
 

HETEROCYCLES, Vol. , No. , , pp. -. © The Japan Institute of Heterocyclic Chemistry   
Received,  , Accepted,  , Published online,  . COM-06- (Please do not delete.) 

SYNTHESIS OF ZANTHOXYLINE AND ITS RELATED COMPOUNDS: 

REVISION OF THE REPORTED STRUCTURE 

Hitoshi Abe,a* Naoko Kobayashi,b Yasuo Takeuchi,b and  

Takashi Harayamac* 

a) Graduate School of Science and Engineering, University of Toyama, Gofuku, 

Toyama 930-8555, Japan, b) Graduate School of Medicine, Dentistry, and 

Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan, c) 

Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri 

University, Sanuki-shi, Kagawa 769-2193, Japan 

abeh@eng.u-toyama.ac.jp; harayama@kph.bunri-u.ac.jp

Abstract – Benzo[c]phenanthridine alkaloid, zanthoxyline, was synthesized 

through an intramolecular biaryl coupling reaction of N-naphthylbenzamide 

derivative using a palladium reagent.  Comparison of the NMR data for the 

synthetic product with that reported previously revealed that the proposed 

structure was incorrect.  Synthesis of the related compounds suggested that the 

correct structure of zanthoxyline is the previously known decarine. 

Zanthoxyline (1) is a benzo[c]phenanthridine alkaloid that was isolated in 1997 from Zanthoxylum 

rhoifolium; it possesses four oxygen functional groups at positions 2, 3, 9 and 10 (Figure 1).1  This 

substituent pattern is a very rare case in the class of natural benzo[c]phenanthridines.2  Thus, we were 

interested in the biosynthesis of zanthoxyline (1), and in order to investigate the detailed features of this 

natural alkaloid, its chemical synthesis was necessary. 

We have studied intensively the palladium-mediated intramolecular 

biaryl coupling reaction of benzanilide derivatives,3 and this technique 

has been used for the total synthesis of various natural 

benzo[c]phenanthridine alkaloids and their related compounds.4  Thus, 

we reasoned that the same strategy could also be useful for the synthesis 

of 1.   

Initially, naphthamide 2 was prepared by the simple amidation between benzoic acid and naphthylamine,5 
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Figure 1



 

followed by the protection of the amide nitrogen with the MOM group (Scheme 1).  The intramolecular 

coupling6 of 2 was successful for the generation of tetracyclic compound 3 when Pd(OAc)2 (20% mol) 

was used with PPh3 (40% mol) and Ag2CO3 (200% mol) as a ligand and a base.7  The reduction of the 

amide moiety and successive deprotection of the MOM and isopropyl groups were carried out to 

complete the synthesis of zanthoxyline (1). 

 

 

 

 

 

 

 

Unfortunately, the NMR data for the synthetic 1 were not identical with the reported data (vide infra); 

thus, we supposed that the reported structure of zanthoxyline was incorrect.   The plausible structure of 

the correct zanthoxyline was expected to be 10-hydroxy-9-methoxy compound 6, so we attempted the 

synthesis of 6.  The same synthetic method (Scheme 2) was employed to obtain compound 6: the 

intramolecular biaryl coupling of amide 4, reduction of the lactam 5 with LiAlH4, and the deprotection of 

the MOM and isopropyl groups. 

A comparison of the NMR data for 6 with the reported data (vide infra) revealed that 6 is different from 

the natural zanthoxyline. 

 

 

 

 

 

 

 

At this stage, since neither 1 nor 6 were the 

correct structure of zanthoxyline, we were 

convinced that the position of the oxygen 

functional group was incorrect for the reported 

zanthoxyline.  In this context, the spectral data 

for the two known compounds, isodecarine (7)8 

and decarine (8),9 needed to be examined (Figure 
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2).  

The synthesis of isodecarine (7) was performed via the synthetic strategy illustrated in Scheme 3.   The 

N-protected amide (9) was subjected to the Pd-mediated intramolecular biaryl coupling reaction, and the 

generated lactam (10) was transformed into 7 by LiAlH4 reduction and the deprotection sequence.  We 

already had a sample of decarine (8) in hand, since we synthesized this compound previously.4c 

 

 

 

 

  

 

 

In order to compare the NMR data for synthetic compounds 1, 6, 7, and 8 with the reported values, all 

chemical shifts for the 1H- and 13C-NMR data were compiled in Table 1 and Table 2, respectively.   

While the values for 1, 6, and 7 are obviously different from those of the reported zanthoxyline, the 

δ values for 8 are very similar to the reported values. 

 

 Table 1.  Comparison of 1H-NMR spectral dataa 
 
   δ (ppm)  (∆δ)b 

  
Zanthoxyline      1        6        7        8 
 (reported)    
 
4.09 s (10-OMe) 3.88 s (-0.21) 4.03 s (-0.03) 3.98 s (-0.11) 4.01 s (-0.08) 
6.09 s (-O-CH2-O-) 6.21 s ( 0.12) 6.20 s ( 0.11) 6.20 s ( 0.11) 6.20 s ( 0.11) 
7.46 s (C-1) 7.48 s ( 0.02) 7.46 s ( 0.00) 7.49 s ( 0.03) 7.50 s ( 0.04) 
7.61 d (C-8) 7.43 d (-0.18) 7.62 d ( 0.01) 7.72 d ( 0.11) 7.57 d (-0.04) 
7.92 d (C-12) 7.94 d ( 0.02) 7.90 d (-0.02) 7.94 d ( 0.02) 7.95 d ( 0.03) 
8.42 d (C-7) 7.94 d (-0.48) 7.78 d (-0.64) 8.25 d (-0.17) 8.46 d ( 0.04) 
8.46 d (C-11) 9.21 d ( 0.75) 9.50 d ( 1.04) 8.51 d ( 0.05) 8.50 d ( 0.04) 
8.57 s (C-4) 8.58 s ( 0.01) 8.58 s ( 0.01) 8.52 s (-0.05) 8.53 s (-0.04) 
9.61 s (C-6) 9.27 s (-0.34) 9.28 s (-0.33) 9.65 s ( 0.04) 9.57 s (-0.04) 
 
a) NMR data were collected in DMSO-d6.   
b) Values in parentheses refer to the difference in chemical shift between the synthetic data and 
the reported data. 

 

From the above results, we propose that the correct structure of natural zanthoxyline is not 1, but 8, which 

is the known decarine. 

In conclusion, we have synthesized the reported zanthoxyline and its related compounds, and compared 

NMOM

O

O

O

1) LiAlH4
2) conc. HCl

54% (2 steps)NMOM

O

O

O

I
Pd(OAc)2, PPh3
Ag2CO3

DMF
86%

9 10

MeO
iPrO

MeO
iPrO

7

Scheme 3  Synthesis of 7



 

all chemical shifts from their NMR data.  As a result, the correct structure of the natural zanthoxyline is 

the 8-hydroxy-7-methoxy compound, decarine.   

 

Table 2.  Comparison of 13C-NMR spectral dataa 
  
   δ (ppm)  (∆δ)b 

  
Zanthoxyline      1        6        7        8 
  (reported)   
 
 61.9 (10-OMe)  59.7 (-2.2)  56.9 (-5.0)  57.0 (-4.9)  61.4 (-0.5) 
102.0 (-O-CH2-O-) 101.7 (-0.3) 101.5 (-0.5) 101.2 (-0.8) 100.9 (-1.1) 
102.4 (C-4) 101.7 (-0.7) 101.5 (-0.9) 101.7 (-0.7) 102.0 (-0.4) 
105.1 (C-1) 104.2 (-0.9) 104.0 (-1.1) 104.7 (-0.4) 105.0 (-0.1) 
118.9 (C-7) 119.1 ( 0.2) 113.6 (-5.3) 118.8 (-0.1) 118.7 (-0.2) 
119.0 (C-11) 119.3 ( 0.3) 120.2 ( 1.2) 119.1 ( 0.1) 119.2 ( 0.2) 
121.8 (C-10a) 122.1 ( 0.3) 121.3 (-0.5) 120.0 (-1.8) 121.4 (-0.4) 
125.6 (C-8) 126.4 ( 0.8) 123.8 (-1.8) 127.1 ( 1.5) 125.6 ( 0.0) 
127.4 (C-6a) 126.6 (-0.8) 125.6 (-1.8) 127.3 (-0.1) 127.2 (-0.2) 
128.1 (C-12) 127.0 (-1.1) 128.2 ( 0.1) 128.5 ( 0.4) 128.2 ( 0.1) 
129.9 (C-12a) 129.9 ( 0.0) 129.5 (-0.4) 129.5 (-0.4) 129.7 (-0.2) 
143.2 (C-10) 143.1 (-0.1) 143.0 (-0.2) 142.9 (-0.3) 142.7 (-0.5) 
145.5 (C-6) 148.1 ( 2.6) 147.9 ( 2.4) 144.4 (-1.1) 145.1 (-0.4) 
148.1 (C-9) 148.5 ( 0.4) 148.2 ( 0.1) 146.8 (-1.3) 148.1 ( 0.0) 
148.7 (C-2) 151.9 ( 3.2) 148.3 (-0.4) 148.1 (-0.6) 148.5 (-0.2) 
148.9 (C-3) 153.4 ( 4.5) 152.3 ( 3.4) 148.3 (-0.6) 148.8 (-0.1) 
 
a) NMR data were collected in DMSO-d6.   
b) Values in parentheses refer to the difference in chemical shift between the synthetic data and 
the reported data. 
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