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We have identified SHATI/NAT8L in the brain of mice treated with 

methamphetamine.  Recently, it has been reported that SHATI is N-acetyltransferase 

8-like protein (NAT8L) that produces N-acetylaspatate (NAA) from aspartate and 

acetyl-CoA.  We have generated SHATI/NAT8L knockout (Shati-/-) mouse which 

demonstrates behavioral deficits that are not rescued by single NAA supplementation, 

although the reason for which is still not clarified.  It is possible that the developmental 

impairment results from deletion of SHATI/NAT8L in the mouse brain, because NAA is 

involved in myelination through lipid synthesis in oligodendrocytes.  However, it 

remains unclear whether SHATI/NAT8L is involved in brain development. 

In this study, we found that the expression of Shati/Nat8l mRNA was increased 

with brain development in mice, while there was a reduction in the myelin basic protein 

(MBP) level in the prefrontal cortex of juvenile, but not adult, Shati-/- mice.  Next, we 

found that deletion of SHATI/NAT8L induces several behavioral deficits in mice, and that 

glyceryltriacetate (GTA) treatment ameliorates the behavioral impairments and 

normalizes the reduced protein level of MBP in juvenile Shati-/- mice.  These findings 

suggest that SHATI/NAT8L is involved in myelination in the juvenile mouse brain via 

supplementation of acetate derived from NAA. Thus, reduction of SHATI/NAT8L induces 

developmental neuronal dysfunction. 
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Introduction 

SHATI has been identified as a novel molecule from the nucleus accumbens (NAc) 

of mice treated with methamphetamine (1). It was reported that SHATI is 

N-acetyltransferase 8-like protein (NAT8L) that produces N-acetylaspatate (NAA) from 

aspartate and acetyl-CoA (2,3).  Here, we describe SHATI/NAT8L instead of SHATI. 

Magnetic resonance spectroscopy of the human brain shows a large amount of 

NAA signal. Therefore NAA is often used as a putative neuronal marker.  Moreover, it 

has been reported that NAA is decreased in psychiatric disorders such as schizophrenia, 

attention deficit hyperactivity disorder, and drug dependence (4-6).  NAA is used for the 

production of N-acetylaspartylglutamate (NAAG) in neuronal cells in mammals, and 

NAAG is a highly selective endogenous metabotropic glutamate receptor (mGluR) 3 

agonist (7,8).  Previously, we have reported that overexpression of SHATI/NAT8L in the 

NAc of mice attenuates the response to METH through the mGluR3 signaling activated 

by NAAG (9).  Furthermore, NAA is metabolized to aspartate and acetate by 

aspartoacylase (ASPA) in oligodendrocytes in the brain. Then acetate is converted to 

acetyl-CoA and used for lipid synthesis and myelination (10).  Moreover, it has reported 

that deletion of ASPA in the mice results in impaired postnatal myelination and this 

mouse is used for the model of Canavan disease, defects in NAA metabolism (11).  
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These reports suggest that SHATI/NAT8L has multiple roles in the central nervous 

system via the synthesis of NAA. 

Recently, it was reported that SHATI/NAT8L knockout (Shati-/-) mice show 

decreased NAA content in the brain, reduced social interaction and shortened 

immobility time in the forced swimming test (12). Moreover, it was also reported that the 

decreased level of brain-derived neurotrophic factor (BDNF) mRNA in the prefrontal 

cortex of Shati-/- mice (13).  Importantly, single injection of NAA into ventricles could not 

completely improve behavioral deficits of Shati-/- mice, although the impairment in 

Shati+/- mice was ameliorated by the same treatment with NAA.  It is possible that the 

behavioral deficits caused by complete deletion of SHATI/NAT8L are related to the 

developmental impairment, because NAA is involved in myelination through lipid 

synthesis in oligodendrocytes, although the number of neuronal cell are not changed in 

Shati-/- mice (14,15).  In the brain, neuron-glia communication plays regulatory roles in 

the central nervous system functions (16).  In particular, myelin supports neuronal 

signaling but dysfunction of myelin induces reduced social interaction and other 

behavioral deficits in mice (17,18).  However, it remains unclear whether SHATI/NAT8L 

is involved in the development of the brain especially, in myelination.  There are 

several reports that impaired differentiation of myelination and oligodendrocytes in the 
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prefrontal cortex induces depressive social behaviors, and that the prefrontal cortex has 

been proposed to be an important brain region for social interaction in mice (18,19). 

In the present study, we investigated the change in the expression of Shati/Nat8L 

mRNA in developing brain, and found that deletion of SHATI/NAT8L altered the myelin 

basic protein (MBP) level in the prefrontal cortex of juvenile, but not adult, mice.  These 

findings suggest that SHATI/NAT8L is involved in brain development.  Next, we 

demonstrated that deletion of SHATI/NAT8L induces several behavioral deficits such as 

hyperactivity, reduction of social interaction, and induction of impulsiveness.  Moreover, 

glyceryltriacetate (GTA), a supply of acetate, treatment during the juvenile period 

ameliorates hyperactivity, reduced social interaction and impulsiveness caused by 

deletion of SHATI/NAT8L.  Furthermore, reduced level of MBP in juvenile Shati-/- mice 

was normalized by GTA treatment.  These results suggest that SHATI/NAT8L might be 

involved in myelination in the juvenile mice brain via supplementation of acetate derived 

from NAA, and that the hyperactivity, social deficits and impulsiveness in Shati-/- mice 

are induced by NAA deficit.  Taken together with our new findings, NAA and/or 

SHATI/NAT8L are required for myelination in the developing brain of mice, and their 

deficit could induce behavioral deficits.  These factors could provide new targets for the 

treatment of psychiatric disorders, such as attention deficit hyperactivity disorder. 
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Results 

Expression of Shati/Nat8l mRNA increases with brain development in mice 

  We collected the whole brain for the measurement of Shati/Nat8l mRNA during 

brain development, because the brain development began from embryonic state and 

Shati/Nat8l mRNA is expressed in whole brain.  To analyze the expression of 

Shati/Nat8l, we first quantified Shati/Nat8l mRNA levels in the whole brain on various 

days at the age of embryonic (E) 15.5, postnatal (P) 7, 14, 21, 42 and 56. Shati/Nat8l 

mRNA is strongly expressed only after birth, while Shati/Nat8l mRNA expression level 

during the embryonic stage and juvenile stage were very low (Fig. 1A; E15.5 = 8.72 ± 

1.39%, P7 = 100.00 ± 19.67%, P14 = 205.78 ± 28.58%, P21 = 390.11 ± 24.09%, P42 = 

572.32 ± 40.62% and P56 = 681.96 ± 46.70%;  Ct value of 36B4: E15.5 = 31.8 ± 0.3,  

P7 = 31.7 ± 0.5,  P14 = 31.2 ± 0.3, P21 = 31.7 ± 0.1,  P42 = 31.9 ± 0.2,P56 = 32.0 ± 

0.2; Ct value of Shati : E15.5 = 38.4 ± 0.1,  P7 = 36.2 ± 0.3, P14 = 34.6 ± 0.1, P21 = 

34.2 ± 0.1, P42 = 33.8 ± 0.2, P56 =33.3 ± 0.3).  These findings indicate that expression 

of Shati/Nat8l mRNA increases with whole brain development in mice.  

 

Deletion of Shati/Nat8l altered the MBP level in the brain of juvenile, but not adult mice 

We next investigated whether the deletion of SHATI/NAT8L affected the myelin 

basic protein (MBP) level in the prefrontal cortex, which is involved in the myelination 
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and emotional behaviors in mice (17,18).  To account for several isoforms of MBP, we 

detected protein bands from 10kDa to 25kDa in the Western blot analysis as previous 

report (20).  Immunohistochemical analysis and Western blotting showed the 

expression of MBP in the prefrontal cortex of juvenile (3 weeks old) mice was decreased 

in Shati-/- mice compared with that of Shati+/+ mice (Fig. 1B, D; Shati+/+ mice = 1.00 ± 

0.13, Shati-/- mice = 0.66 ± 0.09, t4 = 4.754, p < 0.05).  On the other hand, the 

expression of MBP in the prefrontal cortex of the adult (10 weeks old) mice was 

unchanged in Shati-/- mice (Fig. 1C, E; Shati+/+ mice = 1.00 ± 0.10, Shati-/- mice = 0.92 ± 

0.13, t4 =2.483, n.s.).  These findings indicate that SHATI/NAT8L plays an important 

role in the regulation of myelin state in the brain of juvenile mice. 

  

GTA treatment ameliorated deficit of social interaction caused by deletion of 

SHATI/NAT8L in mice 

    We investigated whether the behavioral deficits observed in Shati-/- mice (12,13) 

were ameliorated by acetate supplementation, because NAA which synthesized by 

SHATI/NAT8L is metabolized to aspartate and acetate by aspartoacylase in 

oligodendrocytes.  For acetate supplementation, we used GTA which metabolized to 

acetate and distributed to the brain rapidly after oral administration as previous reports 
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(21, 22).  Firstly, we assessed the validity of behavioral test in Shati-/- mice 

(Supplemental Fig. 1).  In the locomotor activity test to check the change of 

spontaneous movement, Shati-/- mice showed higher activity than Shati+/+ mice 

(Supplemental Fig. 1A, B; Shati+/+ mice = 23132.88 ± 981.77 counts, Shati-/- mice = 

26662.53 ± 1000.57 counts, t14 =2.486, p < 0.05).  Next, we reconfirmed the memory 

by the deletion of SHATI/NAT8L.  In the Y-maze test, there was no difference in 

spontaneous alternation between Shati+/+ and Shati-/- mice (Supplemental Fig. 1C; 

Shati+/+ mice = 71.06 ± 1.74%, Shati-/- mice = 69.18 ± 2.80%, t8 = 0.3683, n.s.).  

Furthermore, in the three-chambered social interaction test to investigate the social 

behavior, Shati-/- mice showed reduced social interaction to a stranger mice compared 

with Shati+/+ mice while it showed increased interaction to object compared with Shati-/- 

mice (Supplemental Fig. 1D; Stranger; Shati+/+ mice = 63.63 ± 1.78%, Shati-/- mice = 

49.80 ± 2.54%, t8 = 4.599, p < 0.001).  Moreover, in the elevated plus maze test to test 

impulsivity, Shati-/- mice spent longer in the open arms compared with Shati+/+ mice 

(Supplemental Fig. 1E; Shati+/+ mice = 34.97 ± 2.63 s, Shati-/- mice = 81.80 ± 8.36 s, t8 = 

5.463, p < 0.001).  Taken together, Shati-/- mice showed hyper  locomotion, 

impulsivity and social deficits.  These results are agreed with our previous publications 

(12, 13).  We treated mice with GTA or vehicle (Veh) from the age of P7 to the age of 8 
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weeks old (Fig. 2A).  After GTA treatment, behavioral experiments were performed in 

the following order; locomotor activity, social interaction test and elevated plus-maze 

test.  GTA normalized locomotor activity of Shati-/- mice as the level of Shati+/+ mice 

groups, although Shati-/- mice showed higher locomotor activity compared with Shati+/+ 

mice (Fig. 2B, C; Shati+/+ / Veh mice = 22917.3 ± 1359.6 counts, Shati-/- / Veh mice = 

26761.3 ± 999.6 counts, Shati+/+ / GTA mice = 24406.2 ± 1419.8 counts, Shati-/- / GTA 

mice = 24556.6 ± 1302.8 counts; Shati+/+ / Veh mice vs. Shati-/- / Veh mice, F3,39 = 2.862, 

p < 0.05).  In the three-chambered social interaction test, reduced social interaction of 

Shati-/- mice was rescued to the level of Shati+/+ mice by GTA treatment (Fig. 2D; 

Strenger; Shati+/+ / Veh mice = 63.91 ± 1.62%, Shati-/- / Veh mice = 50.06 ± 2.29%, 

Shati+/+ / GTA mice = 64.63 ± 1.47%, Shati-/- / GTA mice = 63.11 ± 1.69%; Shati+/+ / Veh 

mice vs. Shati-/- / Veh mice F3,47 = 5.551; p < 0.001, Shati-/- / Veh mice vs. Shati-/- / GTA 

mice, F3,47 = 5.188, p < 0.001; Shati+/+ / GTA mice vs. Shati-/- / GTA mice, F3,47 = 0.3627, 

n.s,).  Similarly, the increased time that Shati-/- mice spent the open arms in the 

elevated plus maze compared with Shati+/+ was normalized by GTA treatment (Fig. 2E; 

Shati+/+ / Veh mice = 38.49 ± 27.7 s, Shati-/- / Veh mice = 81.62 ± 6.75 s, Shati+/+ / GTA 

mice = 49.49 ± 3.14 s, Shati-/- / GTA mice = 52.16 ± 3.69 s; Shati+/+ / Veh mice vs. Shati-/- 

/ Veh mice, F3,47 = 6.608, p < 0.001; Shati-/- / Veh mice vs. Shati+/+ / GTA mice, F3,47 
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=4.923, p < 0.001; Shati-/- / Veh mice vs. Shati-/- / GTA mice, ,F3,47 =4.514, p < 0.001).  

To investigate the effect of NAA on the brain of the adult mice, we administrated NAA for 

the mice into the cerebral ventricle at every test day.  In the social interaction test, there 

was no difference of the approach time of Shati-/- / Veh mice and Shati-/- / NAA mice (Fig. 

3A;  Shati+/+ / Veh mice = 69.04 ± 3.20 %, Shati-/- / Veh mice = 52.11 ± 2.84 %, Shati+/+ / 

NAA mice = 65.28 ± 3.78 %, Shati-/- / NAA mice = 53.20 ± 3.05 %; Shati+/+ / Veh mice vs. 

Shati-/- / Veh mice, F3,31 = 5.268, p < 0.01; Shati+/+ / Veh mice vs. Shati-/- / NAA mice, F3,31 

=4.926, p < 0.05; Shati-/- / Veh mice vs. Shati+/+ / NAA mice, ,F3,31 =4.097, p < 0.05).  

Moreover, to investigate which period is important for the affection of the behavioral 

deficits in Shati-/- mice, we only treated GTA for the mice from postnatal day 7 to 21.  

GTA normalized social interaction of Shati-/- mice as the level of Shati+/+ mice groups, 

although Shati-/- mice showed reduced social interaction compared with Shati+/+ mice 

(Fig. 3B; Shati+/+ / Veh mice = 61.40 ± 1.81 %, Shati-/- / Veh mice = 50.71 ± 1.71 %, 

Shati+/+ / GTA mice = 60.32 ± 2.02 %, Shati-/- / GTA mice = 59.18 ± 1.40 %; Shati+/+ / Veh 

mice vs. Shati-/- / Veh mice, F3,31 = 6.573, p < 0.001; Shati-/- / Veh mice vs. Shati+/+ / GTA 

mice ,F3,31 =5.905, p < 0.01; Shati-/- / Veh mice vs. Shati-/- / GTA mice ,F3,31 =5.199, p < 

0.01).  We also reported that the level of BDNF mRNA in the prefrontal cortex of Shati-/- 

mice is decreased compared with that of Shati+/+ mice (13).  Therefore, we also 
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measured the level of BDNF mRNA in Shati+/+ and Shati-/- mice treated with GTA.  The 

expression of BDNF mRNA in Shati-/- mice was significantly decreased compared with 

Shati+/+ mice similar to the previous report (13), and GTA treatment from P7 to P21 

normalized the level of BDNF mRNA in Shati-/- mice (Fig. 3C; Shati+/+ / Veh mice = 100 ± 

13.4 %, Shati-/- / Veh mice = 65.5 ± 8.3 %, Shati+/+ / GTA mice = 107.3 ± 12.4 %, Shati-/- / 

GTA mice = 96.1 ± 12.1 %; Shati+/+/ Veh mice vs. Shati-/- / Veh mice, F3,31 = 3.526, p < 

0.05; Shati-/- / Veh mice vs. Shati+/+ / GTA mice ,F3,31 =4.274, p < 0.01; Shati-/- / Veh mice 

vs. Shati-/- / GTA mice, F3,31 = 3.128, p < 0.05). These findings indicate that GTA 

treatment ameliorates the behavioral deficits and reduction of BDNF mRNA caused by 

deletion of SHATI/NAT8L in mice. 

 

GTA treatment from P7 to P21 affected the myelination in the brain of P21 Shati-/- mice 

The expression level of MBP, one of indicators of myelin, was reduced in Juvenile 

of Shati-/- mice (Fig. 1 B and D).  Next, to examine whether decreased MBP in juvenile 

Shati-/- mice was ameliorated by GTA treatment, we performed Western blotting analysis 

to compare MBP level in the brain of Shati-/- mice after GTA treatment.  Western blots 

showed that GTA treatment rescued the decreased protein level of MBP in Shati-/- mice 

(Fig. 4A, B; Shati+/+ / Veh mice = 1.00 ± 0.11, Shati-/- / Veh mice = 0.67 ± 0.07, Shati+/+ / 
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GTA mice = 1.05 ± 0.09, Shati-/- / GTA mice = 1.01 ± 0.12; Shati+/+/ Veh mice vs. Shati-/- / 

Veh mice, F3,27 = 4.272, p < 0.01; Shati-/- / Veh mice vs. Shati+/+ / GTA mice , F3,27 =4.877, 

p < 0.001; Shati-/- / Veh mice vs. Shati-/- / GTA mice, F3,27 = 4.422, p < 0.01).  To 

investigate detail the myelin condition in the brain of Shati+/+ and Shati-/- mice, we used 

electron microscopy (Fig. 4C).  There is no difference in the g-ratio between Shati+/+ 

and Shati-/- mice (Fig. 4D; Shati+/+ / Veh mice = 0.627 ± 0.002, Shati-/- / Veh mice = 0.625 

± 0.020, Shati+/+ / GTA mice = 0.636 ± 0.023, Shati-/- / GTA mice = 0.640 ± 0.020; 

Shati+/+/ Veh mice vs. Shati-/- / Veh mice, vs. each groups n.s.).  On the other hand, the 

number of myelinated nerve fiber in the prefrontal cortex of Shati-/- mice were 

significantly decreased compared with Shati+/+ mice (Fig. 4E Shati+/+ / Veh mice = 0.112 

± 0.005 /µm2, Shati-/- / Veh mice = 0.049 ± 0.005 /µm2, Shati+/+ / GTA mice = 0.106 ± 

0.005 /µm2, Shati-/- / GTA mice = 0.081 ± 0.005; Shati+/+/ Veh mice vs. Shati-/- / Veh mice, 

F3,179 = 9.063, p < 0.001; Shati+/+ / Veh mice vs. Shati-/- / GTA mice, F3,179 = 4.526, p < 

0.001 ; Shati-/- / Veh mice vs. Shati+/+ / GTA mice, F3,179 = 8.176, p < 0.001; Shati-/- / Veh 

mice vs. Shati-/- / GTA mice, F3,179 = 3.639, p < 0.01).  GTA treatment recovered the 

number of myelinated nerve fiber partially (Fig. 4E).   Nevertheless the reduction of 

myelination in Shati-/- mice, we could not detect the TUNEL positive cell in the brain of 

juvenile and adult Shati-/- mice, respectively (Supplemental Fig. 5).  Moreover, we 
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performed Immunostaining of marker protein to confirm the number of cell.  There is no 

difference in the number of cells between the brain of Shati+/+ and Shati-/- mice 

(Supplemental Fig. 6,7 ; Olig2 positive cell, juvenile Shati+/+ mice = 277 ± 23 cells / cm2, 

juvenile Shati-/- mice = 284 ± 17 cells / cm2 adult Shati+/+ mice = 303 ± 24 cells / cm2, 

adult Shati-/- mice = 295 ± 23 cells / cm2 ; NeuN positive cell, juvenile Shati+/+ mice = 

1343 ± 66 cells / cm2, juvenile Shati-/- mice = 1318 ± 82 cells / cm2,adult Shati+/+ mice =  

1311 ± 127 cells / cm2, adult Shati-/- mice = 1235 ± 81 cells / cm2 ; Iba1 positive cell, 

juvenile Shati+/+ mice = 233 ± 16 cells / cm2, juvenile Shati-/- mice = 232 ± 19 cells / cm2, 

adult Shati+/+ mice =  254 ± 9 cells / cm2, adult Shati-/- mice = 245 ± 13 cells / cm2 ; 

GFAP positive cell, juvenile Shati+/+ mice = 138 ± 16 cells / cm2, juvenile Shati-/- mice = 

145 ± 23 cells / cm2, adult Shati+/+ mice = 116 ± 16 cells / cm2, adult Shati-/- mice = 110 ± 

16 / cm2).  These results indicate that dysfunction of myelination did not induce 

apoptosis in Shati-/- mice.  Next, we examined the expression of SHATI/NAT8L related 

genes, ASPA and ATP citrate lyase.  The expression of ASPA mRNA was no difference 

in the prefrontal cortex between juvenile and adult Shati+/+ and Shati-/- mice (Fig. 5A,D; A 

Shati+/+ mice = 100 ± 6.21 %, Shati-/- mice = 99.2 ± 7.32 %, t3 = 0.08488, n.s., D Shati+/+ 

mice = 100 ± 20.00, Shati-/- mice = 127.4 ± 21.77 %, t3 = 0.9269, n.s.). However, the 

expression of ATP citrate lyase mRNA in the prefrontal cortex of Shati-/- mice was 
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significantly decreased in the juvenile, but not the adult (Fig. 5B,E B Shati+/+ mice = 100 

± 7.13 %, Shati-/- mice = 44.30 ± 8.14 %, t3 = 3.461, p < 0.05; E Shati+/+ mice = 100 ± 

13.89 %, Shati-/- mice = 102.15 ± 21.19 %, t3 = 0.9632, n.s.).  To assess the level of 

acetate in the juvenile and adult brain of Shati+/+ and Shati-/- mice, we performed an 

acetate assay using an acetate colorimetric assay kit. The level of acetate in the juvenile 

prefrontal cortex was found to be decreased in Shati-/- mice compared with Shati+/+ mice 

(Fig. 5C; Shati+/+ mice = 0.72 ± 0.01 µmol/g tissue, Shati-/- mice = 0.62 ± 0.01 µmol/g 

tissue, t2 = 6.551, p < 0.05).  On the other hand, there was no difference in the acetate 

level in the adult prefrontal cortex between Shati+/+ and Shati-/- mice (Fig. 5F; Shati+/+ 

mice = 0.69 ± 0.05, Shati-/- mice = 0.62 ± 0.01, t3 = 1.476, n.s.).  These results indicate 

that the myelination in the brain of Shati-/- mice is significantly delayed compared with 

that of Shati+/+ mice and GTA treatment ameliorates these impairments.   
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Discussion 

Although only SHATI/NAT8L was identified as N-acetyltransferase in brain (2, 3),  

NAA and NAAG are detected in the frontal cortex of mice brains.  We also investigated 

the NAA and NAAG contents in Shati+/+ and Shati-/- mice by liquid chromatography-mass 

spectrometry (LC-MS), which is much more sensitive than HPLC methods (9, 12).  

NAA was markedly decreased and NAAG was completely knocked out in Shati-/- mice 

(Sumi, Tomohiro, Hatanaka, Nitta unpublished data).  Although the synthase of NAA is 

considered to be only SHATI/NAT8L, the result from LC-MS experiments also indicates 

the role of an unknown enzyme in NAA production in the brain.  Further analysis is 

needed to elucidate the mechanisms of NAA production. 

In the present study, we observed expression of Shati/Nat8l mRNA increases 

with brain development in mice (Fig. 1A).  This result indicates that the function of 

SHATI/NAT8L is important for the brain after birth.  To investigate the function of 

SHATI/NAT8L in the brain development, we checked the level of MBP in the juvenile 

and adult brain. Interestingly, deletion of SHATI/NAT8L altered the MBP level in the 

brain of juvenile, but not adult, mice (Fig. 1D, E).  Our result is consisted with previous 

report that the MBP level in the adult brain of Shati-/- mice is no change compared with 
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Shati+/+ mice (23).  These results suggest that SHATI/NAT8L could be involved in the 

myelination in the juvenile mouse brain. 

We have previously reported that a shorten immobility of Shati+/- mice in the 

forced swimming test was ameliorated by a single intracerebroventricular injection of 

NAA (12). On the other hand, the same treatment of NAA could not completely 

normalize the behavioral deficits seen in Shati-/- mice, the reason for which is still 

unclear (12).  In the present study, we treated NAA into intracerebroventricules for 

adult Shati-/- mice repeatedly, but NAA did not improve behavioral deficit (Fig. 3B).  

These results indicate that treatment of NAA for adult mice dose not rescue the 

behavioral deficits of Shati-/- mice.  We had also considered it is important to 

investigate the effect of NAA on rescuing myelination in juvenile mice.  It was an 

important point whether treatment of NAA from jugular stage could rescue the 

behavioral deficits in adult Shati-/- mice.  However, NAA could not be penetrated from 

periphery to brain by using intraperitoneal injection although acute and repeated NAA 

oral treatment did not show toxicity (24, 25). Moreover, it is technically difficult to inject to 

ventricles of mice in juvenile stage, since their brains are too small and brittle.  NAA is 

metabolized to aspartate and acetate by ASPA in oligodendrocytes in the brain. Then 

acetate is converted to acetyl-CoA and used for lipid synthesis and myelination. 
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Moreover, GTA is metabolized to acetate and rapidly distribute to the brain after oral 

administration as previous reports (21, 22).  Hence, we investigated the roles of NAA in 

behavioral deficits using Shati-/- mice treated with GTA, the acetate trimester of glycerol, 

from P7 to P56.  Interestingly, GTA treatment normalized MBP level in the brain of 

juvenile mice and ameliorated reduced social interaction caused by deletion of 

SHATI/NAT8L in adulthood (Fig. 2).  Furthermore, to investigate the critical period that 

affects the behavioral deficits in Shati-/- mice, we treated GTA for mice from P7 to P21 

until weaning.  GTA treatments improve reduced social interaction of adult Shati-/- mice. 

Furthermore, the level of acetate in the juvenile prefrontal cortex was found to be 

decreased in Shati-/- mice compared with Shati+/+ mice (Fig. 5C), suggesting that the 

presence of acetate in the juvenile period is important for social behavior. 

There are several reports that impaired or delayed myelination in the prefrontal 

cortex induces reduced social interaction in adult mice (18, 19).  Also absence of NAA 

and NAAG is involved in delayed myelination in patients with hypoacetylaspartia (26). 

On the other hand, it was reported that BDNF signaling in the developmental brain is 

involved myelination (27, 28).  Previously, it was reported that the levels of BDNF 

mRNA in the prefrontal cortex were decreased in Shati-/- mice (13), GTA treatment for 

Shati-/- mice normalized the decrease of BDNF mRNA and MBP level (Fig 3C, 4A, B).  
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Moreover, by using electron microscopy analysis, myelinated nerve filers of Shati-/- mice 

were decrease compared with that of Shati+/+ mice although g- ratio of each groups 

were not changed. (Fig4C, D, E).  As shown in Supplemental Figure 5-7, the 

dysfunction of myelination did not induce apoptosis in Shati-/- mice.  Hence, these 

results show possibility that the recovery of behavior deficits and delayed myelination in 

Shati-/- mice by GTA treatment is associated with normalization of BDNF mRNA level.  

There is no report that acetate or GTA could directly affect expression of BDNF.  

Therefore, we assume that the normalization of BDNF mRNA level in Shati-/- mice 

treated with GTA might indicate amelioration of neuronal activity due to impairment of 

myelination in the jugular stage of the Shati-/- mice.  BDNF mRNA expression is 

regulated neuronal activity (29).  

We have previously reported that SHATI/NAT8L is associated with neurite 

elongation and the ATP synthetic pathway via NAA synthesis (14).  SHATI/NAT8L is 

expressed in the mitochondria of neuronal cells, and NAA synthesized by SHATI/NAT8L 

is associated with the tricarboxylic acid cycle related to metabolism in neurons (14).  

Further, NAA is metabolized to acetate and aspartate in the oligodendrocytes.  Hence, 

the ameliorative effect of acetate derived from GTA on the behavioral deficits is 

hypothesized that it acts directly at oligodendrocytes.  In the present study, we checked 
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the expression of ASPA and ATP citrate lyase mRNA and acetate contents to 

investigate the effect on utilization of NAA in oligodendrocyte (Fig. 5A-F).  Surprisingly, 

the levels of ATP citrate lyase mRNA and acetate contents were decreased in the PFC 

of juvenile, but not adult Shati-/- mice.  These results suggested that utilization ability of 

NAA was decreased in the oligodendrocytes of Shati-/- mice.  The reduced levels of 

acetate in the brain of Shati-/- mice are consisted with previous report that knock-down 

of the NAA-cleaving enzyme reduces acetate levels in adipocytes (30).  On the other 

hand, it was reported that the levels of ATP citrate lyase mRNA is increased in the 

adipocytes of Shati-/- mice and this report is inconsistent with our results (31).  The 

reasons of discrepancy between ATP citrate lyase mRNA in the brain and adipocytes of 

Shati-/- mice is unclear at the present.  We estimate that the differences between the 

organs cause the result, because ASPA expressed in the adipocytes, but not the 

neurons.  Further study is needed to clarify the detail mechanism of this discrepancy.   

The findings of the current study and those of previous studies show that deletion 

of SHATI/NAT8L alters MBP level in the brain of juvenile, but not adult mice, suggesting 

that SHATI/NAT8L is involved in myelination via its role in NAA synthesis.  Furthermore, 

Shati-/- mice showed several behavioral deficits, and these deficits were ameliorated by 

GTA treatment during the juvenile stage, suggesting that the behavioral deficits 
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occurred due to decreased acetate. These findings suggest that SHATI/NAT8L is 

involved in myelination in the juvenile mouse brain via supplementation of acetate 

derived from NAA.  It is well known that defects in NAA metabolism result in impaired 

postnatal myelination, most notably in Canavan disease (23), SHATI/NAT8L might be 

involved in brain development, especially, in myelination, and may be therapeutic 

targets for developmental disorders.  The number of patients with developing disorders 

is much more than Canavan disease.  The pharmaceutical therapy is required for 

developing disorders, but we have no means at the present.  Then our results will 

contribute the development of the medical tools for developing disorders. The absence 

of NAA and NAAG is involved in delayed myelination in humans.  Therefore, it is 

possible that these molecules participate in other developmental disorders (26). We 

expect that SHATI/NAT8L will become a novel therapeutic target for the treatment of 

cryptogenic developmental disorders. 
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Materials and Methods 

Animals 

We have previously described the generation of Shati-/- mice (18). Animals were housed 

in a room with a 12 h light/dark cycle (light cycle starting at 8:00 AM.).  Food and water 

were available ad libitum.  All experiments followed the National Institute of Health 

Guidelines for the Care and Use of Laboratory Animals and were approved by the 

committee for Animal Experiments of the University of Toyama (A2015PHA-23, 

G2015PHA-15). 

 

Administration of glyceryltriacetate (GTA) and N-acetylaspatate (NAA) 

Glyceryltriacetate (GTA; Wako, Osaka, Japan) treatment was performed as previously 

described (21,22).  GTA was treated orally to Shati+/+ and Shati-/- pups from day 7 after 

birth until day 14 at a dose of 4.2 g/kg.  5.8 g/kg GTA was administered from day 15 to 

day 21.  After weaning (after day 22), the pups received GTA in their water (5% GTA by 

weight).  Intracerebroventricular injection of NAA was performed as previously 

described (12).  Briefly, a microsyringe with a 28-gauge stainless-stell needle (3mm in 

length) was used for the microinjection. The mice were lightly anesthetized and the 

needle was implanted into the lateral ventricle (AP -0.6 mm, ML +1.0 mm, DV -2.5 mm). 
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NAA was solubilized in Saline to obtain a concentration of 20µg/µL.  The i.c.v. injection 

volume was 3µL, 30min before each Three-chambered social interaction test trail, and 

the injection speed was 20 s. 

 

Schedule of behavioral tests and sampling for brain tissues 

All behavioral tests were performed from the age of 8-9 weeks old in the following order 

so as to reduce the stress on the mice; locomotor activity, Y-maze test, 

three-chambered social interaction test, and elevated plus maze test.  After the 

behavioral tests, brain samples were collected and used for Western blotting or acetate 

assay. The brains used for the experiments with electron microscopy were separately 

prepared.  Behavioral tests were finished during the ages of 9-10 weeks old, and 

sampling was performed when the mice became 10 weeks old (Fig. 2A). 

 

Quantitative RT-PCR  

Quantitative RT-PCR was performed as previously described (14). The Shati/Nat8l 

primers used for real-time PCR were as follows: 5′-GTGATTCTGGCCTACCTGGA-3′ 

(forward) and 5′-CCACTGTGTTGTCCTCCTCA-3′ (reverse). The other primers were 

as follows: 5′-GCAAACATGTCTATGAGGGTTCG-3′ (BDNF forward), 5′- 
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ACTCGCTAATACTGTCACACACG-3′  (BDNF reverse), 5′- 

GAAGCTGACCTTGCTGAACC-3′ (ATP citrate lyase forward), 5′- 

CCGTAATTCGCCAGTTCATT-3′ (ATP citrate lyase reverse), 5′- CATTGAGCATCCTT-3′ 

(ASPA forward), 5′-TGAGGCTGAGGACCAACTTC-3′ (ASPA reverse) 36B4 transcript 

was used as the internal control. The amount of 36B4 transcript was quantified using 

the forward primer 5′-ACCCTGAAGTGCTCGACATC-3′ and the reverse primer 

5′-AGGAAGGCCTTGACCTTTTC-3′. 

 

Immunostaining of mice brains 

Immunostaining was performed as previously described (14).  Sections were fixed with 

4% paraformaldehyde in 20 mM Tris-HCl (pH 7.4) containing 150 mM NaCl, 3 mM KCl, 

and 0.1% Tween 20 (TBS-T) for 20 min, washed with TBS-T, and then incubated with 

0.25% Triton X-100 in TBS-T for 15 min.  The sections were treated with 10 mM citrate 

solution (pH 6.0) for antigen retrieval at 95°C for 15 min, washed with TBS-T, and then 

blocked in 10% goat serum (Sigma-Aldrich, St. Louis, MO) in TBS-T for 1 h.  Sections 

were incubated with primary antibody (MBP, 1:500 BioLegend, San Diego, CA; Olig2, 

1:500 Abcam, cambridge UK ; NeuN, 1:500 MBL, Nagoya, JAPAN; GFAP, 1:500 Cell 

Signaling Technology, Beverly MA ; Iba1, 1:500 Wako, Japan) with 10% goat serum in 
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TBS-T at 4°C overnight, washed with TBS-T, and then incubated with CFTM 594 goat 

anti-rabbit IgG(H+L) (1:1000 Biotium, Hayward, CA) and CFTM488 goat anti-mouse IgG 

(H + L) (1:1000 Biotium) at room temperature for 2 h. After being washed, the sections 

were mounted using Fluoromount (Diagnostic BioSystems, Pleasanton, CA).  

 

Western blotting 

Brains were isolated and cut into 1 mm-thick sections. The prefrontal cortex was 

isolated from the brain section and fractured in RIPA buffer (50 mM Tris-HCl pH 7.5, 152 

mM NaCl, 5 mM EDTA, 1% TritonX-100, 0.5% sodium deoxy cholate, 1 mM PMSF, 2% 

protease inhibitor cocktail, and 1% phosphatase inhibitor cocktail).  After centrifugation, 

the supernatant was collected in a fresh tube and the protein concentration was 

measured (BCA kit, Wako). Equal amounts of protein from each sample were mixed 

with loading buffer (50 mM Tris-HCl pH 7.5, 5% 2-mercaptoethanol, 2% sodium dodecyl 

sulfate (SDS), 5% sucrose, and 0.005% bromophenol blue) and then denatured at 

100°C. The protein extracts were subjected to SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE) (10% acryl amide gel) in electrophoresis running buffer and 

electrophoresed for 1 h at room temperature at 0.2 mA, and then transferred onto a 

membrane (Millipore, Darmstadt, Germany) for 1h at 100 V.  The membrane was 
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blocked with 5% skim milk powder in TBS-T for 1 h. After washing by TBS-T, the 

membrane was incubated with primary antibodies (MBP, BioLegend, 1:1000; GAPDH, 

MBL, Nagoya, JAPAN) overnight.  After extensive rinsing, the membrane was 

incubated with a secondary antibody (Anti-Mouse IgG HRP-Linked Fragment, Cell 

Signaling Technology, Danvers, MA) for 1 h at room temperature. The corresponding 

bands were detected using an ECL-plus Western Blotting Detection System (GE 

Healthcare, Little Chalfont, UK). Densitometry of western blot data was performed using 

image j software. To account for several isoforms of MBP, protein bands from 10 kDa to 

25 kDa were used (17).   

 

Measurement of locomotor activity 

Measurement of locomotor activity was performed as previously described (9).  Mice 

were placed individually in a transparent acrylic cage with a black frosted Plexiglas floor 

(45×25×40 cm), and locomotor activity was measured every 5 min for 60 min using 

digital counters with infrared sensors (Scanet MV-40; MELQEST, Toyama, Japan). 

 

Y-maze test 



27 
 

Measurement of spontaneous alternation behavior was performed as previously 

described (13).  The percentage alternation was calculated using the following formula: 

(number of alternations) / (total number of arm entries-2) ×100 (%). 

 

Three-chambered social interaction test 

The social interaction test was performed using a three-chambered plastic box 

(60×40×22 cm, MELQEST), as described in a previous report (32).  An unfamiliar 

C57BL/6J male (Stranger) that had no contact with the subject mice were placed in one 

side of the chamber, and an object was placed on the other side.  The stranger mouse 

and the object were enclosed in a small, round wire cage, which allowed olfactory, 

visual, auditory, and tactile contact, but did not allow for deep contact. The subject 

mouse was first placed in the middle chamber and allowed to explore the entire social 

test box for a 10 min session. Measurement of the interaction time was taken from the 

amount of time spent around the wire cage. 

 

Elevated plus maze test 

The elevated plus maze test was performed as previously described (13). In brief, this 

maze is comprised of two open arms (25×5×5 cm), two closed arms (25×5×27 cm), and 
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a home platform (5×5 cm). It was elevated to a height of 55 cm above the floor. The time 

spent in open arm was measured. 

 

Electron microscopy 

Electron microscopy was performed as previously described (11).  In brief, Shati+/+ and 

Shati-/- mice at postnatal day 21 were anesthetized and perfused intracardially with 

2.0% glutaraldehyde in 0.1 M cacodylate buffer pH 7.4 for 15min.  The brains were 

removed and dissected 1-2 mm thick section which included the prefrontal cortex.  The 

sections were left in fixative overnight at 4°C then washed in 0.1M cacodylate buffer, 

dehydrated with graded ethanols and infiltrated with propylene oxide.  After infiltration 

of propylene oxide, the section was oriented and embedded with epoxy resin. Sections 

(1 µm) of the specimen block were cut on Ultracut micotome (Leica), stained with 0.5% 

toluidine blue in 1% sodium borate in water and prefrontal cortex was then identified by 

light microscopy and areas were selected for thin sectioning.  Thin sections (100 nm) 

were collected on copper grids, stained with uranyl acetate and lead citrate. The 

samples were viewed at electron microscope. 
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Acetate assay  

Acetate assay were performed using an acetate colorimetric assay kit (BioVision, 

Milpitas, CA), following the manufacturer’s instructions.  

 

TUNEL staining 

TUNEL staining was performed using In situ Apoptosis Detection Kit (Takara, Kusatsu, 

JAPAN), following the manufacturer’s instructions. 

 

Statistical Analyses 

All data were expressed as the mean ± standard error of the mean (S.E.M.). Statistical 

differences between two groups were determined by Student’s t-test. Statistical 

differences among values for individual groups were determined by analysis of variance 

(ANOVA), followed by Bonferroni’s post-hoc test  when F ratios were significant 

(Prism version 5). 
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Figure legends 

Figure 1. Expression of Shati/Nat8l mRNA was increased depending on the brain 

development and SHATI/NAT8L affects the expression of MBP.   

(A) Real-time RT-PCR analysis of Shati/Nat8l mRNA in whole brains of mice was 

performed.  To standardize the PCR products, we used primers for 36B4 as an internal 

control.  The Shati/Nat8l mRNA levels were expressed as the percentage relative to P7 

expression.  Values represent the mean ± S.E.M. (n = 3). E: embryonic day, P: 

postnatal day. (B-C) The expression pattern of MBP in juvenile (3 weeks old) and adult 

(10 weeks old) Shati+/+ and Shati-/- mice was detected by immunohistochemistry 

analysis. Scale bars in the figure = 100 μm (D-E) The expression pattern of MBP in 

between juvenile and adult Shati+/+ and Shati-/- mice was detected by Western blot 

analysis. Values represent the mean ± S.E.M. (n = 5).  *p < 0.05 vs. Shati+/+ mice 

(Student’s t test).  Full-length blots are presented in Supplemental Figure S2,3. 

 

Figure 2. GTA treatment ameliorates reduced behavioral deficits caused by the 

deletion of SHATI/NAT8L. 

(A) GTA treatment and several behavioral experiments were performed following this 

schedule.  After GTA treatment, behavioral experiments were performed in the 
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following order; locomotor activity, social interaction test and elevated plus-maze test.  

(B-C) A difference in basal locomotor activity was observed in a novel environment 

between Shati+/+ and Shati-/- mice.  On the other hand, GTA itself treatment did not 

affect the locomotor activity in Shati+/+ mice.  Veh: vehicle, GTA: glyceryltriacetate. 

Values represent the mean ± SEM. (n = 10). *p < 0.05 vs. Shati+/+ / Veh mice (ANOVA 

followed by Bonferroni’s post-hoc test).  (D) In the three-chambered social interaction 

test, Shati+/+ mice were more interested in a stranger mouse compared with Shati-/- mice. 

Values represent the mean ± SEM. (n = 12). ***p < 0.001 vs. Shati+/+ / Veh mice, ###p < 

0.001 vs. Shati-/- / Veh mice (ANOVA followed by Bonferroni’s post-hoc test) (E) A 

difference in the duration of time spent in the open arms of the elevated plus-maze test 

was observed, indicating a difference in anxiety-like behavior between Shati-/- and 

Shati+/+ mice.  Values represent the mean ± S.E.M. (n = 12). ***p < 0.001 vs. Shati+/+ / 

Veh mice, ###p < 0.001 vs. Shati-/- / Veh mice (ANOVA followed by Bonferroni’s post-hoc 

test). Other data of behavioral experiments are represented in Supplemental Figure S1. 

 

Figure 3. Behavioral deficit in Shati-/- mice was not recovered by NAA repeated 

administration. 
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(A) In three-chambered social interaction test, the mice were administrated NAA into the 

cerebral ventricle each test days. Shati-/- mice were more interested to a novel object, 

but not to a stranger mouse compared with Shati+/+ mice. NAA repeated administration 

did not ameliorates reduced behavioral deficits in Shati-/- mice. Values represent the 

mean ± SEM. (n = 8). **p < 0.01, *p < 0.05 vs. Shati+/+ / Veh mice, #p < 0.05 vs. Shati-/- / 

Veh mice (ANOVA followed by Bonferroni’s post-hoc test) (B) GTA was treated orally to 

Shati+/+ and Shati-/- pups from postnatal day 7 to 21. Shati-/- mice showed reduced social 

interaction, but it was ameliorated by juvenile GTA treatment. Values represent the 

mean ± SEM. (n = 8). ***p < 0.001 vs. Shati+/+ / Veh mice, ##p < 0.01 vs. Shati-/- / Veh 

mice (ANOVA followed by Bonferroni’s post-hoc test) (C) BDNF mRNA levels were 

measured by Real-time RT-PCR analysis. The difference in the level of BDNF mRNA 

between Shati+/+ and Shati-/- mice was detected, but GTA treatment rescue these 

difference. Values represent the mean ± S.E.M. (n = 8) *p < 0.05 vs. Shati+/+ / Veh mice, 

#p < 0.05, ##p < 0.01 vs. Shati-/- / Veh mice (ANOVA followed by Bonferroni’s post-hoc 

test). 

 

Figure 4. GTA treatment normalized the myelin in the brain of juvenile mice. 
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(A) The expression pattern of MBP between Shati+/+ and Shati-/- mice was detected by 

Western blot analysis. (B) GTA treatment revealed the decreased expression of MBP in 

the brain of juvenile Shati-/- mice. Values represent the mean ± S.E.M. (n = 7). **p < 0.01 

vs. Shati+/+ / Veh mice, ##p < 0.01, ###p < 0.001 vs. Shati-/- / Veh mice (ANOVA followed 

by Bonferroni’s post-hoc test). Full-length blots are presented in Supplementary Figure 

S4. (C) Electron micrographs of axons in the PFC were showed. Scale bar, 2.0 μm. (D) 

There is no difference in g ratio of the PFC between each mice group. Values represent 

the mean ± S.E.M. (n = 210 axons). (E) The number of myelinated nerve fiber in mice 

were indicated. GTA treatment reversed the decreased number of myelinated nerve 

fiber in the brain of juvenile Shati-/- mice. Values represent the mean ± S.E.M. (n = 45) 

***p < 0.001, ###p < 0.001, ##p < 0.01 vs. Shati-/- / Veh mice (ANOVA followed by 

Bonferroni’s post-hoc test). 

 

Figure 5. The expression of SHATI/NAT8L related genes. 

 Real-time RT-PCR analysis of Shati/Nat8l related gens were performed.  To 

standardize the PCR products, we used primers for 36B4 as an internal control. The 

expression of (A,D) ASPA and (B,E) ATP citrate lyase mRNA in juvenile and adult 

Shati+/+ and Shati-/- mice was detected. Values represent the mean ± S.E.M. (n = 3 or 4). 

(C,F) The level of acetate (C) in the whole brain in juvenile mice and (F) in the frontal 
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cortex between Shati+/+ and Shati-/- mice was detected by acetate assay. Values 

represent the mean ± S.E.M. (n = 3 or 4) *p < 0.05 vs. Shati+/+ mice (Student’s t test) 

 


