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Abstract – This study investigated the regioselectivity of the intramolecular 

coupling reaction of the phenyl benzoate derivative which possesses a methyl or 

methoxy group at the meta-position of the phenoxy moiety. The type of base and 

the presence/absence of the phosphine ligand influenced the product ratio. A 

transition state model and the regioselectivity of the reaction are discussed.  

 

The 6H-dibenzo[b,d]pyran-6-one skeleton is an important heterocyclic system because many natural 

products and biologically active compounds involve this ring system.1 Among the various preparations 

for this ring system,2 the palladium-mediated aryl-aryl coupling reaction is one of the most convenient 

techniques for the carbon-carbon bond formation between two aromatic rings.3 We recently reported that 

the intramolecular aryl-aryl coupling reaction of phenyl benzoate derivatives using the palladium reagent 

is widely useful for the syntheses of several biaryl-type natural products.4 In some cases, the 

regioselectivity has been a significant issue for the natural product synthesis, however, there are a few 

examples of the systematic study of the regioselectivity of the intramolecular aryl-aryl coupling reaction.5 

As shown in Scheme 1, when the substrate possesses a substituent at the m-position as 1, there are two 

reactive positions on the phenoxy part to generate two regioisomers 2 and 3. 

In this report, we investigated in detail the reactivity and regioselectivity of the palladium-mediated 



 

coupling reaction of m-substituted phenyl benzoate derivatives. 

 

 

 

 

 

 

Scheme 1.  Pd-mediated intramolecular coupling reaction of 3-substituted phenyl benzoate 

 

We first examined the substrate 1a which possesses a methoxy group at the m-position in the phenoxy 

part. The results are summarized in Table 1. In each case, all the reactions were completed in 30 min 

using Pd(OAc)2 (10 mol %), base (100 mol %), ligand (20 mol %), and DMA (N,N-dimethylacetamide) 

as the solvent. We employed several bases for the reaction in the presence/absence of nBu3P as the ligand.  

When using K2CO3 as the base without the phosphine ligand, the reaction proceeded with a slight 

regioselectivity (2a:3a = 1:2.0) (entry 1). Employing nBu3P under the same reaction conditions, the 

regioselectivity changed to 1:1.4 (entry 2), which was almost the same ratio compared to the result for 

entry 1. A similar outcome was also observed for entries 3-6, namely, the regioselectivity was in the 

range of 1:1.2 to 2.0 for each case whether the phosphine ligand was present or absent. When DABCO 

(diazabicyclo[2.2.2]octane) was used as the base, the chemical yield decreased to around 40% with the 

ratios of 1:3.5 and 1:2.0 (entries 7 and 8). 

In entries 9 and 10, we evaluated Ag2CO3 as the base to investigate the effect of a metal ion. The major 

product was compound 3a with the regioselectivity of 1:4.5 when using no phosphine ligand (entry 9).  

In sharp contrast to this result, employing nBu3P lead to a dramatic change in the regioselectivity (2a:3a = 

1:0.5) (entry 10). The same tendency was found for entries 11-14, when using Ag2O or AgOAc as the 

base. CuOAc was also examined as the base to investigate the difference in the type of the metal. Entries 

15 and 16 showed results similar to that of silver. 

Next, in order to investigate the coordination effect of the methoxy group, we employed a 

methyl-substituted compound 1b. In Table 2, very different results from the methoxy derivative 1a were 

observed, that is, the coupling reaction proceeded with a poor regioselectivity. It was also found that 

using the phosphine ligand did not affect the product ratio (entries 1 and 2). In spite of changing the base 

from K2CO3 to Ag2CO3, a low regioselectivity was observed (entries 3 and 4). These results indicated that 

the methoxy group in 1a has a significant effect on the regioselectivity. 
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Table 1. Reaction of 3-methoxyphenyl 2-iodobenzoate (1a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Reaction of 3-methylphenyl 2-iodobenzoate (1b) 

 

 

 

 

 

 

 

 

 

 

Based on the above results, we would be able to provide a reasonable explanation for the regioselectivity 

of the intramolecular coupling reaction by considering transition state models. In 2007, Echavarren et al. 

proposed the intermolecular-assisted mechanism for the Pd-mediated aryl-aryl coupling reaction.6 Based 

on their model, we illustrate the transition stage in our substrates (Fig.1). Model A describes the reaction 

under the condition of using K2CO3, Na2CO3, or AcOK as the base. In this case, there is no predominant 

difference between A1 and A2 to control the reaction path, leading to an almost equal ratio of products 2 

and 3. On the other hand, when using the silver salt, the soft character of the metal would be crucial by 
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contributing an attractive interaction with the iodine atom. This strong attractive property between iodine 

and silver causes a partially positive charge on the palladium atom, which makes coordination of the 

methoxy group easier. Thus, the B1 transition state, which exhibits a tight interaction of O-Pd, must be 

more preferable than B2. This coordination effect is also supported by the result of entry 4 in Table 2, 

where the product ratio of 2b and 3b is 1:1.  

Contrary to the above model, it is necessary to 

consider a different transition state when using 

no phosphine ligand. As depicted in C1 and 

C2, DMA molecules, which are employed as 

the solvent, would possibly coordinate around 

the palladium atom. Since the DMA molecules 

would be much bulkier than the phosphine 

ligand, the coordination between the methoxy 

group and the palladium atom cannot be 

developed. Besides, a severe electrostatic 

repulsion of the methoxy group and the 

Pd-solvent complex leads to produce 

compound 3a as the major isomer. 

 

In summary, we systematically investigated 

the regioselectivity of the intramolecular 

coupling reaction of 3-substituted phenyl 

2-iodobenzoates using a Pd catalyst. Based on 

the product ratio, plausible transition state 

models were proposed. Further application of 

this work is now ongoing in our laboratory. 

 

EXPERIMENTAL 

General: Melting points were measured using 

a Yanagimoto micro-melting point hot-plate 

apparatus and are uncorrected. The IR spectra 

were recorded using a JASCO FTIR-350 

spectrophotometer. The NMR spectra were 

obtained using a Varian MERCURY-300  
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Figure 1. Transition state illustration
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instrument with the chemical shifts being reported as δ ppm and the couplings expressed in Hertz. The 

elemental analysis was performed using a Yanaco MT-5 analyzer. Silica gel column chromatography was 

carried out using Daisogel 1002W or Merck 9385 Kieselgel 60. All reactions were carried out under an 

argon atmosphere. 

 

3-Methoxy-6H-dibenzo[b,d]pyran-6-one (3a),7 1-methyl-6H-dibenzo[b,d]pyran-6-one (2b),8 and 

3-methyl-6H-dibenzo[b,d]pyran-6-one (3b)9 are known compounds. 

 

3-Methoxyphenyl 2-iodobenzoate (1a) 

A mixture of SOCl2 (8 mL), 2-iodobenzoic acid (4.96 g, 20.0 mmol), and 2 drops of DMF was heated 

under reflux. After 1 h, the excess SOCl2 was removed under reduced pressure to give a brown residue 

which was diluted with CH2Cl2. To the solution of the obtained acid chloride, a mixture of 

3-methoxyphenol (2.48 g, 2.16 mL, 20 mmol), Et3N (3.34 mL, 24.0 mmol), and CH2Cl2 (10 mL) was 

added, and then the mixture was stirred for 3 h at rt. The reaction mixture was poured into water and 

extracted with CH2Cl2. The organic layer was washed with brine, dried over MgSO4, and evaporated to 

give a crude residue, which was subjected to silica gel column chromatography using AcOEt : hexane = 

1:6. Colorless 1a (6.32 g, 89%) was obtained in a pure form. 

Colorless needles, mp 54.1—55.0 oC (Et2O-hexane). IR (KBr) cm-1：1750, 1240. 1H-NMR（300 MHz, 

CDCl3) δ: 3.83 (s, 3H, OCH3), 6.81—6.89 (m, 3H), 7.23 (m, 1H), 7.34 (ddd, 1H, J1=7.8 Hz, J2=7.8 Hz, 

J3=0.9 Hz), 7.48 (ddd, 1H, J1=7.8 Hz, J2=7.8 Hz, J3=1.6 Hz), 8.04 (dd, 1H, J1=7.8 Hz, J2=1.2 Hz), 8.07 

(dd, 1H, J1= 7.8 Hz, J2=0.9 Hz). 13C-NMR（75 MHz, CDCl3）δ: 55.7, 94.8, 107.8, 112.2, 114.0, 128.3, 

130.1, 131.7, 133.4, 134.3, 141.8, 151.8, 160.7, 165.0. Anal. Calcd for C14H11IO3,C, 47.48; H, 3.13; 

Found: C, 47.67; H, 3.02. 

3-Methylphenyl 2-iodobenzoate (1b) 

A mixture of SOCl2 (4 mL), 2-iodobenzoic acid (2.48 g, 10.0 mmol), and 2 drops of DMF was heated 

under reflux. After 1 h, the excess SOCl2 was removed under reduced pressure to give a brown residue 

which was diluted with CH2Cl2. To the solution of the obtained acid chloride, a mixture of 

3-methylphenol (1.08 g, 1.05 mL, 10 mmol), Et3N (1.66 mL, 12.0 mmol), and CH2Cl2 (5 mL) was added, 

and then the mixture was stirred for 3 h at rt. The reaction mixture was poured into water and extracted 

with CH2Cl2. The organic layer was washed with brine, dried over MgSO4, and evaporated to give a 

crude residue, which was subjected to silica gel column chromatography using AcOEt : hexane = 1:6. 

Colorless 1b (2.77 g, 82%) was obtained in a pure form. 

Colorless needles, mp 41.4−42.6 oC (Et2O-hexane). IR (KBr) cm-1：1740, 1230. 1H-NMR（300 MHz, 



 

CDCl3) δ: 2.40 (s, 3H), 7.05−7.11 (m, 3H), 7.20−7.35 (m, 2H), 7.48 (ddd, 1H, J1=7.5 Hz, J2=7.5 Hz, 

J3=1.2 Hz), 8.03 (dd, 1H, J1=7.8 Hz, J2=1.8 Hz), 8.07 (dd, 1H, J1=8.1 Hz, J2=1.2 Hz). 13C-NMR（75 MHz, 

CDCl3）δ: 21.5, 94.8, 118.7, 122.3, 127.1, 128.2, 129.4, 131.7, 133.3, 134.4, 139.9, 141.8, 150.79, 165.2. 

MS (FAB, positive ion mode)：339 (M+1+). Anal. Calcd for C14H11IO2, C, 49.73; H, 3.28; Found: C, 

49.76; H, 3.10. 

 

General Procedure of Coupling Reaction of 1a 

To a solution of 1a (88.5 mg, 0.25 mmol) in DMA (3 mL), Pd(OAc)2, base, and additive were 

successively added. The mixture was heated for 30 min under reflux, and then diluted with ethyl acetate. 

After filtration, the mixture was poured into water and extracted with ethyl acetate. The organic layer was 

washed with brine, dried over MgSO4, and evaporated to give a crude residue which was subjected to 

silica gel column chromatography using AcOEt : hexane = 1:4 and CH2Cl2 : hexane = 1:1 as the eluent. 

Colorless crystals of 2a and 3a were separately obtained in a pure form. 

1-Methoxy-6H-dibenzo[b,d]pyran-6-one (2a) 

Colorless needles, mp 164.2−166.1 ℃ (AcOEt-hexane). IR (KBr) cm-1: 1740, 1260. 1H-NMR（300 MHz, 

CDCl3) δ: 4.00 (s, 3H), 6.80 (m, 1H), 6.95 (m, 1H), 7.33 (m, 1H), 7.49 (m, 1H), 7.73 (m, 1H), 8.37 (m, 

1H), 8.91 (m, 1H). 13C-NMR（75 MHz, CDCl3) δ: 56.0, 106.9, 108.2, 110.4, 120.9, 127.6, 128.03, 129.9, 

130.1, 134.6, 134.7, 152.6, 158.4, 161.5. Anal. Calcd for C14H10O3, C, 74.33; H, 4.46; Found: C, 74.18; H, 

4.42. 

 

General Procedure of Coupling Reaction of 1b 

To a solution of 1b (84.5 mg, 0.25 mmol) in DMA (3 mL), Pd(OAc)2, base, and additive were 

successively added. The mixture was heated for 30 min under reflux, and then diluted with ethyl acetate. 

After filtration, the mixture was poured into water and extracted with ethyl acetate. The organic layer was 

washed with brine, dried over MgSO4, and evaporated to give a crude residue which was subjected to 

silica gel column chromatography using AcOEt : hexane = 1:4 as the eluent. Inseparable mixture of 2b 

and 3b was obtained. All efforts to separate these compounds were unsuccessful. The product ratio was 

determined by 1H-NMR analysis based on the integration of 1-methyl and 3-methyl groups of 2b and 3b, 

respectively. 2b: δ 2.89 (s, 3H). 3b: δ 2.50 (s, 3H). These chemical shifts were referred to the already 

reported compounds.2d, 2e, 4b, 4d 
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