it.

By this lemma, we can apply the Implicit Function Theorem to T(U

v
:€) = 0 and find that T(U,V, W;e) = 0 has solutions (U(e), V (), W (¢)

W
) €
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X satisfying ||(U(¢),V(e), W (e))||x = o(1) (¢ — 0). Thus we have the
solutions of (2.18) on [0, co)

u(y;e) = Uyse) +u* (y) + £2U (y;¢),
v(y;e) = V(y;e) +a*(e) + (y) +e2V(y;e), (2.23)
w(y;e) = W(yse) + % () + u” (y) + W (y;e),

which implies that (2.5) has the following exact solutions on I = [I(g), 00):

u(z;e) = Uz — (e); ) + u* (x — I(e);€) 4+ 2U (z — I(¢); €),
U(x;E)ZV(x—l@);E)Jra (€) +ul(z —I(e);e)

+e2V(z — I(e);¢), (2.24)
w(w;e) = Wz —l(e);e) +0%(e) + uZ(x — l(e); ¢)

+&2W (z — I(e); ).

2.3. Solutions of (2.3) on the interval [0, c0)

Finally, we construct solutions of (2.3) on the interval [0,c0), match-
ing the solutions constructed in §2.1 and §2.2 in C'-sense. To distinguish
the solutions in each interval I; = [0,l(¢)] and Io = [l(g),00), we write
w,v,w, Uy, Vo, Wo, b0, 1o, po--- on the interval I; as u®, 0@ w(®) Uéi),
‘/O(i), Wo(i), qﬁ(()i), ¢éi), p(()i) .-+ for i = 1,2. We have already constructed the
solutions to be continuous at = [(g). Then, for our purpose, we impose

the following three conditions:

w(e) = 1(e) (v 1) — v 1)) =0, (2.25)

which enable us to show that I(¢), a(e), b(e) are uniquely determined.

Substitute each solutions on I; (i = 1,2) to (2.25), we easily find that
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the following relations hold for any small € > 0:

—ll(Uo (0)+¢1 0))—l % (0)}+O( %)
+ Po(e) +ePi(e) + (62)

~lo(V{?(0) + 4§ (0)) — 1 va@ (0)} + O(e?)
= Ug(e) +e¥1(e) + O(e?) =
() =W (1) — oWy (0 >>+a{W”< +py)
~lo(W;2(0) + 47 (0)) — L Wy® (0)} + O(e2)
{ =1Ily(e) + elli(e) + O(e?) = 0

O 1) :
o_1 = ¢"(0) — 147 (0) = 0.

Note that this is always true.
O(eY) :

/

= 2\/5[0(04@0 + Bbo+7) =0,

By the relations ¥y = 0 and IIp = 0, we have ap = —
e—2lo/D

ae=l0 4 ge=20/D — o

)
U(e) =<va<”<1>—zv’<2>< 0)) +e{vy" (1) + 1<>

0o = Up (1) + 61(0) — lo(ULP (0) + 2 (0)) — 145 (0)
= V2lg(cag + Bby + ) — ﬁll + lov2(aag + Bbo + ) +

Yo = V()/(l)(l) - lOVO/(Z) (0) =lp(ap — 1) tanh iy + lp(ap + 1) = 0,
Iy = W(;(l)(l) - ZOW(;@) (0) = lﬁo(bo — 1) tanh lﬁo + lﬁo(bo +1)=0.

, respectively. Substitute these into &3 = 0, we have

39

(2.26)

If we find [y > 0 satisfying (2.26) for given «, 3,7, D, we can get ag and by

uniquely from Wy = 0 and IIy = 0, respectively.



40 Hideo IKEDA and Yuki AKAMA

O(el) :

& = U (1) + ¢80 (0) — (U] <> +68(0)
—L (U (>+¢s§2><o>>—z ¢>0 <o>= ,

= Vi) +970) — (P (0) + 4§ (0) — VP (0) =
1, = W) + 557(0) — oW, (0) + 55 (0)) - z1W0<2><o>

0

Though it seems that ®; contains the term [y, it is independent of Is.

Indeed, we can calculate as follows.

The terms including ls in @,

= 2oly [°_ V08 (5" + 10" +2)de /857 (0) — 1257 (0)

—2y L

Ll = 0.

Furthermore we can show that ®; is also independent of [;. To show this,
we consider @1 as a function of [y and write it as ®; = ®4(l1). We have

the following lemma:
Lemma 2.4. %(I)l(ll) =0
The proof will be given in §4.

The terms including a; or by in &4
= 2 (aar + 8b0)8f" {3132 + 660 + 3(6")? + 1 }dg /{1 (0)
L3(2 - 667 +3(6()? + 2 }ag

= (Ozal + Bbl)(\/ilo + \/Elo) = 2\/5[0(01(11 + ,Bbl).

+ o Jy° (aay + Bby) i)

By ®; = 0, we have 2v/2ly(cay + 8b1) = constant. On the other hand,

the terms including /; or a; in ¥,
=1 {—loe*lo fol elos(1 — T/E)(l))ds — 2lpe~" tanh g fol cosh(lps)(1 — Vb(l))ds
— Jpe o fl e~los(1 — Vb(l))ds + ag + 1} + a1 (lp + lp tanh lp)

_ 26l0
=l =5 lo+e—l0 h+ alUOm)'
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By ¥; = 0, we have a1 = e 2], + constant. Similarly we have b; =
l

6_250l1/D + constant by 1I; = 0. Then, substituting these a; and b; into

2v/2lp(aay + fBby) = constant, we obtain

l
(aeinO + ﬂe*Qﬁo/D> l1 = constant.

If e 20 4 66_2%/D # 0, I is uniquely determined and then a; and
b1 are also uniquely determined. Similarly higher order terms Iy, ap, bk
(k=2,3,...) are also successively determined.
Now we justify the above process. Put (e
ea, b(e) = bo+eb and define ®*(1,a, b;¢), ¥*(1, a,
e®*(l,a,b;¢),¥(e) = e¥*(l,a,b;e), () = ell*
find that there exist two small positive constants § and &g such that ®*(1, @, b; €),
U*(l,a,b;¢e), I1*(1,a, b;e) are continuous for I € (I — §,1; +6),a € (a; —
S,a1 +6) and b € (by — 0,b1 + 8),& € [0,0] and are C'-class functions for

I, @, b. Furthermore, we can easily find that

lo +¢l, a(e) = ap +
g),11*(1,a,b;¢) by ®(g) =

) =
b;
(

?
l,a,b;e), respectively. We

,

®*(l1,a1,b1;0) =0, *(llaalabIS ):0
*(ll,al,bl; 0) =0, (11,a1,b1, 0) =
98 (I, a1, b1;0) = 2¢/2lpa, 9% (11, a1, b; )—Q\floﬂ,
* 1
651; ( a17b17 )_ _loﬁegloa a (l a17b17 ) l() l0+e—l07
* —lg/D
(9{;1’ (l alabla ) O’ l_ (l alabla ) DOQ%’
/D
L 3 (l17a17b17 )_07 E (l17a17b17 ) %%
This implies that
o(®*, U™, 11*)
———————(l1,a1,b1;0
a(l,a,b) (b a1, b150)
0 2v20pa 2v20p3
_ —] 2¢bo l 2¢lo 0
= 0¢clo+e—1o 0clote—lo
lo 2¢—lo/D 0 lo 2¢lo/D
_ﬁelo/D_’_eflO/D D elo/Dye—lo/D
B B 1 1D ae—2lo4 B o—2lg/D
= 8\/5506 oelo/ (eloJre*lo)(elg/DJre*lO/D)'
Then if ae=20 +5 LA _2 D # 0, we can apply the Implicit Function Theorem

to ®*(I,a,b;e) = 0, ¥*(l,a, b; ) = 0 and II*(I,@,b;e) = 0 and find that
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there exist [ = I(g), a = a(e), b = b(e) (¢ € [0,g¢]) satisfying 1(0) = I,

a(0) = a1, b(0) = by such that

®*(I,a,b;e) =0, ¥*(l,a,b;e) =0, II*(I,a,b;e) = 0.

S

l

Then we have the following existence theorem:

Theorem 2.1. For given o, 3,7, D, if there exists ly > 0 satisfying ce 20+
l l

Be™®D = ~ and ae 2o + %67250 # 0, then (2.3) has a standing pulse

solution (u,v,w)(x;e) for a sufficiently small € > 0, which is explicitly

represented by (2.17) on Iy and (2.24) on Ia, respectively.

Corollary 2.1. ([2]) Assume that o, 3, D satisfy |aD| > |B|. For the num-
ber K of standing pulse solutions of (2.3), which have the asymptotic forms
stated in Theorem 2.1 for a sufficiently small € > 0, we have
(al) sgn(a) = sgn(B) = sgn(vy),and |y| < |a+ 5|, then K=1.
a2) sgn(a) = sgn(B) = sgn(vy),and |y| > |a + B|, then K=0.
) (o) = sgn(B) and sgn(a) # sgn(vy),then K=0.

(

(

(b1) sgn(a) = —1 = —sgn(B),a + B > 0,and sgn(vy) = —1,then K=0.
(b2) sgn(a) = —1 = —sgn(f),a+ > 0,and 0 < v < a + B, then K=1.
(b3) sgn(a) = —1 = —sgn(B),a+ S > 0,and o+ B < vy < 7¢,, then K=2.
(b4) sgn(a) = —1 = —sgn(B),a+ S > 0,and v > ~.,, then K=0.

(cl) sgn(a) = =1 = —sgn(B),a+ < 0,and v < a + f,then K=0.
(€2) sgn(a) = =1 = —sgn(p),a+ B < 0,and a + <y < 0,then K=1.
(€3) sgn(a) = =1 = —sgn(B),a+ < 0,and 0 < v < 7, , then K=2.
(c4) sgn(a) = —1 = —sgn(B),a+ S < 0,and v > 7., ,then K=0.

(d1) sgn(a) =1 = —sgn(B),a+ B > 0,and v < ey, then K=0.

(d2) sgn(a) =1 = —sgn(B),a+ B > 0,and ., <y < 0,then K=2.
(d3) sgn(a) =1 = —sgn(B),a+ 5> 0,and 0 < v < a + ,then K=1.
(d4) sgn(a) =1 = —sgn(B),a+ B > 0,and v > a + B, then K=0.

(el) sgn(a) =1 = —sgn(B),a+ < 0,and v < 7e,, then K=0.

(€2) sgn(a) =1 = —sgn(f),a+ B < 0,and Ve, <7y < o+ [B,then K=2
(e3) sgn(a) =1 = —sgn(B),a+ < 0,and a4+ <y < 0,then K=1.
(ed) sgn(a) =1 = —sgn(f),a+ B < 0,and v > 0,then K=0,

D 1

where 7., = (—a)*ﬁﬁ*ﬁ(l)*m — D’%) and Ve, =
o~ DT (—B) Do (DT DT — DD,
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Proof. We put g(ly) = ae™2b0 + 66_2%. The left panel of Figure 4 shows
the curve v = g(lp) with @ < 0,5 > 0 and the right one does the curve v =
g(lp) with o > 0, 8 < 0. Here 7y, (resp. 7c,) is the maximal (resp. minimal)
of the curve v = g(lp) for Iy > 0 in the left ( resp. right) panel at Iy = I..
Clearly . is determined as [, = ﬁ log (—%). Then, the number of
standing pulse solutions corresponds to the number of intersection points
of v = g(lp) and v = Iy except for the critical point ly = I, at which
ae 2o 4 56_2%/D = 0. The case (b2), (b3) and (d2), (d3) follow from

Figure 4 directly. The other cases will be obtained similarly. O

e v

U*BI/ a+p

1=g(h)
R o
w
0l L/ N BN
Figure 4: (b) sgn(a) = —1 = —sgn(B) (d) sgn(a) =1 = —sgn(B)

3. Stability of standing pulse solutions

Here we will study the stability of the standing pulse solutions (u, v, w) =
(u,v,w)(z;¢e). Van Heijster at al [7] showed that the stability of the stand-
ing pulse solutions does not depend on the parameters 7 and ¢ when 7
and 6 are O(1) with respect to e, on the other hand, when 7 = O(1/e?)
and/or § = O(1/£?), there may appear the two types of bifurcation, one is
a drift bifurcation and the other is a Hopf bifurcation. Hence, we restrict
our attention to the latter case, so that we set 7 = 7/e2,6 = 0/¢? with
T > 0,9 > 0 in the subsequent analysis. In order to discuss the stability,

we consider the following linearized eigenvalue problems of (2.1) around
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(u,v,w)(z;¢):

e 0
Lf =A| 0 7 0 , (3.1)
0 6
where
52% +1-3u? —co —ef
_ a2
Lf = 1 dm 10
2
1 0 D>

and (p,q,7r)(z;;\) € BC(R) x BC(R) x BC(R). Here we put an eigen-
value A = £2X. The operator L® with the usual domain becomes a sectorial
operator for € > 0 and the spectral analysis of (3.1) derives the nonlinear
stability or instability (for instance, see Henry [8]). Therefor our problem
consists of the following two parts: (i) distribution of the essential spec-
trum, (ii) distribution of isolated eigenvalues. For the problem (i), noting
that (u—(g),u—(e),u—_(e)) is the stable constant solution of (2.1), we can

conclude the following lemma:

Lemma 3.1. ([7], [8]) There exists a positive constant d such that for

sufficiently small positive €, the essential spectrum of (3.1) satisfies
Re{essential spectrum of (3.1) } = —d,

where d = min{1/(27),1/(26)} > 0.

Next, we consider the distribution of eigenvalues. A complex number
A is called an eigenvalue of (3.1) if this equation has a nontrivial solu-
tion (p, g, 7)(z;; \) which belongs to BC(R) x BC(R) x BC(R). Clearly
du dv dw
dz’ dv’ dx
that A = 0 is an eigenvalue of (3.1), which corresponds to a translation

> (2;¢) satisfies the equation (3.1) with A = 0. This implies

invariance of the standing pulse solutions.

The eigenvalue problem (3.1) can be rewritten equivalently as

—V = A(z;6; \)V, (3.2)



Existence and stability of singularly perturbed standing pulse solutions 45

N T dp dq dr N
where V =V (z;e;\) = (p,a(h:,q, paLe dac) and A(z;e; \) is defined by

0 10 o 0 0
L .
(=143 +*)) 0 a 0 B 0
. 0 0 0 1 0 0
A(z;e;0) = .
-1 0 14+7X2 0 0 0
0 0 0 0 0 1
i — 0 0 0 (146} 0
. . du dv dw
Since V(x,_s) = <u’€dx’v’d:r’w’da:> — (u—(g),0,u—_(g),0,u—_(g),0) as
x — +00, V(x;e;\) obeys the following linearized equation:
Ly _ Alooie: )7 (3.3)
dm - ) ) *

when x — doo. Let ,ul-(z—:;j\)(i = 1,2,---,6) denote eigenvalues of the
matrix A(oco;e;\), where we suppose Re{u1} < Re{us} < Refus} <
Re{us} < Re{us} < Re{ug}. By the standard argument, we may assume
that p;(e; 5\)(2 =1,2,---,6) depend analytically on A

Lemma 3.2. There exists a positive constant d independent of € such that

Re{u1} < Re{u2} < Re{us} <0 <Re{us} < Re{us} < Re{ue}
hold for any A € Cq = {\ € C | Re{\} > —d}.

The proof is given in §4.
Then a nontrivial solution V (z;e; ) of (3.2) corresponding to an eigen-

value A € Cy must satisfy

_ ~

V(z;e;0) =0 (x — £00). (3.4)
Thus we consider the following eigenvalue problem:

e2\p = 2pua + (1 — 3u?)p — eag — P,

A= oo + D — 4, reR
OAr = D?rpp +p—r,

(p; q,7)(£00) = (0,0,0).

(3.5)
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Furthermore, by virtue of the symmetry of the standing pulse solutions, the

eigenvalue problem (3.1) on R is decomposed into a pair of the following

eigenvalue problems on Ry (see [9]):

and

3.1.

(

e2\p = e2ppe + (1 — 3u)p — eaiq — efr,

A= Qoo +D — 2 € (0,00)
OAr = D2rpy +p—r,

(Pos qus72)(0) = (0,0,0),

(p,q,7)(c0) = (0,0,0)

e2\p = e2ppe + (1 — 3u?)p — caq — epr,

A= oo + P — 4, z € (0, 00)
OAr = D?rpp +p—r,

(p,q,7)(0) = (0,0,0),

(p7 q, T)(OO) = (07 0, 0)'

Eigenvalue problem (3.6)

(3.6)

(3.7)

Similarly to the construction of standing pulse solutions, let us consider

the following problems with suitable boundary conditions:

and

525\]9 =e2ppe + (1 — 3u?)p — caq — efr,
Aq = Gae +1 — 0,

O r = D?rpp +p — 1,

(p:m qx, rw)(o) = (Oa Oa 0)7

(p.0.7)(1) = (£.0,¢).

e2Ap = e2pyn + (1 - 3u?)p — eaq — epr,
A0 = Qoo + P~ 0,

OAr = D?rpp +p — 1,

(r.0.7)(1E) = (£.b.¢).

(p,q,7)(00) = (0,0,0),

z e (0,i(e)) = I

xz € (l(g),00) = I

(3.8)

(3.9)
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where a, b, ¢ are given real numbers. For any A € Cy, let (M, ¢V, rM)(z;¢;
A a,b, ¢)and (p@, ¢@, r@)(a;e; A\ a,b, ¢) be solutions of (3.8) and (3.9), re
spectively. Then, any solution V' (z;&; \) of (3.8) satisfying (pz, ¢z, 72)(0) =
(0,0,0) is represented as a linear combination of three independent solu-

tions

[ pW(2:654;1,0,0) | [ pW(2:654;0,1,0) |
epy) (x5654,1,0,0) 6p§c1)(:v; e;4;0,1,0)
_ 3 q(l)(:n e \; 1,0,0) _ )
M (z1e:7:1,0,0) o
T(l)(x e:\: 1,0, 0) 7“(1
ri (z36; 5 1,0,0)

Va(z;e; M)

I
)
8~
=
~ I~~~
S R
n
>
=
=
—_

By virtue of Lemma 3.2, any solution of (3.9) satisfying (p,q,r)(c0) =

(0,0,0) is represented as a linear combination of three independent solutions

[ p®(2:6:4:1,0,0) ] [ p®(2:6:4;0,1,0) ]
epgf) (z:6;X;:1,0,0) ep;(f) (z;6;X;0,1,0)
T q(Q)(l‘ 6;5\;1,0,0) o) q(2 (z; 6;5\;0,1,0)
(m £;A;1,0,0) qm (:L‘ £;1;0,1,0)
7“(2)(3: e \; 1,0,0) r2) (z; £ )\ 0, 1,0)
(fc £;A;1,0,0) rg(f (z;6;X;0,1,0)

Ve(z;e5 M)

I
2
no
&
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The coefficient matrix A(z;e; ) of (3.3) depends analytically on A. Then,
we may assume, without loss of generality, that V;(z;e;\) (i = 1,2,---,6)
also depend analytically on A

Let V(2;¢; ) be a nontrivial solutions of (3.6) corresponding to an eigen-
value A. We know that there exist constants oy (i = 1,2, ---,6) satisfying
Z?:1|ai| # 0 such that V(z;e; \) must be represented as
aVi(z;e;N) + aoVa(zs 65 \) + asVa(as65\), © € I

Viz;e;A) = ~ . ~ . ~ . (3.10)
agVa(z;e;N) + asVs(zs65N) + agVe(zs 65 N), o € Is.

At z = [(g), we have the relation

aVi(l(e); e N) + aaVa(l(e); 65 N) 4 asVa(l(e); €3 ) (311)
= auVi(l(e);e; ;\) +asVs(l(e); g ;\) +agVs(l(e); &; 5\) ‘

This implies that \ is an eigenvalue of (3.6) if and only if six vectors
Vil(e):e;A) (i =1,2,---,6) are linearly dependent. Setting

gn(e;A) = det[Vi(i(e); 3 \), Va(l(e);e; N),
Va(l(e);; ), Va(l(e); &5 M), Vs(U(e)s &5 A), Vis(l(e); €3 A)],

we find that gy (e; A) is an analytic function of A € C4 and have the next

lemma.

Lemma 3.3. The number A € Cq is an eigenvalue of (3.6) if and only if
gn(e; ) = 0.

We call gn(e; 5\) the Fvans function of the standing pulse solutions cor-
responding to (3.6). Therefore, making use of the equation gy(g;A) = 0
we can examine the distribution of eigenvalues \e Cg4. For this purpose,
we have to construct functions V;(z;e; \) (i = 1,2, - - -,6) as we constructed
standing pulse solutions in §2. According to the dependency of AeC4on
€, we must consider the following two cases:

(1) A=Xe)=0(1)inCqy (e —0),

(1)  A=A(e) = o0 in Cy (e = 0).

We analyze here only the case (I) because we can treat the case (II) simi-
larly and we conclude that gy (e; ) # 0 for any A satisfying the case (II).
Then, we suppose that A = O(1) as e — 0.
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3.1.1. Construction of Vi, 15, V3

First we solve the problem (3.8) as we have done in §2.2.1. Using the

transformation y = z/l(¢) in (3.8), we have

¢

2pyy +1(e)* (1 — 3u® — €2\)p — eaq — efr) = 0,

Gy +1(e)*(p— (L +7X)q) =0, y€(0,1)

Dryy +1(e)*(p— (1+6M)r) =0, (3.12)
(py>qy7 y)(O) (0 0 0)

(.01 = (4. )

We first consider outer approximations of the form

_l’_
q(y) = Qo(y) + Q1 (y) + £2Qa(y) + - (3.13)
( +-

Here we note that in an outer region, the part of the inner approximations of
the standing pulse solutions (u,v,w)(x;€) decays exponentially to 0 when
e — 0. Substituting (3.13) into (3.12), we equate the coefficients of the

same powers of €.

O(eY) :

—2Py =0,
PPy — (1+70)Q0) =0, ye(0,1)

D?Rl 4+ 12(Py — (1+0)\)Rg) =0,
Qo( )—0 QO( )Z
[ Rp(0) =0, Ro(1) =

Py = 0 and then Qg satisfies

P21+ 7N)Qo =0, ye(0,1)
Q4(0) =0, Qo(1) =

We easily have Qo(y; A;b) = beosh(lop(N)y)
Qo, Ro(y; A; ¢) = ccosh(lor(N)y)/ cosh(lor(A
v(\) = V1+6\/D.

/ cosh(lop(A )) and similarly to
)), where (A) = V1 + 7\ and
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O(el) :

—2P —aQo — BRy =0,

Q!+ 12(PL— (1+7N)Q1) + 2ol (Py— (1+70)Qo) =0,  ye(0,1)
D2R! + 12(Py — (1+ 0N Ry) 4 2lol1 (Py — (1 + 6N Rg) = 0,

@1(0) =0, Q1(1) = —qo(0;a),

R1(0) =0, Ri(1) = —r9(0;0a),

where go(0; a) and 74(0; @) will be determined later. We have Py (y; A; b, ¢) =
—(aQo(y; A b) + BRy(y; \; ¢))/2 and then from Lemma 2.1,

. A y .
Qi(y; Nja,b,c) = elory ! < / eorNs £ (5 \; b, ¢)ds
2lop(A)

e—top(})

! 2 — ~
" 2ou(N) cosh (lou(i))/o cosh (lop(N)s) f1(s; As b, ¢)ds

q0(0; a) _ } + e~ lon(Ny {_ 1 _ /y elo“(;\)sfl(s;j\; b,c)ds
1

ZOP‘(S‘) 1 ) i ) |
_ ] € _ / cosh (lop(A)s) f1(s; A; b, ¢)ds — M 7
2lop(\) cosh (lou(N)) Jo 2 cosh (lop(X))
) A 1 Yy . A
et = ) / e~ lovNsg, (s, A5 b, ¢)ds
v ) 2or(N) g1 )
e—lor(Y)

1 \ a 3.
* 2lol/(5\) cosh (loV(j\))/o cosh (lov(A)s)g1(sA; b, c)ds

_ ’"0(0@} +elov<ﬁ>y{ L / et Nsg, (5: 5:b, c)ds
1

2 cosh (lor())) vV
— elor ) 1Cos v(\)$)g1(s; A; b, c)ds — —TO(O;G)
2or(3) cosh(zou(X))/o b lor(A)s)gr(s: Asb e)ds = (zou(X))}’

where fi(y; A;b, ¢) = —I3Py(y; A; b, €)+2lol1 (1473) Qo (y; As b) and g1 (y; A; b, ¢) =
—(BPy(y; A by ¢) — 2ol (1 + 6A) Ro(y; A; ¢))/ D2
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O(£?) :

B(—6UgUL Py — 2Py) + 2lpl1 (—2P1) — I2(aQ1 + BR1)
—2lgl1(aQo + BRo) = 0,
N+ B(Py— (1+7N)Q2) + 2loli (Pr — (1 +70)Q1)
+(12 4 2lpl2) (Py — (1 4+ 70 Qo) =
D2RY + 12(Py — (140N Ry) + 2loly (P, — (1+6
+(12 + 2lly) (Py — (1 + 0\ Ro
Q5(0) =0, Q2(1) = —q1(0; a),
Ry(0) =0, Ra(1) = —71(05a),

)A , y€(0,1)
A R1)
) =0,

where ¢1(0;a) and r1(0;a) will be determined later. Similarly to the case
of O(e!), we have
. 1 .
Py(y; Aja,b,c) = TN {(GZoUl( ) + 4l1) Pi(y; A; b c)
+ lo(aQ1(y; X a,b,¢) + BRi(y; A; a, b, ©))
+ 201(aQo(y; Asb) + BRo(y: Xs0)) |

. . y o
Q2(y; Asa,b,¢c) = elon(y ! = / 6_l0“()‘)5f2(5;)\;a, b,c)ds
2[0/1,()\) 1
e—loﬂ(j\) 1 h )\ b.o)ds
+ = = cos s;A;a, b, c
T o () [ cost tonh fatsi s b
__a®a) U o
2 cosh (lpp(A))
Y lou(jx)
X 4 — 1A / elon(3 )% fo(s; As a, b, ¢)ds — — -
2lop(A) 2lop(A) cosh (lop(A))
1
q1(0;a)
X cosh (1 S; )\ a,b,c)ds — ———————— 3|
/0 (ops(39)a(s ) QCosh(lo,u()\))}
. . 1 y
Ro(y; X;a,b,c) = elovy A/ ¢~lov(N)s s;\;a, b, c)ds
2(y ) 2 () )i 2 ( )

e—lov()

+ =
2lov(A) cosh (lpv
_’"1(05“)} el

1 A~ ~
(5\)) /0 cosh (lpr(N\)$)ga(s; A; a, b, c)ds

2 cosh (lpr(N))
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lov(X)
X {— ! - / lo”(’\)sgg(s X;a,b, c)ds — ¢

2ov(N\) 1 2ov(A) cosh (lor(N))

X /1 cosh (lou(ﬁ)s)gg(s; \;a,b, c)ds — M} ,
0 2 cosh (lpv(N))

where fa(y; A; a,b, ¢) = —I3Pa(y; A; b, €)= 210l (Py(y; As b, €)= (1473) Q1 (3 X;
a,b,¢)) — (If + 2lolo)(Po(y) — (1 + 7X)Qo(y; A ¢)) and Ga(y; Aja,b,c) =
{=13Pa(y; Aib, ) — 2loly x(Py(y; ;b ) — (14 0N Ri(y; Asa,b,0) — (I3 +
2ol) (Po(y) — (1+ 03 Ro(y; A; )}/ D?.

Since the p component dose not satisfy the boundary condition at y = 1,
we have to modify this defect. Hence, we introduce the stretched variable
¢ = (y —1)/e and look for inner approximations p;, g;,r; (i = 0,1,2) of the

form

p(y) = Poly )+€P1(y,5\ b, c)+€2P2(y,5\ a,b,c) +
+ 1po() + pr (1) +epe(B0) + -,

ay) = Qoly;\; b>+aQ1<y,A 0,b,¢) + £2Qa(y:; 3 ,b,c) +
+€£J0( )+€ Q1( )+63CJ2(y7_1)+"',

r(y) = Roly; \; c) +5R1(y,/\ a,b,¢) +e2Ro(y; X a, b, ¢) +
+ ero(¥= )—l—ar( )+ar(y LYy

©(3.14)

so that (p,q,r)(y) satisfies the boundary condition at y = 1. Substituting
this into (3.12) and using £ = (y — 1)/e, we equate the coefficients of the

same powers of e.

O(e™ 1) :

Po — 13(2 + 660 + 3¢3)po = 0,
Go + 2po = 0, £ € (—00,0)
DQ’F() + lgp() =0,

By the first and fourth equations, we have po(&;a) = ago(€)/do(0), and

then qo(&a) = —13 [ [ po(¢)d¢dn and ro(&a) = I3 5 [ po(C)
d¢dn/D?.
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O(e%) :

1 — 152+ 660 + 3¢3)p1 — 2lol1 (2 + 60 + 3¢)po
— 613(1 + ¢0)(U1(1) + ¢1)po = 0,
1 + 13p1 + 2lolipo = 0, § € (—00,0)
D?%jy + I2p1 + 2lglipo = 0, (3.15)
p1(—00) =0, p1(0) = —P(1) =0,
q1(—=00) =0, ¢1(—00) =0,
[ 71(—00) =0, 71(—00) = 0.

Since p; satisfies the following equations:

Pr— 13(2+ 6¢0 + 362)p1 = 2lol1 (2 + 6¢0 + 362)po
+ 612(1 4 ¢o)(Ui(1) + ¢1)po, & € (—0,0)
pl(—OO) = Oa pl(o) = O’

we obtain

. 0. no.
p1(§;a) = —<f>0(§)/é (¢0(77))2/ $0(C) {20011(2 + 660 + 3¢3)po

+ 615 (1 + ¢0) (U1 (1) + ¢1)po } ddn

and then

3
@(&a) = —/_ /_77 {18p1(¢) + 2lol1po(€) }dldn,

€
&) = —p5 [ [ {8 +2ohi(©) g

O(e!) :

P2 — 12(2+ 6¢0 + 3¢03) (P1(L; A; by c) + p2) — 6I2(1 + ¢o) (U1 (1) + d1)p1
=3IE{(U1(1) + ¢1)* + 2(1 + ¢0) (U1 (1)€ + Ua(1) + ¢2) }po
—2lol1 (2 4 660 + 3¢3)p1 — 12lol1 (1 + ¢o) (U1 (1) + ¢1)po
— (1% + 2lol2) (2 + 6¢0 + 3¢3)po — 13 (Apo + ab + Be) = 0,
go + l%(pg — (1 + %;\)qo) + 2lplip1 + (l% + 2l012)p0 =0, ¢ e (—OO7 O) (3.16)
D2y + 13 (p2 — (14 0M)ro) + 2lohip1 + (1 + 2lol2)po = 0,
pa(—00) =0, pa(0) = —Pi(1; A;b,¢) = (ab + Be) /2,
QQ(—OO) = O, QQ(—OO) =0
(—00) =0, 13(—00) = 0.

T2
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Similarly to the case of O(¢”), we have

pa(& N a,bc) = 5(

1 . . ) 0, . —2 M .
b+ BIG©)/00) ~ 90(©) | (o(m) " [ )

X |1§(2 + 660 + 3¢8) PrL(1; A b, c) + 613 (1 + o) (U1(1) + ¢1)p1

+ BIB{(UL(1) + ¢1)* + 2(1 + ¢0) (U1 (1)¢ + Ua(1) + ¢2) }po

4+ 2ol (2 + 660 + 3¢3)p1 + 121011 (1 + ¢0) (U1(1) 4 é1)po

+

(13 + 2lol2) (2 + 660 + 3¢3)po + 13(Apo + ab + Be) | d¢dn,

. 3 n .
(&N a,b,¢) = —/ / {lg(pz—(1+?h)qo)+2lol1p1
+ (13 + 2lol2)po } d¢dn,
. 1 (& ) p
nGhiabe = —p [ [ {0+ 03m) + 2l

+ (I3 + 2lol2)po } d¢dn.

For any fixed \* € Cg, let us define A, = {A € Cg | |\ — X| < v}
(v > 0). Using the above approximate solutions, we can construct uniform
approximations up to O(g2) of (3.12) for any A € A,, which take the form

;

P(y;e;Nia,byc) = Poly) +ePi(y; Aib,c) + 2 Pa(y; s a, b, c)

+0) (Lpo(Uia) + pu(Mia) + oY Aia,bo))
Qyies Nsabe) = Qo(yi Aib) +Qu(y Aia,b,¢) +£2Qa(y; As a,b,c)
) + 21 (Y a) + 200X A as b, C)> :

I )
+eRi(y; A a, b, ¢) + e Ro(y; As a, b, )
= ;a)—|—52r1(y_1;a)+53r2(yT_1;5\;a,b,c)) ’

3

(
R(y;e;hia,b,¢0) = Ro(y; Aso)
(

where 6(y) is the same function as is defined in §2.1.3. Obviously (P, @, R)(y; &;
5\; a, b, ¢) satisfies the boundary condition at y = 0, but it dose not satisfy
that at y = 1, because it becomes
P(l;g 5\; a,b,c) = g,
Q(Lie; X;a,b,¢) =b+e3g2(0; X; a, b, ¢),
W(1;e; A\ a,b, c) =c+e3ry(0; X a,b, c).

So we modify it a little to satisfy the boundary condition at y = 1 ex-
actly and add the remainder term (5215, £2Q, 62R) to it and look for exact
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solutions of (3.12) of the form

plyies Na,be) = P(y;e;h;a,b,¢) +2P(y;6; M a,b,¢),
q(y;&; \;a,b, c) Q(y;e; \;a,b,c) + q* (g5 \;a, by ¢) + £2Q(y; €5 X a, b, ¢),
r(y;e; N a, b, c) R(y;&; M\ a,b,¢) + (g3 A\ a, b, ¢) + €2R(y; €5 A; a, b, ¢),

where ¢*(g; A a,b, c) = —e3q2(0; X a,b, c¢) and r*(g; X a,b, c) = —e3ry(0; X a,b, c).
Substituting this into (3.12), we have

4

e?(Pyy + 62163/3/) + l(5)2 [( —3u? — 2A)(P +£P)
(oz (Q+q* +2Q)+ B(R+r* +€2R)>} 0,
Quy + 20y + U(e)° <P+E2P (1+70)(Q + ¢* +E2Q)) 0, (3.17)
DRy, + 2Ry, + 1(e) <P+€2P (1+ 00 (R + +52R>
(P, Qy, Ry)(0;¢) = (0,0,0), (P,Q,R)(1;¢) = (0,0,0).

Then, for t = (P, Q, R), we define the following operator T(t; &; ; a, b, ¢) =
(Tl,TQ,Tg)(t N 5\ a, b )

Ti(t;e; X a,b,¢) = 2Py, +1(e)?((1 — 3u? — e2\)P — caQ — eBR)
+€l2 {Pyy + 1(e)? {(1 —3u® — 525\)]3
A < (al@+ %) - BR+ )],
Ty(tie; Asa,byc) = ny1+l( &)’ (P (1+T>\) )

[ny"‘l( )? ( ~ 1+ )@ +¢" ))}
Ts(t;€; s a, b, c) —D2Ryy+l( )2(P — (14 6)\R)

)R
5 [DPRyy 1107 (P (1400 (R 4+ 1)

from X x (0,g9) x A, to Y, where X and Y are defined in §2.1.3. We
find that T'(t;e; A) is the continuously differentiable operator and (3.17) is
equivalent to T'(t; e; X\ a,b, c)=0.

Lemma 3.4. For any given M€ Cyq, there exist positive constants g, 1y
and C such that for any e € (0,&9) and \e Ay,

(i) | Ti(ti; € X5 a,b,¢) — Tiltas ;X5 a,b,¢) | x sy < Oty — to||x
for any t1,ts € X,
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(ii) ||T(0;¢; A;a,b,¢)|ly < Ce,
(iii) T 105657 a,b,¢)|ly »x < C.

Moreover the results (i) - (iii) hold for OT /X in place of T.

By this lemma, we can apply the Implicit Function Theorem to T'(¢; €; ;\; a,
b,c) = 0. Thus, under the same assumption of Lemma 3.4, there ex-
ists t(a;;\;a,b, c) € X satisfying T(t;s;j\;a, b,c) = 0. t(s;S\; a,b,c) and
8t/85\(£; X\ a,b, ¢) are uniformly continuous with respect to (g, 5\) € (0,e0) X
Ay, in the X — topology and satisty

t(e; s a, b, ¢)||x, [0t/OA(e; X a,b, )|l x = o(1)
as € — 0 uniformly in \e Ay, .

Thus, we have the exact solutions of (3.12) on [0, 1] of the form

p(y;a;ﬂ;a,b,c) = P(y;¢; \;a,b, c)+€2]5(y,5 N a,b, c),
q(yieshiabc) = Qyses \sab,e) + ¢ (es Aya, b, c) + €2Q(y; &5 Asa, b ),
r(y; 5; 5\; a7 b’ C) = R(y? 67 )\7 a’ b7 C) + r (5’ >\7 a’ b7 C) + €2R(y’ 6? A’ 7b7 C)7

which implies that (3.8) has the following exact solutions on [0,(¢)]:

(p(l)(m;e;)\;a,b,c) = P(; /\abc)+52P(() e;\ia,b,c),
¢W(z;e;\;a,b,¢) = ( ces A a,b,¢) + ¢*(e3 N\ a, b, ¢)
+ ( 5‘5\'(1 b,c), (3.18)
rD(z;e;X;a,b,¢) = (lé )\ a,b,¢) +r*(g; X a, b, )
+ 62R( ces\ja, b, c).

’“‘a ﬁ?‘&z

:U

\

3.1.2. Construction of Vy, Vs, Vs

Next, we consider the problem (3.9). By using the transformation y =

x — l(e), we have

e2pyy + (1 = 3u® — 2\)p — eaq — efr = 0,

Qyy +p— (1 +TA)51=0 y € (0,00)
D? ryy+p (14+0M\)r =
(. q,7) ( b, )
(p: 4, )( ) (0,0,0).

(3.19)
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First, we consider outer approximations of the form

p(y) = Po(y) + ePi(y) +*Pa(y) + -
q(y) = Qo(y) +eQ1(y) +£°Q2(y)

( (3.20)
r(y) = Ro(y) + eRi(y) +*Ra(y) +---.

+
+
Substituting this into (3.19), we equate the coefficients of the same powers

of e

O(£%) :

—92P, =0,
/0/+P0—(1+?;\)Q0:O, y € (0, 00)

D?RI 4+ Py — (14 6\ Ry = 0,

Qo(0) = b, Qo(o0) =0,

Ry(0) = ¢, Rp(c0) =0.

Py =0 and Q) satisfies

Qp— (1+ %;\)Qo =0, y € (0, 00)
Qo(0) = b, Qo(c0) = 0.

We easily find that Qo(y; \; b) = be—*NY and similarly to Qo, Ro(y; \; c) =

Ce_V(A)y‘
O(el) :

—2P; — (aQo + BRo) =0,

Q!+ P — (1+70)Q1 =0, y € (0,00)
D2R! + P — (14 60\ Ry =0,

Q1(0) = —qo(0;a), Q1(cc) =0,

R1(0) = —ro(0;a), Ri(o0) =0,

where qo(0; a) and ro(0; a) will be determined later. We have P (y; A b, c) =
—(aQo(y; A b) + BRo(y; \; ¢))/2 and @ satisfies

Qf — (1+#3)Q1 = —Py, y € (0,00)
Q1(0) = —qo(0;a), Q1(00) = 0.
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By using the method of constant variation, we get

iy ha,be) = —qo(0;a)e VY — ey
Yy o [e%¢} o R
x / 62”(/\)x/ e HS Fa((s; As b, ¢)dsd,
0 x
Rl(y7 X7 a'7 b7 C) - _7"()(0; a)e—y(j\)y — e_V(:\)y
! ! w(\)z = - (5‘)5 fla- 5\ b dsd
Xﬁ 0 ‘ x € f3(8’ 9 70) sax,

where f3(y; \;b,c) = —Pi(y; A b, ¢).
O(£?) :

—2P, — 6UgUL Py — (aQ1 + BR1) = 0,
Y+ Py~ (1+70)Q2 =0, y € (0,00)
D?RY 4+ Py — (14 6\ Ry =0,
Q2(0) = —q1(0;a), Q2(cc) =0,
R3(0) = —r1(0;a), Ra(o0) = 0.

where ¢1(0;a) and r1(0;a) will be determined later. Similarly to the case

of O(g!), we have

o 1 ~ ~
Pa(y;Xia,b,c) = —5{=6U1(y)Pr(y; b, ¢) + aQu(ys Asa, b, ¢)
+ﬁR1(y;;\;a7b’C)}v
@2y Nabe) = —q(0;a)e N — erO
Y R o0 o
x/ 62“(/\)””/ e_“(’\)sf4(s;)\;b,c)dsdx,
0 T
Ry (y; X a,b, c) = —r1(0; a)eil'(j‘)y — e
1 v 2w\ > —v(N)s F 3
><D2/0 e ()/I e ()f4(s;)\;b,c)dsdx,

where fi(y; Aia,b,¢) = —Pa(y: Asa, b, ).
Since the p component does not satisfy the boundary condition at y = 0,

we have to modify this defect. Hence, we introduce the stretched variable
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¢ = y/e and look for inner approximations p;, ¢;,r; (i = 0,1,2) of the form

,

ply) = Po(y) +ePi(y; \sb,c) + e Pa(y; Asa,b,c) +
+ipo(Y) +pi(Y) +epa(Y) + -,
ay) = Qoly; \ib) +eQi(y; Aia,b,c) +2Qa(y; Asa, b, ¢) +
teqo(Y) + () + () + -,
ry) = Ro(y/\ c) +6R1(y,)\ a,b,c) +52R2(y;5\;a, b,c) +
+ ero(Y) +e?ri(4) +¥ra(Y) + - -,

(3.21)

so that (p,q,r)(y) satisfies the boundary condition at y = 0. Substituting
this into (3.19) and using & = y/e, we equate the coefficient of the same

powers of €.

O™ 1) :

o — (2 = 6¢0 + 3¢5)po = 0,

do +po =0, £ €(0,00)
D?7y +po =0,

po(0) = a, po(c0) =0,

qo(00) =0, Go(oc0) =0,

ro(oo) =0, r(oc0) = 0.

\

By the first and fourth equations, we have po(&; a) = ado(€)/do(0), and then
qo(&a) =— [ [, po(Q)dCdn and ro(&;a) = — [ [ po(¢)dCdn/D?.
O(e%) :

— (2= 6¢0 + 3¢3)p1 — 6(—1 4 ¢0)(U1(0) + ¢1)po = 0,
¢1+p1=0, § € (0,00)
D?# +p1 =0,
p1(0) = =Fp(0), pi(o0) =0,
q1(00) =0, ¢1(c0) =0,
= 0.

<

1(00) =0, 71(00

~—

Since p; satisfies the following equations:

{ 1 — (2 = 660 + 362)p1 = 6(—1 + ¢o)(U1(0) + ¢1)po, € € (0,00)
p1(0) = —Py(0) =0, p1(o0) =0,



60 Hideo IKEDA and Yuki AKAMA

we obtain

. § . oo |
p1(&:a) = —do(€) /0 (do(n) " / G0(C)6(—1 + 60) (U1 (0) + b1)podCdn
n

and then ¢(§;a) fg f p1(¢)d¢dn and ri(&;a) fg f p1(C
dCdn/D2.

O(el) :

(52— (2= 660 + 363) (PL(0; A b, ©) + p2) — 6(—1 + ) (U1(0) + $1)p1

=3 {(U1(0) + ¢1)* + 2(=1 + ¢0) (U1 (0)€ + U2(0) + ¢2) } po

—po — aQo(0) — BRo(0) = 0,

G2 +p2 — (1 +7X)q0 = 0, ¢ € (0,00)
D%y + pg — (14 0X)rg = 0,

p2(0) = —P1(0: A b,¢) = 3(ab+ Be), pa(o0) =0,

q2(00) = 0, ga(00) = 0,

TQ(OO) = 0, T"Q(OO) = 0.

\

Similarly to the case of O(¢”), we have

p2(& Xsa,b,c) = L(ab+ Be)do(€)/o(0)
—60(€) [ (do(m) 2 [ d0(C) [(2 — 660 + 3¢3)P1(0)
+6(—1+ ¢o) (U1(0) + ¢1) p1 + 3 {(U1(0) + ¢1)?
+2(—1+ ¢0) (U] (0)¢ + U2( )+ 62)} po + Apo + ab + Be| d¢dn,
¢2(&; X a, b, ¢) —fg 2 02(¢) = (1 +7X)g0(¢))dCdn,
ra(&Aa,b,¢) = = [ [%(pa(C) — (1 + OA)ro(C))dCdn/ D2,

Using the above approximate solutions, we can construct uniform ap-
proximations up to O(g2) of (3.19) for any fixed A € A,, which take the

form

P(y;a;j\;a, b,c) = Poly) +€P1(y;5\‘b c) +€2P2(y,5\ a,b,c)

+ Lpo(Lia) +pi(Yia) +epa(Y N a b, c),
Qyiei Aia,b,c) = Qoly; Aib) +eQu(y; A a,b,¢) +€%Qa(y; s a, b, )

+ eqo(Ya) +2q1(La) + (5 Nsas b o),
R(y;a;j\; a,b,c) = Ro(y) + sRl(y,)\ a,b,c) +82R2(y7)\ a,b,c)

+ ero(4;a a) + &2 ri(Y; a)+ &3 r2(%; -\ a,b, c).



Existence and stability of singularly perturbed standing pulse solutions 61

Obviously (P, Q, R)(y; ¢; X a,b, c) satisfies at y = 0

a

P(0;¢; A a,b,¢) = -
Q(0;6; X a,b,¢) = b+ e3q2(0; A; a, b, ¢),
R(0;¢; X;a,b,¢) = ¢+ 3r9(0; A a, b, ¢)

and at y = oo (P, Q, R)(o0;¢; X a,b, ¢) = (0,0,0). So we modify this defect
to satisfy both boundary conditions exactly and add the remainder term
(e2P,e2Q, €2 R) to it and look for exact solutions of (3.19), which take the

form

p(y;eiNiabe) = P(y;eshia,b,c) + 2Py A a,b,c)
a(yis; Niabe) = Qyieihiab,o) + ¢ (e \a,b,c)

+ €2Q(y;€;5\;a,b,c), (3.22)
r(y;s;j\;a,b,c) = R(y;e;;\;a,b,c)+r*(y;5;5\;a,b,c)

+ 2R(y;e; M a,b,¢),

\

where ¢*(y;€; 5\;a, b,c) = —53q2(0; S\;a, b,c)e”¥ and r*(y; &; X;a, b,c) = —g3

x19(0; A; a, b, ¢)e™Y. Substituting this into (3.19), we have
2 (Pyy + €2 Pyy) + (1 = 3u? — £2X)(P + £2P)
—€ (a(Q +q* +2Q) + B(R+r* + 521%)) =0,
Quy +apy +°Quy + P+ P — (1+70)(Q +¢" +£°Q) =0, (3.23)
D2(Ryy + 15, +€2Ryy) + P+ P — (1 4+ 0\)(R + ¢* + £2R) = 0,

(p>Q7R)(0;5) = (07070)7 (p,Q,R)(OO;8) = (0’0’0)'

), we define the following operator T'(¢; ¢; X a,b, c) =

Then, for t = (P,Q,R ,
X a,b, c):

(Th, T2, T3)(t; ¢
T, (t;e; X a,b, c) = 6215yy + (1 —3u? — 625\)]5 —eaQ —eBR
25 [P+ (=367 = 2P~ c{0(Q + ") ~ BR+ )],
Ty(t;es Asa,b,¢) = Quy + P — (1+70)Q + 6% [Quy + a5y + P
~1+#)Q+a)] .
T(t;e; Aia,b,¢) = D*Ryy + P — (1+ 00 R + 6% [D*(Ryy + ryy) + P
1+ é&)(RH*)}
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from X x (0,69) X A, to Y, where X and Y are defined in §2.2.3. We
find that T'(¢;e; A) is the continuously differentiable operator and (3.23) is
equivalent to T'(t; ¢; A a,b, c)=0.

Lemma 3.5. For any given M e Cy, there exist positive constants €g, g
and C such that for any € € (0,g9) and A€ Ay,

() ITi(tis8 A5 a,b,¢) = Tiltaies Asa,0,0) | gy < Clit — talx
for any t1,t2 € X,
(i) [|T(0; A;a,b,0)|y < Ce,
(i) 771055 A a,b,0)ly ,x < C.
Moreover the results (i) - (iii) hold for 8T /X in place of T.

By this lemma, we can apply the Implicit Function Theorem to T'(¢; €; 5\; a,
b,c) = 0. Thus, under the same assumption of Lemma 3.5, there ex-
ists t(e; X a,b, c) € X satisfying T(t;e; A a,b, c) = 0. ts X\ a,b, ¢) and
dt/ON(e; X; a, b, ¢) are uniformly continuous with respect to (g, ) € (0, o) X
A,, in the X — topology and satisfy

It(e5 X 0,0, ¢)|| 5, 110t/0A (3 A; a,b,0)]| 5 = o(1)
as € — 0 uniformly in X € A,,.

Thus, we have the exact solutions of (3.19) on [0, 00) of the form
plyiesXia,b,c) = Plyse;dia,b,c) +e2P(y;e),
ayishabe) = QuigAsab,c) + q*(y; €5 X a, b, c)

+ 2Q(y;e; M a,b,c), (3.24)
r(y;e; ha,be) = R(yie;dia,b,c) +r*(y;e; \;a, b, ¢)

+ €2R(y;e; \;a,b, c),

which implies that (3.9) has the following exact solutions on [I(¢), c0):

( p(2)(x;€; A;a,b,c) = Pz —l(e);¢; X a,b, c)
—1—5215(33 —(e);e; X a,b, c),
g (z;e5X;a,b,¢) = Q(z — U(e); &5 A a, b, c)
+q*(x = U(e); & X a,b, ¢) +2Q(x — 1(e); e X a,b, c),
7’(2)(1’; g;\ja,b,¢) = R(x —l(e); ¢ A a,b, c)
+r*(z —l(e);e: X ab, ¢) + e2R(x — 1(¢);&; A; a, b, ¢).

(3.25)
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3.1.3. Evans function gy(e;\) corresponding to (3.6)

) and (p@,¢@),r@)(z; 5 X a,

By using these (pM, ¢ rM)(z;6; \; a,
b, ), we can calcuate V@ (g; X) = Vi(I(e);e;\) (i = 1,2,---,6) as follows:
1 0
a10 + eay1 + O(e?) ebi1 + O(e?)
_ . 0 _ “ 1
V(g X) = o | V(N = )
ago + caz + O(e?) bao + €bo1 + O(e7)
0 0
| ago +eaz +O(?) | | eba +O0(?) |
_ . - _ . -
eci1 + O(e?) dig + ed11 + O(e?)
_ . 0 _ . 0
V() = ) V() = )
eco1 + O(e?) dao + edo1 + O(e7)
1 0
| €30 +ec31 + 0(62) 1 i dsp + eds1 + 0(62) ]
_ . - _ . -
eer1 + O(e?) efi1 + O(e?)
_ . 1 _ “ 0
V(e ) = o | VO = >
e20 + gea1 + O(e7) efa1 + O(e?)
0 1
cez1 +0(e?) | | fso +efsr +O(e?) |
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where aig, a11, - - ., f31 are defined as follows:
aro = £p1"(0:1),  an = — 51" (0:1) + £557 (0 1:1,0,0),
ax = s (0:1), an =~ i (0:1) + £{Q" (1:3,1,0,0) +(0: 1)),
ao = i) (0:1), as = — " (0:1) + LR (1:5:1,0,0) + 7Y (0:1)),
bir = 95 (0;4,0,1,0), bao = Q3" (1 41),
b =~ Q6 (A1) + @ (1 4:0.1,0), by = £RV(1:4:0,1,0),
0

e = £p3(0:4:0,0,1), e = QY (1:4:0,0,1),
J1;01), ez = —%R(}”(m; D)+ LRM(540,0,1),

dio = p(031),  dix =57 (0;51,0,0),  dao = 45 (0;1),

dor = Q?(0;2;1,0,0) + ¢2(0; 1),

dso = #$2(0:1),  dsy = R{P(0;4;1,0,0) + 72 (0; 1),

el = pg)((); 5\; 0,1,0), e = Q6(2) (0; 5\; 1), e = Q/1(2) (0; 5\; 0,1,0),
ez = R\P(0:4:0,1,0),  fi1 = p$?(0: 4:0,0,1),

for = QP(0:5;0,0,1),  fao= RP(0: 1), far = BP(0:4;0,0,1).
First, we can show

Lemma 3.6. alg = d10 = 0.

The proof will be given in §4.
Using this lemma, we find that gy (e; 5\) is represented as follows:

gn(e;A) = {(a11 — di1)(bao — e0)(ca0 — fa0)
—(ag0 — d20)(b11 — e11)(c30 — f30)
—(a3o — d3o)(b2o — €20)(c11 — f11)} + O(e).

Next, we easily find that

ag — dao = —2V/2, ago — dzo = 2]37\/25,
bog — e =V 1+ 725\ 26}? 1 —,
cloV1+73 L o—lpV1+73 (3 26)

b1 — e11 = 220, e — fi1 = 2vV2B,

. l A 2elom/D
cs0— Jao = GV L4 0N Vi

Furthermore we obtain
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Lemma 3.7. a1 —di1 = 22\ —4 {a(l — 20y 4 81— e—?lo/D)}‘

The proof will be given in §4.
We look for a root A of gn(0; A) = 0. Then, this root A should satisfy

a1 —din = (ag0 — d2o) (b1 — e11)/ (b2 — e20) (3.27)
+(azo — dso)(c11 — f11)/(c30 — f30)-
Applying Lemma 3.7 and substituting (3.26) into (3.27), we have
ﬁ;\ 1 1 —2ly B 1 1 —2ly/D
3 +a< ,71—"_7:;\ +e > +D < /1+9Aj\ +e (3 28)
_ a 67210\/1%;\ + B 672l0\/1+é5\/D _
V1472 D/ 146

Here we remark that by the standard argument, if we get a single root A\ of
gn(0;0) =0 (ie., %gN(O;S\) #0), aroot A(e) = A+ O(e) of gn(e;\) = 0
is uniquely determined. Then, the relation (3.28) plays an important role

to determine roots of gn (g;\) = 0.

~

3.2. Evans function gp(e; \) corresponding to (3.7)

Noting the boundary condition of (3.7) at z = 0, we consider the follow-

ing problems with suitable boundary conditions:

525\]9 =2ppe + (1-— 3u2)p — eaq — B,
NG = Qux +D — 0, z € (0,l(e)) =1
ONr = D?rpp +p —r, (3.29)
(p,q,7)(0) = (0,0,0),
a
(p.0,)(Ue) = (Z.bic),

and

525\p = e2ppe + (1 — 3u?)p — caq — efr,
TN = Quz +D — 4, z € (l(e),00) = I
OAr = D%y +p — 1, (3.30)
(.0 7)(1(2) = (£:b,¢).
&
(p.q,7)(c0) = (0,0,0),
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where a, b, ¢ are given real numbers. For any A € Cy, let (M, ¢V, rM)(z;¢;
A a,b, ¢) and (p, ¢, r@)(z;¢; \;a,b, ¢) be solutions of (3.29) and (3.30),
respectively. Then, any solution V (z;¢; \) of (3.29) satisfying (p, ¢,7)(0) =
(0,0,0) is represented as a linear combination of three independent solu-
tions V1, Vo, V3. By virtue of Lemma 3.2, any solution of (3.30) satisfy-
ing (p,q,7r)(c0) = (0,0,0) is represented as a linear combination of three
independent solutions Vj, Vs, V. Here V;(i = 1,2,---,6) have the same
definition as those in §3.1.

By the same argument in §3.1, we have the next lemma.

Lemma 3.8. The number \ € Cy is an eigenvalue of (3.7) if and only if
gp(e;\) =0, where gp(e; A) = {(a11 — d11)(bao — e20)(c30 — f30)
— (@20 —d20)(b11 —e11)(c30 — f30) —(azo — d3o0)(b20 — €20)(c11 — f11)} +O(e).

gD(e;;\) also is called the Fwvans function of the standing pulse solu-
tions corresponding to (3.7). To calculate gp(e; 5\), only two terms byy =
%Qg(l)(l; A1) and ez = %Rg(l)(l; A; 1) are different from those calculated
in §3.1. Other terms are the same as those of (3.26) and Lemma 3.7. For

these two terms, we have

- cosh(lpV/1+ 7)) 1 /1 N é;\cosh(lov 1+6)\/D)

boo=\V1+7TA c30 =

sinh(lpV/1 + 7). D sinh(lpV/1 + 07/D)

depending on the Dirichlet boundary condition at x = 0. Using these

relations, we get

b20 — €20 =V 1+ 725\ 2el0VIHT2

eloV1+7A _g—lgV1+7X’

B . i AN 2elom/D
cs0 = fso = oV I+ 0 e e

Then, substitute these into gp(0; A) = 0. We find that

?ﬂ+a<%—1+e2lo> +f)< L —1+e2lo/D>

Vit 1403
_ a o ~20VI+iA L B —2l0V1+0)/D

V1+7A D/ 146X

(3.31)

If we get a single root A of gp(0;A) = 0 (i.e., d%gD(O;X) # 0), a root
AMe) = A+ O(e) of gp(e; \) = 0 is uniquely determined. Then, the relation
(3.31) plays the important role to determine roots of gp(e; 5\) =0.
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3.3. Distribution of eigenvalues of (3.1)

In §3.1 and §3.2, we find that eigenvalues A € Cq of the eigenvalue
problem (3.1) are determined by the relations (3.28) or (3.31). We easily
know that (3.28) does not have the zero root, on the other hand, (3.31)
has the zero root, which corresponds to the translation free of the standing
pulse solution. Then, we give the following result on the stability of the
standing pulse solution of (2.1):

Theorem 3.1. Suppose that there exists ly > 0 satisfying ae ™2l +6e‘2% =
v and ae” 20 4 %6_2% # 0 for given «, B,v,D. Then the standing pulse
solution (u,v,w)(x;¢) of (2.1) is stable if any X satisfying (3.28) or (3.31)
has a negative real part for given 7 and 6 except for the simple 0 eigenvalue,

where T = £27 and 0 = £20.

Especially, when 27,20 = o(1) for small € > 0, it corresponds to the
case # =0 and 6 = 0 in our eigenvalue problem (3.1). Then, for these case
(3.28) and (3.31) deduce to

A= —3v2(ae 0 4 %e_QlO/D) and \ =0, (3.32)

respectively. A = e2\ = 0 comes from the translation free of the stand-
ing pulse solutions and the other eigenvalue A = e2\ = —£23/2(ae™2l0 +
Be=20/D /D) is essential to determine their stability. Therefore we have

Theorem 3.2. ([7]) Suppose that there exists lo > 0 satisfying ce 20 +
5672% =~ and ae” o + %672%0 %0 for given o, 8,7, D. And assume that
e21,e20 = o(1) for small positive . Then the standing pulse solution of
(2.1) is stable if and only if ce=20 4 Be=20/P /D > 0.

Then, we can determine the stability of the standing pulse solutions (2.1)

given by Corollary 2.1.

Corollary 3.1. Suppose that £%1,6?0 = o(1) for small positive . The
stability of the standing pulse solutions of (2.1) given in Corollary 2.1 are
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classified as follows for the case |aD| > |5|:

(ala)
(alb)
(62)
(63)
(c2)
(c3)
(d2)
(d3)
(e2)

(€3)

when sgn(a) = sgn(B) = sgn(vy) =1 and v < a + B, the solution
(u,v,w) is stable,

when sgn(a) = sgn(B) = sgn(y) = —1 and v > a + 3, the solution
(u,v,w) is unstable,

when sgn(a) = =1 = —sgn(B), a+>0and 0 <y < a+ [,

the solition (u,v,w) is stable.

when sgn(a) = —1=—sgn(B) , a+ L >0and a+ 8 <y < V¢,
the solution (u,v,w) is stable for 0 <ly <., unstable for ly > ..
when sgn(a) = =1 = —sgn(f) , a+ <0 and a+ B <y <0,

the solution (u,v,w) is unstable,

when sgn(a) = -1 = —sgn(fB) , a+ <0 and 0 <y < ¢,

the soluton (u,v,w) is stable for 0 <ly < l., unstable for ly > I,
when sgn(a) =1=—sgn(f) , a+ >0 and ., <y <0,

the solution (u,v,w) is unstable for 0 <ly < l., stable for ly > I,
when sgn(a) =1= —sgn(B) , a+>0and 0 <~y < a+ f,

the solution (u,v,w) is stable,

when sgn(a) =1=—sgn(f) , a+ <0 and v, <y < a+f,

the solution (u,v,w) is unstable for 0 <ly <., stable for ly > I,
when sgn(a) =1= —sgn(B) , a+ <0 and a+ 5 <y <0,

the solution (u,v,w) is unstable,

D 1 D 1

where e, = (_a)—ﬁﬁ—m(p—m_p—pq), Yoo =@ D-1(=F) D-1(D D-1—
__D_ o
D™D, L= gy log (—22).

Proof. When we differentiate g(ly) = ae™20 4 56_2% with respect to g,
we have dg/dly(lg) = —2ce™20 — 256_2%/D, from which we obtain the
relation A = —3v/2(dg/dly)(lp)/2. Then, the stability of the standing pulse
solution (u,v,w) is determined by the slop of the curve v = g(lp), that is,

if the slop of v = g(lp) is negative (resp. posiitve), (u,v,w) is stable (resp.

unstable). For example, Figure 4 corresponds to the case (b2), (b3) (the
left) and (d2), (d3) (the right). O
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4. Proof of lemmas
4.1. Proof of Lemma 2.2

First, we show (i).

T1(U + k) — T1(Use)
= 2(U + k)yy + 1(e)?
x {U+ k—3U2U + k) — 3¢2U(U + k)2 — *(U + k)3}

— |20, + 1(e)* U — 3U%U — 32U0? — 403
| { j

= 2k, + 1(e)? {1 _ 302 — 6200 — 354172} k+ O(|k[?),

T 2 ~ ~
which implies ({;} =¢? ;;2 +1(e)? {1 —3U% — 62UU — 3€4U2}. Similarly
we have
o1y 9 0Ty 2
— = —l(e)’ca, —= = —l(e)7ep,
= Uz, S = =18
8T2 2 aTg d2 2 aTZ
— = I(e)%, —=——1(e)", — =0,
o0 ' ov a0 aw
8T3 2 8T3 aT3 2 d2 2
— = 1(e)", — =0, — =D"— —I(e)".
L o0 ' ov oW a7~

Using these results, we get for t; = (U;, Vi, W;) € X (i = 1,2), Ty(t;; €)

d? ~ ~
g? " +1(e)? {1 —3U% — 622UT; — 3£4Ui2} —l(e)%car —I(e)?ep
d2
= I(e)? —— —1(e)? 0
du2
2 ’ y & 2
I l(g) 0 D d7y2 - Z(E)

Thus, we know

() { =620 (0h — Uy) — 36407 - T3)} 0 0
Ty(tr;e) — Tiltos€) = 0 00
0 00

)
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which shows that for h = (hy, hy, hw) € X,

[(Ti(t1;€) — Ti(t2;€))hlly

|T3(t1;€) — Ti(tos€)||x»y = sup
h+£0 A x
s 11(e)*{—6£2U (U1 — Uy) — 3eX(UE — U3) Yho llcpo,
ho£0 [hulla. + hv s + lhw s
< sup 3e%1(e)?([{2U + €2(Ur + Ua)} (U1 — Uz)hollcpo
T ho Ihullcion

< 3¢%(e)*|12U + 2(U1 + U2) | ool (U1 — U2)llcpo,1)-
If we take € being small, it holds true that
IT:(t1; ) = Tiltas &) xy < 1- (U1 = U2)llepo,y < It — t2)llx,

which implies the assertion (i) with C' = 1.
From the constructions of approximate solutions, we easily find (ii) is true.

Finally, we show (iii). Put

S -
52@2 +1(e)*(1 =3U%  —l(e)*ea —l(e)%p
d2
Ty(0;¢) = I(e)? a7 I(e)? 0 ,
d2
2 2 2
I l(€) 0 D d7y2 — Z(E) |
[ L. S1 S,
= Sg ME 0
| Sy 0 N

By using the same method as that in [4], L. : A — C0,1] has an inverse
operator L1 such that there exists a positive constant K; which is inde-
pendent of € satisfying HLE_IHC[OJH 4. < K for any small € > 0. Applying
the constant variation method to M.p = ¢, we find that for any ¢ € C[0, 1],
there exists a unique p € B satisfying M.p = ¢g. Thus, there exists an
inverse opetator M ! of M. : B — (|0, 1], which satisfies

1M qlls = llplls = sup |p(y)|+ sup |p'(y)|+ sup [p"(y)]
y€[0,1] y€[0,1] y€[0,1]
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and for any y € [0, 1], the following inequalities hold

—lo

1 ! e !
< ewe [ eTo%g(s)|ds + - / h(l d
)l < o [ el g S [ o (oslatolds

elo

1 1 1
Ty s — [ elodig(s)|ds + s h (1 d
+ € {2[0 /0 € |q(8)| S + 2[0 COSh (l()) /0 COs ( OS)|q(S)‘ S

1 1
< e — sup |g(s)| + = sup |q(s)|
2lo yepo,1) 2lo yepo,1)
Ly elo
+ 5-€¢® sup |q(s)| + 57~ sup |q(s)]
2lp y€[0,1] 2o y€[0,1]
< Ksllgllcpo,ys
/ ! 1t el !
< lpelv ! — [ eos|g(s)|ds 4 ——— h(l d
< e { o [ el gt [ eoshtlaslas)
l 1 st l olo 1
—loy _ 0S h
T e {% [ et + g S [ oos <zos>|q<s>rds}
< Ksllqllep,ys
') = 1igpw) +aw)| < Blpw) + law)| < Kallallep,s

where Ko, K3 and K4 are positive constants independent of €. Therefore
we find that there exists a positive constant K5, which independent of ¢,

satisfying
1M qllB < Ksllgllcpo,,

which implies that

- 1M gl
| M, 1||C[0,1]—>B = sup =

< Ks.
q#£0 ||Q||C[0,1]

Similarly to the above, we know that there is a positive constant Kg, which

independent of ¢, satisfying ||N€_1HC[O71]_>B < K.

Next, we consider the following problem::

L.P Sl SQ Py Fy
Tt(O;a)P = 53 Ma 0 PQ - F2
S, 0 N. Ps Fs
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where P = (P, Py, P3) € X and F = (F1, Fy, F3) € Y, which is equivalent

to

L.Py+ S1Py+ SoP3 = Fy,
S3Py + M. P> = F, (4.1)
S4P; + NP3 = Fj.

From the second and third equations of (4.1), we have Py = M} (F,—S3P;)
and P3 = N7 Y(F3 — SyP;), respectively. Substitute these into the first of
(4.1), we know that

L.P + SlMe_l(Fg — SgPl) + SQNE_I(F;; — S4P1) = F.
And opetating L1 from the left, we have

{IAs — L;l (SlM;153 + SQN;154)}P1
= L7 (Fy — SiM7'F, — SoN'F)

Here we show ||[LZ1 (S1M: 1S5 + SoN1S4) ||a.—a. < 1 for small e > 0.
|LZ1 (S1MZ1S3 + SaN;1Sy) (|4, —a,

1L ey ac[[S1MI 1S3 4+ SoNZESull 4o

Ky ([|U(e)*eaM 1 (e)?|| 4. —cfo) + ||l(5)255Na_1l(5)2HA5—>C[0,1])

Ky (elall(e)|M opa-s +5W|l(5)4||N5_1HC[0,1]—>B>
el(e) Ky (la] K5 + | 8| Ks) < 1,

IA A

IN N

which means the existence of an inverse operator of {IAS o (SlMs_ng
+SQN€_1S4)} . Thus when we multiply this inverse operator to (4.1) from
the left, we know
Pr={Is — L7 (S1M71S3 + SoNZ1Sy) L Lot (Fy
—S1ME_1F2 — SQNE_IFg) .

Therefore we can estimate

1Pl < (Hallacsa. + DIL cpa—ac |l FL — SiMZF
—S2N;1F3HC[0,1]

2K1 (I F1llcpo) + 1S1M Fallepo,a) + 152N Fllepo,n))
K7 (IR llcoa + 12l e + 1Fsllco,) -

INIA
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Using this, we have

|Pallz < IMZ'(F = S3P)lB < Ks (|Fulco) + [ F2llcp + 1Fsllcp,) »
IPsllp < IMZ'(Fs = SaPy)|ls < Ko (|Fllcpo, + 1 Fallep,y + 1 Fsllco,)

where K7, Kg, K9 are positive constants independent of €. Using these, we
obtain
IT:(0;6) ' Fllx = |[Pllx < Kol Flly

for some positive constant K7g independent of ¢, which implies

Ty(0;e)~'F
I7,00:) . x = sup TGS Flx
ST

This completes the proof of (iii). O

< Kjp.

4.2. Proof of Lemma 2.4

Let us consider the /1-dependency of
o1 = U0 +357(0) ~ (U (0) + 57 (0))
LU (0) +617(0)) ~ L2457 (0).
Noting that Ué(z)(O) =0 and gZ}gQ) (0) = 0, we find that the terms including

l; in @, is the only term égl)(O). So we omit the upper index (1) in each

term here after with no confusion. Then, we have

the terms including /; in ®;
= (¢0(0)>_1 fEOO $0(¢) [B13(1 + ¢0)$? + 21011 (2 + 6¢0 + 3¢0%)
+ o(do +1)(¢o +2)] d¢.
Noting that ¢ also depends on [y, we find that

. - 0 M
st = (600) " [ du(@) 0B+ anjen

+ 210(2 + 660 + 3¢0°%) b1
+ 2ll1(2 + 66 + 3602 T2 + 2l1¢99(0 + 1) (0 + 2) | dC.
Since ¢ satisfies

{ b1 — 12(2+ 660 + 3¢2)d1 = 2olido(do + 1)(¢o + 2), & € (—00,0)

¢1(—00) =0, ¢1(0) = -U1(1) =0, (4.2)
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we know that R(&) = aill‘bl (&) satisfies

B~ 13(2+ 660 + 36B)R = 2odo (90 + (90 +2), €€ (-00,0) o
R(—o0) =0, R(0) =0. '
On the other hand, since ¢g satisfies
o — 1§g0(¢o +1)(d0 +2) =0, &€ (—00,0)
po(—00) =0, ¢o(0) = —Up(1) = —1,
P(€) = - 60(¢) does
P —13(2+ 660 + 303) P = 2loo(do + 1)(¢0 +2), & € (—00,0) (4.4)
P(—o0) =0, P(0) =0. '

By (4.3) and (4.4), we find that P(§) = R(§) for £ € (—00,0). Next by
(4.2), we know that Q(¢§) = ailo(;ﬁl (&) satisfies

+2l1¢0(do + 1)(do + 2) + 2lol1(2 + 6o + 3¢5) P, & € (—00,0)

{ Q —12(2 4 660 + 3¢3)Q = 215(2 + 6¢0 + 3¢3) b1 + 612(1 + ¢o) Py
Q(—00) =0, Q(0) =0,

from which we have

Q&) = —o(&) J <¢'>0(77))_2 I 0(C) [200(2 + 660 + 3¢3)
+613(1 + ¢o) Pd1 + 2l1d0(¢o + 1) (o + 2)2l0l1 (2 + 6¢0 + 3¢3) P d¢dn.

So we obtain

Q(0) = <<750(0>>_1 ffoo $0(C) [200(2 + 6¢0 + 362) 1 + 613(1 + ¢o) P
+ 2l1¢0(¢po + 1)(do +2) + 2lol1 (2 + 60 + 3¢2) P] d(.

Thus we have aillq)l(ll) = Q(0). Finally, we differentiate

!/

B0 = UE()+6{(0) ~ (U (0) + 6 (0) ~ 1l 0)
= 0 -1 0) =0

by lp, we know that Q(0) = %(;'5(11)(0) = 0, which implies C%(I)l(ll) = 0.
The proof is completed. [
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4.3. Proof of Lemma 3.1

Let we C, k€ R and P,Q, R € C and substitute (U, V,W) = e witike
(P,Q,R) in (2.1) with 7 = 7/£2,0 = §/2. We have
e2wP = —k%*2P + (1 — 3u®)P — caQ — B3R,
%WQ = _sz +P - Qa
fwR = ~k*>D’R+ P — R,

which is written in the following form

(—k*D + N(z) —wA)p = 0, —00 < x < 00,
where
e2 0 0 1—-3u?> —ca —ef
D=0 1 0 |,Nx= 1 -1 0 ,
0 0 D 1 0 -1
e 00 P
A=10 7 0 |,p=|Q
0 0 4 R

By [6], the location of the essential spectrum L¢ is determined by the fol-

lowing sets: Sioo = {w € C | det(—k*D + lim N(x) —wA) =0, —o0 <
z—+oo

k < oo}

det(—k2D +limg 100 N(z) — wA)

—2k2 4+ 1 -3 (u_(e))? — 2w —ca —ef
= 1 —k?—1—fw 0 :
1 0 ~D?k? — 1 — fuw

from which we have

(—e2k2+1 =3 (u_(e))* — 2w)(—k2 — 1 — 7w) (=DK% — 1 — fw)
—ea(D%2 4+ 1+ Ow) — eB(k2 + 1+ 7w) = 0.

For sufficiently small £ > 0,

(—e2k2 +1 -3 (u_(e))? — 2w)(—k? =1 — 7w)(=D?*k* =1 — fw) = 0
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holds approximately and noting 1 — 3 (u—(¢))? = =2 + O(¢), we find that

w=(1-3u_(e)?+0(e))/e? < —1/e2,
w=—(k24+1)/7+0(e) < —1/27, w=—(D*2+1)/0+0(e) < —1/20

for any £ € R. Then, putting d = min{1/27, 1/2@} > 0, we have our
desired result. The proof is completed. [
4.4. Proof of Lemma 3.2

By a simple calculation, we obtain

e2det (A(oo;a; 5\) — u[)

—el 1 0 0 0 0

143 () +e2\ —ep  ea 0 e 0

B 0 0 —u 1 0 0
B ~1 0 147\ —pu 0
0 0 0 0 —u 1
~1/D? 0 0 0 (1+6))/D? —pu

= (@ +1-3(u()? =N - 1-7X)(* - (14 64)/D?)
+ea(p® = (1+00)/D?) +B(p® — 1 - 74) = 0.
Thus, we know that

212 +1-3(u_(e)? —e2A =o0(1), p2—1—7A=o(1),
p2 — (14 60X)/D? = o(1) for small € > 0,

which implies that
2= (2N +2+0(1))/e2, p2=1+7A+0(1), p?>=(1+6))/D*+o(1).

Here we set d = min{1/27, 1/20} > 0. Then, for any A € C4 and small
e >0, A(oo;¢; ;\) has six eigenvalues, three of them have positive real parts

and other three have negative real parts. The proof is completed. [J

4.5. Proof of Lemma 3.6

Let us calculate a9 = pgl)(o; £;A;1,0,0)/lp. In this proof, we omit the
upper index (1). Noting the relation aag + Bby + v = 0, (3.15) and (2.11)
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can be rewritten

= 2lpl1(2 + 6o + 303)po + 612(1 + do)d1po, € € (—00,0)

{ P1— 13(2 + 600 + 3¢3)p1
p1(—00) =0, p1(0) =0,

and

{&1—%@+6%+3%wn=mMWMm+4x%+2»§e<ﬂwﬁ>@@

¢1(—00) =0, ¢1(0) =0

respectively. When we differentiate the first equation of (4.5) by £, we have

(61) = 13(2 + 660 + 3¢)d1 = 2lol (2 + 6o + 367) o
+6l3(1 + ¢0)poo1, & € (—00,0).

Here putting k(&) = ¢1(£), we have

= {20001(2 + 66 + 3¢3) + 6I2(1 + ¢o)p1 } do, € € (—00,0)  (4.6)

{ k—12(2 + 600 + 302k
k(—00) = 0, k(0) = ¢1(0).

Furthermore putting A(€) = pi(€) — k(€)/¢o(0) and noting po(&;1) =
$0(€)/ho(0), we find that A(€) satisfies the equations

. . (4.7)
A(—00) =0, A(0) = —¢1(0)/¢0(0)

{ A—12(2+6¢0 +302)A =0, ¢€ (—00,0)
from which A(§) = (—g'bl(O)/gZ.)o(O)) $0(€)/do(0) holds. Thus we have

P1(8) = 1(6)/$0(0) — $1(0)do(€)/(¢0(0))*.
Note that ¢;(0) = 0 and ¢o(0) = 0. We know that
$1(0) = 1(0)/o(0) — $1(0)d0(0)/(d0(0))* =0,

which shows a9 = 0. Similarly we have dig = 0. O
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4.6. Proof of Lemma 3.7

Note that a1y = —l1p\” (0323 A;1,0,0)/12 + pS¥ (0525 A1 1,0,0)/lp. By the
proof of Lemma 3.6, we already know pﬁl)(o;s;/\; 1,0,0) = 0. Then, we
calculate pgl)(o; g; A;1,0,0). First of all, we shall prepare the fundamental
relations. For this purpose, we use the relation ull) (Il(e);e) = uﬁ«)(l(s);s)
at & = I(), where u")(z;¢) on [0,1(¢)] and u®(x;¢) on [I(¢),00) are the
constructed solutions in §2.1 and §2.2, respectively. Substituting these
constructed solutions into ul: )(l( );e) = u?) (I(¢);e) and equating the co-
efficients of the same powers of €, we have
o : 40 0= B335 < ).

Indeed, we have (;50 ( )= ngO (0) = 0.

o) d0) =237 (0) + 2161165 (0).
By using ¢5§2)(0) =0, we have ¢( (0) = 0.
O : ¢5(0) = 257 (0) + 2161162 (0) + (12 + 2Uola) B (0),

from which we have

$M(0) = B35 (0). (4.8)

Here after we omit the upper index (1) for simplicity. Differentiate the first
equation of (2.10) and (2.11) with respect to £. We get

(do) — 3(2+ 660 + 3¢3)do =0, & € (—00,0) (4.9)
and
(1] + 1 { = (2 + 660 + 363)n — 6(1+ 60)(U1(1) + d1)do }
— 2lpl1(2+ 660 + 3¢2)po = 0, &€ (—00,0),

from which we have

(1) — 2(2 4 690 + 3¢2)d1 = 6(1 + o) (U1(1) + 61)dho
+ 2ol1 (2 4 60 + 3¢3)do, € € (—o0,0).

Since ¢1(—o0) = 0, we obtain

$1(€) = 61(0)d0()/0(0) — do(©) S (dom)
x [ $3(¢) {6(1 + ¢o)( ()+¢1)+21051(2+6¢0+3¢3)}dCdn-
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Thus we have

-1

$1(0) = $1(0)0(0)/30(0) + (90 (0))
x [0 B3 {6(1+ o) (UL(1) + ¢1) + 2ol (2 + 60 + 363) } dC

Noting that ¢1(0) = 0 and ¢ (0) = 0, we have
(0(0)) ™ 2 BB {61+ 60} (T (1) + 1) w0
+ 2011 (2 + 6¢0 + 303) } d¢ = 0.

Furthermore differentiating the first equation of (2.13) by &, we have

((J2) + 13 |~ {8(U1(1) + 61)° + 6(1 + 90) (U} (1)€ + Ua(1) + 62)} do
=6(1+ ¢0)(U1(1) + p1)¢1 — (2 + 60 + 367) (U (1) + ¢2)

—aVy(1) — fW,(1)] (4.11)
21l {=6(1 + ¢0) (UL(1) + 61)d0 — (2 + 660 + 363)6 |
—(13 4 2lol) (2 + 6¢0 + 3¢3)Po = 0 L€ € (—00,0).

Simply we put
S1(6) = B [{3(U1(1) + 91)2 + 6(1 + 60)(UF (L)€ + Ua(1) + 62) } o
+ 6(1+ 90) (UL(1) + 61)d1 + (2+ 60 + 36UL(L) +aVy(1) + BWG(D)]

+ 2oly {6(1+ 60)(U1(1) + 61)do + (2+ 660 + 3¢5)n |
+ (17 + 2lol2)(2 + 690 + 3¢5) do.

(4.11) can be rewritten as

(¢2) = 132+ 60 + 303)d2 = S1(6), € € (=00, 0). (4.12)
Multiplying (4.12) by ¢o(€) and integrating it on (—oc,0), we get
0 . _—_— 0 . . 0 .
| dntiiae =& [ @600+ 36)ninde = [ dosicerae

Since the first term can be calculated as

/_OOO bo(2)€ = [@o@z}: - /_OOO Pod2dé = do(0)d2(0) + /_io(c.bo)cﬁzd&
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we have

0 . . . 0 .
So(@)32(0)+ [ (] — B2+ 600 +363)60) dads = [ dusi(e)ae

By the relation (4.9), we get

0
— / doSy(€)de. (4.13)

Refering (3.16), po satisfies

,

P2 — 13(2 4 600 + 3¢3)p2 = 612(1 + ¢o(U1(1) + ¢1)p1
+21ol1 (2 + 600 + 363)p1 + 313 { (U1 (1) + ¢1)?

+2(1 + ¢o) (U1 (1) + Ua(1) + ¢2)} po

+12lol1 (1 + ¢0)(U1(1) + ¢1)po

+(12 + 2lol2) (2 + 660 + 33 )po + 12 \po,

pa(—o0) =0, p2(0) = 0.

Substituting po(&; 1) = do(£)/do(0) and p1(£) = ¢1(£)/do(0)—¢1(0)do(£)/(d0(0))?,
we get

P2 — 1§(2 + 6¢0 + 3¢5)p2

= {613(1 + ¢0)(U1(1) + 1) + 2ol1(2 + 60 + 3¢3) } 1/0(0)

— {6I3(1 4 ¢0) (U1 (1 )+¢1)+2l0l1(2+6¢0+3¢0 }é1(0 ¢0/(¢0( )?

+313 { (U1(1) + ¢1)? + 2(1 + ¢0) (U] (1)€ + Ua(1) + ¢2) } do/0(0)

+ {12000 (1 + 60) (UL(1) + 1) + (12 + 2lola) (2 + 6 + 3¢2) + 12X }¢0/¢0

= [51(8) — 1§ {(2+ 660 + 3¢5) U1 (1) + aVy(1) + sW(1) }HZ/\%} /0(0
—{612(1 + ¢0)(U1(1) + 1) + 2lol1 (2 + 60 + 362) } $1(0)do/(0(0))?

Solving this equation, we have

(6 = bu(©) [ ()" [ dn0psa(crac

which shows

0 = (00)" [ d0so
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N CON { / : bo()S1(Q)dC — 12 / (; Ho(0)

{(2+ 600 + 3¢5)U1 (1) + Vg (1) + W5 (1)} d¢

0
— $1(0)/o(0) / $2(0) {62(1 + o) (UL (1) + 1)

X

~ 0 .
+  2lol (24 600 + 3¢5) } d¢ +l§)\/ ¢3(C)dC] :
Here note that / gi)o )d¢ = £lg and set z = ¢o(¢). It follows that

/ d0(0) {(2 + 660 + 36R)UL(1) + aVi (1) + BWH(1)} dC

— / {(2+62+322)U{(1)+04V0/(1) + BWy(1) } dz
0

= —(aVg(1) + BWg5(1)).
By the relations (4.10) and (4.13), we know that

52(0) = (0(0) [¢o<0>¢52<o> i3 (aV3(1) + AWY(D) + fzéﬂl .
Substitute $o(0) = —lo/v2 and aV{(1) + BW((1) = —lp{a(l —e )

+8(1 — e~2b/D) /D} We get finally

ap = ll p2(0) = \ZGQSQ( 0) — {a(l _ ooy 4 %(1 B e_%/D)} . 2\3/55\‘

Similarly we have
diy = V245 (0) + 2 {a(l —e oy 4 %(1 - e—%/D)} _ 2\3/55\.
Then,
an —du = (65 (0) - 18957 (0))
+a{a(l - )+ F(1— e 20/P) L 4 225

Therefore, by (4.8) we get

a1l —di1 = 4\3[)\ 4{ (1-— 6—210) + %(1 _ 6—210/D)} .
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5. Concluding remarks

In this paper, the existence of the standing pulse solutions of (1.2) with
high accurate approximations for a small € > 0 and their stability are
shown. That is, the stability is determined by roots A of (3.28) or (3.31).
Each eigenvalue A depends on the parameters 7 and 0. These facts imply
that there is the possibility of the two types of bifurcations. One is a
drift bifurcation when (3.31) has a double zero root. The other is a Hopf
bifurcation when (3.28) has a pair of pure imaginary roots. See Figure 1.
Though bifurcation phenomena from the standing pulse solution is a very
interesting and important problem, we will discuss this problem in the forth

coming work since this article becomes too long.

Furthermore, when af < 0, there appears a saddle-node bifurcation
point for some ~y (see Figure 4). Thus, this three-component FitzHugh-
Nagumo system (1.2) with 7 = 7/e2 and 6 = /2 may have three types of
bifurcation points, say a drift, a Hopf and a saddle-node bifurcation points,
for suitable parameters «, 5,7, T, f. Not only single bifurcation points but
also double or triple bifurcation points may exist if we can choose the
special parameters. The dynamics of the bifurcated solutions of (1.2) in a
neighborhood of the above bifurcation points, moreover the dynamics of the
interaction between heterogeneities and bifurcated traveling pulses are very
interesting problems. Though we can apply the center manifold theory to
these problems, for such purpose we have to construct eigenfunctions, with
high accurate approximations for a small € > 0, of the linearized problems
and their adjoint problems (see [3] and [11]). In this sense, the result in

this paper is the first key step for the above problems.
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