

Tetrahedron Letters journal homepage: www.elsevier.com

An efficient synthesis of cycloalkane-1,3-dione-2-spirocyclopropanes from 1,3-cycloalkanediones using (1-aryl-2-bromoethyl)dimethylsulfonium bromides: application to a one-pot synthesis of tetrahydroindol-4(5*H*)-one

Hisanori Nambu,* Masahiro Fukumoto, Wataru Hirota, Naoki Ono, Takayuki Yakura*

Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan

ARTICLE INFO

Received in revised form

Article history: Received

Accepted Available online

Keywords:

Cyclopropane 1,3-Cyclohexanediones Sulfonium salts Indole

One-pot synthesis

ABSTRACT

An efficient synthesis of cyclohexane- and cyclopentane-1,3-dione-2-spirocyclopropanes from 1,3-cycloalkanediones using sulfonium salts was achieved. The reaction of 1,3-cycloalkanediones with (1-aryl-2-bromoethyl)dimethylsulfonium bromides and powdered K_2CO_3 in EtOAc provided the corresponding spirocyclopropanes in high yields. Furthermore, a one-pot synthesis of tetrahydroindol-4(5*H*)-one from 1,3-cyclohexanedione was achieved by using the present protocol and a sequential ring-opening cyclization of spirocyclopropane with a primary amine.

2015 Elsevier Ltd. All rights reserved.

cyclopropanes Doubly activated represent versatile intermediates for the synthesis of a variety of carbo- and heterocyclic compounds.¹ In this context, a ring-opening cyclization reaction of doubly activated cyclopropanes with primary amines is one of the most powerful methods for the construction of pyrrole skeletons.² Very recently, we reported the first example of the formation of indole skeletons by employing the ring-opening cyclization of spirocyclopropanes. The reaction of cyclohexane-1,3-dione-2-spirocyclopropanes 3, derived from 1,3-cyclohexanediones 1, with primary amines proceeded smoothly at room temperature to give high yields of tetrahydroindol-4(5H)-ones 4, one of which was easily converted to 4-hydroxyindole 5 (Scheme 1).³ This procedure provides a useful method for the synthesis of 4-hydroxyindoles. However, there is still a need for improvement in the yields of spirocyclopropanes 3 in Rh(II)-catalyzed cyclopropanation⁴⁻⁶ with 2-diazo-1,3-cyclohexanediones 2 (27-48% yields). The reaction of alkenes and diazo substrates derived from active methylene compounds in the presence of an Rh(II) catalyst is widely employed for the synthesis of a variety of doubly activated cyclopropanes. In the case of the preparation of spirocyclopropanes, the Rh(II)-catalyzed reaction also produced several cyclopropanes easily but in low yield and was accompanied by a large amount of by-products. For example, the reaction of an excess amount of styrene with 2-diazo-1,3-

Scheme 1. Synthesis of 4-hydroxyindole 5 employing a ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropane 3 with amine.

cyclohexanedione (2a) using a catalytic amount of $Rh_2(OAc)_4$ gave spirocyclopropane 3a in 43% vield and tetrahydrobenzofuran- $\hat{4}(5H)$ -one $6a^7$ as a by-product in 27% yield (Scheme 1).⁶ Furthermore, this protocol is a two-step conversion from 1,3-cyclohexanediones 1 and requires a potentially explosive diazo compound. These drawbacks led us to develop a concise and practical route to spirocyclopropanes 3 from 1,3-cyclohexanediones 1. Herein, we report an efficient synthesis of 1-arylspiro[2.5]octane-4,8-diones 3 using (1-aryl-2bromoethyl)dimethylsulfonium bromides 7 (Scheme 2).

^{*} Corresponding author. Tel.: +81-76-434-7555 or 7556; fax: +81-76-434-5053; e-mail: nambu@pha.u-toyama.ac.jp; yakura@pha.u-toyama.ac.jp

Tetrahedron Letters

Scheme 2. Syntheses of spirocyclopropanes 3 from 1,3-cyclohexanediones 1 and sulfonium salts 7.

The reaction of active methylene compounds such as malonate and β -ketoester with sulfonium salts has been established⁸⁻¹⁰ as an alternative approach to doubly activated cyclopropanes. Recently, Chandrasekaran and Gopinath reported that the reaction of 2,4-pentanedione with (2-bromo-1phenylethyl)dimethylsulfonium bromide (7a) and K_2CO_3 in CH₂Cl₂/H₂O (1:1) gave the corresponding cyclopropane in 65% yield.9 Lu and co-workers applied this reaction to a cyclic alkanedione system, in which the reaction was conducted using DBU in DMSO, although the yield was very low.¹⁰ At the outset. we examined the reaction of 1,3-cyclohexanedione (1a) with sulfonium salt 7a for the synthesis of 1-phenylspiro[2.5]octane-4,8-dione (3a) according to Chandrasekaran's procedure (Table 1, entry 1). The reaction of **1a** with 1.5 equiv of **7a** using K_2CO_3 in CH₂Cl₂/H₂O (1:1) at room temperature provided **3a** in 30% yield. To enhance the yield of 3a, we then screened other solvents. Switching the solvent to CH₂Cl₂ made the reaction messy to give tetrahydrobenzofuran-4(5H)-one 6a in 6% yield without 3a (entry 2). The use of CH₃CN, ⁱPrOH, and THF resulted in low yields of 3a (7-14% yields, entries 3-5). We considered that the poor solubility of sulfonium salt 7a led to low product yields. With the highly polar solvents DMF and DMSO, spirocyclopropane 3a was obtained in 26% and 35% yields, respectively, along with 6a in 28% and 23% yields, respectively (entries 6 and 7). Surprisingly, the reaction in EtOAc proceeded smoothly to completion within 1.5 h and gave 3a in 81% yield (entry 8), although 7a is almost insoluble in EtOAc. A survey of bases revealed that K₂CO₃ was the optimal base for this transformation (entry 8 vs entries 9 and 10). To our delight, the use of powdered K₂CO₃, which was finely ground in a mortar, instead of granular K₂CO₃ increased the product yield of 3a (92% yield, entry 11).

Table 1

Reaction of 1,3-cyclohexanedione (1a) with sulfonium salt 7a^a

0 1a	+ Ph 0 Ph (1.5	Br base Br (3 equiv) Br rt 3a equiv)	∕Ph ⁺ ≷O	O Ga	Ph O
			time	yield (%) ^b
entry	base	solvent	(h)	3a	6a
1	K_2CO_3	$CH_2Cl_2/H_2O(1:1)$	8	30	trace
2	K_2CO_3	CH_2Cl_2	24	trace	6
3	K_2CO_3	CH ₃ CN	9	14	trace
4	K_2CO_3	ⁱ PrOH	20	9	9
5	K_2CO_3	THF	24	7	trace
6	K_2CO_3	DMF	4	26	28
7	K ₂ CO ₂	DMSO	2	35	23

81

trace

trace

trace

7

trace

1.5

24

^a All reactions were performed on a 0.5 mmol scale.

EtOAc

EtOAc

^b Isolated yield.

 K_2CO_3

^tBuOK

8

9

^c Powdered K₂CO₃ was used.

With the optimal conditions in hand,¹¹ we investigated the scope of the reaction of a variety of 1,3-cyclohexanediones 1a-d with several sulfonium salts 7a-c prepared from styrene derivatives and bromodimethylsulfonium bromide^{12,13} (Table 2). The reaction of **1a** with **7b** and **7c** bearing *p*-bromo or *p*-methyl substituents on the benzene ring provided the corresponding spirocyclopropanes 3b and $3c^{14}$ in 92% and 74% yields, respectively. High yields of $3d-f^{14}$ (84–94% yields) were consistently obtained in the reaction of dimedone (1b) with 7a-c. The reaction of 5-methyl- and 5-phenyl-1,3-cyclohexanediones (1c and 1d) with 7a afforded diastereomeric mixtures (ca. 1:1) of spirocyclopropanes 3g and 3h in 89% and 81% yields, respectively. We then examined the Rh(II)-catalyzed cyclopropanation of the corresponding styrene derivatives with 2-diazo-1,3-cyclohexanediones derived from 1a-d, and the yields are shown in square brackets in Table 2. In all cases, the yields of 3a-h (38-47% yields) were lower than those obtained by the reactions of **1** and **7**.

Table 2

Reaction of 1,3-cyclohexanediones 1a-d with sulfonium salts 7a-c^a

^a All reactions were performed on a 0.5 mmol scale with 1.5 equiv of sulfonium salts **7a–c** and 3 equiv of powdered K_2CO_3 in EtOAc.

^b Yields in square brackets were obtained in the reactions of large amounts of the corresponding styrene derivatives with 2-diazo-1,3-cyclohexanediones derived from **1a–d** in the presence of 1 mol % of $Rh_2(OAc)_4$.

^c Ref. 3.

 $^{\rm d}$ The products **3g** and **3h** were isolated as a diastereomeric mixture (ca. 1:1).

We next turned our attention to the reaction of 5-membered carbocycles with sulfonium salt **7a** (Scheme 3). The reaction of 1,3-cyclopentanedione (**8**) with 1.5 equiv of **7a** using powdered K_2CO_3 in EtOAc provided the corresponding spirocyclopropane **9** in 83% yield (determined by ¹H NMR analysis).^{15,16} The use of 1,3-indanedione (**10**) as an active methylene compound afforded

spirocyclopropane 11^{17} in 85% yield. Thus, the present protocol can be applied to the synthesis of spiro[2.4]heptane compounds.

Scheme 3. Reactions of 1,3-cyclopentanedione (8) and 1,3-indanedione (10) with sulfonium salt 7a.

To expand the scope of the present protocol, we then examined the reaction with acyclic 1,3-diones (Scheme 4). The reaction of sulfonium salts **7a** and **7b** with 2 equiv of 2,4-pentanedione (**12**) using powdered K_2CO_3 in EtOAc provided the corresponding doubly activated cyclopropanes **13a**⁹ and **13b**¹⁸ in 80% and 88% yields, respectively. The use of 1,3-diphenyl-1,3-propanedione (**14**) as an acyclic 1,3-dione afforded cyclopropane **15** in 85% yield.¹⁹ Since the yields of **13a** and **15** were higher than those reported in literatures,^{9,19} these results clearly demonstrate that the combination of powdered K_2CO_3 as a base and EtOAc as a solvent is also effective for the reaction with acyclic 1,3-diones.

Scheme 4. Reactions of sulfonium salts 7a and 7b with acyclic 1,3-diones 12 and 14.

Finally, we investigated a one-pot conversion from 1,3cyclohexanedione (**1a**) to tetrahydroindol-4(5*H*)-one **4a** (Scheme 5). In our previously reported ring-opening cyclization reaction of spirocyclopropane with a primary amine (Scheme 1), obvious solvent effects were not observed.³ The reactions were almost the same in CH₂Cl₂, CH₃CN, THF, and toluene. These observations indicate that EtOAc would be usable in this ring-opening cyclization. After the reaction of **1a** with 1.05 equiv of **7a**²⁰ in EtOAc for 1 h, 2 equiv of benzylamine was directly added to the reaction mixture. The desired ring-opening cyclization reaction proceeded smoothly at room temperature to afford **4a** in 80% yield from **1a**.

Scheme 5. One-pot synthesis of tetrahydroindol-4(5H)-one 4a from 1a.

In conclusion, we have developed an efficient procedure for the synthesis of cyclohexane-1,3-dione-2-spirocyclopropanes from 1,3-cyclohexanediones using sulfonium salts. The reaction of 1,3-cyclohexanediones with (1-arvl-2bromoethyl)dimethylsulfonium bromides and powdered K₂CO₃ in EtOAc provided the corresponding spirocyclopropanes in high yields. This method was applicable to 1,3-cyclopentanedione, 1,3-indanedione and acyclic 1,3-diones, affording the corresponding cyclopropanes in high yields. In addition, a onesynthesis of tetrahydroindol-4(5H)-one from 1.3pot cyclohexanedione was achieved by exploiting the present protocol and a sequential ring-opening cyclization of spirocyclopropane with benzylamine. Further application of a one-pot reaction to the synthesis of biologically active indole alkaloids is currently in progress.

Supplementary Material

Supplementary data associated with this article can be found, in the online version, at http://....

References and notes

- For recent review, see: (a) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051; (b) De Simone, F.; Waser, J. Synthesis 2009, 3353; (c) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317; (d) Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797; (e) Mel'nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendeleev Commun. 2011, 21, 293; (f) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804: (g) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504; (h) de Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912.
- (a) Celerier, J. P.; Haddad, M.; Jacoby, D.; Lhommet, G. *Tetrahedron Lett.* **1987**, *28*, 6597; (b) Jacoby, D.; Celerier, J. P.; Haviari, G.; Petit, H.; Lhommet, G. Synthesis **1992**, 884; (c) David, O.; Blot, J.; Bellec, C.; Fargeau-Bellassoued, M.-C.; Haviari, G.; Célérier, J.-P.; Lhommet, G.; Gramain, J.-C.; Gardette, D. *J. Org. Chem.* **1999**, *64*, 3122; (d) Jabin, I.; Monnier-Benoit, N.; Le Gac, S.; Netchitaïlo, P. *Tetrahedron Lett.* **2003**, *44*, 611; (e) Wurz, R. P.; Charette, A. B. *Org. Lett.* **2005**, *7*, 2313; (f) Martin, M. C.; Patil, D. V.; France, S. J. Org. Chem. **2014**, *79*, 3030.
- Nambu, H.; Fukumoto, M.; Hirota, W.; Yakura, T. Org. Lett. 2014, 16, 4012.
- For reviews, see: (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, *103*, 977; (b) Pellissier, H. *Tetrahedron* 2008, *64*, 7041; (c) Doyle, M. P. *Angew. Chem. Int. Ed.* 2009, *48*, 850; (d) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. *Synthesis* 2014, *46*, 979.
- For selected examples of Rh(II)-catalyzed cyclopropanation, see: (a) Müller, P.; Tohill, S. Tetrahedron 2000, 56, 1725; (b) Doyle, M. P.; Davies, S. B.; Hu, W. Org. Lett. 2000, 2, 1145; (c) Yang, M.; Webb, T. R.; Livant, P. J. Org. Chem. 2001, 66, 4945; (d) Pellicciari, R.; Marinozzi, M.; Camaioni, E.; Nùnez, M. del C.; Costantino, G.; Gasparini, F.; Giorgi, G.; Macchiarulo, A.; Subramanian, N. J. Org. Chem. 2002, 67, 5497; (e) Doyle, M. P.; Hu, W. ARKIVOC, 2003, vii, 15; (f) Wurz, R. P.; Charette, A. B. Org. Lett. 2005, 7, 2313; (g) Lee, Y. R.; Choi, J. H. Bull. Korean Chem. Soc. 2006, 27, 503; (h) González-Bobes, F.; Fenster, M. D. B.; Kiau, S.; Kolla, L.; Kolotuchin, S.; Soumeillant, M. Adv. Synth. Catal. 2008, 350, 813; (i) Marcoux, D.; Charette, A. B. Angew. Chem. Int. Ed. 2008, 47, 10155; (j) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970; (k) Marcoux, D.; Goudreau, S. R.; Charette, A. B. J. Org. Chem. 2009, 74, 8939; (1) Marcoux, D.; Lindsay, V. N. G.; Charette, A. B. Chem. Commun. 2010, 46, 910; (m) Lindsay, V. N. G.; Nicolas, C.; Charette, A. B. J. Am. Chem. Soc. 2011, 133, 8972; (n) Robles, O.; Serna-Saldívar, S.

O.; Gutiérrez-Uribe, J. A.; Romo, D. *Org. Lett.* **2012**, *14*, 1394; (o) Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. **2013**, *135*, 1463.

- Müller and co-workers reported that cyclopropanation of styrene with 2diazodimedone (2b) in the presence of Rh₂(OAc)₄ provided the corresponding spirocyclopropane 3d in moderate yield (49% yield). Müller, P.; Allenbach, Y. F.; Ferri, M.; Bernardinelli, G. *ARKIVOC*, 2003, *vii*, 80.
- (a) Kalpogiannaki, D.; Martini, C.-I.; Nikopoulou, A.; Nyxas, J. A.; Pantazi, V.; Hadjiarapoglou, L. P. *Tetrahedron* **2013**, *69*, 1566; (b) Xia, L.; Lee, Y. R. *Adv. Synth. Catal.* **2013**, *355*, 2361; (c) Bosnidou, A.-E.; Kalpogiannaki, D.; Karanestora, S.; Nixas, J. A.; Hadjiarapoglou, L. P. J. Org. Chem. **2015**, *80*, 1279.
- (a) Gosselck, J.; Béress, L.; Schenk, H. Angew. Chem. Int. Ed. 1966, 5, 596; (b) Johnson, C. R.; Lockard, J. P. Tetrahedron Lett. 1971, 4589; (c) Johnson, C. R.; Lockard, J. P.; Kennedy, E. R. J. Org. Chem. 1980, 45, 264; (d) Chow, Y. L.; Bakker, B. H.; Iwai, K. J. Chem. Soc., Chem. Commun. 1980, 521; (e) Jacoby, D.; Celerier, J. P.; Haviari, G.; Petit, H.; Lhommet, G. Synthesis 1992, 884; (f) Kasai, N.; Maeda, R.; Furuno, H.; Hanamoto, T. Synthesis 2012, 44, 3489; (g) Hirotaki, K.; Takehiro, Y.; Kamaishi, R.; Yamada, Y.; Hanamoto, T. Chem. Commun. 2013, 49, 7965; (h) Matlock, J. V.; Fritz, S. P.; Harrison, S. A.; Coe, D. M.; McGarrigle, E. M.; Aggarwal, V. K. J. Org. Chem. 2014, 79, 10226.
- 9. Gopinath, P.; Chandrasekaran, S. J. Org. Chem. 2011, 76, 700.
- Lu and co-workers reported that the reaction of β-(trifluoromethyl)vinyl diphenylsulfonium salt with 1,3-cyclohexanedione (1a) in the presence of DBU in DMSO gave 1-trifluoromethylspiro[2.5]octane-4,8-dione in 22% yield. Lin, H.; Shen, Q.; Lu, L. J. Org. Chem. 2011, 76, 7359.
- 11. Typical procedure for the synthesis of cyclohexane-1,3-dione-2-spirocyclopropanes 3 with sulfonium salts 7: 1-Phenylspiro[2.5]octane-4,8-dione (3a) (Table 1, entry 11). Powdered K₂CO₃ (207 mg, 1.5 mmol) and 1,3-cyclohexanedione (1a) (56 mg, 0.5 mmol) were added to a suspension of (2-bromo-1-phenylethyl)dimethylsulfonium bromide (7a) (245 mg, 0.75 mmol) in EtOAc (5 mL). After stirring at room temperature for 1 h, the reaction mixture was filtered through a Celite pad and the filter cake was rinsed with EtOAc (30 mL). Combined filtrates were washed with water (10 mL) and the aqueous layer was extracted with EtOAc (10 mL x 2). The combined organic layer was washed with brine (10 mL) and dried over anhydrous MgSO₄. The filtrate was concentrated in vacuo, and the crude product was purified by column chromatography (silica gel, 25% EtOAc in hexane) to provide 3a (98 mg, 92%) as a white solid.
- 12. Chow, Y. L.; Bakker, B. H. Synthesis 1982, 648.
- For reviews, see: (a) Choudhury, M. L. H. Synlett 2006, 1619; (b) Choudhury, L. H.; Parvin, T.; Khan, A. T. Tetrahedron 2009, 65, 9513.
- 14. The crude products of **3c** and **3f** were purified by recrystallizations due to the instability of **3c** and **3f** on silica gel.
- 15. Determined by ¹H NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as the internal standard.
- 16. The product 9 was obtained in 54% isolated yield. The crude product of 9 was purified by column chromatography on silica gel despite the instability of 9 on silica gel, because it is very difficult to isolate 9 by recrystallization.
- Rosenfeld, M. J.; Ravi Shankar, B. K.; Shechter, H. J. Org. Chem. 1988, 53, 2699.
- Itoh, O.; Yamamoto, N.; Nakano, K.; Sugita, T.; Ichikawa, K. Bull. Chem. Soc. Jpn. 1975, 48, 3698.
- Very recently, Feng and Liu reported that the reaction of sulfonium salts **7a** with 1.2 equiv of 1,3-diphenyl-1,3-propanedione (**14**) using 3 equiv of K₂CO₃ in CH₂Cl₂/H₂O (1:1) provided the corresponding doubly activated cyclopropane **15** in 68% yield. Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Angew. Chem. Int. Ed. **2015**, *54*, 227.
- A slightly excess amount (1.05 equiv) of **7a** was used in the one-pot reaction, because sulfonium salts react with primary amines to give aziridines. See ref. 8b–d,g and as follows: (a) Matsuo, J.; Yamanaka, H.; Kawana, A.; Mukaiyama, T. *Chem. Lett.* **2003**, *32*, 392; (b) Yamanaka, H.; Matsuo, J.; Kawana, A.; Mukaiyama, T. *ARKIVOC*, **2004**, *iii*, 42; (c) Maeda, R.; Ooyama, K.; Anno, R.; Shiosaki, M.; Azema, T.; Hanamoto, T. Org. Lett. **2010**, *12*, 2548.