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INTRODUCTION 
 

     Sepsis is a common and potentially life-threatening medical condition in populations 

in intensive care units.  Despite advances in overall care of critically ill patients, sepsis 

remains the primary cause of death from microbial infections (1, 2).  The development of 

a failure of one or more organs, including lung, kidney, and liver, poses a major threat to 

the survival of patients with sepsis.  In accordance with the importance of more timely 

management of patients with sepsis or at risk of developing sepsis, sepsis is now defined 

as life-threatening organ dysfunction due to a dysregulated host response to infection (3).  

The pathogenesis of sepsis-induced organ failure has been extensively gleaned from 

animal models and human studies (4-6), but the mechanisms underlying the 

pathophysiologic processes that both initiate and promulgate organ dysfunction in sepsis 

have not been fully elucidated.  A greater understanding of the mechanisms that underlie 

the development of organ dysfunction in sepsis may enable us to develop therapies targeted 

at preventing or limiting molecular events associated with the progress of fatal organ 

failure, and hence leading to improve outcomes. 

     In animal models and in septic patients, elevated plasma levels of histamine have 

been documented for a long time (7).  In our previous studies, the sustained elevation of 

plasma histamine has been shown to be associated with the time-dependent increase in 

expression of histidine decarboxylase (HDC), which is the catabolic enzyme of histamine 

synthesis, in the animals with lipopolysaccharide (LPS)- and cecal ligation and puncture 

(CLP)-induced sepsis (8-10).  Furthermore, endotoxemia may cause superinduction of 

H1- and H2-receptors in cardiovascular and pulmonary tissues (8, 9, 11).  Since histamine 

mediates a wide range of cellular responses, including allergic and inflammatory reactions, 

gastric acid secretion, vascular tone and permeability, and neurotransmission in the central 
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nervous system (12), the histamine biological responsiveness may be of special importance 

in certain pathological aspects suggestive of histamine release.  It would be thus 

allowable to assume that histamine may play a contributory role in the development of 

major organ dysfunction and failure associated with sepsis. 

     In the present study, we examined whether genetic and pharmacological 

interventions of histamine can provide a change in systemic inflammation and organ injury 

in mice with CLP-induced polymicrobial sepsis in order to explore the role of histamine 

in the pathophysiology of the septic syndrome.  CLP-induced sepsis is an animal model 

that has high relevance to humans because it reproduces many hallmarks of sepsis that 

occur in patients (13).  We applied HDC gene knockout (HDC-/-) mice (14), lacking 

histamine, to investigate the effect of histamine deficiency on the pathophysiology of CLP-

induced sepsis.  Along with HDC-/- mice, we also used histamine H1-/H2-receptor gene-

double knockout (H1R-/-/H2R-/-) mice generated by crossbreeding of H1-receptor null mice 

and H2-receptor null mice.  Finally, we tested changes in the pathophysiological features 

of CLP-induced sepsis by pharmacological antagonism of H1- and H2-receptors. 
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MATERIALS AND METHODS 

 

Generation of HDC-/- mice and H1R-/-/H2R-/- mice 

     HDC-/- mice were generated according to previously described procedures (14). H1-

receptor gene deficient mice and H2-receptor gene deficient mice were a gift from Prof. 

Kazuhiko Yanai, Tohoku University (15, 16), and the progeny of the colony was 

maintained.  Serially breeding of these two strains generated the double-knockout line 

(H1R-/-/H2R-/-).  Genotyping of the resultant mice was determined by PCR analysis of 

DNA extracted from tail samples.  HDC-/- mice and H1R-/-/H2R-/- mice were of a genetic 

background of a C57BL/6J strain, and their littermates were used as wild-type (WT) 

controls.  Mice were housed under specific-pathogen-free conditions. 

 

Animal model of sepsis 

     All animal studies were conducted in accordance with the National Institute of 

Health Guidelines on the use of laboratory animal and with approval of the Care and Use 

Committee of the University of Toyama.  The surgical procedure to generate CLP-

induced sepsis was performed as described elsewhere (17-19).  In brief, male mice, 8-10 

weeks old, were anesthetized with 3-4% sevoflurane, and a middle abdominal incision was 

made.  The cecum was mobilized, ligated, and punctured twice with a 21-gauge needle, 

allowing exposure of faces, the bowel was repositioned, and the abdomen was closed with 

sterile suture.  Sham-operated control underwent the same procedure except for ligation 

and puncture of the cecum.  A noninvasive computerized tail-cuff system was used for 

measuring blood pressure and heart rate in mice (17, 20). 
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Measurement of histamine 

     The amount of histamine was determined by the fluorometrical method with o-

phthalaldehyde (21).  The tissues were homogenized in 4-5 volumes of PBS containing 2 

M NaCl, lysed using 0.5% Triton X-100, and centrifuged at 12,000 × g for 30 min at 4oC 

in order to obtain the soluble fraction for histamine assay. 

 

RNA extraction and quantitative real-time PCR 

     Total RNA was isolated from tissues with Sepazol-RNA I Super G (Nacalai Tesque, 

Kyoto, Japan).  PrimeScript RT Master Mix (Takara Bio, Ohtsu, Japan) or ReverTra Ace 

qPCR RT Master Mix (Toyobo, Osaka, Japan) was used for the reverse transcription 

reaction, and real-time PCR analyses were performed using SYBR Premix Ex Taq II 

(Takara Bio).  Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the 

endogenous control, and fold increase was calculated according to ∆∆CT method. 

 

Serum analyzes 

     Blood was collected in serum gel tubes (Sarsted, Nümbrecht, Germany), and serum 

was obtained and stored at -80oC.  The quantitative determination of aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and 

creatinine in serum was made on Hitachi 7180 Biochemistry Automatic Analyzer (Hitachi 

High-Technologies, Tokyo, Japan).  Interleukin (IL)-1β, IL-6, tumor necrosis factor 

(TNF)-α, and monocyte chemotactic protein (MCP)-1 were measured by the use of a 

commercially available enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, 

Minneapolis, MN, USA), according to the manufacturer’s instructions.  The plate was 

read on a microplate reader (Nippon-InterMed, Tokyo, Japan).  Assays were performed 

in duplicate. 
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Lung wet-to-dry weight ratio 

     Surgically removed lung tissues were blotted dry and weighed to determine the lung 

wet weight.  The lung tissues were then wrapped loosely in aluminum foil, placed in a 

drying oven overnight, and weighed again for calculation of the wet-to-dry weight ratio (9, 

22). 

 

Histologic examination 

     Tissues were fixed by immersion in 10% buffered formaldehyde overnight, 

embedded in paraffin, and cut into 4-μm-thick sections.  After deparaffinization, slides 

were stained with hematoxylin and eosin by standard methods.  All the histological 

studies were performed in a blinded fashion. 

 

Immunohistochemistry 

     Tissue sections (4 μm) were rehydrated, and endogenous peroxidases were 

quenched with 3% hydrogen peroxide.  Slides were then incubated overnight at 4oC with 

primary antibodies for myeloperoxidase (MPO; 1:200 dilution; Abcam, Cambridge, MA, 

USA), or neutrophil gelatinase-associated lipocalin (NGAL; 1:2000; Abcam).  All 

sections were incubated with Histone® Simple Stain Mouse MAX PO(R) (Nichirei 

Biosciences, Tokyo, Japan) including the secondary antibody which is reduced to Fab 

fragment.  Sections were developed with 3,3’-diaminobenzidine and counterstained with 

hematoxylin.  Rabbit IgG was used as an isotype control. 

 

Immunofluorescence staining 

     The tissue sections were exposed to the fluorescent antibody Alexa Fluor 546-

conjugated anti-mouse IgG (Invitrogen, Carlsbad, CA, USA) after overnight incubation 
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with the primary antibody according to the method in our previous study with minor 

modification (20).  The nucleus was counterstained with Hoechst 33342 dye (Invitrogen).  

Immunofluorescence images were observed under an Olympus (Tokyo, Japan) BX-51 

fluorescence microscope and processed using Adobe Photoshop CC software (Adobe, San 

Jose, CA, USA). 

 

Western blot analysis 

     After being removed and rinsed in sterilized PBS on ice, tissues were homogenized 

and then centrifuged at 18,000 × g for 10 min at 4oC, and the resulting supernatants were 

collected.   When required, nuclear protein extracts from lungs were obtained with a 

commercially available nuclear extraction kit (Sigma-Aldrich, St. Louis, MO, USA), as 

described in the manufacturer’s manual.  The proteins in the supernatant were measured 

using BCA Protein Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA).  

Immunoblotting was performed as described in our previous reports (19, 23).  Samples 

(30-50 μg of protein) were electrophoresed on 10 or 14% SDS-PAGEs and transferred to 

PVDF membrane.  For primary antibody incubation (overnight at 4oC), rabbit polyclonal 

or monoclonal antibodies were used against NGAL  (1:1,000; Abcam), IκBα (1:1,000; 

Cell Signaling, Danvers, MA, USA), and phospho-IκBα (Ser-32) (1:1,000; Cell 

Signaling), , whereas a mouse monoclonal antibody was used against nuclear factor (NF)-

κB (1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA), β-actin (1:5,000; Wako Pure 

Chemical, Osaka, Japan), and GAPDH (1:5,000; Wako Pure Chemical) and a goat 

polyclonal antibody against lamin B (1:200; Santa Cruz Biotechnology).  Primary 

antibody detection was performed with horseradish peroxidase-conjugated secondary 

antibodies.  Binding of the antibody was detected by an ImmunoStar Zeta (Wako Pure 

Chemical) and levels of protein expression were quantitated by a luminoimage LAS-4000 
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analyzer (Fuji Film, Tokyo, Japan).   

 

Statistics 

     Values are expressed as means ± SEM.  Statistical significance between groups was 

evaluated by ANOVA and the Tukey multiple comparison test using Prism software (ver. 

6; GraphPad Software, San Diego, CA, USA).  P≤0.05 was considered statistically 

significant.   
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RESULTS 

 

Changes in tissue histamine concentrations, HDC expression, and histamine receptor 

expression after sepsis induction 

     We initially ascertained whether tissue histamine synthesis is altered in WT mice 

after sepsis induction by CLP.  As demonstrated in our previous report (10), CLP-induced 

polymicrobial sepsis resulted in an increase in plasma concentrations of histamine in mice 

(data not shown).  Thus, plasma histamine concentrations were significantly (P<0.05) 

elevated from baseline of 16.1 ± 3.5 ng/mL (n = 4) early after CLP, with a peak 

concentration at 3 h (38.9 ± 3.5 ng/mL, n = 4).  The basal levels of histamine highly varied 

between tissues (lung, 349 ± 87 ng/g; liver, 7.9 ± 2.7 ng/g; kidney, 165 ± 14 ng/g, n = 13 

for each).  When sepsis was induced by CLP, however, histamine levels elevated in all 

tissues in a time-dependent manner (Fig. 1A).  In mammalian tissues, histamine is 

synthesized from L-histidine by HDC.  Real-time PCR analysis showed that the transcript 

levels of HDC were transiently but greatly increased in all tissues after induction of sepsis 

(Fig. 1B). 

     Changes in histamine H1- and H2-receptor mRNA expression in lung, liver, and 

kidney tissues of WT mice after sepsis induction were also examined by real-time PCR 

(Fig. 1B).  In lung tissues, no increase in H1-receptor mRNA expression was observed 

after CLP.  On the other hand, the mRNA levels were increased 3.2-fold and 3.1- to 4.4 

fold in liver and kidney tissues, respectively, at 6-12 h after CLP when compared with 

those shown in controls.  Following induction of sepsis by CLP, a significant increase in 

H2-receptor mRNA expression was transiently detected in lung and liver tissues. In the 

kidney, CLP-induced sepsis resulted in a sustained, significant increase in the transcript 

level of H2-receptors. 
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Sepsis-induced inflammation and organ injury are alleviated in HDC knockout mice 

     When blood levels of proinflammatory or chemotactic cytokines were measured 

using an ELISA, the sham-operated control animals had low levels of the cytokines 

examined here and no difference was found between WT and HDC-/- mice (Fig. 2A).  The 

animals 18 h after CLP-induced sepsis had marked elevations in IL-1β, IL-6, TNF-α, and 

MCP-1.  Following sepsis induction, however, HDC-/- mice displayed an evidently lower 

levels of those cytokines compared with WT mice.  We also examined changes in mRNA 

levels of IL-1β, IL-6, TNF-α, and MCP-1 in lung, liver, and kidney tissues using real-time 

PCR (Fig. 2B).  After induction of sepsis, mRNA expression levels of those cytokines 

greatly increased in all tissues.  The increases in their mRNA expression showed a trend 

toward declining in HDC-/- mice, with a few exceptions. 

     The animals subjected to CLP showed a sharp fall in systolic blood pressure (data 

not shown).  No significant difference in hypotension was observed between WT and 

HDC-/- mice after CLP.  The CLP-induced sepsis caused a transient decrease in the heart 

rate in both WT and HDC-/- mice, but the heart rate responses of the two animal groups 

were not substantially different.  HDC-/- mice had a survival advantage after CLP as 

compared with WT controls (data not shown). 

     Histologic examination of hematoxylin and eosin-stained sections of the lungs 

showed massive infiltration of inflammatory cells, disorganized architecture with irregular 

alveoli, and intra-alveolar hemorrhage arising from capillary rupture in WT mice 24 h after 

sepsis induction by CLP (Fig. 3A).  In lungs from HDC-/- mice, these histopathological 

changes were lessened.  Semiquantitative assessment using lung injury score revealed 

that the score was significantly lower in HDC-/- mice than in WT controls.  The sepsis-

induced increase in lung staining of MPO, an index of neutrophil infiltration, was 

significantly reduced in HDC-/- mice in comparison with WT controls (Fig. 3B).  When 
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the wet-to-dry lung weight ratio was measured for assessment of lung vascular leak, the 

ratio was significantly increased in WT mice after sepsis induction (Fig. 3C).  However, 

the sepsis-induced rise in the ratio in HDC-/- mice was blunted. 

     Following induction of sepsis by CLP, a marked elevation in serum levels of AST 

and ALT, a functional readout for liver damage, was observed in WT mice (Fig. 4A).  The 

elevation in these serum aminotransferase levels after sepsis was significantly lowered in 

HDC-/- mice.  When liver injury was assessed using liver specimens stained with 

hematoxylin and eosin, massive alterations in hepatocytes, including irregular contour of 

cells and nuclei, cytoplasmic vacuolation, cytoplasmic and nuclear degeneration, and 

cellular rupture, were found in WT mice after sepsis induction (Fig. 4B).  A destruction 

of the sinusoidal structure of the liver and erythrocyte agglutination were also observed.  

Such histopathological alterations showing the liver damage after sepsis was less 

pronounced in HDC-/- mice.  Furthermore, the highly increased neutrophilic influx in the 

liver from septic WT mice was indicated by MPO staining (Fig. 4C).  There was much 

lower MPO expression in liver specimens from HDC-/- mice. 

     The serum levels of BUN and creatinine, both of which provide a guide to kidney 

function, were markedly elevated in septic WT mice (Fig. 5A and B).  Pathologically 

elevated serum BUN and creatinine levels were reduced in HDC-/- mice.  No apparent 

histopathological finding was detectable even in WT mice after sepsis induction when the 

renal tissue sections were stained using hematoxylin and eosin (Fig. 5C).  However, we 

found that septic WT mice displayed the intense staining of NGAL, a biomarker of kidney 

damage (Fig. 5D).  HDC-/- mice following sepsis induction exhibited weaker NGAL 

staining in kidneys.  In line with the findings from immunohistochemical assessment of 

renal NGAL, Western blot analysis showed that a striking rise in renal expression of NGAL 

caused by sepsis was more evident in WT as compared with HDC-/- mice (Fig. 5E). 
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Sepsis-induced NF-κB activation is reduced in HDC knockout mice 

     We examined whether sepsis-induced activation of the transcription factor NF-κB is 

altered in HDC-/- mice.  Since the activity of NF-κB is primarily regulated by interaction 

with its inhibitory protein IκBα, phosphorylation and degradation of IκBα in lung tissues 

after sepsis induction were monitored by Western blot (Fig. 6A).  Induction of sepsis 

resulted in greatly increased phosphorylation and degradation of IκBα in lungs of WT mice.  

Such changes were diminished in HDC-/- mice.  The translocation of NF-κB p65 into the 

nucleus was increased in lung nuclear extracts from septic WT mice (Fig. 6B).  In HDC-

/- mice, the nuclear translocation of NF-κB p65 was weak.  In line with this finding, 

nuclear staining for NF-κB 65 was more detectable in WT than in HDC-/- mice after sepsis 

induction (Fig. 6C). 

 

Effects of H1- and H2-receptor antagonists on sepsis-induced inflammation and organ 

injury 

     Mice were injected intraperitoneally with a single dose of d-chlorpheniramine (10 

mg/kg) and famotidine (20 mg/kg) 60 min before CLP to block H1- and H2-receptors, 

respectively.  The elevated blood levels of pro-inflammatory and chemotactic cytokines 

after sepsis appeared to be reduced more by combined treatment with d-chlorpheniramine 

and famotidine than with each blocker alone, although their treatment alone was effective 

in reducing some cytokines (such as TNF-α) in blood (Fig. 7A).  Furthermore, the sepsis-

induced increases in tissue levels of IL-1β, IL-6, and TNF-α mRNAs were lowered when 

the two blockers were given together to the animals (data not shown). 

     When CLP-induced septic mice received treatment with d-chlorpheniramine, 

famotidine, or both, the histological damage in the lung was apparently minimized, as 

characterized by less distortion of alveolar architecture, scattered interstitial infiltrates, and 
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rare areas of focal hemorrhage (Fig. 7B).  Moreover, the sepsis-induced increase in MPO-

positive cells was blunted by each treatment (Fig. 7B).  In liver histology, d-

chlorpheniramine, famotidine, or both showed a protective effect on liver damage caused 

by CLP-induced sepsis (Fig. 7B).  The serum ALT levels were markedly increased from 

44 ± 15 (n = 7) to 266 ± 20 IU/L (n = 13, P<0.001) at 18 h after sepsis induction, which 

was reduced to 159 ± 27 (n = 9, P<0.01) and 136 ± 15 (n = 10, P<0.001) by treatment with 

d-chlorpheniramine and famotidine, respectively.  In the kidney, intense accumulation of 

immunoreactive NGAL that came along with sepsis remained unchanged with d-

chlorpheniramine, but was attenuated by famotidine alone or combined with d-

chlorpheniramine (Fig. 7B).  Consistent with this finding, serum BUN and creatinine 

levels showed no difference between septic mice untreated and treated with d-

chlorpheniramine (77 ± 8 vs. 84 ± 20 mg/dL and 0.37 ± 0.12 vs. 159 ± 27 mg/dL, n = 9-

13), but famotidine treatment significantly lowered the rise in the serum markers (54 ± 13 

mg/dL and 0.18 ± 0.02 mg/dL, n = 10). 

 

CLP-induced sepsis in H1-/H2-receptor double knockout mice 

     When H1R-/-/H2R-/- mice were rendered septic by CLP, the rise in blood levels of 

cytokines, IL-6 and MCP-1, was evidently attenuated (Fig. 8A).  In addition, H1R-/-/H2R-

/- mice exhibited lower levels of IL-1β, IL-6, and MCP-1 mRNAs in lung, liver, and kidney 

tissues as compared with WT mice following sepsis (Fig. 8B).  When serum ALT in H1R-

/-/H2R-/- mice was measured as a marker indicative of liver damage, the markedly increased 

level following induction of sepsis was subsided (Fig. 8C).  Also, the high levels of serum 

BUN and creatinine, routine measures of kidney function, observed after sepsis induction 

were alleviated in H1R-/-/H2R-/- mice (Fig. 8D). 
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 Figure 1. Changes in histamine synthesis and histamine receptor expression in lung, liver, 

and kidney tissues from mice after CLP-induced sepsis.  A) Tissue histamine 

concentrations after CLP (n = 8/group).  B) Tissue mRNA levels of HDC, histamine H1- 

and H2- receptors after CLP (n = 6/group).  The mRNA levels were quantified by real-

time PCR.  The values were expressed as a fold increase above control normalized 

GAPDH.  All values are provided as means ± SEM.  *P<0.05, **P<0.01, and 

***P<0.001 vs. control. 
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Figure 2. Reduced cytokine levels in HDC-/- mice following CLP-induced sepsis.  A) 

Blood levels of IL-1β, IL-6, TNF-α, and MCP-1.  The blood was collected 18 h after 

surgery (n = 4-9/group), and those cytokine levels were measured by the use of ELISA. 

B) Transcription levels of IL-1β, IL-6, TNF-α, and MCP-1 in lung, liver, and kidney tissues.

Tissues were harvested 18 h after surgery (n = 4-11/group).  The mRNA levels were 

quantified by real-time PCR.  The values were expressed as a fold increase above sham-

operated control normalized GAPDH.  All values are provided as means ± SEM. 

*P<0.05, **P<0.01, and ***P<0.001 vs. the respective control (18 h after sham operation).

#P<0.05 vs. CLP WT. 
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Figure 3. Reduced lung injury in HDC-/- mice following CLP-induced sepsis.  Lung 

tissues were harvested from sham-operated and CLP-induced septic mice 24 h after surgery. 

A) Lung sections stained with hematoxylin and eosin.  Original magnification, 200×.  A

bar graph shows semiquantitative analysis of lung tissues by lung injury score, which was 

performed by scoring from 0-4 (none, light, moderate, severe, and very severe) for the 

following categories: neutrophil infiltration, pulmonary edema, and disorganization of 

lung parenchyma and hemorrhage.  A total lung injury score was calculated by adding the 

individual scores in every animal and averaging the total values in each group (n = 4-

10/group).  B) Sections were stained with antibodies against MPO followed by 

peroxidase staining.  Original magnification, 200×.  A bar graph shows the summary of 

quantitation of MPO-positive cell counts.  The average of MOP-positive cell number in 

three fields per sample was calculated (n = 4-10/group).  C) Wet-to-day ratios of lungs 

harvested from the animals were determined to assess pulmonary edema (n = 6/group). 

The summarized results are presented as means ± SEM.  *P<0.05, **P<0.01, and 

***P<0.001 vs. the respective control (24 h after sham operation).  ##P<0.01 vs. CLP WT. 
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Figure 4. Reduced liver injury in HDC-/- mice following CLP-induced sepsis.  A, B) 

Serum levels of AST and ALT.  Blood samples were collected from sham-operated and 

CLP-induced septic mice 18 h after surgery (n = 4-11/group).  All values are provided as 

means ± SEM.  ***P<0.001 vs. the respective control (18 h after sham operation). 

##P<0.01 vs. CLP WT.  C, D) Representative micrographs liver sections stained with 

hematoxylin and eosin and anti-MPO antibody followed by peroxidase staining.  Original 

magnification, 200×.  Tissues were harvested from sham-operated and CLP-induced 

septic mice 24 h after surgery.  The same results were obtained with two other 

experiments. 
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Figure 5. Reduced kidney injury in HDC-/- mice following CLP-induced sepsis.  A, B) 

Serum levels of BUN and creatinine.  Blood samples were collected from sham-operated 

and CLP-induced septic mice 18 h after surgery (n = 4-11/group).  All values are provided 

as means ± SEM.  ***P<0.001 vs. the respective control (18 h after sham operation). 

#P<0.05 and ##P<0.01 vs. CLP WT.  C, D) Representative micrographs liver sections 

stained with hematoxylin and eosin and anti-NGAL antibody followed by peroxidase 

staining.  Original magnification, 200×.  The same results were obtained with two other 

experiments.  E) Western blot image of NGAL protein expression.  GAPDH served as 

loading control.  Shown are representative blots from three independent experiments in 

which the same results were obtained.  Tissues were harvested from sham-operated and 

CLP-induced septic mice 24 h after surgery.   
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Figure 6. Kinetics of NF-κB activation in lungs of HDC-/- mice following CLP-induced 

sepsis.  Lung tissues were harvested from sham-operated and CLP-induced septic mice 

18 h after surgery.  A) Western blot analysis using anti-IκBα antibody and anti-phospho-

IκBα antibody.  β-Actin served as loading control.  B) Nuclear proteins were extracted, 

and then NF-κB p65 was detected by Western blot analysis.  Lamin B served as a nuclear 

marker.  C) Immunofluorescent images for NF-κB p65 (red) in lung sections.  Nuclei 

were counterstained with Hoechst 33342 dye (blue).  Shown are representative blots from 

two independent experiments in which the same results were obtained. 
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Figure 7. Effects of treatment with d-chlorpheniramine and famotidine on elevated blood 

cytokines and organ injury following CLP-induced sepsis.  Mice received intraperitoneal 

injection of d-chlorpheniramine (10 mg/kg) and famotidine (20 mg/kg), which were used 

as an H1- and H2-receptor blocker, respectively, at 60 min before CLP.  A) Blood levels 

of IL-1β, IL-6, TNF-α, and MCP-1.  The blood was collected 18 h after surgery (n = 3-

19/group), and those cytokine levels were measured by the use of ELISA.  All values are 

provided as means ± SEM.  *P<0.05, **P<0.01, and ***P<0.001 vs. the respective 

control (18 h after sham operation).  #P<0.05 and ##P<0.01 vs. CLP alone.  B) 

Representative micrographs tissue sections stained with hematoxylin and eosin, anti-MPO 

antibody, and anti-NGAL antibody.  Lung, liver, and kidney tissues were harvested from 

sham-operated and CLP-induced septic mice 24 h after surgery.  Original magnification, 

200× (kidney) and 400× (lung, liver).  The same results were obtained with two other 

experiments. 

26



A
6

x10x105
IL

-6
 (p

g/
m

L)

M
C

P-
1 

(p
g/

m
L)

0

500

1000

1500

2000

0

2

4

6

il-1β
/ gapdh

il-6
/ gapdh

Lung Liver Kidney

mcp-1
/ gapdh

Fo
ld

 C
ha

ng
e

Fo
ld

 C
ha

ng
e

Fo
ld

 C
ha

ng
e

B

Sham
WTWT

CLP
H1H2

0

20

40

60

80

0

2

4

6

8

10

0

2

4

6

8

0

20

40

60

80

0

2

4

6

8

10

0

2

4

6

0

50

100

150

0

2

4

6

8

10

Sham
WTWT

CLP
H1H2

Sham
WTWT

CLP
H1H2

Sham
WTWT

CLP
H1H2

Sham
WTWT

CLP
H1H2

C

C
R

E 
(m

g/
dL

)

AL
T 

(IU
/L

)

Sham
WTWT

CLP
H1H2

Sham
WTWT

CLP
H1H2

Sham
WTWT

CLP
H1H2

*

*

*

4

2

0

D

0

100

200

300

400

50

100

150

0

0.2

0.4

0.6

0

*

BU
N

 (m
g/

dL
)

27



Figure 8. Cytokine levels and in liver and kidney functions in H1R-/-/H2R-/- mice following 

CLP-induced sepsis.  Blood and tissue samples were taken at 18 h after surgery (n = 5-8). 

A) Blood levels of IL-6 and MCP-1.  B) Transcription levels of IL-1β, IL-6, and MCP-1

in lung, liver, and kidney tissues.  C) Serum levels of ALT.  D) Serum levels of BUN 

and creatinine.  All values are provided as means ± SEM.   
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DISCUSSION 

 

     The specific pathophysiology and molecular basis of sepsis-associated multiple 

organ failure is still not fully understood.  The updated definition of sepsis and septic 

shock has unveiled that organ dysfunction/failure is critical in determining the clinical 

outcome of sepsis (3).  Here we provide clear evidence that histamine is identified as an 

aggravating mediator to contribute to the development of major end-organ (that is, lung, 

liver, and kidney) injury in sepsis. 

     Circulating levels of histamine were significantly elevated in mice after induction of 

polymicrobial sepsis by CLP, as fully demonstrated in our previous report (10).  This 

elevation in the circulating histamine levels was associated with increased tissue 

expression of HDC, an enzyme that only forms histamine in mammals.  This could result 

in locally elevated levels of histamine concentrations in tissues.  Indeed, we found that 

histamine levels elevated in lung, liver, and kidney tissues in a time-dependent manner.  

In addition, the upregulation of gene expression levels of H1- and H2-receptors was 

observed after sepsis induction but quite varied between tissues.  Taken together, these 

data shadow a possible role of histamine in the pathophysiology of sepsis. 

     Our CLP murine model of sepsis developed lung, liver, and kidney injury, as 

evidenced by histological changes, neutrophil filtration index, and biochemical variables.  

We found that sepsis-induced multiple organ injury was significantly attenuated in HDC-/- 

mice.  This suggests that the lack of endogenous histamine could help to reduce sepsis-

induced multiple organ injury.  Alternatively, we interpret this finding to assume that 

histamine acts as a mediator to promote the development of multiple organ injury in sepsis.  

The attenuation of septic organ injury in HDC-/- mice may be partly the result of a reduction 

in cytokine production.  Sepsis triggers overproduction of a diverse of proinflammatory 
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and chemotactic cytokines as demonstrated in this study.  Their uncontrolled, exuberant 

production can be deleterious to various tissues and can lead to organ injury and 

dysfunction (24), although the pathogenesis of multiple organ dysfunction is multifactorial 

and is still being explored (25).  In agreement with the present results on cytokines in 

HDC-/- mice, LPS-stimulated IL-6 production in liver tissues has been shown to fall to a 

low level in HDC-/- mice (26).  Moreover, in vitro experiments have reported that 

histamine increases IL-6 production in B cells and glial cells (27), endothelial cells (28), 

and peripheral blood mononuclear cells (29), although there is found to be a report showing 

that histamine suppresses LPS-induced gene expression and synthesis of TNF-α in 

peripheral blood mononuclear cells mediated by H2-receptors (30). 

     However, our experiments with the H1-receptor antagonist d-chlorpheniramine and 

the H2-receptor famotidine indicate that the lessening of sepsis-induced organ injury 

observed in HDC-/- mice cannot be solely attributed to alterations in proinflammatory and 

chemotactic cytokine production.  These antagonists were not necessarily effective in 

reducing some cytokines in blood, such as IL-1β and IL-6, which is inconsistent with their 

changes obtained in HDC-/- mice.  Yet, both d-chlorpheniramine and famotidine were 

effective in reducing septic lung and liver injury, whereas famotidine, but not d-

chlorpheniramine, mitigated septic kidney injury.  This suggests that, while both H1- and 

H2-receptors are involved in lung and liver injury, only H2-receptors contribute to kidney 

injury in sepsis.  The involvement of histamine via H1-receptors in lung vascular 

hyperpermeability in sepsis has been documented (9, 31, 32).  H2-receptors have also 

been shown to be involved in the recruitment of neutrophils and protein leaks in LPS-

induced acute lung injury (33).  These adverse effects of histamine mediated by H1- and 

H2-receptors could be responsible for liver injury in sepsis.  In renal ischemia/reperfusion 

injury, the beneficial effects of the H2-receptor antagonist ranitidine have been found to be 
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partly mediated by decreased IL-6 production (34).  Furthermore, it has been reported 

that mast cell-deficient mice exhibit attenuated acute kidney injury with cisplatin which is 

associated with reduced serum TNF-α levels and reduced recruitment of leukocytes to the 

inflamed kidney (35). 

     The transcription factor NF-κB has been well recognized as a pivotal player in the 

pathophysiology of sepsis (36).  NF-κB is involved in regulating the transcription of 

many of the immunomodulatory mediators that can participate in the development of 

sepsis-induced organ failure (37).  In a myriad of stimuli, commencing with endotoxin, 

IκBα is quickly phosphorylated, ubiquitinated, and degraded, releasing the NF-κB 

heterodimer, which then translocates from cytoplasm into nucleus to mediate the 

transcription of inflammatory genes (38).  Interestingly, IκBα phosphorylation and 

degradation following CLP were impaired in lungs of HDC-/- mice.  As a result, HDC-/- 

mice displayed low nuclear levels of NF-κB p65 in CLP-induced sepsis.  We interpret 

these results to indicate that histamine can exert a facilitatory effect on activation of the 

NF-κB signaling pathway.  Thus, histamine may help to promote the development of 

major end-organ injury in sepsis by enhancing NF-κB activity. 

     Contrary to the present findings indicative the role of H2-receptor activation in 

worsening septic liver injury, a previous report has demonstrated that histamine 

pretreatment can ameliorate D-galactosamine/LPS-induced liver injury in WT and H1-

receptor knockout mice, but not H2-receptor knockout mice (39).  Furthermore, histamine 

through H2-receptors has been documented to protect the liver against alcohol-induced 

injury in rats (40).  It is difficult to reconcile these findings at present, but possible reasons 

for the discrepancy may include different regulatory mechanisms between systemic vs. 

local inflammation and concentration-related differences between endogenous vs. 

exogenous histamine. 
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     It is now well established that histamine exerts its biological effects by binding to 

and activating four distinct separate receptors: H1-, H2-, H3-, and H4-receptors (41).  

Although our experiments with d-chlorpheniramine and famotidine imply that H1- and H2-

receptors are involved in the development of septic organ injury, we cannot entirely 

exclude that the lack of activation of H3- and H4-receptors may contribute to reduced organ 

injury in HDC-/- mice following sepsis.  Interestingly, H4-receptors appear to play a role 

in sepsis-associated induction of apoptosis in the key organs (10).  The exact role of H3- 

and H4-receptors in the pathophysiology of sepsis awaits further study using the animals 

deleted for their genes.  It should be noted, however, that H1R-/-/H2R-/- mice displayed 

lower blood biochemical values indicating the attenuation of sepsis-induced liver and renal 

dysfunction. 
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CONCLUSION 

 

 This study sheds light on the new role of histamine in the pathophysiology of sepsis.  

We represent the first report that endogenous histamine acting on H1- and H2-receptors 

leads to worsening of sepsis-driven major end-organ injury.  Clinically, histamine H2-

receptor antagonists are widely used in critically ill patients to reduce the risk of 

gastrointestinal bleeding (42, 43).  Histamine H1-receptor antagonists may also be 

prescribed in perioperative settings, since many narcotics can induce itching (44).  While 

our present study suggests the benefit of their treatment in reducing sepsis disorder and 

supports that they may be safe medications in critically ill patients with sepsis, the validity 

and feasibility of the use of these histamine receptor antagonists to avoid the development 

of septic organ injury warrant further clinical investigations and evaluation. 
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