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ABSTRACT 

The importance of the hippocampus in declarative memory is limited to recently acquired 

memory, and remotely acquired memory is believed to be stored somewhere in the neocortex. 

However, it remains unknown how the memory network is reorganized from a 

hippocampus-dependent form into a neocortex-dependent one. We previously reported that the 

medial prefrontal cortex (mPFC) is important for this neocortex-dependent remote memory in rat 

trace eyeblink conditioning. Here, we investigate the involvement of N-Methyl-D-aspartate 

(NMDA) receptors in the mPFC in this reorganization and determine the time window of their 

contribution, using chronic infusion of an antagonist into the mPFC specifically during the 

post-learning consolidation period. The rats with blockade of the mPFC NMDA receptors during 

the first one or two weeks after learning showed a marked impairment in memory retention 

measured 6 weeks after learning, but relearned normally with subsequent conditioning. In 

contrast, the same treatment had no effect if it was performed during the 3rd to 4th weeks or 

during the first day just after learning. The specificity of NMDA receptor blockade was 

confirmed by the reduced long-term potentiation in the hippocampal-prefrontal pathway in these 

rats. These results suggest that successful establishment of remotely acquired memory requires 

activation of NMDA receptors in the mPFC during at least the initial week of the post-learning 

period. Such NMDA receptor-dependent processes may mediate the maturation of neocortical 

networks that underlies permanent memory storage and serve as a way to reorganize memory 

circuitry to the neocortex-dependent form.
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    The phenomenon of temporally graded retrograde amnesia has interested scientists for more 

than 100 years (Squire, 1992). In studies of both humans and experimental animals with 

hippocampal damage, memory loss is often graded within long-term memory, such that  

remotely acquired memory is spared relative to  recently acquired one. These findings suggest 

that memories are gradually established in extrahippocampal networks through a process of 

memory consolidation (Squire and Alvarez, 1995; Knowlton and Fanselow, 1998; but see Nadel 

and Moscovitch, 1997). This type of consolidation is called “systems consolidation” in the recent 

literature, to distinguish it from other processes of cellular consolidation by which short-term 

synaptic modifications induced by experience are stabilized and become enduring changes in 

connectivity between neurons (Debiec et al., 2002). 

We have identified the medial prefrontal cortex (mPFC) as an important component of the 

extrahippocampal network that mediates remotely acquired memory, because a post-learning 

lesion in the mPFC severely impairs retention of remotely acquired memory, but only marginally 

impairs recently acquired one in rat trace eyeblink conditioning (Takehara et al., 2003). This 

learning is a hippocampus-dependent variation of classical eyeblink conditioning, a 

well-characterized model of associative learning (Thompson and Kim, 1996). Since a 

hippocampal lesion preferentially eliminates recently acquired memory in this task (Kim et al., 

1995; Takehara et al., 2002, 2003), these results suggest the possibility that the brain circuitry 

mediating memory is gradually reorganized from a form involving the hippocampus into one 

involving the mPFC during the course of systems consolidation. However, little is known about 

how this reorganization is accomplished. 

One possible mechanism for this reorganization is that neocortical networks gradually 

mature, possibly through repeated reactivations of neocortical memory modules by the 

hippocampus (McClelland et al., 1995; Squire and Alvarez., 1995). According to this view, some 

kinds of plastic changes should occur in the mPFC, in which memory is presumed to be 

consolidated, and blockade of these changes should interfere with establishment of remotely 

acquired memory. Therefore, the objective of this study is to identify the mechanism by which 
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the mPFC contributes to the reorganization of memory networks, and to determine the time 

window of its contribution. To this end, we focused on N-Methyl-D-aspartate (NMDA) receptors 

in the mPFC because NMDA receptors are involved in the consolidation process in the 

hippocampus (Shimizu et al., 2000) and NMDA receptor-dependent neural plasticity has been 

reported in in vitro slice preparations (Hirsch and Crepel, 1991) and in the 

hippocampal-prefrontal pathway in vivo (Laroche et al 1990; Jay et al., 1995). Chronic focal 

infusion of a neuroactive drug with osmotic pumps during the consolidation period offers an 

opportunity to manipulate neuronal processes in the mPFC without affecting any processes of 

acquisition or retrieval. We show that such chronic infusion of the NMDA receptor antagonist 

D-2-amino-5-phosphonovaleric acid (D-APV) into the mPFC during the initial one or two weeks 

of the post-learning period severely impairs consolidation of memory in neocortical networks in 

trace eyeblink conditioning, although infusion during the second two weeks or first day does not 

impair consolidation. 
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MATERIALS AND METHODS 

Subjects The subjects were 122 male Wistar rats (Japan SLC, Inc., Hamamatsu, Shizuoka, Japan), 

weighing 210-270 g (9 weeks old) at the time of the first surgery. The animals were housed in 

standard plastic cages in a colony room with a 12-h light/dark cycle. Water and food were 

available ad libitum. All experiments were performed in accordance with the guidelines 

established by the Institutional Animal Investigation Committee at the University of Tokyo and 

the United States National Institutes of Health Guide for the Care and Use of Laboratory 

Animals. Every effort was made to optimize comfort and to minimize the use of animals. 

 

Surgery for acute infusion Twelve rats received two kinds of surgery in series: implanting 

electrodes before the conditioning and implanting the guide cannulae and electrodes before the 

re-conditioning. In the first surgery, four Teflon-coated stainless steel wires (No. 7910; A-M 

Systems, Carlsborg, WA, USA) were implanted subcutaneously in the left upper eyelid under 

anesthesia with ketamine (87 mg/kg, i.p., Sankyo, Tokyo, Japan) and xylazine (13 mg/kg, i.p., 

Bayer, Tokyo, Japan). These wires were soldered to the pins of a connector which was secured to 

the skull anterior to bregma with dental acrylic resin and stainless steel screws. In the second 

surgery performed at least one week before the re-conditioning, the trained animals were 

anesthetized in the same way as in the first surgery and their heads were placed in stereotaxic 

frames (Narishige, Tokyo, Japan) with the skull surface in the horizontal plane. After the 

connector with the electrodes was removed and the skull was exposed by incision along the 

midline, small holes (0.8 mm diameter) were drilled on each side of the skull at the following 

coordinates (in mm from bregma): [anteroposterior (AP) +3.2, mediolateral (ML) 1.9 mm]. Two 

single guide cannulae (26 gauge, Plastic One, Roanoke, VA, USA) were implanted at an angle of 

±20 through each hole and their tips were directed to the following coordinates: [AP +3.2, ML 

0.8, dorsoventral (DV) 2.61 to the skull surface]. Since the tip of the infusion cannula 

protruded into the prelimbic area 1 mm from the guide cannula, the final infusion positions were 

at the following coordinates: [AP +3.2, ML 0.7, DV 3.5]. The guide cannulae were fixed on 
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the skull with dental cement and small stainless steel screws. Stainless steel stylets, which 

extended 1 mm beyond the tip of the guide cannulae, were placed inside the guide cannulae to 

prevent occlusion. Then, new electrodes were implanted again. 

 

Surgery for chronic infusion 85 rats received four kinds of surgery in series: implanting 

electrodes before the conditioning, implanting the infusion cannulae connected to osmotic pumps, 

removing the osmotic pumps, and implanting electrodes before the re-conditioning. In the first 

surgery, stainless steel wires were implanted in the same way as that mentioned in the surgery for 

acute infusion. In the second surgery, in the same way as acute infusion, small holes (0.8 mm 

diameter) were drilled on each side of the skull at the following coordinates (in mm from 

bregma): [anteroposterior (AP) +3.2, mediolateral (ML) 1.96 mm]. Two single infusion 

cannulae (28 gauge, Plastic One, Roanoke, VA, USA or Alzet Brain Infusion Kit I, Durect 

Corporation, Cupertino, CA, USA) were implanted at an angle of ±20 through each hole and 

their tips were directed to the following coordinates: [AP +3.2, ML 0.9, dorsoventral (DV) 3.9 

to the skull surface]. These pumps were connected via flexible polyethylene tubing to osmotic 

pumps (Alzet mini-osmotic pump, model 2002, Durect Corporation, Cupertino, CA, USA) which 

contained aCSF or D-APV (4 mM, Sigma-RBI, Tokyo, Japan). We chose this concentration of 

D-APV because it was the minimum concentration needed to block CR acquisition sufficiently 

when it was infused during acquisition in our preliminary study. The infusion cannulae were 

fixed on the skull with dental cement and small stainless steel screws. At the end of the infusion 

period, the implanted pumps were removed under the same anesthesia. At least 4 days before the 

re-conditioning, the new electrodes were implanted again. The animals were injected with 

gentamycin sulfate (8 mg/kg, i.p., Schering-Plough, Osaka, Japan) after the latter three surgeries 

and warmed until they moved spontaneously.  

 

Conditioning procedure Four cylindrical Plexiglas containers (15 cm in diameter and 25 cm high) 

were placed in a sound- and light-attenuated chamber and one rat was placed in each container. A 
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lightweight cable was connected to the connector pins secured on the animal’s head. The CS was 

a 350-ms tone (5 kHz, 85 dB) with a rise/fall time of 10 ms; it was delivered from a speaker (16.5 

cm in diameter) placed above the containers. The US was a 100-ms periorbital shock (100 Hz 

square pulses), delivered through a pair of electrodes implanted in the left upper eyelid; its 

intensity was carefully calibrated to give the minimal current required to elicit an 

eyeblink/head-turn response, and adjusted daily for each rat. A stimulus-free trace interval of 500 

ms was interposed between the end of the CS and the US onset. The CR was monitored through 

electromyographic (EMG) activity recorded with another pair of implanted electrodes. Two to 4 

days after the first surgery, spontaneous eyeblinking was recorded for 2 session days in the same 

way as during the conditioning session, except that no stimuli were presented. We started the 

conditioning beginning 4-6 days after the first surgery. A daily session consisted of 100 trials 

grouped into 10 blocks, which included 9 CS-US paired trials followed by one CS-alone trial. 

Trials were separated by a variable intertrial interval pseudorandomized between 20 s and 40 s, 

with a mean of 30 s. The acquisition session was continued until the average frequency of 

adaptive CRs over 3 consecutive sessions reached more than 60%, or for a maximum of 10 days. 

46 rats exhibited an average frequency of adaptive CRs over 3 days of more than 60% within 9 

days of acquisition (65.9 ± 2.4 %). The other 51 rats did not reach the criterion and received 10 

days of the acquisition sessions. Among these, 27 rats exhibited CRs of more than 35% (51.2 ± 

3.4 %) and were used for further experiments, but 24 rats whose frequency of CR was less than 

35% were excluded from further study. 73 rats in total were divided into 6 groups: the PBS group 

(n = 6) and the muscimol group (n = 6) for the experiment of acute inactivation, and the aCSF 

group (n = 6 for 1-day group, n = 7 for 1-week group, n = 9 for 2-week group and n = 7 for 2nd 

2-week group) and the APV group (n = 6 for 1-day group, n = 7 for 1-week group, n = 11 for 

2-week group, and n= 8 for 2nd 2-week group) for the chronic infusion experiment. Six weeks 

after the end of the initial training, the rats were conditioned again using the trace paradigm for 7 

days to test their memory retention. All experiments were performed during the light phase of the 

light/dark cycle. 
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EMG analysis The method of analysis of the EMG data was the same as in our previous study 

(Takehara et al., 2003). Briefly, the mean + SD of the EMG amplitudes during the pre-CS period 

(0-300 ms before CS onset) of 100 trials was defined as the threshold. In each trial, the average 

values of EMG amplitudes above the threshold were calculated for 300 ms before the CS onset 

(pre-value), for all sets of the 100-ms period of EMG data between 50 ms after the CS onset and 

the US onset (CR value), and for 200 ms before the US onset (adaptive CR value). We discarded 

trials in which the pre-value exceeded 10 % of threshold. A trial was assumed to contain a CR or 

adaptive CR if its CR value or adaptive CR value exceeded 10% of the threshold respectively. 

The ratio of the number of trials containing the adaptive CR to the total number of valid trials 

was denoted the adaptive CR% for each session. To show the temporal pattern of the CR, the 

EMG amplitude data for each rat were averaged over the valid trials for each day. These 

trial-averaged EMG amplitude data were normalized by the time-averaged values for 300 ms 

before the CS onset. The CR onset and peak latencies were calculated from all the trials which 

were judged to contain a CR. 

 

In vivo electrophysiology Twenty-five rats were used for the in vivo electrophysiological study. 

We implanted the rats with the same type of cannulae used with the osmotic pumps in the 

behavioral experiment, with the following coordinates: [AP +4.2, ML +0.8 to bregma and DV 

3.2 to the skull surface]. After a recovery period of 7-9 days, the rats were anaesthetized with 1 

g/kg urethane and 25 mg/kg -chloralose (i.p.) and fixed in a stereotaxic frame. To record field 

excitatory postsynaptic potentials (fEPSP), a tungsten recording electrode was inserted into the 

prelimbic area of the mPFC (AP +3.2, ML +0.8, DV -3.2), and bipolar stainless steel stimulating 

electrodes were placed in the ventral CA1/subicular region of the hippocampus (AP -6.0, ML 

+5.6, DV -6.8). The positions of the two electrodes were adjusted until a stable fEPSP was 

recorded. Constant current test stimulation (80-µs duration) was applied at intervals of 30 s, and 

its intensity was adjusted to produce an fEPSP with a slope that was 50% of maximum. To 
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induce long-term potentiation (LTP), high-frequency burst stimulation (HFBS) consisting of 10 

bursts (each with 50 pulses at 250 Hz) at 0.1 Hz (at the same stimulation intensity that we used 

for the test stimuli) was delivered to the ventral CA1/subicular region. We presented this pattern 

of stimuli 3 times every 3 minutes. The slope of the fEPSP was measured at a maximum slope of 

1-ms duration. In part of the experiment, PPF was observed by applying paired-pulse stimulation 

at an inter-pulse interval of 50 ms. After the electrophysiological experiments, an electric lesion 

was made in order to confirm the position of the recording electrode. 

 

Histology After termination of the experimental procedure, each animal was intraperitoneally 

injected with an excess amount of sodium pentobarbital (>80 mg/kg, Dainippon Pharmaceutical 

Co., Osaka, Japan) and perfused intracardially with 0.9% saline, followed by phosphate-buffered 

10% formalin. The brain was removed from the skull and stored in 10% formalin for a few days. 

After infiltration with 30% sucrose, the brain was frozen, sectioned at 60 µm, and stained with 

cresyl violet. The sections were subsequently examined under a light microscope and the 

locations of the cannula tips and the recording electrodes were drawn onto plates from the 

stereotaxic atlas of the rat brain (Paxinos and Watson, 1986). The distance between the electrode 

tip and the infusion cannula was estimated by counting the number of sections between them. 

 

Statistical analysis  All data were expressed as the mean  SEM. Statistical significance was 

determined by a two-way ANOVA with repeated measures, or by a t test using SPSS statistical 

software. p < 0.05 was regarded as significant. 
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RESULTS 

Reversible inactivation of the mPFC during re-conditioning severely impairs 

retrieval of remotely acquired memory. 

    First, we investigated whether reversible inactivation of the rostral mPFC centering in the 

prelimbic area during re-conditioning can replicate the severe impairment in retrieval (retention) 

of remotely acquired memory, which we previously reported by using a permanent lesion method 

(Takehara et al., 2003). Figure 1 shows the effect of acute microinfusion of muscimol into the 

mPFC on retrieval of remotely acquired memory. Six weeks after the end of the initial 

conditioning, the rats received re-conditioning, which is the same protocol we used in our 

previous study (Takehara et al., 2003). The rats in the muscimol group (Muscimol: n = 6) 

received microinfusion of muscimol in sessions 1 and 3, and microinfusion of PBS in session 2. 

The muscimol infusion into the mPFC almost completely abolished the adaptive CR in session 1 

and 3. On the other hand, the same rats could express adaptive CRs when they received PBS 

infusion in session 2. Statistical analysis using a two-way repeated measures ANOVA on 

sessions 1-3 of the re-conditioning revealed that there was a significant interaction between 

groups and sessions (F2, 20 = 3.96, p < 0.05). The adaptive CR% of the muscimol group was 

significantly different from that of the PBS group in sessions 1 and 3 (two tailed t-test: t5.02 = 4.81, 

p < 0.01, t5.45 = 8.89, p < 0.001) and that the adaptive CR% of the muscimol group in session 2 

was not different from that of the PBS group in session 1 (two tailed t-test; t10 = -0.56, p > 0.05). 

We also confirmed the lack of CRs in the muscimol group by investigating the averaged EMG 

amplitude over all the valid trials in session 1 (Figure 1B). The EMG amplitude of the 

muscimol-infusion group was almost flat after the CS onset. These results suggest that the rostral 

mPFC centering on the prelimbic area is important for retrieval of remotely acquired memory. 

Thus, we set out to investigate the effect of chronic blockade of NMDA receptors in this area on 

the process through which this area gradually gains importance for memory. 

 

NMDA receptor blockade during the first two weeks of the post-learning period 
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severely impairs memory retention measured six weeks after learning. 

We examined the effect of NMDA receptor blockade in the mPFC during the first two 

weeks of the post-learning period on memory retention at 6 weeks after learning (i.e., the end of 

the conditioning) in trace eyeblink conditioning. The experimental schedule is shown in Figure 

2A. During re-conditioning, the rats that had received the D-APV infusion during the first two 

weeks of the 6-week post-learning period (APV group: n = 7) exhibited severely impaired 

adaptive CR retention compared to those infused with aCSF (aCSF group: n = 8) (Figure 2B). 

Statistical analysis using a two-way repeated measures ANOVA on sessions 1-7 revealed that 

there was no significant interaction between groups and sessions (F6, 78 = 1.61, p > 0.05), but 

there were significant effects of groups (F1, 13 = 9.06, p < 0.05) and sessions (F6, 78 = 3.92, p < 

0.001). The impairment observed in the APV group was especially prominent in session 1, but 

this group gradually relearned the adaptive CR up to the level of the control group with 

subsequent retraining. This observation was supported by our finding of a significant difference 

between the aCSF and APV groups on session 1 (t13 = 4.12, p < 0.001) but no significant 

difference on session 7 (t13 = 0.56, p > 0.05) using a two tailed t-test. When we divided the 100 

trails in session 1 into 10 blocks, the APV group consistently exhibited a lower adaptive CR% 

than the aCSF group (two-way repeated measures ANOVA; Groups × Sessions: F9, 108 = 0.43, p > 

0.05, Groups: F1, 12 = 26.7, p < 0.001, Sessions: F9, 108 = 6.87, p < 0.001) (Figure 2C). 

To examine the drug effect on the temporal pattern of the CR, we investigated the averaged 

EMG amplitude over all the valid trials in session 1 (Figure 2D). Consistent with the lower 

adaptive CR% in the APV groups, their average EMG amplitude was smaller than that of the 

aCSF group. To quantify the change in the temporal pattern of the CR, we measured the CR onset 

and peak latencies (all CRs observed after the CS onset were included). The CR onset latency of 

the APV group (370.1 ± 41.4 ms) was not significantly different from that of the aCSF group 

(262.2 ± 32.8 ms) (two tailed t-test; t13 = -2.07, p > 0.05). On the other hand, the CR peak latency 

of the APV group (565.0 ± 22.8 ms) was significantly longer than that of the aCSF group 

(478.6.1 ± 5.9 ms) (two tailed t-test; t13 = -3.90, p < 0.001), suggesting that the EMG amplitude 
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of the APV group increases to its maximum closer to the US onset than the aCSF group’s 

amplitude does. This difference suggests that the residual CRs observed in the APV group are 

more adaptive to avoid the US than those in the aCSF group. Thus, the observed impairment is 

not attributable to abnormal response timing. These results suggest that activation of NMDA 

receptors in the mPFC during the first two weeks of the post-training period is necessary for 

successful memory retention 6 weeks after learning. 

 

NMDA receptor blockade during the second two weeks of the post-learning period 

has no effect on memory retention at six weeks after learning. 

Next, we moved the infusion period to the second two weeks of the post-learning period 

(from two weeks to four weeks after the end of the conditioning) (Figure 3A). Again, 6 weeks 

after learning, the rats were retrained to measure their retention of the adaptive CR. The rats that 

received the D-APV infusion (APV group: n = 7) exhibited an adaptive CR retention comparable 

to that of those infused with aCSF (aCSF: n = 7) from the first day of the retraining (Figure 3B). 

Statistical analysis using a two-way repeated measures ANOVA on sessions 1-7 revealed that 

there was no significant interaction between groups and sessions (F6, 72 = 1.71, p > 0.05) and no 

significant effect of groups (F1, 12 = 0.76, p > 0.05), but there was a significant session effect (F6, 

72 = 6.72, p < 0.001). When we divided the 100 trails in session 1 into 10 blocks, we confirmed 

the lack of difference between groups in session 1 (two-way repeated measures ANOVA; Groups 

× Sessions: F9, 108 = 1.28, p > 0.05, Groups: F1, 12 = 0.80, p > 0.05, Sessions: F9, 108 = 11.7, p < 

0.001) (Figure 3C). The tendency for the aCSF group in this experiment to show a relatively 

lower adaptive CR% in session 1 compared to the aCSF group receiving infusion during the first 

two weeks may be attributable to insufficient recovery from two closely-scheduled surgeries for 

the removal of pumps and implantation of the EMG electrodes (Figure 3A). In addition, the 

absence of the effect of the APV cannot be attributed to a ceiling effect because there was no 

statistically significant difference between the APV group that received infusion during the 

second two weeks of the post-training period and the aCSF group receiving infusion during the 
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first two weeks (two-way repeated measures ANOVA; Groups × Sessions: F6, 78 = 1.70, p > 0.05, 

Groups: F1, 13 = 0.02, p > 0.05, Sessions: F6, 78 = 2.05, p > 0.05). 

We also investigated the averaged EMG amplitude over all the valid trials in session 1 and 

found that the EMG trace of the APV group was very similar to that of the aCSF group (Figure 

3D). To analyze the change in the temporal pattern of the CR quantitatively, we measured the CR 

onset and peak latencies (all CRs observed after the CS onset were included). Neither the CR 

onset latency nor the CR peak latency differed between the groups [the CR onset latency: 319.1 ± 

33.2 ms (aCSF group), 278.1 ± 48.1 ms (APV group), two tailed t-test: t12 = 0.70, p > 0.05; the 

CR peak latency: 519.6 ± 25.6 ms (aCSF group), 562.6 ± 21.8 ms (APV group), two tailed t-test: 

t12 = -1.28, p > 0.05]. These results suggest that activation of NMDA receptors in the mPFC 

during the second two-weeks of the post-training period is not necessary for successful memory 

retention 6 weeks after learning. 

 

NMDA receptor blockade during the first week, but not during the first day of the 

post-learning period impairs memory retention measured six weeks after learning. 

In order to further specify the critical time window when the NMDA receptors in the mPFC 

are important, we narrowed the period of NMDA receptor blockade in the mPFC to the first day 

or the first week of the post-learning period. Figure 4 shows the effect of NMDA receptor 

blockade in the mPFC during the first week of the post-learning period on memory retention at 6 

weeks after learning (Figure 4A). During re-conditioning, the rats that had received the D-APV 

infusion during the first week of the 6-week post-learning period (APV group: n = 7) exhibited a 

tendency toward impairment in adaptive CR retention compared to those infused with aCSF 

(aCSF group: n = 6) (Figure 4B). Statistical analysis using a two-way repeated measures 

ANOVA on sessions 1-7 revealed that there was no significant interaction between groups and 

sessions (F6, 66 = 1.27, p > 0.05), but there were significant session effects (F6, 66 = 4.31, p < 0.01) 

although the groups effect did not reach statistical significance (F1, 11 = 3.58, p = 0.085). The 

impairment observed in the APV group was especially prominent in session 1, but this group 
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gradually relearned the adaptive CR up to the level of the control group with subsequent 

retraining. This observation was supported by our finding of a significant difference between the 

aCSF and APV groups on session 1 (t11 = 2.26, p < 0.05), but no significant difference on session 

7 (t11 = 0.47, p > 0.05) using a two tailed t-test. When we divided the 100 trails in session 1 into 

10 blocks, the APV group consistently exhibited a lower adaptive CR% than the aCSF group 

(two-way repeated measures ANOVA; Groups × Sessions: F9, 99 = 0.62, p > 0.05, Groups: F1, 11 = 

4.97, p < 0.05, Sessions: F9, 99 = 5.22, p < 0.001) (Figure 4C). To examine the drug effect on the 

temporal pattern of the CR, we investigated the averaged EMG amplitude over all the valid trials 

in session 1 (Figure 4D). Consistent with the lower adaptive CR% in the APV groups, their 

average EMG amplitude also was smaller than that of the aCSF group. To quantify the change in 

the temporal pattern of the CR, we measured the CR onset and peak latencies (all CRs observed 

after the CS onset were included). Neither the CR onset latency nor the CR peak latency differed 

between the groups [the CR onset latency: 289.0 ± 33.6 ms (aCSF group), 334.0 ± 44.5 ms (APV 

group), two tailed t-test: t11 = -0.78, p > 0.05; the CR peak latency: 485.4 ± 16.8 ms (aCSF group), 

540.1 ± 25.0 ms (APV group), two tailed t-test: t11 = -0.78, p > 0.05]. Thus, the observed 

impairment is not attributable to abnormal response timing. These results suggest that blockade 

of NMDA receptors in the mPFC during the first week of the post-training period can produce 

impairments in memory retention 6 weeks after learning that are similar to those seen during the 

first two weeks of the post-training period. 

Figure 5 shows the effect of NMDA receptor blockade in the mPFC during the first day of 

the post-learning period on memory retention at 6 weeks after learning (Figure 5A). The rats that 

received the D-APV infusion (APV group: n = 6) exhibited an adaptive CR retention comparable 

to that of those infused with aCSF (aCSF: n = 6) on the first day of the retraining and thereafter 

(Figure 5B). Statistical analysis using a two-way repeated measures ANOVA on sessions 1-7 

revealed that there was no significant interaction between groups and sessions (F6, 60 = 0.59, p > 

0.05) and no significant effect of groups (F1, 10 = 1.85, p > 0.05), but there was a significant effect 

of session (F6, 60 = 3.22, p < 0.01). When we divided the 100 trails in session 1 into 10 blocks, we 
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confirmed the lack of difference between groups in session 1 (two-way repeated measures 

ANOVA; Groups × Sessions: F9, 90 = 0.91, p > 0.05, Groups: F1, 10 = 0.25, p > 0.05, Sessions: F9, 

90 = 13.1, p < 0.001) (Figure 5C). We also investigated the averaged EMG amplitude over all the 

valid trials in session 1 and found that the EMG trace of the APV group was very similar to that 

of the aCSF group (Figure 5D). To analyze the change in the temporal pattern of the CR 

quantitatively, we measured the CR onset and peak latencies (all CRs observed after the CS onset 

were included). Neither the CR onset latency nor the CR peak latency differed between the 

groups [the CR onset latency: 321.6 ± 31.9 ms (aCSF group), 327.8 ± 48.4 ms (APV group), two 

tailed t-test: t10 = -0.11, p > 0.05; the CR peak latency: 529.4 ± 11.3 ms (aCSF group), 546.7 ± 

27.0 ms (APV group), two tailed t-test: t10 = -0.60, p > 0.05]. These results suggest that NMDA 

blockade in the mPFC during the first day of the post-training period is not sufficient to impair 

memory retention 6 weeks after learning. 

 

Chronic infusion of D-APV attenuated NMDA receptor-dependent LTP in the 

hippocampal-prefrontal pathway. 

The extent of the blockade of NMDA receptors in the mPFC was examined 

electrophysiologically. Since the direct projection from the CA1/ventral subicular region to the 

prelimbic area of the mPFC is endowed with NMDA receptor-dependent long-term potentiation 

(LTP) (Laroche et al., 1990; Jay et al., 1995), we measured this in vivo LTP in the rats that 

received chronic infusion of aCSF (aCSF group: n = 10) or D-APV (APV group: n = 6) with an 

osmotic pump in the same procedure as the above behavioral experiments (Figure 6). The 

baseline electrophysiological responses evoked over a range of stimulus intensities before 

tetanization were not significantly different between the two groups; the averages of the field 

excitatory postsynaptic potential (fEPSP) slopes following single-pulse stimulation at a stimulus 

intensity of 400 A were 40.4 ± 6.7 V/ms (aCSF group) and 48.1 ± 8.2 V/ms (APV group), and 

at an intensity of 600 A they were 45.4 ± 1.1 V/ms (aCSF group) and 53.1 ± 7.2 V/ms (APV 

group) (two tailed t-test: t14 = -0.70, p > 0.05 and t14 = -0.51, p > 0.05). 
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When high-frequency burst stimulation (HFBS) was applied to the ventral CA1/subicular 

region, the fEPSPs of the aCSF group immediately increased, and homosynaptic LTP was 

induced. In contrast, the fEPSP of the APV group increased after the same application of HFBS, 

but the magnitude of the LTP was smaller than in the aCSF group (Figure 6). The average 

percentage changes in the fEPSP slopes 30-60 min after HFBS stimulation were 155.1 ± 10.4 % 

in the aCSF group and 108.9 ± 11.3 % in the APV group (two tailed t-test: t14 = 2.34, p < 0.05). 

In order to examine whether APV significantly affects the pre- or post-synaptic mechanism, we 

observed paired-pulse facilitation in the hippocampal-prefrontal pathway. The paired-pulse 

protocol (inter-pulse interval = 50 ms) produced responses that were statistically 

indistinguishable between the aCSF group (140.2 ± 11.3 %) and the APV group (125.4 ± 12.6 %) 

(two tailed t-test: t14 = 0.84, p > 0.05), indicating that APV has little effect on presynaptic 

responses in the mPFC. Thus, chronic infusion of APV attenuated the induction of LTP in the 

hippocampal-prefrontal pathway without affecting basal synaptic transmission. 

  

Histology 

We examined the locations of the cannula tips and electrodes of all the rats after completion 

of the behavioral and electrophysiological studies. Figure 7A shows a representative 

photomicrograph of a brain section of a rat used in the experiment of chronic infusion. By 

examining Nissl-stained sections in a blinded manner, we verified that the cannula placements 

were within the appropriate area of the prelimbic cortex and that damage to the tissue was limited 

to just around the cannula. Seven out of 73 rats were rejected using this criterion, leaving 12 rats 

for the groups that received acute infusion (acute group), 12 rats for the group that received 

infusion during the first day of the post-learning period (1d group), 13 rats for the group that 

received infusion during the first week of the post-learning period (1w group), 15 rats for the 

groups that received infusion during the first two weeks of the post-learning period (2w group) 

and 14 rats for the groups that received infusion during the second two weeks (2nd 2w group). In 

the two rats in the 2w APV group, the cannula was placed dorsally in the anterior cingulate area, 
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and in another rat the cannula in the right side is located ventrolateral to the ventral orbital area, 

although the cannula in the left side is located in the prelimbic area. These rats showed little 

decline in the adaptive CR% in the first retraining session. These results suggest that 

APV-infusion mainly into the rostral anterior cingulate area or unilaterally into the prelimbic area 

was not sufficient to impair memory retention 6 weeks after the learning. After the 

electrophysiological experiment, we determined again, in a blinded manner that the electrode tips 

were within the appropriate area of the prelimbic region and the distance between the cannula tip 

and electrodes was never greater than 2 mm. Four out of 14 rats in the aCSF group and one out of 

8 rats in the APV group were rejected by this criterion. One rat in the APV group exhibited an 

abnormal EPSP waveform, and therefore the data from this rat were discarded, leaving 6 rats in 

the APV group. Figure 7B depicts the cannula tip placements in the rats included in the above 

analysis (B: the acute group, C: the 1d groups, D: the 1w groups, E: the 2w groups, F: the 2nd 2w 

groups, G: the rats in the electrophysiological study). In all cases, the cannula placements of the 

experimental groups were not different from those of the control groups. 
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DISCUSSION 

Our previous results showing severe impairment in retention of remotely acquired memory 

after permanent lesions of the mPFC was confirmed by the reversible inactivation experiment. 

Next, we investigated whether specific manipulation of neuronal processes in the mPFC affects 

successful establishment of remote memory. To block neuronal processes in the mPFC, we used 

osmotic pumps for chronic focal infusion of the NMDA receptor antagonist D-APV. The 

hippocampal-prefrontal pathway of the rats with chronic infusion of D-APV displayed reduced 

LTP without any notable change in basal synaptic transmission. Chronic blockade of NMDA 

receptors in the mPFC during the first one or two weeks of the post-learning period severely 

impaired memory retention 6 weeks after learning, but the same treatment during the first day or 

second two weeks had no effect on memory retention. These results suggest that the integrity of 

the NMDA receptor system in the mPFC is necessary for systems consolidation through which 

memory is gradually stabilized in the neocortical network. 

 

The mPFC as a critical region for systems consolidation 

Since we blocked NMDA receptors specifically during the consolidation period without 

affecting any processes during acquisition and retrieval, the straightforward interpretation of the 

present results is that some changes occur in the mPFC during the initial week of the 

post-learning period, and that these changes are necessary for successful establishment of 

remotely acquired memory. However, there are several other possibilities to be considered. (1) 

One might argue that chronic infusion of the NMDA receptor antagonist for weeks produced 

irreversible mPFC dysfunction, and disruption of the mPFC’s operation during retraining 

produced impaired memory retention. However, this possibility is unlikely because the same 

chronic infusion had no effect on memory retention if it was performed during the second two 

weeks of the post-learning period (Figure 3B). (2) Although we chronically infused D-APV in 

order to affect systems consolidation, there exists the possibility that interference with cellular 

consolidation, rather than systems consolidation, caused the impairments we observed in the 
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present experiment. However, the fact that the involvement of NMDA receptors in the mPFC in 

cellular consolidation is limited to the time when a memory is beginning to be formed 

(Takehara-Nishiuchi et al., 2005) leads us to reject this possibility. Therefore, the present results 

suggest that neural processes in the mPFC are required for systems consolidation. If one begins 

with the idea that information contained within the hippocampus directs consolidation by 

gradually changing the organization of cortical representations that store permanent memory 

(McClelland et al., 1995; Squire and Alvarez, 1995), then failure to retain remote memory by 

blockade of neural processes during consolidation is a prerequisite for a brain area to play an 

essential role in networks that store permanent memory. Together with our previous results 

showing that permanent lesion of the mPFC selectively impairs retention of remote memory 

(Takehara et al., 2003) which has now been replicated by the present data on reversible 

inactivation, the present results provide strong support for the notion that the mPFC is a critical 

component of the brain network that stores permanent memory. The importance of the mPFC in 

processing remote memory has been confirmed by studies of other learning tasks (Bontempi et al., 

1999; Frankland et al., 2004; Maviel et al., 2004). Since the mPFC is connected to a wide range 

of neocortical and subcortical areas (Kolb, 1984), the mPFC possesses traits suitable for 

maintaining coherence among widely distributed memory modules (Wiltgen et al., 2004; 

Frankland and Bontempi, 2005). Therefore, the mPFC may communicate with other brain areas 

and integrate consolidation processes in several neocortical and subcortical areas, and may come 

to act as a critical component of the network that supports permanent memory storage. On the 

other hand, previous studies have suggested the importance of the PFC for several cognitive 

functions, such as working memory, top-down attention and cognitive control (Fuster, 2001; 

Miller and Cohen, 2001; Uylings et al., 2003). It is an open question whether the function we 

propose for the rat mPFC in long-term memory consolidation and storage is a novel function of 

this area, or can be interpreted as an extension of these previously proposed functions of the PFC. 

 

Time course of cortical consolidation 
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We found that NMDA receptors in the mPFC are important during at least the initial week 

of the post-learning period. This time window is consistent with another report that the activation 

of –calcium/calmodulin-dependent protein kinase II (CaMK-II) (the downstream target of 

NMDA receptor mediated signals) in the forebrain during the first post-training week is 

necessary for consolidation of fear memories (Wang et al., 2003). Similar to our time window, 

knockout of the NR1 subunit of the NMDA receptor in the CA1 region of the hippocampus 

(Shimizu et al., 2000) or reversible inactivation of the hippocampus (Riedel et al., 1999) can each 

effectively block consolidation if performed during the initial week. These findings suggest the 

possibility that the neocortex and the hippocampus activate within a similar time window and that 

specific information is transferred between these two areas which directs neocortical 

reorganization during the initial post-learning week. This idea is supported by coherent 

reactivation of memory traces within the neocortex and the hippocampus during the post-learning 

period (Qin et al., 1997; Hoffman and McNaughton, 2002; Ribeiro et al., 2004). 

 

NMDA receptor-dependent mechanisms of systems consolidation 

Using the selective NMDA receptor antagonist D-APV, we revealed the importance of 

NMDA receptors in the consolidation processes that occur in the mPFC. Our in vivo 

electrophysiological data showing specific impairment in the LTP in the hippocampal-mPFC 

pathway suggest that the impairments observed in the behavioral study can be attributed 

primarily to blockade of NMDA receptors in the mPFC, rather than to nonspecific blockade of 

other receptors such as AMPA receptors. Since NMDA receptors are involved in many important 

physiological processes, there are several possible roles in systems consolidation for NMDA 

receptors in the mPFC. (1) NMDA receptor-mediated LTP in the hippocampal-prefrontal 

pathway was significantly reduced in our rats (Figure 6). Therefore, there is a possibility that this 

direct projection from the hippocampus to the mPFC serves as the main pathway for transfer of 

information which directs neocortical reorganization. This pathway is activated during a critical 

phase of consolidation, as suggested by a delayed increase in synaptic transmission and by 
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learning-induced changes in the expression of genes associated with plasticity in this pathway 

(for a review, see Laroche et al. 2000). It has been reported that neurons in the mPFC are 

phase-locked to the hippocampal theta rhythm with lags averaging 50 ms (Siapas et al., 2005), 

suggesting that the hippocampus could entrain neuronal activity in the mPFC through this direct 

pathway. NMDA receptor-dependent plasticity in this pathway can strengthen the hippocampal 

modulation of neurons in the mPFC and may promote maturation of neural networks in the 

mPFC. (2) It is possible and even likely that alterations in synaptic plasticity are not restricted to 

the hippocampal-prefrontal pathway; they may also occur in connections from other neocortical 

areas to the mPFC in the rats infused with D-APV. During the course of systems consolidation, 

the strengthening of cortico-cortical connections is presumed to be crucial in allowing a 

neocortical memory network to gain independence from the hippocampus (McClelland et al., 

1995; Squire and Alvarez, 1995). Thus, the present result suggests the possibility that NMDA 

receptor-dependent plasticity at cortico-to-mPFC connections is necessary for this maturation 

process. Similarly, it had been proposed that multiple rounds of NMDA receptor-dependent 

synaptic modification can reinforce the previously initiated synaptic changes and serve as a 

cellular means for strengthening intercortical connections (Shimizu et al., 2000; Wang et al., 

2003). These possibilities are supported by the fact that mutant mice that are heterozygous for the 

null mutation of –CaMKII exhibit impaired cortical LTP and deficient retention of remote 

memory (Frankland et al., 2001). In addition, NMDA receptors play a critical role in 

activity-dependent dendritic growth (Wong and Ghosh, 2002). Thus, it is also possible that 

activation of NMDA receptors can trigger structural changes in the connections between 

neocortical neurons in the mPFC (Chklovskii and Svoboda, 2004), which is supported by a report 

that transgenic mice with altered cortical synaptic morphology exhibit specific impairment in 

retention of remote memory (Hayashi et al., 2004). (3) NMDA receptors are involved in the 

stimulus-specific persistent neural activity observed in the mPFC (Wang, 2001; Fellous and 

Sejnowski, 2003). We speculate that such persistent activity is also induced by the input from the 

hippocampus during the reactivation of memory modules that is presumed to occur during 
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systems consolidation (Sutherland and McNaughton, 2000), and that such persistent activity 

facilitates reorganization of cortico-cortical connections. 

In conclusion, the present study suggests that the mPFC plays a critical role in the 

consolidation of remote memory through its NMDA receptor-dependent processes and that the 

importance of these processes is greatest during the first two weeks of the post-learning period in 

trace eyeblink conditioning. Further studies using neuronal ensemble recordings will be able to 

clarify what aspect of memory is stored in the neuronal assemblies of the mPFC. 
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FIGURE LEGENDS 

Figure 1 Acute inactivation of the mPFC completely abolishes retrieval of remotely acquired 

memory. A. Mean percentage of adaptive CRs during the last three days of the initial 

conditioning and re-conditioning. Negative values on the abscissa represent the last three days of 

the initial conditioning (the session in which the rat reached the criterion is denoted –1) and 

positive values represent the re-conditioning. During re-conditioning, the muscimol group 

(Muscimol: filled circle: n = 6) exhibited significantly fewer adaptive CRs in sessions 1 and 3 

when it received the muscimol-infusion than did the PBS group (PBS: open circle: n = 6), 

although the same group could exhibit comparable adaptive CRs in session 2 when it received 

PBS-infusion. B. Averaged EMG amplitude of the PBS group (PBS: thin line) and the muscimol 

group (muscimol: thick line) in session 1. The solid line under each trace indicates the timing of 

the 350-ms CS and the 100-ms US. The vertical scale indicates the average EMG amplitude 

before the CS presentation. The EMG amplitude of the muscimol group showed little increase 

after the CS onset. 

 

Figure 2 Chronic blockade of NMDA receptors in the mPFC during the first two weeks of the 

post-learning period prevents retention of remotely acquired memory. A. Experimental design. 

The rats received chronic infusion of D-APV (APV group: n = 7) or aCSF (aCSF group: n = 8) 

during the initial two weeks of the post-learning period. Their memory retention was measured 

six weeks after conditioning when memory depends critically on the mPFC. B. Mean percentage 

of adaptive CRs during the last three days of the initial conditioning and re-conditioning. 

Negative values on the abscissa represent the last three days of the initial conditioning (the 

session in which the rat reached the criterion is denoted –1) and positive values represent the 

re-conditioning. During re-conditioning, the APV group (filled circle) showed a significantly 

lower adaptive CR% in the first session although it could relearn the adaptive CR up to the level 

of the aCSF group (empty circle) with subsequent retraining. C. Mean percentage of adaptive 

CRs during session 1 divided into 10 blocks. The daily 100 trials were divided into 10 blocks. 
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The APV group (filled circle) consistently exhibited a lower adaptive CR% than the aCSF group 

(empty circle) during session 1. D. Averaged EMG amplitude of the aCSF group (aCSF: thin 

line) and the APV group (APV: thick line) in session 1. The solid line under each trace indicates 

the timing of the 350-ms CS and the 100-ms US. The vertical scale indicates the average EMG 

amplitude before the CS presentation. The temporal pattern of CRs in the APV group exhibited 

no notable change that could explain the impairment observed in this group. 

  

Figure 3 Chronic blockade of NMDA receptors in the mPFC during the second two weeks of the 

post-learning period has no effect on retention of remotely acquired memory. A. Experimental 

design. The rats received chronic infusion of D-APV (APV group: n = 7) or aCSF (aCSF group: n 

= 7) during the second two weeks of the post-learning period. Their memory retention was 

measured six weeks after training when the memory depends critically on the mPFC. B. Mean 

percentage of adaptive CRs during the last three days of the initial conditioning and 

re-conditioning. Negative values on the abscissa represent the last three days of the initial 

conditioning (the session in which the rat reached the criterion is denoted –1) and positive values 

represent the re-conditioning. During the re-conditioning, the APV group (filled circle) could 

exhibit an adaptive CR% comparable to the aCSF group (empty circle). C. Mean percentage of 

adaptive CRs during session 1 divided into 10 blocks. The daily 100 trials were divided into 10 

blocks. The performance during session 1 was not different between groups (APV group: filled 

circle, aCSF group: empty circle). D. Averaged EMG amplitude of the aCSF group (aCSF: thin 

line) and the APV group (APV: thick line) in session 1. The solid line under each trace indicates 

the timing of the 350-ms CS and the 100-ms US. The vertical scale indicates the average EMG 

amplitude before the CS presentation. There were no obvious differences in the temporal pattern 

of the CRs among the groups. 

 

Figure 4 Chronic blockade of NMDA receptors in the mPFC during the first week of the 

post-learning period prevents retention of remotely acquired memory. A. Experimental design. 
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The rats received chronic infusion of D-APV (APV group: n = 7) or aCSF (aCSF group: n = 6) 

during the initial week of the post-learning period. Their memory retention was measured six 

weeks after conditioning when memory depends critically on the mPFC. B. Mean percentage of 

adaptive CRs during the last three days of the initial conditioning and re-conditioning. Negative 

values on the abscissa represent the last three days of the initial conditioning (the session in 

which the rat reached the criterion is denoted –1) and positive values represent the 

re-conditioning. During re-conditioning, the APV group (filled circle) showed a significantly 

lower adaptive CR% in the first session although it could relearn the adaptive CR up to the level 

of the aCSF group (empty circle) with subsequent retraining. C. Mean percentage of adaptive 

CRs during session 1 divided into 10 blocks. The daily 100 trials were divided into 10 blocks. 

The APV group (filled circle) consistently exhibited a lower adaptive CR% than the aCSF group 

(empty circle) during session 1. D. Averaged EMG amplitude of the aCSF group (aCSF: thin 

line) and the APV group (APV: thick line) in session 1. The solid line under each trace indicates 

the timing of the 350-ms CS and the 100-ms US. The vertical scale indicates the average EMG 

amplitude before the CS presentation. The temporal pattern of CRs in the APV group exhibited 

no notable change that could explain the impairment observed in this group. 

  

Figure 5 Chronic blockade of NMDA receptors in the mPFC during the first day of the 

post-learning period has no effect on retention of remotely acquired memory. A. Experimental 

design. The rats received chronic infusion of D-APV (APV group: n = 7) or aCSF (aCSF group: n 

= 6) during the first day of the post-learning period. Their memory retention was measured six 

weeks after training when the memory depends critically on the mPFC. B. Mean percentage of 

adaptive CRs during the last three days of the initial conditioning and re-conditioning. Negative 

values on the abscissa represent the last three days of the initial conditioning (the session in 

which the rat reached the criterion is denoted –1) and positive values represent the 

re-conditioning. During the re-conditioning, the APV group (filled circle) could exhibit an 

adaptive CR% comparable to the aCSF group (empty circle). C. Mean percentage of adaptive 
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CRs during session 1 divided into 10 blocks. The daily 100 trials were divided into 10 blocks. 

The performance during session 1 did not differ between groups (APV group: filled circle, aCSF 

group: empty circle). D. Averaged EMG amplitude of the aCSF group (aCSF: thin line) and the 

APV group (APV: thick line) in session 1. The solid line under each trace indicates the timing of 

the 350-ms CS and the 100-ms US. The vertical scale indicates the average EMG amplitude 

before the CS presentation. There were no obvious differences in the temporal pattern of the CRs 

among the groups. 

 

Figure 6. The NMDA receptor antagonist D-APV blocks LTP in the hippocampal-prefrontal 

cortex pathway. A. Typical field potentials immediately before (pre) and after (post) HFBS 

application. Scale bar is 5 ms and 0.1 mV. B. (Left) Time course of changes in fEPSP slopes in 

anaesthetized rats treated with aCSF (empty circle) and rats treated with D-APV (filled circle). 

HFBS was applied to the CA1/ventral subicular area at time 0 min. (Right) Average changes in 

fEPSP slopes from 30 to 60 min after HFBS application are summarized for the aCSF group 

(open bar) and D-APV group (filled bar). *: p < 0.05 vs. the aCSF group; two tailed t-test. All 

data points represent group mean  SEM of 6-10 animals. 

 

Figure 7. Histological reconstructions of cannulae placements. A. A representative 

photomicrograph of a coronal section from a rat with chronic infusion of APV. Scale bar is 2 mm. 

B-G. Schematic illustration of the location of cannula tips in the rats’ mPFCs; B. the rats with 

acute infusion, C. the 1-day group, D. the 1-week group, E. the 2-week group, F. the 2nd 2-week 

group and G. the rats in the electrophysiological study. An empty or filled circle represents a 

placement in the aCSF or APV group, respectively. Numbers to the left indicate stereotaxic 

coordinates relative to bregma (Paxinos and Watson, 1986).  

 



 1

 

 

Figure 1 



 2

 

 

Figure 2 

 



 3

 

 

Figure 3 



 4

 

 

Figure 4 



 5

 

 

Figure 5 



 6

 

 

Figure 6 



 7

 
 

Figure 7 

 


