
Research on Dendritic Neural Computation and Differential
Evolution Algorithm

by

Chen Wei

A dissertation

submitted to the Graduate School of Science and Engineering for Education

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Engineering

University of Toyama

Gofuku 3190, Toyama-shi, Toyama 930-8555 Japan

2016

(Submitted December 1, 2016)

ii

Acknowledgements

First of all, I want to thanks to all those people who have advanced and helped

me during my Ph.D. course, and especially the process of writing this thesis. Any

progress that I have made is the result of their profound concern and selfless devotion.

Particularly, I am deeply indebted to Prof. Zheng Tang at University of Toyama,

my supervisor, who has offered me valuable suggestions in the academic studies.

He kindly provided many incisive comments, useful suggestions, and constructive

criticism to contribute greatly to the completion of this thesis. High tribute should

be paid to Prof. Shangce Gao, who devotes a considerable portion of his time to

reading my manuscripts and making suggestions for further revisions. Truly, without

his painstaking efforts in revising and polishing my drafts, the completion of the

present thesis would not have been possible. I am also greatly indebted to all my

fellow classmates and my friends, who have helped me in the past few years, whether

in study or lives. Finally, I should be indebted to my parents and girlfriend for their

consistent support and encouragement.

iii

Abstract

Artificial neural networks(ANNs) is the popular and promising area of artificial intel-

ligence research. it has many learning methods and a variety of network architectures

and it can be connected with different computational capabilities to produce neural

networks. ANN is a purely computational model based on the human brain’s orga-

nizational structure. In the past few years, the research of ANNs has made great

progress, and successfully solved many modern computer practical problems in the

fields of automatic control, intelligent robot, biology, economics, and pattern recog-

nition and prediction estimation. Basically, ANNs always show good intelligence.

Prediction is one of the main applications of ANN. We know that ANN’s traditional

prediction method has excellent classification and pattern recognition ability. Some

special features make ANN a better predictive tool. Distinctive features also make

predictions valuable and attractive. However, due to the high volatility, irregular

motions and non-stationarity of the travel time series, traditional methods often suf-

fer from prediction accuracy problems. In this study, with the rapid development

of international tourism, it has become a growing industries with very fast speed in

this world. Therefore, the prediction of tourism demand has been a challenge to

the international tourism market. A new single dendritic neuron model (SDNM) is

proposed to perform tourism demand forecasting. First, we use phase space recon-

struction to analyze the characteristics of tourism and reconstruct the time series

into appropriate phase space points. The maximum Lyapunov exponent is then used

to identify the chaotic properties of the time series used to determine the prediction

iv

limit. Finally, we use SDNM for short-term forecasting. The experimental results of

monthly foreign tourists arriving in Japan show that the proposed SDNM model is

more efficient and accurate than other neural networks including multilayer percep-

trons, neuro-fuzzy inference systems, Elman networks and haploid neurons. On the

other hand, multi-objective processing using -Doher differential evolution based on

adaptive mutation will be described. Differential evolution (DE) is a well-known and

robust population-based stochastic real parameter optimization algorithm in continu-

ous space. DE has recently been shown to be superior to several well-known stochastic

optimization methods in solving multi-objective problems. However, its performance

is still limited in finding a uniform distribution and approaching the optimal Pareto

front. To mitigate this limitation and reduce the computational cost, an adaptive

mutation operator is introduced to avoid premature convergence by adaptively ad-

justing the mutation scale factor F and using the -dominance strategy to update the

archives that store non-dominated solutions. Experiments based on five widely used

multi-objective functions were performed. The simulation results demonstrate the

effectiveness of our proposed approach in solving the Pareto frontier convergence and

diversity aspects. The organizational structure of this paper is as follows. In Chap-

ter 1, we give a brief description of ANNs for prediction. Chapter 2 describes some

evolutionary computation (EC), such as Genetic Algorithm (GA), Differential Evo-

lution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm. Chapter

4 discusses the performance of SDNM in prediction. The adaptive mutation operator

based on the multi-objective DE algorithm is reported in Chapter 5. Finally, the

conclusions and future research will be discussed in Chapter 6.

v

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Artificial Neural Networks . 1

1.1.1 The Multi-layered Perceptron 3

1.1.2 The Artificial Neuro-fuzzy Inference System 6

1.1.3 The Elman Network . 9

1.1.4 The Single Multiplicative Neuron Model 11

1.1.5 Back Propagation Algorithm 12

2 Evolutionary Computation 15

2.0.6 Genetic Algorithms . 15

2.0.7 The Particle Swarm Optimization 16

2.0.8 Differential Evolution . 19

2.0.9 Mutation . 21

2.0.10 Crossover . 22

2.0.11 Selection . 22

3 Using A Single Dendritic Neuron to Forecast Tourist Arrivals to

Japan 23

vi

3.1 Introduction . 23

3.2 Single Dendritic Neuron Model . 26

3.2.1 Synaptic Layer . 28

3.2.2 Dendrite Layer . 29

3.2.3 Membrane Function . 29

3.2.4 Soma Function . 29

3.2.5 BP-like Learning Method . 30

3.2.6 Remarks regarding Characteristics of SDNM 31

3.3 Forecasting Framework for Tourist Arrivals 32

3.3.1 Input Time Series Data . 32

3.3.2 Phase Space Reconstruction 32

3.3.3 Maximum Lyapunov Exponent Calculation 34

3.3.4 Prediction using SDNM . 36

3.4 Experimental Results and Analysis 36

3.4.1 Time Delay and Embedding Dimension 37

3.4.2 PSR and Lyapunov Exponent 38

3.4.3 Short-term Forecasting and Performance Comparison 40

3.5 Conclusions . 45

4 Handling Multiobjectives with Adaptive Mutation based ε-Dominance

Differential Evolution 48

4.1 Introduction . 48

4.2 Brief Introduction to DE . 50

4.3 Design of multi-objective differential evolution algorithm 51

4.4 Simulation and Analysis . 54

4.5 Conclusion . 58

vii

5 Improved GSA with chaotic local search 60

5.1 Introduction . 60

5.2 Overview of GSA . 62

5.3 Chaotic maps . 65

5.3.1 Logistic map . 66

5.3.2 Piecewise linear chaotic map 66

5.3.3 Gauss map . 66

5.3.4 Sinusoidal map . 67

5.3.5 Sinus map . 67

5.4 Chaotic gravitational search algorithm 69

5.5 Numerical simulation . 70

5.5.1 Experimental setup . 70

5.5.2 Results and discussions . 71

5.6 Conclusion . 74

6 General Conclusions and Remarks 78

Bibliography 81

viii

List of Figures

1.1 Structure of neurons . 2

1.2 Structure of artificial neural networks 2

1.3 Layers in artificial neural network . 4

1.4 Architecture of the ANFIS . 13

1.5 The Elman Network . 14

1.6 Generalized single doubling neuron with learning algorithm 14

3.1 The architecture of the single dendritic neuron model (SDNM). 28

3.2 Prediction framework based on the proposed SDNM. 34

3.3 The monthly tourist arrivals from ten major source markets and six

continents to Japan. 35

3.4 The mutual information versus time delay for tourism time series from

China to Japan after PSR. 38

3.5 The correlation function, ln(C(r)) versus ln(r) of the monthly tourist

arrivals from China to Japan. 39

3.6 Correlation dimension (fitted ln(C(r)/ln(r))) versus the embedding di-

mension for tourism time series from China to Japan after PSR. 40

3.7 Three-dimension phase space for tourism time series from China to

Japan after PSR. 41

ix

3.8 Performance of proposed method for the tourism time series of Korea to

Japan: (a) training and prediction results, (b) convergence graph based

on the BP-like learning, (c) the correlation coefficient of fitting, and (d)

the correlation coefficient of prediction. 43

4.1 The general flow chart of the proposed adaptive mutation based multi-

objective differential evolution (IDE). 52

4.2 Pareto fronts obtained by IDE and its competitor algorithm MDE on

ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 respectively. 56

5.1 The distribution of x under certain system parameters in 20000 itera-

tions when x0 = 0.74 . 68

5.2 Statistical values of the final best-so-far solution obtained by the six

algorithms. 76

5.3 The average fitness trendlines of the best-so far solution found by the

six algorithms. 76

5.4 The ratio of best-so-far solutions found by the six algorithms. 77

x

List of Tables

3.1 Results of PSR for the monthly tourist arrivals from ten major source

markets to Japan: the embedding delay τ , the embedding dimension

m, and the maximum Lyapunov exponents MLE. 42

3.2 Results of PSR for the monthly tourist arrivals from six continents to

Japan: the embedding delay τ , the embedding dimension m, and the

maximum Lyapunov exponents MLE. 42

3.3 Experimental results the monthly tourist arrivals from ten major source

markets to Japan. 46

3.4 Results based on the L16(4
5) orthogonal array and factor assignment. . 47

3.5 Experimental results the monthly tourist arrivals from six continents

to Japan. 47

4.1 Comparison of the convergence metric between IDE and MDE. 55

4.2 Comparison of the diversity metric between IDE and MDE. 55

4.3 Comparison of the convergence metric during IDE, NSGA-II, SPEA2,

and MOEO. 57

4.4 Comparison of the diversity metric during IDE, NSGA-II, SPEA2, and

MOEO. 57

5.1 The function name, definition, dimension, feasible interval of variants,

and the known global minimum of six benchmark function. 71

5.2 Statistical results of different methods for Sphere function (f1). 72

xi

5.3 Statistical results of different methods for Schwefel function (f2). . . . 73

5.4 Statistical results of different methods for Rosenbrock function (f3). . 74

5.5 Statistical results of different methods for Schwefel 2.26 function (f4). 74

5.6 Statistical results of different methods for Ackley function (f5). 75

5.7 Statistical results of different methods for Griewank function (f6). . . 75

1

Chapter 1

Introduction

1.1 Artificial Neural Networks

The brain consists of about 1011 neurons, which have more than 1015 connections.

Neurons constitute the cell body (or soma), axons and dendrites, which will be shown

in Fig.1.1. The branch receives the input as a synapse of the synapses, and then sends

the information to the somatic cells. When the net stimulus reaches the threshold,

neurons heat and send information through the axons to other neurons. Neurons can

suppress or excite signals.

About 1011 neuron units are in the human nervous system. Neurons are in-

formation processing components with dendrites, cell bodies and axons. Synaptic

transmission involves complex chemical and electrical processes. Changes in synaptic

potentials triggered by sensory or chemical stimuli. Is used for the input signal to

the neuronal dendritic surface and usually passively accept their soma. Dendrites

are highly branched structures. It contributes to the initiation site of synaptic or

receptor potential impulse through self propagation. The axon converts these signals

into commonly known as spike trains.

ANN is the first McCulloc and Pitts proposed in 1943, they launched a research

hotspot of artificial intelligence.ANN neural network algorithm and mathematical

model based on the 1.2 is a research hotspot in the field of artificial intelligence, first

2

Figure 1.1: Structure of neurons

Figure 1.2: Structure of artificial neural networks

by McCulloc and suggest that they launched in 1943 based Pitts calculation model in

mathematics and neural network algorithm. The Fig.1.2 shows the structure of the

artificial neural network.

This model provides two different approaches to neural network research. Focus

on the biological processes of the brain, another focus on the field of application.

ANN is based on the biological neural network of the operation of the biological

neural system simulation. In the past few years, great progress has been made in the

research of artificial neural network, and successfully solves the automation control,

intelligent robot, biology, economics and practical problems in the field of pattern

recognition and estimation of many modern computers. Basically, artificial neural

networks have been shown to have good intelligence. In the next section, I will tell

3

you a number of artificial neural networks, such as MLP, ANFIS, Ellman network,

single neuron model (SMN).

1.1.1 The Multi-layered Perceptron

Since 80s, a large number of artificial neural network models have been put forward.

The most familiar patterns should be multi layer perception and Hopfield networks.

In this section, we will focus on the MLP that has been used for many problems. Due

to the ability of any input-output mapping, the MLP is well suited for prediction.

MLP is typically composed of nodes with several layers. For example, input layer,

hidden layer and output layer. The input layer is used to receive the external infor-

mation, and is used for the output layer to solve the problem. The input and output

layers are divided between different intermediate layers, which we refer to as hidden

layers. In Fig.1.3, I’ll give you a complete connection to the MLP, and the model has

only one hidden layer of the model.

For forecasting problems, the inputs to an ANN are usually used as the independent

variables or predictor variables. The formula estimated by the ANN can be written

as

y = f(x1, x2, ..., xp) (1.1)

Among them x1, X2, ..., xP is independent variable, y is the dependent variable. In

this case, the model functionally equals to the nonlinear regression model. And on

the other side, in the extrapolation and time series prediction, the input is usually the

past observation of the data sequence, the output is predictable value. ANN performs

the following functions mapping

yt+1 = f(ypyt−L, ..., yt−p) (1.2)

4

Figure 1.3: Layers in artificial neural network

Where yt is a observed value at the time t. Therefore, ANN equals to the nonlinear

auto regressive model for forecasting the time series. It is very easy to observe and

time lag two predictor combined neural network model and it equals to the general

transformed function models. ANN must be trained to perform any required tasks.

Basically, the training is a process which decides the arc weight as the key element

of ANN. The knowledge acquired by network learning is stored in the form of arc

weights and nodes and arcs. It should be noted that the connection arc that a neural

network may realize complex nonlinear mapping in the period which is from the input

node to the output node. MLP training is a desired response (target value) in the

network for each input mode (example). It is always available and supervised.

A form of a vector about input variables is training a data. Every element in the

connected input vector is an input node according to the network input layer. As a

result, the number of input nodes is the same as the input vector in dimensions. For

the cause and effect prediction problem, the number of those independent variables

5

corresponding to the problem is the number of its input nodes. However, for problem

of the time series prediction, it is a little difficult to decide the number of the input

nodes. No matter what size, the input vector of the time series prediction problem

will nearly include all the fixed length of the moving window with the series. The

whole number of the available data is often organized into training set and test set

(outside the sample or retention sample). Generally, the training set of an ANN is

for estimating the arc weights, while the remaining test set is used for measuring the

ability of the ANN in generating.

The process of training is typically organized as in the following. Firstly, a sample

set about to be is input to input node. The activation value of input node is weighted

and put together in every single one node in the hidden layer 1. Then the number

in total is converted to the node’s activation value by the activation function. If the

output activation value is appeared, it becomes the input of the nodes in the next

layer. The training algorithm is used to find the weight of the global error measure-

ment of the minimization and (SSE) or mean square error (MSE), for example, the

square error. For the time series prediction problem, the training mode is composed

of a series of fixed number of hysteresis observations. Assuming that we have N ob-

servations in the training set y1, y2, ..., yN , and we need a step forward prediction, we

have the use of ANN and it has N input nodes of the N-n training model in total.

The first model about being training is combined with y1, y2, ..., yn, and put as the

target output. The first training mode is composed of YN + 1. The next training

mode contains y2, y3, ..., yn+1 as input, yn+2 is output. In the last, the final training

mode is the target of the input yN−n, yN−n+1, ..., yN−1, yN . Typically, a SSE combined

with objective function or cost function is optimized to minimum during the training

process.

6

E =
1

2

N∑
i=n+1

(yi − ai)
2 (1.3)

where ai is the actual output belonging to the network . 1
2
is used for simplifying

the expression of derivatives evaluated in the training algorithm.

1.1.2 The Artificial Neuro-fuzzy Inference System

ANFIS is a multi-layer feed forward neural network. It takes neural network learning

algorithm and fuzzy inference to map the input space to output space. ANFIS uses the

ability to combine the linguistic capabilities of a fuzzy system combined with neural

network adaptive network and it has been proved that it is robust in simulation of

multiple processes.

ANFIS has extraordinary learning, construction, cost and classification ability. It

is equipped with the advantage that it is allowed to extract fuzzy rules from digital

data or expert knowledge and to establish the rule base adaptively. In addition, it

can simulate the human intelligence to the complex fuzzy conversion system. The

defect of the ANFIS model is that it takes a lot of time to train the structure and to

determine the time required for the parameter.

We suppose that there are two inputs in the fuzzy inference system. They are X

and Y as well as the output Z. Equations of the IF-THEN rules can been defined as

follows.

Rule1 : If x is A1 and y is B1 thenz1 = p1 ∗ x+ q1 ∗ y + r1 (1.4)

Rule2 : If x is A2 and y is B2 thenz2 = p2 ∗ x+ q2 ∗ y + r2 (1.5)

Among them, pi, qiandri(i = 1or2) are the linear parameters of the Sugeno fuzzy

model in the last part. The construct of the ANFIS combined with five layers

7

(Fig.1.4). A brief introduction to the model can be seen as follows.

O1,i = µAi
(x) fori = 1, 2 (1.6)

O1,i = µBi−2
(y) fori = 3, 4 (1.7)

Among them, y, i is the explicit input of node Ai, andx,Bi (small, large and so

on) are respectively by the appropriate membership functions. µAi and µBi are the

characterized by linguistic labels. Gauss and bell shaped membership function is more

and more used to specify the fuzzy set, due to the smooth and compact symbol. The

bell shaped membership function than Gauss membership function of a parameter,

therefore in adjusting the free parameters is close to non fuzzy set. In this study, the

use of bell shaped membership function.

µAi
=

1

1 + |fracx− ciai|2bi
(1.8)

µBi−2
=

1

1 + |fracy − ciai|2bi
(1.9)

Among them, ai, bi, ci is the parameter set. The set is the membership function of

the fuzzy if-then rule which is changing the shape of the membership function. The

parameters are called pre conditions.

The second layer: rule node. The AND operator is applied to obtain the result of

the antecedent of the rule, that is, the output of the emission intensity. The emission

intensity is the first part of the fuzzy rule to satisfy the degree, and the output function

of the fuzzy rule is plastic. As a result, the output of the layer is O2, and the k is the

product of the corresponding degree from layer 1.

8

O2,k = wk = µAi
(x) ∗ µBj

(y), k = 1, ..., 4; i = 1, 2; j = 1, 2 (1.10)

The third layer: average node. The main objective is to calculate the sum of the

emission intensities of each i rule and the emission intensity of all the rules. Therefore,

as the standard of the firing strength.

O3,j = w̄i =
wi∑4
k=1wk

, i = 1, ..., 4 (1.11)

The fourth layer: subsequent nodes. The fourth level node function calculates the

contribution of each of the first i rules to the total output and the defined function

O4,j = w̄ifi = w̄i(pix+ qiy + ri), i = 1, ..., 4 (1.12)

Where i is the output comes from the former layer. For pi, qi, ri, they are parame-

ters set in subsequent sections of the Sugeno fuzzy model.

Fifth layer: output node. A single node calculates all of the output under taking

all the input signals in a sum. As a result, the process of the solution of the model is

to convert the fuzzy result of each rule into the clear output in this layer.

O5,1 =
4∑

i=1

w̄ifi =

∑4
i−1 wifi∑4
i−1wi

(1.13)

Network based supervised learning. Therefore, our aim is to train the adaptive

network to approximate the function provided by the training data. Finding the exact

value of the parameters in next step.

The distinguishing feature of this method is useing the hybrid learning algorithm.

ANFIS uses it which calls the gradient descent method to update the parameters. The

method is used to adjust nonlinear parameters (ai, bi, ci). And in the least squares

method it is used to identify the subsequent linear parameters pi, qiandri. As shown

9

in figure 1. As shown in Figure 1, a circular node is not a fixed (i.e. non adaptive)

node with a parameter variable, and the square node has a parameter variable (which

changes the parameters during training). The request of learning process is divided

into two steps: in step one, the least squares method is used to identify the parameters

of the consequences. And the premise parameters (membership function) is assumed

under the fix of the current cycle through the training set. After that, the error

signal is transmitted back. The gradient descent method can update the prerequisite

parameters by optimizing the total two cost function.

The distinguishing feature of this method is that the ANFIS is updated with

hybrid learning algorithm, gradient descent method and least square method. The

gradient descent method is for adjusting the premise nonlinear parameters (ai, bi, ci).

In the mean time, least squares method is used to identify the subsequent linear

parameters pi, qiandri. As shown in figure 1. As shown in Figure 1, the circular

node is a fixed (i.e., non adaptive) node with no parameter variables. While the

square node has parameter variables (during training to change the parameters).

The target of learning process is divided into two phases: in the first phase, the least

squares method to identify the consequence parameters, and the premise parameters

(membership function) hypothesis through the training set of the current cycle is

fixed. Then, the error signal is propagated backwards. The gradient descent method

is prepared for updating the premise parameters by minimizing the total two function,

and the parameters are fixed.

1.1.3 The Elman Network

There are two main types of neural networks, feedforward and recurrent neural net-

works, based on the category of a structure viewpoint. The core model of the al-

gorithm is the Elman neural network model, one of the recurrent neural network.

Elman network first introduced in the work of Elman (Elman, 1990). Elman network

10

model has faster convergence speed, high accuracy and good generalization ability.

Fig.1.5 describes the original Elman neural network. From this figure, we can clearly

find that Elman net is an ANN with three layers of neurons. The first input layer

is composed of two different groups of neurons. One group includes external input

neurons, while the other group contains internal input neuron. Each kind of neuron

plays different role in the information processing procedure. In addition, the external

neurons are also known as the context unit. To be more specific, the input to the

context unit is the output of the hidden neuron that forms the second layer or the

hidden layer. On the other hand, the output of the context unit and the external

input neuron is fed to the hidden neuron. The context units are also called memory

cells because they store the previous output of the hidden neurons, thus makes the

Elamn neural network has more capacity of using associated memories to deal with

complex problems.

The training function of the network uses the Levenberg-Marquardt optimization

to update the weight and the deviation value. Adaptive learning function is a gra-

dient descent with momentum weight and deviation learning function. Performance

function to measure the performance of the network based on the mean of the squared

error. The transfer function of each neuron is the traditional Tan-Sigmoid transfer

function.

Generally speaking, in the feedforward network unit and a learning algorithm using

hidden, hidden within the unit input mode, the input to enable a network to acquire

the output in a way to those encoding mode. In the Elman construct, the context unit

remembers the former internal state. Therefore, the hidden unit needs to map the

external input and the former internal state to some desired output. As the mode in

hidden unit is a mode that is saved in the context, hidden units should implement this

mapping, and also generate a representation of the useful encoding of the properties

11

of the serial input.

Therefore, the internal representation is sensitive to time context. And the influ-

ence of time is implicit in these states. Note, however, that the time context of these

representations does not have to be literal. They represent a high level of task and

stimulus dependent memory. Theoretically, the original Elman neural network with

all the feedback connections from hidden layer to neuron can be represented by any

n order system, where n is the number of the context units.

1.1.4 The Single Multiplicative Neuron Model

The model of artificial single multiplication neuron was proposed by Yadav et al.

(2007). By using the statistical learning theory of Vapnik (Vapnik, 1998), the nonlin-

ear generalization, noise tolerance of the model and the input output mapping have

been studied. There are more details is in et al Yadav. (2007). The single neuron

model is sufficient for the application of conventional neural networks with multiple

neurons in different layers.

SMN model can be used to solve engineering problems, demonstrating its advan-

tages compared with other neural network models with simpler structure and lower

computational complexity. In addition, the nonlinear filter can deal with the addi-

tional noise, and can update the model parameters in the new observation data due

to the structure of the iterative algorithm. The model is shown as follows. A single

doubling neuron with learning algorithm is illustrated in Fig.1.6.

Among them (x1, X2, ..., xn) is the input mode. (w1, w2, wn) and (b1, b2, ..., bn) are

the weights and biases of the model. Operator ω such as multiplication in Eq.1.14 u

is equal to ω.

ω =
n∏

i=1

(wixi + bi) (1.14)

12

The output function is the logsig function defined as Eq.1.15.

y =
1

1 + e−u
(1.15)

The error between the output of the model and actual values can be minimized by

the learning algorithm.

1.1.5 Back Propagation Algorithm

In this study, the Elman network learning has been implemented using the reverse

propagation (BP) algorithm. The BP algorithm is a widely used algorithm in ANN

learning, which is used to modify the weights and thresholds of the connections among

neurons. It thus can map nonlinear processes. This well-known BP algorithm is

generally a systematic method, which is usually used for training multilayer neural

networks, and has shown many advantages as listed in the following. First of all, BP

has a strong mathematical foundation based on gradient descent learning. In addition,

it is the most widely used algorithm in the traditional neural network training. In

addition, BP algorithm also can be used in a new generation of neural network model,

for example, you can use the BP learning algorithm to train the Elman network.

Finally, the implementation of BP algorithm is very easy and can be realized in

hardware directly. Nevertheless, there are also many evidences that explain why BP

algorithm is inefficient in training most ANNs, especially due to its inherent local

minima trapping problems.

13

Figure 1.4: Architecture of the ANFIS

14

Figure 1.5: The Elman Network

Figure 1.6: Generalized single doubling neuron with learning algorithm

15

Chapter 2

Evolutionary Computation

The computational model of evolutionary computation is used as a key element in

soling problems. The existence of a lot of evolutionary computation models has been

proposed. We call it an evolutionary algorithm. They have a common conceptual

basis to simulate the evolution of nature animals through the process of selection

and regeneration. The first evolutionary algorithms can be traced back to 1950s

years (e.g., Fraser, 1957; Box, 1957). For simplicity, we won’t focus on this earlier

work. We will discuss in detail the three methodologies that have been proposed

in the past years: ”evolutionary programming” (et al Fogel. (1966), ”evolutionary

strategy” (Rechenberg, 1973) and ”genetic algorithm” (Holland, 1975). Although

each of these variants is implemented in a different way. Many applications have

been used by evolutionary algorithms. Such as data mining, pattern recognition and

complex functions. In this context, many features are added to the EA and it can

enhance the quality of the solutions. In this chapter, we provide an overview of EA,

and discuss the field that EA is commonly used in.

2.0.6 Genetic Algorithms

By Holland (1975) genetic algorithm (GA) on the development of the traditional use

of more domain independent said on the throne. However, many of GA’s recent ap-

plications focused on the other said, such as graph (neural network), Lisp expression

16

vector and an ordered list. It outlines a typical genetic algorithm (GA). After initial-

ization, the father is selected under the probability function by the calculated fitness.

In other words, these individuals with high calculated fitness are more likely to be

chose as parents. The child mutates and compares with the parent, if it is better,

then replaces the parent in the population. It is remarkable that the operations of

mutation and crossover is opposite to that of EP. In the GA , a number of small

probability turns over bits, and it can be considered as the background operator. In

other words, the reorganization is underlined as the search agent which has important

influence. GA is the optimizer, although its universal adaptability may have more

importance for some researchers (De Jong, 1992).

2.0.7 The Particle Swarm Optimization

PSO belongs to stochastic optimization algorithms. The idea of building PSO is not

inspired by the evolutionary mechanisms that are encountered in verbal choice but

gets the inspiration of the social behavior of groups of creatures such as birds and fish.

It has been observed that the behavior of the individual to constitute a group of basic

rules, such as the nearest neighbor velocity matching and the distance acceleration.

In this regard, PSO has claimed that the conscience of the mutation. The initial

purpose is to use the graphical simulation of a flock of elegant but unpredictable

movement.

PSO optimizes based on the population of the algorithm, which uses individual

groups to search the promising area. By this case, the population is called warm,

and the individual is called particle. Each particle moves with a individual speed in

the search space, and maintains its best position in its memory. In the global variant

of PSO, the best position for all individuals in the population is transmitted to all

particles. In a local variant, each particle is assigned to a neighborhood consisting of

a predetermined number of particles. In this case, the best position of the particles

17

that form the neighborhood is transferred between them.

PSO is a algorithm which uses the evolutionary techniques just like the genetic

algorithms. In PSO, each potential solution is treated as a particle with its own speed

in the search space. PSO is widely used in feature selection because particle swarm

will find the best feature combination when they are flying in the search space. GA

requires less operators in the operation of crossover and mutation than PSO. It only

needs the original and simplified operators. Also it has lower computational time.

The proposed algorithm has been compared with GA and other algorithms by the

experiments of UCI data.

PSO is a new natural inspired optimization algorithm implemented evolutionary

computation technique proposed by Kennedy and Kennedy (Eberhart and Eberhart,

1995a and Kennedy, and Eberhart, 1995b). The concept of particle swarm is simu-

lated from the social behavior of biological organisms. The first is to imitate birds

flocking elegant but unpredictable movement. PSO algorithm to simulate the be-

havior of birds and the exchange of information means to solve the optimization

problem. Each possible solution is assumed as a particle with its own velocity and

is ”flying” around in the problem space”. Each particle will update its velocity ac-

cording to its own flight experience and other particles’ flight experience. The best

region of complex search space is found by the interaction of the individual in the

particle swarm. PSO has been proved that it can successfully solve a mountain of

optimization problems.

PSO has some random solutions. The solutons are known as the ”particle” ini-

tialization. Each particle is assumed as a point in a search space with S dimensions.

The first I particle is Xi = (Xi1, Xi2, ..., xiS). The best position obtained so far of

any particle (best p, given the location of the optimal fitness value), and expressed

as Pi = (Pi1, P i2, ..., P iS). The index of the best particle in the population of all

18

particles is called the global best so far ”gbest”. The velocity of each particle to

change its position is expressed as V i = (V i1, V i2, ..., V iS) like the following equation

operator:

vkl = w ∗ vid + c1 ∗ rand ∗ (pkl − xid) + c2 ∗ rand ∗ (pgd − xid) (2.1)

xid = xid + vid (2.2)

Where d = 1, 2, ..., S, w is the inertia weight, which is based on the time variation

of the generation of the positive linear function. Selecting the inertia weight properly

provides a balance to switch between exploration and exploitation, and leads to an

average less iteration to find the optima. C1 and C2 in Eq.2.1 is the acceleration con-

stant. They represent the adjustment of the weight in the pbest and gbest positions

of each particle. A low value allows the particles to wander off the target area before

being dragged. The high values result in a quick movement toward the target area.

Rand is the range of [0, 1] in the two random functions.

Maximum speed of Max V is the limitation velocity of each particle. It limits the

size of each particle allowed to use the solution space. If Max V is too small, the

particle could not have a chance to fully explored beyond the local good region. And

it may lead to a result that particles trapped in local optima. But in reverse, the

Vmax is too high, the particles may fly over a good solution.

The Eq.2.1 provides a certain degree of memory for the ”flying particles”. It

allows the particle to explore wider space. It is the ”cognition” in the second part

of the equation, which is the private thoughts of each particle. The ”society” is

the cooperation between the particles. Eq.2.2 is used to update the velocity of each

particle by the distance between the previous speed of the particle and its current

position and its best position obtained so far. Then, the particles flew to the new

19

position. The performance of each particle is calculated by the predefined function.

2.0.8 Differential Evolution

Differential evolution (DE) can be said to be one of the stochastic optimization al-

gorithm parameter arguments currently in use the most powerful. DE operates in a

similar calculation step with the standard EA. However, different from the convention-

al DE, EA variables disrupt the current generation of population members randomly

selected and different population members of the scaling differences. Therefore, it is

not necessary to use a separate probability distribution to generate offspring. Many

researchers around the world have paid their attention to DE. Many optimization

algorithms have been proposed and their performance have been improved a lot since

the inception of DE in 1995.

The new millennium has witnessed the development of information technology as a

driving force behind the progress, especially in the field of design related computing.

The increasing complexity of computer programs, the availability of computing speed,

and the cost of continuous reduction have had a major impact on Civil Engineering,

which can be considered as a paradigm change.

Until recently, the design of the structure of the computer is mainly used for the

analysis purpose of the detailed design stage. Nowadays, the role of the design of

the structure of computers has becoming more and more different and diverse. Gen-

erally, they are utilized in all stages of the design process, from the formation of

conceptual design (design, layout or topology) through preliminary design (shape de-

sign specification), and finally to the detailed design process (structure dimension).

This requires a new intellectual and computational framework to fully benefit from

advances in information technology. In the computing paradigm, evolutionary com-

putation (EC) is now considered to be particularly suited to a variety of traditional

and novel computational applications in structural engineering.

20

The evolutionary computation uses the computational techniques based on evo-

lutionary principles in nature. The evolutionary principles are the guidance of flora

and fauna to make them suitable for living in the planet. They also use this principle

to connect with each other. DE uses this concept to implement into optimization

algorithm to find the solutions.

The first work to solve the problem of the use of evolutionary heuristics can be

traced back to the late 1950s. By Berg and Skei Vee Phil Reagan on evolutionary

strategy for independent research and almost at the same time, the research on ge-

netic algorithms and evolutionary programming for Fogel Holland, the research and

application of evolutionary technique.

Three elemental mechanisms driving the evolution of nature: reproduction, mu-

tation, and selection. They ultimately affect chromosomes that contain individual

genetic information, rather than the individual. Breeding is the process of introduc-

ing new individuals to get into groups. Recombination (or crossover) occurs during

sexual reproduction, which is transferred to the progeny chromosome, which is a mix-

ture of parental genetic information. Mutation causes small changes in the genetic

chromosome; it is often due to duplication of errors during reproduction. Choice is

a process of guiding the survival of the one which is suitable for the environment

by Darwin’s survival of the fittest. The most suitable for their environment, so the

survival and reproduction.

In general, evolutionary techniques have been widely considered as the search

mechanism or optimization techniques. As Michalewicz writes: ”any abstract tasks

to be completed can be thought of as a solution to a problem, which can be viewed

as a search space for a potential solution. Since we are usually in the ”best” solution,

we can view this task as an optimization process.”

From the beginning, we randomly generate a vector to create the initial population,

21

which will be modified throughout the execution of the algorithm. In fact, in each

generation, we deal with the current group represented by the PC, which has been

found to be acceptable as the initial point, or by comparison with other vectors:

P g
C,i = (Cg

i),withi = 0, 1, ..., Np − 1 (2.3)

Cg
i = (cgj,i), j = 0, 1, ..., D − 1 (2.4)

g = index of current generation (2.5)

Index g and I respectively represent the generation and population of the vector.

i, [0, Np-1], Np is the population size. In addition, J represents the index of each

element in the solution vector containing the D elements. The main feature of this

evolutionary algorithm, namely DE, is the exploration of feasible space. This is mainly

through the wisdom of the group size Np and the appropriate choice to ensure that.

In other words, it should not be too small to avoid stagnation and provide adequate

exploration. Np increased the number of induced functional evaluation; that is, the

convergence rate of the algorithm has a negative impact.

2.0.9 Mutation

Similar to genetic algorithms, DE begins with two parents and creates a child. Then

we randomly sample three vectors to re combine them. Eq.2.6 shows how to combine

three different vectors to produce a mutant vector:

M g
j,i = Cg

j,0 + A ∗ randgj,i(C
g
j,i − Cg

j,2) (2.6)

The scaling factor A is positive control group evolutionary rate selection. Although

there is no upper limit on the A, the RMS value is less than ”1”, and is a random

number between 0 and 1.

22

2.0.10 Crossover

Once generated, DE is associated with vectors from the current population of cross

mutant vectors. Results are obtained by using the following procedure:

T g
j,i =

 M g
j,i if(rgj,i ≤ Cr or j = jr)

Cg
j,i otherwise

(2.7)

Cr and [0,1] cross cross factor values of different elements based on vector. By

comparing the output of the factor and the uniform random number generator, we

determine the source of each element of the test vector. If the random number is

less than or equal to Cr, then the test parameters are inherited from the mutant;

otherwise, the parameters are copied from the current vector.

2.0.11 Selection

In the selection step of the algorithm, the test vectors are compared with the corre-

sponding target vectors supposed that they are connected with the objective function

values of the test vectors. The fitness of two individuals is generated in the next

generation Eq2.8.

Cg+1
i =

 M g
i if f(M g

i) ≤ f(Cg
i)

Cg
i otherwise

(2.8)

Once the current population is updated, it is through mutation, crossover and

selection to evolve again until the optimal value is found, or a predefined termination

criterion is reached.

23

Chapter 3

Using A Single Dendritic Neuron
to Forecast Tourist Arrivals to
Japan

3.1 Introduction

In the past few decades, the significant growth of international tourism has been

achieved in Japan, and the tourism industry has become a crucial contribution to

Japan’s economic development. According to the Japanese National Tourism Orga-

nization [1], there are nearly 1.85 million tourists will visit Japan in January 2016,

and it will record the highest figure for January on a monthly basis [2]. Chinese

tourists are going wild on a shopping spree in Japan, resulting a new word “Baku-

gai” in Japanese. It is highly important for Japanese tourism agencies including

government bodies and the private sector to understand the trends affecting monthly

tourist arrivals. Thus, the visitors planning a tourism to Japan may need to make

more detailed plan to avoid fastigium.

Linear parametric time series are usually used to construct forecasting models

which are applied by the traditional tourism demand researches. The most famous

are the autoregressive integrated moving average models [3–5], the naive method [6,7],

and the exponential smoothing model [8]. However, the predictions made by these

models are not precise enough to reach people’s expectation. Using these models to

24

simulate the tourism time series is also not a easy work [9, 10].

Recently, more and more nonlinear forecasting models are proposed to address the

above issues in the time series prediction. A piecewise linear method is proposed to

model and forecast the demand for the tourism, and the experimental results indicate

that the piecewise linear model is significantly more accurate than those autoregressive

models [11]. A regime switching detection and forecasting model is proposed in [12].

However, the performance of these models is limited to the problems of proper model

selection and data dependency [10,13].

On the other hand, machine learning techniques are developed for time series

forecasting, such as support vector machines [14–16], fuzzy time-series methods [17],

rough set approaches [18, 19], genetic programming [20], artificial neural networks

(ANNs) [21–28] and their hybridizations [29–32]. These complex non-linear models

overcome the limitation of linear models as they are able to capture non-linear pattern

of data, thus improving their prediction performance.

Among them, ANNs are receiving increasing interests due to their ability to adap-

t to imperfect data, functions of self-organizing, self-study, data-driven, associated

memory, and arbiter function mapping [9]. ANNs can learn from patterns and cap-

ture hidden functional relationships in a given data even if the functional relationships

are not known or difficult to identify [33, 34]. Using the training methods, an ANN

can be trained to identify the underlying correlation based on the inputs and out-

puts, and finally to generate appropriate outputs. A number of researchers have

utilized ANNs to predict tourism demand [24,25,27,31,35,36]. Kon and Turner [24]

announced a research about using ANN to predict in tourism. Empirical evidences

show that ANNs is better than the classical models in the performance of forecasting

the tourism. For example, the best performance was obtained by an ANN method

in [22] when compared it with the traditional models.

25

Although various ANNs have been proposed for tourism time series, it couldn’t

bahave a excellent performance when comparing with other algorithms in all prob-

lems [37] because each ANN has many properties and limitations which deteriorates

prediction results. For example, multiple-layered perceptron (MLP) has a good capac-

ity in applications, the back-propagation-based MLP has drawback in patterns which

have time independence. [38] proves that the time-delayed ANN can be suitable for

mapping the past and present values. But ANNs still has some limitations after ini-

tialization. [39]. The Elman recurrent ANN [40] has a better performance comparing

with the MLP as it has more time dependencies in data. However, the conventional

ANN algorithms based on the gradient descent approach have many drawbacks such

as slow convergence speed and time costs [41]. These drawbacks make it difficult to

be applied into practical problems.

In this paper, we propose a realistic single dendritic neuron model (SDNM) with

synaptic nonlinearities in a dendritic tree for tourism forecasting. The distinct char-

acteristic of SDNM is that the sense of locality of dendrites can be represented and

manipulated. For a specific given task, SDNM is able to detect the synapse which are

needed or not. [42,43]. This is realized by modeling the synaptic nonlinearity imple-

mented with a sigmoid function. Thus enabling single neuron to have the ability of

computing functions and approximating any complex continuous function [44,45]. On

the other hand, although the tourist arrivals time series apparently is one-dimension,

it actually contains high-dimensional information and is a result of many factors such

as the tourism policy which strongly influences the number of tourists, and thus mak-

ing the tourism data nonlinear, irregular, and difficult to be predicted. To address

this problem, we employ the phase space reconstruction (PSR) technique based on

the Takens’s embedding theorem [46] to handle the chaotic properties of the tourism

time series before using SDNM to perform the prediction. By doing so, single obser-

26

vations from the tourist arrivals can be transformed into a set of multiple dimensional

vectors with two parameters of time delay and embedding dimension. The accept-

able dimensions and time delay of the attractors in the tourism time series can be

obtained, and the data can obtain dynamic behavior and structural topology. Ac-

cording to the Lyapunov exponent of the reconstructed phase points of tourism time

series, SDNM is then used to perform short-term predications. Experimental results

of the forecasting of the monthly foreign tourist arrivals to Japan indicate that the

proposed SDNM is more efficient and accurate than other neural networks including

the MLP, the artificial neuro-fuzzy inference system (ANFIS), the Elman network

(Elman), and the single multiplicative neuron model (SMN).

The rest of the paper is organized as follows. Section 2 describes the SDNM in

details. Section 3 elaborates more about the prediction method by using PSR and

SDNM. Experimental results and discussions are organized in Section 4. Finally,

concluding remarks are presented in Section 5.

3.2 Single Dendritic Neuron Model

Compared with ANNs which utilize more than one neurons in information processing

procedure, many attentions have been paid to propose single neuron models, such as

the single multiplicative neuron model [47, 48] and the sigma-pi unit [49]. However,

these single neuron based models are based on the architecture of the McCulloch-

Pitts neuron which uses weights to represent the degree of clustering in different

synapses. Therefore, all sense of locality in dendrites is lost, and models may loss

the ability to present local interaction within a fixed dendritic tree. Moreover, the

nonlinear computational capabilities of these McCulloch-Pitts based single neuron

models are limited to solve complex problems, especially the non-linearly separated

problems [50].

27

Different from the McCulloch-Pitts neuron based models which do not consider

the dendritic structure in the neuron, it has been recently conjectured by a series of

theoretical studies that individual neurons could act more powerfully as computation-

al units by considering synaptic nonlinearities in a dendritic tree [51,52]. The various

types of synaptic plasticity and nonlinearity mechanisms allow synapses to play a

more important role in computations [53]. Synaptic inputs from different neuronal

sources can be distributed spatially on the dendritic tree and the plasticity in neuron

can result from changing in synaptic strength or connectivity, and the excitability

of the neurons themselves [54]. Moreover, a slight morphological difference can just

cause great functional variation, acting as filters to determine what signals a single

neuron receives and then how these signals are organized into a interger [55].

By taking the nonlinearity of synapses into consideration, a single dendritic neu-

ron model (SDNM) has been proposed in our previous researches [42,44,45]. In [42],

an unsupervised learning method was proposed for SDNM to learn two-dimensional

eight-directionally selective problems. In [44], an error back-propagation (BP) method

was used for training SDNM to perform cancer classification tasks. In [45], we demon-

strated that SDNM could be approximately realized by using logic NOT, AND and

OR operations. it is just the same as dendritic morphology, and thus was suitable

for a simple hardware application. In this study, we apply SDNM to perform the

tourism arrivals forecasting. The details of SDNM are described in the following and

its architecture is shown in Fig. 3.1.

SDNM is constituted by four layers including a synaptic layer which performs

sigmoid functions, a dendrite layer which acts as a multiplicative function for the

outputs of synapses, a membrane layer which actually is an addition function for the

outputs of all dendritic branches, and a soma function which uses another sigmoid

function to output the result of the entire single neuron.

28

Soma

O

X1 X2 XN

Dendrite 1

Dendrite 2

Dendrite M

Figure 3.1: The architecture of the single dendritic neuron model (SDNM).

3.2.1 Synaptic Layer

A synapse refers to the connection between neurons at a terminal bouton of a den-

drite to another dendrite/axon or the soma of another neural cell. The direction of

information flow is feedforward, from the presynaptic neuron to postsynaptic neu-

ron. The synapse can be either excitatory or inhibitory which depends on changes

in the postsynaptic potential caused by ionotropic. The function connecting the i-th

(i = 1, 2, ..., N) synaptic input to the j-th (j = 1, 2, ...,M) synaptic layer is expressed

by Eq. (3.1). The value k is a positive constant, the weight wij and the threshold θij

are the connection parameters.

Yij =
1

1 + e−k(wijxi−θij)
(3.1)

The sigmoid function becomes a step function when the initial value of k is too large.

Depending on the values of wij and θij, there are four connection examples: (1) A

constant 0 connection (when wij < 0 < θij or 0 < wij < θij). If the input is changed

from 0 to 1, the output is 0. (2) A constant 1 connection (when θij < wij < 0 or

29

θij < 0 < wij). If the input is changed from 0 to 1, the output will become 0. (3)

Excitatory connection (when 0 < θij < wij). If the input is changed from 0 to 1, the

output equals the input and the synapse will be an excitatory type. (4) Inhibitory

connection (when wij < θij < 0) where the synapse will be an inhibitory type and

the output will reverse input in this case.

3.2.2 Dendrite Layer

The dendrite layer is the nodes between each branch. It should be noted that a

soft-minimization operator was utilized in our previous dendritic neuron model [42]

to deal with binary input classification problem, while the multiplicative operation

adopted in this study can address real number input problems. The multiplication is

just the same as the logic AND operation whenever the value of inputs and outputs

of the dendrites are 1 or 0. The output equation for the j-th branch can be given as

follows.

Zj =
N∏
i=1

Yij (3.2)

3.2.3 Membrane Function

The branch results will be summed by an operation, which is similar to a logic OR

operation in the binary case. The output is approximated as follows.

V =
M∑
j=1

Zj (3.3)

3.2.4 Soma Function

The results of the output can be calculated by follows.

O =
1

1 + e−ksoma(V−θsoma)
(3.4)

30

The parameter ksoma is set as a positive constant and the threshold θsoma is variable

from 0 to 1.

3.2.5 BP-like Learning Method

The equation of error is as follows.

E =
1

2
(T −O)2 (3.5)

The wij and θij are the connection during learning. The output vector produced by

the input vector is compared to the target vector. It can lower the error between

output vector and teaching signal T vector by correcting wij and θij. The method of

calculating the value of error can be shown as follows:

∆wij(t) = −η
∂E

∂wij

(3.6)

∆θij(t) = −η
∂E

∂θij
, (3.7)

where η represents the learning constant and it is a positive constant. The updating

rules for wij and θij are defined as:

wij = wij +∆wij(t) (3.8)

θij = θij +∆θij(t), (3.9)

where t is the learning epoch. Moreover, the differentials of E with respect to wij

and θij can be calculated as follows.

31

∂E

∂wij

=
∂E

∂O
· ∂O
∂V
· ∂V
∂Zj

· ∂Zj

∂Yij

· ∂Yij

∂wij

(3.10)

∂E

∂θij
=

∂E

∂O
· ∂O
∂V
· ∂V
∂Zj

· ∂Zj

∂Yij

· ∂Yij

∂θij
(3.11)

3.2.6 Remarks regarding Characteristics of SDNM

• The architecture of SDNM is similar to those of multiplicative neuron models

and sigma-pi models. They are multiple-layered and signals are transferred in

a feedforward manner. As a result, the functions used in these models can be

reciprocated. For example, the radial basis functions using Gaussian kernels,

a simplified fuzzy logic formulation and kernel-regression models are able to

be represented by a variation of sigma-pi formulation [56]. Furthermore, some

of them are isomorphic (e.g. the augmented two-layer neuron model 2LM is

isomorphic to a traditional ANN [57]).

• Multiplication is both the simplest and one of the most widespread of all nonlin-

ear operations in the nervous system [58]. Taking advantage of the multiplication

operation which is essential and important to the information processing in a

neuron [59], the computation in synapses is innovatively modelled using sigmoid

functions. Depending on the values of the parameters in synapses, the output

of synapses can successfully represent excitatory, inhibitory, constant 0 and con-

stant 1 signals, which is benefit for identifying the morphology of a neuron [42].

• SDNM has been successfully applied on a number of classification problems, such

as XOR [60], cancer diagnosis [44], Iris and Glass datasets [45]. On the contrary,

some other dendritic neuron models are not able to solve such nonlinearly sepa-

rated problems [50] (e.g., the Legenstein-Maass model [61]). More importantly,

the classifier resulted from SDNM can be easily implemented in hardware [45]

32

using logic circuits.

3.3 Forecasting Framework for Tourist Arrivals

The framework for forecasting the tourist arrivals based on PSR and SDNM is shown

in Fig. 3.2, where PSR is utilized to analyze the behavior of tourism time series based

on the Takens’s embedding theorem and SDNM is used to perform the predication.

Following Fig. 3.2, the procedures of the forecasting method are summarized as in

the following.

3.3.1 Input Time Series Data

Let xt be the one-dimensional tourism time series at time t, (t = 1, 2, ...). First of

all, xt is input and processed using a normalization method to the range of [0, 1]

according to Eq. (3.12).

yt =
xt −MIN(xt)

MAX(xt)−MIN(xt)
(3.12)

where yt is the normalized data to alleviate the problem of inconsistent measures for

different time series data, and MAX (MIN) returns the maximal (minimal) value

of the vector.

3.3.2 Phase Space Reconstruction

As we can assume that tourism is chaotic and unpredictable. And because of the

properties, the forecasting of it is very difficult. Thus, making predictions in the

phase space based on PSR is easier than using a one-dimensional time series. PSR

is regarded as the basis of chaotic time series and widely used in non-linear system

analysis. It is a theory for inferring geometrical and topological information related

to a dynamical attractor based on observations. Takens [46] proposed the delay

33

coordinates method of PSR for time series analysis, and proved that PSR can unfold

the time series into an m-dimensional embedding space while retaining the topology

of the higher dimensional dynamic system with the chaotic attractor.

Two parameters of the time delay τ and the embedding dimension m are very

important in PSR. Theoretically any value of τ can be easily found in delay time.

But the appearance of the transformed attractor relays on the choice of embedding

lag. And the standard to judge the value is suitable for τ or not is that the value

must bear the function to separate the data in the time series as to have a smooth

reconstruction of the attractor. In this study, we use an appropriate embedding

dimension m and time delay τ to transform the phase space. The Grassberger-

Procaccia algorithm [62] is used to determine the embedding dimension m and the

mutual information function [63] is used to calculate the time delay τ . More details

regarding the implementation of these two methods are interpreted in Section 4. As

a result, a reconstructed phase space can be represented by a matrix (P, T)′ for the

normalized time series yt, t = 1, . . . , N , where

P =



y1 y2 ... yN−1−τ(m−1)

y1+τ y2+τ ... yN−1−τ(m−2)

...

y1+τ(m−1) y2+τ(m−1) ... yN−1


(3.13)

T = (y2+τ(m−1), y3+τ(m−1), . . . , yN) (3.14)

In the training and forecasting process of SDNM, P is used as the input data, while

T is treated as the target data.

34

Tourism Time Series

Time delay calculation using

mutual information method

Embedding dimension calculation using

Grassberger -Procaccia method

PSR based on Taken s s theorem

Calculate maximum Lyapunov exponent

Training SDNM using BP-like learning

method

Prediction using trained SDNM

Lower

Dimensional

space

Higher

Dimensional

space

Output prediction results

Figure 3.2: Prediction framework based on the proposed SDNM.

3.3.3 Maximum Lyapunov Exponent Calculation

To determine whether a long-term or a short term predication of the trajectory of

the tourism can be made, it is necessary to calculate the Lyapunov exponents of

the time series which is able to quantitatively characterize the chaotic attractor.

When Lyapunov exponent is greater than 0, the time series will become chaotic [64].

The Wolf method [64] is used to calculate the maximum Lyapunov exponent under

the condition of chaotic time series. t0 is set as the initial time and the yt0 is the

transformed first phase points, where the minimum length compares yt0 with its

adjacent phase points is L0. The distance L′
0 > ε has a positive variable value when

35

Jan. 1996 Jan. 1998 Jan. 2000 Jan. 2002 Jan. 2004 Jan. 2006 Jan. 2008 Jan. 2010 Jan. 2012 Jan. 2014
0

0.5

1

1.5

2

2.5

3
x 10

5

China

Korea

Hong Kong

Thailand

Taiwan

Singapore

Australia

USA

Canada

UK

Jan. 1996 Jan. 1998 Jan. 2000 Jan. 2002 Jan. 2004 Jan. 2006 Jan. 2008 Jan. 2010 Jan. 2012 Jan. 2014
0

2

4

6

8

10

x 10
5

M
o

n
th

ly
 T

o
u

ri
st

 A
rr

iv
a

ls

Asia

Europe

Africa

NorthAmerica

SouthAmerica

Oceania

Figure 3.3: The monthly tourist arrivals from ten major source markets and six continents to Japan.

the time is t1, L
′
0 = ||yt1 − yt0 ||. If another phase point y1t1 with L1 = ||yt1− y1t1 || < L′

0

is found, then L′
0 will be substituted. The maximum Lyapunov exponent can be

calculated as follows.

λmax =
1

tm − t0

m∑
i=0

ln
L′
i

Li

(3.15)

The prediction is allowed in a short length when the system is chaotic. But the length

is unknown unless we use reciprocal Lyapunov exponent in theory [65,66].

∆t =
1

λmax

(3.16)

When the maximum Lyapunov exponent is greater than 0, the system comes into

a chaotic condition. And if the Lyapunov exponent keeps increasing and is greater

than one, the sampling frequency will be more compared with the predictable limit.

In this condition, the prediction using chaotic time series will not be reliable. So

the maximum Lyapunov exponent should be greater than 0 and less than 1. The

prediction will be more reliable in a long length when the Lyapunov exponent is

36

approaching to 0.

3.3.4 Prediction using SDNM

When the reconstruction of phase space and maximum Lyapunov exponent calcu-

lation accomplished, we carry out the prediction for tourism arrivals based on the

SDNM described in Section 2. First, we divide all time series data into two parts:

one is used as training data set and the other is used to verify the prediction accura-

cy. Then we implement the BP-like learning method to optimize the weights wij and

thresholds θij in the synaptic layer of SDNM until a learning termination condition

is fulfilled. In this study, a maximum learning epoch Lmax is used as the termination

condition. Finally, we output the prediction results using some assessment methods.

3.4 Experimental Results and Analysis

We use our proposed method to study monthly foreign tourist arrivals to Japan from

the eight major markets of China, Korea, Hong Kong, Thailand, Taiwan, Singapore,

Australia, USA, Canada and UK, and form six continents of Asia, Europe, Africa,

North America, South America, and Oceania, respectively, from January 1996 to

December 2014. These data are published by Japanese National Tourism Organi-

zation [1]. Fig. 3.3 illustrates these data in one-dimensional time series. For each

sequence of the tourism arrival, there are 228 points, where the first 168 (14 years)

points are employed for SDNM learning and the remaining 60 (5 years) points for ver-

ification. All experiments are conducted using Matlab (R2013) software on a personal

PC with Intel(R) Core i5, 1.70GHz and 4GB memory.

37

3.4.1 Time Delay and Embedding Dimension

The time delay which we set to τ is calculated to take the value for which the mutual

information has its first minimum [63]. The mutual information I(y, yτ) between two

time series y = {yt1 , yt2 , ..., ytN} and yτ = {yt1+τ , yt2+τ , ..., ytN+τ} is the average bits

where y was predicted by the measurement from yτ . I(y, yτ) can be represented as

I(τ) = I(y, yτ) = H(y) +H(yτ)−H(y, yτ) (3.17)

where H(y) and H(yτ) are the entropy of y and yτ respectively. H(y, yτ) is the

mutual entropy between y and yτ . Generally, the moment of the first minimal mutual

information is taken as the optimal delay time for PSR. Fig. 3.4 shows the time

delay sequence of the monthly tourism arrivals time series from China to Japan with

respect to the mutual information. It is apparent that the time delay is 3 months as

the first minimal mutual information appears, namely τ = 3. All the time delays for

ten major source markets and six continents are summarized in Table 3.1 and Table

3.2 with the values located in the interval of [2, 7].

Once the time delay is determined, Grassberger-Procaccia algorithm is used to

calculate the embedding dimension. First, the correlation integral C(r) is calculated:

C(r) =
2

Nm(Nm)− 1

∑
1≤i≤j≤Nm

φ(r − |yi − yj|) (3.18)

where Nm = N − τ(m − 1), r is the chosen radius and φ(·) is the Heaviside func-

tion. The correlative dimension D(m) (D(m) = ln(C(r))/ln(r)) increases with the

increment of the embedding dimension m, and gradually converges to a saturation

value. We plot ln(C(r)) vs. ln(r) for different m, which is presented in Fig. 3.5,

for the monthly tourism arrivals time series from China to Japan. Intuitively, sev-

eral nearby parallel line segments exist in the figure, which indicate that when ln(r)

38

1 2 3 4 5 6 7
−1.6

−1.55

−1.5

−1.45

−1.4

−1.35

−1.3

Time Delay

M
u

tu
a

l I
n

fo
rm

a
ti

o
n

Figure 3.4: The mutual information versus time delay for tourism time series from China to Japan
after PSR.

varies in [9.5, 13], the embedding dimension m varies from 1 to 20. The slopes of

the line portion can be estimated as the correlation dimension which is shown in Fig.

3.6. The embedding dimension is determined as the value when D(m) first reaches

a stable value. Thus, we obtain m = 8 for the monthly tourism arrivals time series

from China to Japan. The values of the embedding dimension for other time series

instances are summarized in Table 3.1 and Table 3.2.

3.4.2 PSR and Lyapunov Exponent

Using the obtained time delay τ and embedding dimension m, we reconstruct the

phase space by Eqs. (3.13) and (3.14) from the original one-dimension time series.

The reconstructed phase space is exhibited using a three-dimensional phase space,

in the condition that embedding dimension m = 8 in the tourism time series of

China, which means that describing the information onto a lower-dimensional space

will be very hard. But we contrive a method that locating three vectors in different

three-dimensional phase space will not lose the distortion factor because the three

39

9.5 10 10.5 11 11.5 12 12.5 13
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

ln(r)

ln
(C
(r
))

Figure 3.5: The correlation function, ln(C(r)) versus ln(r) of the monthly tourist arrivals from China
to Japan.

dimensions contributed to the geometric representation. Because of this, the vectors

can also intuitively represent the structure of the attractor. It is shown in Fig. 3.7 that

it depicts the results of PSR using two three-dimensional vectors (yt, yt+3τ , yt+6τ) and

(yt+τ , tt+4τ , tt+7τ) for the PSR results of China, respectively. Both three-dimensional

vectors show clear chaotic attractors, which suggest that the distributed trace for

the tourism exhibits the property of dissipation, and thereby indicating that it is an

dynamic system despite possessing the features of a strange attractor. Similar PSR

results can also be plotted for the other tourism time series.

The Lyapunov exponents are the average exponential rates of convergence of adja-

cent orbits in phase space. All maximum Lyapunov exponents (MLE) for the tourism

time series are calculated to verify whether the tourism system is chaotic and further

to determine the limitation of the predication. The MLE results are also summarized

in Table 3.1 and Table 3.2, and these MLE are positive values between [0, 1] for all

cases, indicating chaotic behaviors. Besides, as the obtained MLE has relative large

40

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Embedding dimension: m

C
o

rr
e

la
ti

o
n

 d
im

e
n

si
o

n

Figure 3.6: Correlation dimension (fitted ln(C(r)/ln(r))) versus the embedding dimension for tourism
time series from China to Japan after PSR.

values, it is more reliable to predict the tourism arrivals in a shorter time range (i.e.,

to perform a short-term forecasting).

3.4.3 Short-term Forecasting and Performance Comparison

Generally, with the length of the time range to be forecasted increasing, the predica-

tion accuracy will decrease. In this study, we use five years as the forecasting time

length to evaluate the performance of our proposed method. It is worth emphasizing

that, within the five years, the former estimated values will be used to forecast the

latter values bases on PSR. In addition, user-defined parameters in SDNM influence

the prediction performance for the tourism time series. These parameters include the

number of dendrites M , the parameter k in synapses (Eq. (1)), the parameters ksoma

and θsoma in the soma function (Eq. (4)), the BP learning rate η (Eqs. (6) and (7)),

and the maximum learning epoch Lmax. It should be noted that the input number

parameter N is set to be the embedding dimension m in SDNM. It is not trivial to

41

0

1

2

3

x 10
5

0
0.5

1
1.5

2
2.5

x 10
5

0

0.5

1

1.5

2

2.5

3

x 10
5

Figure 3.7: Three-dimension phase space for tourism time series from China to Japan after PSR.

set these parameters to obtain the best performance for SDNM, and generally no sys-

tematic procedure exists to find out the optimal values for these parameters except

the exhaustive method which is very time-consuming. Moreover, it is clear that the

parameter M plays a significant influence on the computational time of SDNM.

As a preliminary experiment, we use Taguchi’s method [67] to find a reasonable

setting combination of these parameters. Taguchi’s method tests part of the possible

combinations among factors and levels instead of full factorial analysis, and it commits

to a minimum of experimental runs and best estimation of the factor main effects

over the process [68]. The number of levels for each of the five factors (i.e., the

user-defined parameters) is set as follows: four levels for the number of dendrites,

that is M = 1, 3, 5, 10; four levels for the parameter k, that is k = 1, 3, 5, 10; four

levels for the parameter ksoma, that is ksoma = 1, 3, 5, 10; four levels for the parameter

θsoma, that is θ = 0, 0.3, 0.5, 0.9; and four levels for the BP learning rate η, that is

η = 0.005, 0.01, 0.05, 0.1, respectively. A full factorial design of experiment should

42

Table 3.1: Results of PSR for the monthly tourist arrivals from ten major source markets to
Japan: the embedding delay τ , the embedding dimension m, and the maximum Lyapunov exponents
MLE.

Country τ m MLE
China 3 8 0.2510
Korea 2 12 0.0779
Hong Kong 3 6 0.3060
Thailand 4 4 0.2121
Taiwan 5 4 0.1416
Singapore 2 18 0.0173
Australia 2 13 0.0333
USA 4 12 0.2520
Canada 2 10 0.1269
UK 2 12 0.0669

Table 3.2: Results of PSR for the monthly tourist arrivals from six continents to Japan: the
embedding delay τ , the embedding dimension m, and the maximum Lyapunov exponents MLE.

Continent τ m MLE
Asia 2 12 0.0067
Europe 2 14 0.0473
Africa 4 6 0.3339
North America 7 9 0.0146
South America 3 9 0.0691
Oceania 2 14 0.0467

result in a total of 45 = 1024 experiments. In contrast with the full factorial analysis,

the Taguchi’s method uses the orthogonal arrays reducing the number of experimental

runs, and controlling the cost of time, manpower and materials, effectively. Thus,

an orthogonal array L16(4
5) which contains only 16 experiments is adopted in the

preliminary study.

Table 3.4 summarizes the experimental results based on the orthogonal array and

factor assignment, where the MSE values are displayed in the form of “Mean ±

Standard Deviation over 25 runs, and computational times are average values in

seconds. As a result, aiming to reduce the running time of training and forecasting, we

adopt an acceptable setting of these user-defined parameters based on our preliminary

experimental results, shown as: M = 1, k = 5, ksoma = 5, θsoma = 0.5, η = 0.05, and

Lmax = 1000. Nevertheless, it is worth noticing that we have to be cautious about

43

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
x 10

5

Data Number

T
o

u
ri

sm
 T

im
e

 S
e

ri
e

s

Training and Prediction

Training Prediction

Actual value

Predictive value

0 100 200 300 400 500 600 700 800 900 1000
0.014

0.015

0.016

0.017

0.018

0.019

0.02

Learning Epoch

M
S

E

Error

Mean Squred Error of Training Phase

0.5 1 1.5 2 2.5

x 10
5

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
5

Target

O
u

tp
u

t
~

=
 0

.7
3

*T
a

rg
e

t
+

 3
.4

e
+

0
4

RF = -0.8598

Data

Fit

Y = T

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

x 10
5

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
5

Target

O
u

tp
u

t
~

=
 0

.5
3

*T
a

rg
e

t
+

 7
.8

e
+

0
4

RP = 0.75175

Data

Fit

Y = T

(a) (b)

(c) (d)

Figure 3.8: Performance of proposed method for the tourism time series of Korea to Japan: (a) train-
ing and prediction results, (b) convergence graph based on the BP-like learning, (c) the correlation
coefficient of fitting, and (d) the correlation coefficient of prediction.

generalizing our conclusions here until a full factorial analysis is completed.

We use three assessments to evaluate the performance of SDNM, and compare

SDNM with the traditional MLP network model [69], the Elman neural network [70],

the ANFIS [71] and the SMN [47]. The three assessment criterions are calculated

based on Eqs. (3.19) and (3.20).

• The mean square error (MSE) of the predictor for the normalized data is:

MSE =
1

n

n∑
i=1

(O − T)2 (3.19)

44

• The correlation coefficient of fitting (RF) and the correlation coefficient of pre-

diction (RP) is calculated for the training phase and predication phase, respec-

tively:

R =

∑n
i=1(T − T)(O −O)√∑n

i=1(T − T)2
∑n

i=1(O −O)2
(3.20)

where O is the vector of the output of the used predication model, T is the vector of

the true values, and n is the number of data samples (168 in the training phase and

60 in the predication phase).

We implement all predication models for 25 independent runs and the average

performance values are summarized in Tables 3.3 and 3.5 for the ten major source

market data and six continents data, respectively. In MLP, Elman, ANFIS, and SMN,

we adopt the reported values in the original reference for the user-defined parameters.

From Tables 3.3 and 3.5, it is clear that all the MSE obtained by SDNM are less than

2.1E− 2, thereby it has the capacity to demonstrate the high accuracy in predicting.

The RF and RP values are worse than those obtained using MLP, Elman, ANFIS,

and SMN under the condition of using same data. The computational time consumed

by SDNM is the least among the five compared models.

Moreover, we plot a typical running result for the tourism time series of Korea in

Fig. 3.8, where (a) depicts the data fitting graphs of training and predication; (b) gives

a convergence graph of the training phase; (c) illustrates the correlation coefficient of

fitting; and (d) is the correlation coefficient of prediction. From this figure, we can find

that both training and predication the outputs values obtained by SDNM are quite

near the actual values, and a quick convergence is acquired, suggesting that the SDNM

is somewhat easy to be trained. Relative high values of the correlation coefficients

in training phase (RF = 0.8598) and predication phase (RP = 0.75175) can be

obtained, verifying that the proposed model ban be utilized with great confidence.

45

All in all, from the experimental results it can be said that SNDM outperforms its

competitor models in terms of predication accuracy and computational time.

3.5 Conclusions

In this study, we presented a short-term forecasting model based on a single dendritic

neuron model (SDNM) for the tourism arrivals predication. First, chaotic properties

of the tourism time series were using three classic indicators in Takens’s theorem,

including the time delay, the embedding dimension, and the maximum Lyapunov

exponent. Then SDNM was used to perform the predication under the condition

of the transformed technique of phase space. Experimental results can clearly show

that the model does not only has high prediction accuracy but also has fitting effect.

Performance comparisons demonstrated the superiority of SDNM.

The contributions of this study can be drawn into three conclusions. Theoretically

the neural network models outperform the linear models in predicting nonlinear vari-

ables [10, 13, 24]. From the application perspective, SDNM based on PSR provides

an effect alternative to learn the chaotic propensities of time series. In practice, the

comparative experiment results might give some insights into the selection of neural

models for decision makers.

This study opens the door to the following future research. First, more applica-

tions should be made on optimization, classification, and predication problems for

SDNM to further verify its information processing capacity. Second, settings of the

user-defined parameters need to be investigated systematically and some self-adaptive

setting mechanisms should be developed. Last but not least, the hardware implemen-

tation of the approximated SDNM [45] can also be realized.

46

Table 3.3: Experimental results the monthly tourist arrivals from ten major source markets to
Japan.

MLP Elamn ANFIS SMN SDNM
China MSE 4.1E-2 5.2E-2 2.0E-2 2.1E-2 1.9E-2

RF 0.53 0.46 0.75 0.73 0.77
RP 0.11 0.04 0.66 0.65 0.68
Time 12.6 14.7 11.9 4.9 2.9

Korea MSE 3.2E-2 2.5E-2 2.7E-2 1.8E-2 1.5E-2
RF 0.71 0.78 0.76 0.80 0.82
RP 0.34 0.43 0.55 0.69 0.73
Time 12.3 14.5 11.6 4.5 2.7

H. K. MSE 4.5E-2 5.0E-2 3.8E-2 2.9E-2 2.1E-2
RF 0.64 0.44 0.57 0.71 0.80
RP 0.17 0.12 0.22 0.45 0.71
Time 12.8 14.6 11.8 4.8 2.8

Thail. MSE 4.1E-2 3.7E-2 3.9E-2 2.6E-2 1.9E-2
RF 0.60 0.69 0.77 0.78 0.83
RP 0.25 0.48 0.63 0.69 0.75
Time 12.9 14.5 11.7 4.9 2.8

Taiwan MSE 3.4E-2 3.7E-2 1.9E-2 2.0E-2 1.3E-2
RF 0.78 0.73 0.80 0.83 0.86
RP 0.66 0.69 0.71 0.68 0.82
Time 12.8 14.3 11.8 4.6 2.8

Sing. MSE 2.1E-2 1.1E-2 7.8E-3 8.1E-3 6.3E-3
RF 0.73 0.88 0.92 0.95 0.97
RP 0.55 0.80 0.86 0.89 0.92
Time 12.4 14.1 11.7 4.5 2.7

Austr. MSE 2.8E-2 2.9E-2 1.8E-2 1.7E-2 1.5E-2
RF 0.79 0.77 0.80 0.82 0.85
RP 0.65 0.64 0.72 0.80 0.83
Time 12.5 14.2 11.9 4.6 2.8

USA MSE 3.1E-2 3.6E-2 1.9E-2 2.1E-2 1.9E-2
RF 0.65 0.71 0.79 0.81 0.82
RP 0.63 0.56 0.74 0.62 0.78
Time 12.4 14.5 11.7 4.6 2.7

Canada MSE 2.9E-2 3.1E-2 1.6E-2 1.9E-2 1.6E-2
RF 0.80 0.73 0.83 0.81 0.85
RP 0.71 0.58 0.71 0.64 0.81
Time 12.5 14.6 11.8 4.5 2.8

UK MSE 2.8E-2 2.9E-2 1.5E-2 1.8E-2 1.3E-2
RF 0.76 0.83 0.88 0.78 0.90
RP 0.69 0.67 0.84 0.69 0.84
Time 12.6 14.7 11.9 4.5 2.8

47

Table 3.4: Results based on the L16(4
5) orthogonal array and factor assignment.

No. M k ksoma θsoma η MSE (×10−2) Time
1 1 1 1 0 0.005 3.63± 0.58 2.8
2 1 3 3 0.3 0.01 2.01± 0.45 2.8
3 1 5 5 0.5 0.05 1.57± 0.37 2.8
4 1 10 10 0.9 0.1 1.83± 0.46 2.8
5 3 1 3 0.5 0.1 1.61± 0.57 8.8
6 3 3 1 0.9 0.05 1.56± 0.73 8.8
7 3 5 10 0 0.01 2.33± 0.75 8.8
8 3 10 5 0.3 0.005 1.98± 0.81 8.8
9 5 1 5 0.9 0.01 3.45± 1.24 12.7
10 5 3 10 0.5 0.005 2.23± 0.95 12.7
11 5 5 1 0.3 0.1 2.35± 1.02 12.7
12 5 10 3 0 0.05 2.77± 1.45 12.7
13 10 1 10 0.3 0.05 3.05± 1.68 18.5
14 10 3 5 0 0.1 2.94± 1.43 18.5
15 10 5 3 0.9 0.005 2.37± 1.02 18.5
16 10 10 1 0.5 0.01 1.84± 0.53 18.5

Table 3.5: Experimental results the monthly tourist arrivals from six continents to Japan.

MLP Elamn ANFIS SMN SDNM
Asia MSE 5.2E-2 4.7E-2 2.9E-2 3.9E-2 2.0E-2

RF 0.31 0.45 0.72 0.72 0.78
RP 0.11 0.19 0.60 0.59 0.62
Time 12.7 14.9 11.9 4.7 2.8

Europe MSE 3.6E-2 3.1E-2 1.8E-2 2.1E-2 1.3E-2
RF 0.79 0.75 0.83 0.76 0.88
RP 0.43 0.51 0.76 0.53 0.80
Time 12.8 14.8 11.8 4.8 2.7

Africa MSE 3.1E-2 2.5E-2 1.7E-2 1.8E-2 1.3E-2
RF 0.69 0.76 0.86 0.91 0.93
RP 0.55 0.62 0.78 0.83 0.87
Time 12.8 14.8 11.8 4.8 2.8

N. Ame. MSE 2.5E-2 2.2E-2 1.9E-2 2.0E-2 1.7E-2
RF 0.84 0.80 0.85 0.74 0.84
RP 0.77 0.78 0.81 0.72 0.77
Time 12.9 14.9 11.8 4.9 2.9

S. Ame. MSE 3.1E-2 2.9E-2 2.1E-2 1.8E-2 1.6E-2
RF 0.79 0.89 0.82 0.79 0.89
RP 0.65 0.73 0.76 0.73 0.81
Time 12.8 14.8 11.8 4.9 2.9

Oceania MSE 3.3E-2 2.9E-2 2.3E-2 1.8E-2 1.7E-2
RF 0.78 0.79 0.75 0.85 0.87
RP 0.62 0.75 0.67 0.76 0.80
Time 12.8 14.8 11.9 4.8 2.8

48

Chapter 4

Handling Multiobjectives with
Adaptive Mutation based
ε-Dominance Differential Evolution

4.1 Introduction

Differential evolution (DE) algorithm [72] is a novel technique that was originally

thought to solve the problem of Chebyshev polynomial. It is a population based s-

tochastic meta-heuristic for global optimization on continuous domains which related

both with simplex methods and evolutionary algorithms. Due to its simplicity, robust-

ness, and effectiveness, DE is successfully applied in solving optimization problems

arising in various practical applications [73], such as data clustering, image process-

ing, etc. DE outperforms many other evolutionary algorithms in terms of convergence

speed and the accuracy of solutions. Its performance, however, is still quite depen-

dent on the setting of control parameters such as the mutation factor [74] for complex

real-world optimization problems, especially those with multiple objectives [75,76].

In multiple objective problems, several objectives (or criteria) are, not unusually,

stay in conflict with each other, thus requiring a set of non-dominated solutions,

i.e., Pareto-optimal solutions to be the candidates for decision. The general goals

of this requirement are the discovery of solutions as close to the Pareto-optimal as

possible, and the distribution of solutions as diverse as possible in the obtained non-

49

dominated set. Many works have been reported to satisfying these two goals. Wang

et al. [77] proposed a crowding entropy-based diversity measure to select the elite

solutions into the elitist archive. Zhang et al. [78] utilized the direction information

provided by archived inferior solutions to evolve the differential mutations. Gong

et al. [79] introduced the ε-dominance and orthogonal design into DE to keep the

diversity of the individuals along the trade-off surface. More recently, Chen et al. [80]

proposed a cluster degree based individual selection method to maintain the diversity

of non-dominated solutions. A hybrid opposition-based DE algorithm was proposed

by combining with a multi-objective evolutionary gradient search [81]. Although these

variants of multi-objective DE have demonstrated that DE is suitable for handling

multiple objectives, rare work, however, is carried out to discuss the setting of control

parameters involving the mutation factor in the multi-objective DE.

Based on the above consideration, in this work, we proposed an adaptive mutation

operator into DE to avoid the premature convergence of non-dominated solutions.

In the former searching phases, the setting of mutation scale factor F remains large

enough to explore the search space sounding to the non-dominated solutions, thus

maintaining the diversity of the distribution of Pareto set. Along with the lapse of

evolution, F is gradually reduced to perform the exploitation around the promising

search area, aiming to reserve good information and to avoid the destruction of the

optimal solutions. Furthermore, as noticed by Zitzler et al. [82] that elitism helps in

achieving better convergence of solutions in multi-objective evolutionary algorithm,

an elitist scheme is adopted by maintaining an external archive of nondominated so-

lutions obtained in the evolution process. Moreover, the ε-dominance strategy [83]

which can provide a good compromise in terms of convergence near to the Pareto-

optimal and the diversity of Pareto fronts is also used in the algorithm. It is expected

that, with the utilization of elitist scheme and ε-dominance, the cardinality of Pareto-

50

optimal region can be reduced, and no two obtained solutions are located within rel-

ative small regions. To verify the performance of the proposed algorithm, five widely

used benchmark multiple objective functions are utilized as the test suit. Experi-

mental results indicate that the proposed adaptive mutation based multi-objective

DE outperforms traditional multi-objective evolutionary algorithms in terms of the

convergence and diversity of the Pareto fronts.

4.2 Brief Introduction to DE

The standard DE is essentially a kind of special genetic algorithm based on real param-

eter and greedy strategy for ensuring quality. The conventional DE algorithm can be

divided into 4 phases: initialization vectors, mutation of the vectors, crossover or re-

combination, and selection. DE begins its search with a randomly initiated population

for a global optimum limited in a D-dimensional real parameter space. We denote sub-

sequent generations in DE by G = {0, 1, 2, · · · , Gmax} and the i-th (i = 1, 2, ..., NP)

individual of the current population is denoted as Xi,G = (x1
i,G, x

2
i,G, ... x

j
i,G, ..., x

D
i,G).

The initial population is randomly generated by:

xj,i,0 = xj,min + randi,j[0, 1] ∗ (xj,max − xj,min) (4.1)

where randi,j[0, 1] is a uniformly distributed random number in [0, 1], xj,min and xj,max

represents the boundary values of the search space. For each individual vector Xi,G

(target vector), differential evolution algorithm uses mutation operator to generate a

new individual Vi,G (variation vector), which is generated according to Eq. (2).

Vi,G = Xr1,G + F ∗ (Xr2,G −Xr3,G) (4.2)

51

where three individuals vectorsXr1,G, Xr2,G andXr3,G are selected randomly from the

current populations. r1, r2, r3 ∈ {1, 2, · · · , NP} are random indexes. F is a constant

scale factor ∈ [0, 2] which controls the amplification of the differential variation (Xr2,G

- Xr3,G). For increasing the potential diversity of the perturbed parameter vectors,

a crossover operation is implemented after the mutation. The binomial crossover

operation was shown in the following.

ui,G =


vji,G, if randi,j[0, 1] 6 Cr or j = jrand

Xj
i,G, otherwise

(4.3)

where Cr is called the crossover rate. randi,j ∈ [0, 1]. After DE generates offspring

through mutation and crossover operation, the one-to-one greedy selection operator

is performed as:

ui,G+1 =


U j
i,G, if f(Ui,G) 6 f(Xi,G)

Xj
i,G, otherwise

(4.4)

4.3 Design of multi-objective differential evolution algorithm

For solving multiple objective problems, the general requirements of the approxima-

tion of the Pareto optimal set are two-fold: (1) minimize the distance to the true

pareto optimal fronts, and (2) the distribution of the obtained non-dominated solu-

tions are located as diverse as possible [84]. The purpose of this research is aimed

to address the above two requirements, and the processes of the proposed adaptive

mutation based ε-dominance differential evolution (IDE) are summarized in Fig. 4.1.

To generate initial solutions evenly located over the whole decision space, the or-

thogonal experimental design method [85] is adopted in IDE. Refer to [86] for detailed

52

Start

Generate the initial Orthogonal population

OP

Generate the initial population AR with nondominated

solutions from OP

Generate the initial EP from the initial

AR and OP

Whether the termination

condition is satisfied ?

Using the improved differential evolution operation produce

offspring, and evaluate the child individual

Update evolutionary population

Update the AR

by using the ε-dominance technology

G ++

End

Output the final AR

Y

N

Figure 4.1: The general flow chart of the proposed adaptive mutation based multi-objective differ-
ential evolution (IDE).

description of the orthogonal experimental design in population-based evolutionary

algorithm. After generating the orthogonal population (denoted as OP), an initial

archive with the nondominated individuals extracted from OP through the traditional

Pareto dominance method [87] is created. Then the initial evolutionary population

(EP) which is responsible for finding new non-dominated solutions is generated from

the initial archive and OP . If the size of initial archive is larger than NP , we select NP

solutions from initialized randomly. In order to accelerate the algorithm convergence

and make use of the archive individual to guide the evolution, we adopt a hybrid

selection mechanism when selecting the target vector Xr1 as shown in Eq. (2). At

53

the beginning phase of the evolution, and then randomly choose the parents in EP to

generate the offspring. With the lapse of evolution, the elitist selection is used. The

essential parent is selected from the solutions, and the other two parents are selected

from the evolution population EP randomly.

In previously reported works [77–81], all those multi-objective DE algorithms set

the scaling factor F as a constant in the whole process of evolution, which made the

search appear precocious phenomenon frequently. It is very sensitive to set scaling

factor F for traditional differential evolution algorithms. Experimental work in a

variety of DE algorithms has provided strong evidence supporting the view that the

performance of the algorithm is strongly depending on the setting of F values [88,89].

To be more specifically, if the F value is too large, the DE algorithm approximates

for random search, thus the search efficiency and the accuracy of getting the global

optimal solution are quite low. On the contrary, if the F value is too small, it

can lose the diversity of population into the prematurity. To alleviate this problem,

we propose an adaptive mutation operator that can determine the mutation rate

adaptively according to the progress of the search of the algorithm, thus enabling the

algorithm to possess greater mutation rates in the early search stages to maintain the

individuals’ diversity and to avoid precocious phenomena during the process. Later,

the mutation operator was gradually reduced to reserve good information and avoid

the destruction of the optimal solution, and meanwhile it increases the probability of

searching to the optimal solutions.

To realize the above characteristic of the setting of F , an adaptive setting rule is

designed as in Eqs. (6) and (7).

t = e1−
Gm

Gm+1−G (4.5)

F = F0 ∗ 2G (4.6)

54

where F0 is initial mutation operator. Gm denotes the maximum number of fitness

evaluation. G indicates the current evolution number. At the beginning search phase

of the algorithm, the adaptive mutation operator is carried out with a probability

within [F0 - 2F0], which is a relatively large value to maintain the individual diversi-

ty. Along with the lapse of evolution, the mutation operator is gradually reduced to

reserve good information and expected to well balance the exploration and exploita-

tion of the search.

In addition, as noticed by Zitzler et al. [90] that elitism helps in achieving better

convergence in handling multiple objectives. Therefore, in this paper, the elitist

scheme is adopted through maintaining an external archive AR of nondominated

solutions found in evolutionary process. At the aim of achieving faster convergence,

we adopted [91] ε-dominance mechanism to update archive population. At each

generation, the newly generated non-dominated solution is compared with each other

member which is already contained in the archive. The new individual can be saved

in the archive only when it meets the requirements that no individuals within a ε

distance exist. By doing so, we can ensure both convergence and diversity of the

Pareto fronts within reasonable computational times.

4.4 Simulation and Analysis

Multi-objective optimization problem is also known as multi-criteria optimization

problem [92]. In order to evaluate the effectiveness of the proposed IDE and make

a comparison with other multi-objective evolutionary algorithms, five widely used

benchmark problems [90] involving ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 are adopt-

ed as the test suit. All problems have two objective functions and all objective

functions are to be minimized. The parameter settings of IDE are as follows: the

maximum number of fitness evaluation Gm = 5000, the initial scaling factor value of

55

Table 4.1: Comparison of the convergence metric between IDE and MDE.

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MDE 0.0028 0.00064 0.0038 0.0026 0.0008
IDE 0.00075 0.00084 0.0030 0.0020 0.00075

Table 4.2: Comparison of the diversity metric between IDE and MDE.

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
MDE 0.2536 0.38565 0.40025 0.3850 0.3571
IDE 0.2425 0.2896 0.39575 0.2709 0.2595

F0=0.5, the crossover probability of CR = 0.3, NP = 100. For each problem, we run

50 times independently with different random seeds, then compared the performance

of IDE with the one of the traditional multi-objective DE variants (MDE) [79]. In

addition, we compared the results of IDE algorithm with NSGA-II [87], SPEA2 [93]

and MOEO [94]. To assess the performance of the compared algorithms, the conver-

gence metric λ and the diversity metric ∆ are used [84]. The first convergence metric

λ measures the distance of the obtained non-dominated sets Q and the true Pareto

front approximation sets P ∗ as in Eq. (7).

λ =

∑|Q|
i=1 di
| Q |

(4.7)

where di is the Euclidean distance between the solution i ∈ Q and P ∗. It is clear that

the lower the λ value, the better convergence of obtained solutions, suggesting that

the obtained non-dominated sets are more closer to the true Pareto fronts.

The second diversity metric measures the extent of distribution among the obtained

non-dominated sets Q. ∆ is defined as in Eq. (8).

∆ =
df + dl +

∑|Q|−1
i=1 | di − d̄ |

df + dl + (| Q | −1)d̄
(4.8)

where di measures the Euclidean distance of each point in Q to the point nearby.

56

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1
f2

ZDT1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT1

True Pareto

Pareto front obtained by MDE

True Pareto

Pareto front obtained by IDE

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT2

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT2

True Pareto

Pareto front obtained by MDE

True Pareto

Pareto front obtained by IDE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f2

ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f2
ZDT3

True Pareto

Pareto front obtained by MDE

True Pareto

Pareto front obtained by DE

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT4

True Pareto

Pareto front obtained by MDE

True Pareto

Pareto front obtained by IDE

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f2

ZDT6

True Pareto

Pareto front obtained by MDE

True Pareto

Pareto front obtained by IDE

Figure 4.2: Pareto fronts obtained by IDE and its competitor algorithm MDE on ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6 respectively.

57

Table 4.3: Comparison of the convergence metric during IDE, NSGA-II, SPEA2, and MOEO.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
NSGA-II 0.033482 0.072391 0.114500 0.513053 0.296564
SPEA2 0.023285 0.16762 0.018409 4.9271 0.23255
MOEO 0.001277 0.001355 0.004385 0.008145 0.000630
IDE 0.00075 0.00084 0.0030 0.0020 0.00075

Table 4.4: Comparison of the diversity metric during IDE, NSGA-II, SPEA2, and MOEO.

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
NSGA-II 0.390307 0.430776 0.738540 0.702612 0.668025
SPEA2 0.154723 0.33945 0.4691 0.8239 1.04422
MOEO 0.327140 0.285062 0.965236 0.275567 0.225468
IDE 0.2425 0.2896 0.39575 0.2709 0.2595

df and dl denote the Euclidean distance between the extreme points in Q and P ∗,

respectively. Obviously, the lower the ∆ value is, the better distribution of solutions

possess.

Table 4.1 records the convergence metric λ obtained by IDE and the previous

MDE algorithm [79]. The diversity metric ∆ obtained by IDE and MDE are shown

in Table 4.2. Table 4.3 shows the convergence metric obtained by IDE and three

multi-objective evolutionary algorithms. Table 4.4 illustrates comparative results in

terms of the diversity metric obtained by IDE and its competitors. From Table 4.1,

we can find that IDE performs better results with respect to the convergence on all

tested instances, except on ZDT2, which suggested that the incorporated adaptive

mutation strategy indeed help the search finding better solutions. On the other hand,

the comparative results in Table 4.2 show that IDE has capacity of finding a better

spread of solutions than MDE on all problems except ZDT6. From Table 4.3, it is

clear that IDE produces solutions significantly closer to the true Pareto fronts than

NSGA-II, SPEA2, and MOEO on all tested functions. An exception is that MOEO

can find slightly better solutions than IDE on ZDT6. With regards to the diversity

of obtained non-dominated solutions, as shown in Table 4.4, an overall improvement

58

can be found on IDE that its non-dominated solutions located more evenly than those

obtained by its competitor algorithms, verifying that the proposed adaptive mutation

strategy together with the ε-dominance no doubt improve the performance of DE in

terms of the diversity.

Furthermore, to further understand the performance of our improved algorith-

m more intuitively, Fig. 4.2 draws the Pareto fronts constructed by the obtained

non-dominated solutions that obtained by IDE and MDE on all tested functions re-

spectively. From this figure, it is clear that the Pareto fronts obtained by IDE is

much better than those by MDE. The performance on ZDT6 is quite illuminating to

further elaborate the search characteristics of the compared algorithms. Almost the

same number of non-dominated solutions are obtained by both algorithms, and the

average distance (measured by λ) to the true Pareto front is also within an acceptable

tolerance (0.0008 vs 0.00075). Nevertheless, the distribution of the non-dominated

solutions is quite different (0.3571 vs 0.2595). A significantly evenly distributed non-

dominated solutions for ZDT6 are obtained by IDE, implying that IDE is capable

of finding a well-distributed and near-complete set of non-dominated solutions when

handling multiobjectives.

4.5 Conclusion

This paper proposed an adaptive mutation operator based on the multi-objective d-

ifferential evolution algorithm. In the beginning of search phase, the algorithm has a

relatively large value to maintain the individuals’ diversity, and avoid the premature

phenomenon of fast convergence. With the lapse of evolution, the mutation oper-

ator was gradually reduced to reserve good information and avoid the destruction

to the optimal solution. Together with the ε-dominance strategy, we constructed

the effective IDE to handling multiple objectives. We test IDE via five standard

59

multi-objective test functions and the performance comparison during MDE, NSGA-

II, SPEA2 and MOEO. It can be concluded that IDE is superior to other algorithms

on multiple problems, indicating that our approach has ability to obtain effective

uniformly distributed and near-optimal Pareto sets.

60

Chapter 5

Improved GSA with chaotic local
search

5.1 Introduction

Gravitational search algorithm (GSA) [95] is one of the newest heuristic optimization

methods based on Newtonian laws of gravity and motion. It has shown remarkable

search abilities in solving optimization problems [96] within high-dimensional search

spaces. In GSA, a series of candidate solutions are kept as a group of objects. At each

iteration, the objects update their solutions by moving stochastically. The objects

with heavier masses have stronger attraction to other objects and move more slowly

than the objects with lighter masses. By lapse of iterations, all other objects tend

to move towards the heaviest object which corresponds to be the best solution for

optimization problem. GSA is robust and can be simply used so it can be applied

into many optimization problems [97]. However, GSA still has some drawback such as

stick into local minima and slow convergence speed that reduce the solution quality.

To resolve the aforementioned problem, chaos, which is of randomicity, ergodicity

and regularity was incorporated into GSA [98]. Chaos is a very common phenomenon

of non-linear systems and has recently received many interests. In the field of optimal

design, the ergodicity of chaos has been viewed as a optimization mechanism to avoid

falling into the local search process. The chaotic state was introduced into the opti-

61

mization variables and did search using the chaos variables [99]. Meanwhile kinds of

chaos optimization algorithm applying to solve the complex object for optimization

problem were put forward [100, 101]. The search based on chaos has stronger explo-

ration and exploitation capability and can enable the algorithm to effectively jump out

of local extremum due to the inherent ergodicity of chaos. It has been demonstrated

that the combination of GSA with chaotic system can alleviate the shortcomings of

GSA and thus highlight the advantages of the usage of chaotic systems [98,102].

There are two methods to combine GSA with chaos. One uses chaotic maps to

generate chaotic sequences to substitute random sequences, while the other employs

chaos to act as a local search approach. In our previous work, the logistic map

was utilized to generate chaotic sequences and perform the local search [98]. In

this study, other four different chaotic maps involving the piecewise linear chaotic

map, the gauss map, the sinusoidal map, and the sinus map are utilized to combine

with GSA. It is apparent that different chaotic maps possess distinct distribution

characteristics. The objective of this work is, not only to find out which chaotic map

most greatly improve the performance of GSA, but only to give some insights to the

underlying reasons. To realize these, six commonly used benchmark optimization

functions are chosen from the literature. The experimental results verify that all

five incorporated chaotic maps can improve the performance of GSA in terms of the

solution quality and convergence speed. In addition, the four newly incorporated

chaotic maps exhibit better influence on improving the performance of GSA than the

logistic map, suggesting that the hybrid searching dynamics of CGSA is significantly

effected by the distribution characteristics of chaotic maps. Furthermore, simulation

results also show that the performance of CGSA is tightly related to the search

dynamics which results from the interaction between the incorporated chaotic map

and the landscape of the solved problems.

62

The rest of the paper is divided as follows: Section II presents a brief description

of the GSA. The five chaotic maps used in the chaotic local search procedure is

introduced in Section III. In Section IV, the chaotic gravitational search algorithms

using five different maps are proposed. Section V gives the experimental results of

the five variants of CGSA on the six benchmark optimization functions. Finally, the

conclusion can be drawn in the last.

5.2 Overview of GSA

GSA is a new stochastic algorithm introduced by Reshedi et al. [95]. It is a global

search strategy that can handle efficiently arbitrary optimization problems. It is an

efficient optimization algorithm with good search ability. it is based on the Newtonian

laws of gravity. In GSA, the search agents can be considered as objects and the better

their performance is their mass will be heavier. All these objects attract each other

by a gravity force [103, 104] and this force will generate a acceleration of all objects

towards the objects which have heavier mass. Hence, objects cooperate with each

other directly according to the gravitational force. The agents with heavier masses

will have slower velocity than the lighter ones, which makes sure that the algorithm

can exploit to find the optima around a good solution. Supposing that there are N

agents (objects) in the search space, and we define the position of the ith agent by:

Xi = (x1
i , x

2
i . . . , x

d
i , . . . , x

n
i) i = 1, 2, . . . , N (5.1)

where xd
i is the position of the ith agent in the dth dimension. n is the dimension of

the search space.

At the tth iteration, force between search agents acting on the ith object from the

63

jth object is shown as follows [95]:

F d
ij(t) = G(t)

Mj(t)Mi(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (5.2)

where Mi and Mj are masses of search agents. G(t) is the gravitational constant at

interation t, ε is a very small constant to prevent the distance between two agents is

too small and Rij(t) indicates the Euclidean distance between two agents i and j:

Rij(t) =∥ xi(t), xj(t) ∥2 (5.3)

The gravitational constant G(t) is generated when the iteration starts and it is

reduced by the lapse of time to implement exlpitation. G(t) is given by [105]:

G(t) = G0e
−αt/itermax (5.4)

where G0 is the initial value, α is a user-defined parameter, and itermax is the maxi-

mum number of iterations.

The total force acting on the ith agent is given by:

F d
i (t) =

Kbest∑
j=1,j ̸=i

randjF
d
ij(t) (5.5)

where Kbest is the K search agents with better fitness. It is a function of time that

decreases linearly along with iteration time [95] and at the end of iterations there will

be only 2% search agents have the gravitational force to attract others. randj is a

random number in [0,1]. And the acceleration adi (t) of the agent i at time t and in

dth dimension is given by:

adi (t) =
F d
i (t)

Mi(t)
(5.6)

64

whereMi(t) is a variable connected with the fitness and it can be calculated as follows:

Mi(t) =
mi(t)∑N
j=1mj(t)

(5.7)

and

mi =
fiti(t)− worst(t)

best(t)− worst(t)
(5.8)

where best(t) is value of the global best agent obtained so far, worst(t) is the value of

the worst search agent, and fiti(t) represents the fitness of agent Mi by calculating

the objective functions.

The new velocity of an agent is the sum of its current velocity with its acceleration.

Thus the position and the velocity of the ith agent at tth iteration in the dth dimension

is calculated as follows:

vdi (t+ 1) = randi × vdi (t) + adi (t) (5.9)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (5.10)

where randi is a uniform random variable generated in the interval [0,1], which in

fact is an attempt of giving randomized characteristics to the search. The flow chart

of GSA is given in the following.

65

Traditional Gravitational Search Algorithm
for all agents i (i=1,2,...,N) do
initialize position xi randomly in search space

end-for
while termination criteria not satisfied do
for all agent i do

compute overall force F d
i (t) according to Eqs.(2)-(5)

compute acceleration adi (t) according to Eq.(6)
compute current velocity according to Eq.(9)
compute current position according to Eq.(10)
end-for

end-while

The main features of GSA are listed as follows:

(1) The object with heavier mass owns a stronger attractive force and moves slower

than the lighter agent.

(2) Gravitational constant decreases with time to make the search have better accu-

racy.

(3) The acceleration of an agent is decided by the total force which is inversely pro-

portional to the distance between two agents.

(4) The next position of agent only depends on its current velocity and current posi-

tion.

(5) GSA is a less-memory algorithm, and only requires a small memory capability of

hardware.

5.3 Chaotic maps

Recently, chaos has attracted much attention because of its dynamic properties. It is

widely used in pattern recognition and optimization theory [106]. In this section five

chaotic maps are introduced.

66

5.3.1 Logistic map

The logistic map is a very famous chaotic map and it is applied in many researches

about chaos. The map became commonly used after a seminal paper proposed by the

biologist Robert May [107]. Its mathematical expression is given by Eq. (11).

xk+1 = axk(1− xk) k = 1, 2, . . . , N (5.11)

where xk is the kth chaotic number at the kth iteration, and a is usually set to 4.

The initial number x0 ∈ [0, 1] and x0 /∈ {0.0, 0.25, 0.5, 0.75, 1.0}. When the logistic

map is implemented into GSA, the hybrid algorithm is called CGSA1.

5.3.2 Piecewise linear chaotic map

Piecewise linear chaotic map (PWLCM) is more and more famous because of its

simplicity and dynamical behavior. [108]. The PWLCM can be simply defined in Eq.

(12):

xk+1 =

 xk/p xk ∈ (0, p)

(1− xk)(1− p) xk ∈ [p, 1)
(5.12)

In this thesis, p is set to 0.7. And the GSA combined with PWLCM is labeled as

CGSA2.

5.3.3 Gauss map

The Gauss map can be defined by [102,109]

xk+1 =

 0 xk = 0

(µ/xk)mod(1) otherwise
(5.13)

67

where µ is set to 1. When the gauss map is combined with GSA, the hybrid algorithm

is labeled as CGSA3.

5.3.4 Sinusoidal map

The following equation defines the Sinusoidal map [107]

xk+1 = ax2
ksin(πxk) (5.14)

For a = 2.3 and x0 = 0.7, it has the following simplified form

xk+1 = sin(πxk) (5.15)

When the sinusoidal map is combined with GSA, the hybrid algorithm is labeled as

CGSA4.

5.3.5 Sinus map

Sinus map is defined as

xk+1 = 2.3(xk)
2sin(πxk) (5.16)

When the sinus map is combined with GSA, the hybrid algorithm is labeled as

CGSA5.

To illustrate the details of chaos, the distributions of x for all the five chaotic maps

are given in Fig.5.1. The dynamic ranges of the five chaotic maps are summarized

as follows: [0, 1] for the Logistic, PWLCM, and Gauss maps, [0, 0.92] for Sinusoidal

map, and [0,+∞] for Sinus map. It is worth pointing out that: 1) for all the values

of x, we take two digits after the decimal point for the convenience of illustration.

2) the distribution of x in PWLCM and gauss map are flatter than the other three

68

Figure 5.1: The distribution of x under certain system parameters in 20000 iterations when x0 = 0.74
.

0 0.2 0.4 0.6 0.8 1
0

100
200
300
400
500
600
700
800
900

1000
(a) Logistic map

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250
(b) PWLCM

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300
(c) Gauss map

0 0.2 0.4 0.6 0.8 1
0

300

600

900

1200

1500
(d) Sinusoidal map

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500
(f) Sinus map

maps, which suggests that the probabilities of x visiting the values in [0,1] is nearly

the same. 3) only the values between [0, 1] are utilized in the chaotic local search.

Although Xiang et al. [110] gave an argument that flat distribution of x performed

better than rough distributions when it was applied in chaotic search, they only gave

the simulation results between PWLCM and the logistic map. It is reasonable that

the performance of chaotic search is not only related to the distribution of chaos, but

also to the landscape of the optimization function. More evidences can be found in

Section V.

69

5.4 Chaotic gravitational search algorithm

Chaos has many dynamical properties like ergodicity, iteration-based searching algo-

rithms is chaos optimization algorithms (COA) were presented [100,101]. It is easier

for COA to jump out of the local optimum than conventional stochastic optimization

algorithms. The chaotic system repeats through all the states of the phase space by

its ergodicity, based on the movement rule of its own from an initial state. It can

traversal for many times near the current optimal solution due to the advantage of

this property of the chaotic system. Compared with the random local search, chaotic

local search can express better search ability in escaping from the local optimum and

improve the quality of solutions. The flowchart of CLS is given below:

Chaotic Local Search Algorithm
step 1. Set the parameters of a chaotic system and the
number of chaotic search L

step 2. According to the chaotic system, get a chaotic
sequence whose length is N

step 3. Choose the best individual vc in the current
population

step 4. Recorded chaotic search initial counter as 0
step 5. while (t < L)
step 6. Superimpose an item of the chaotic sequence
on vc in any dimension to form a new individual that
is marked as vn

step 7. Calculation the fitness value of the new
individual vn

step 8. Compute current velocity according to Eq. (9)
step 9. for the optimization function f
step 10. if f(vc) > f(vn)
step 11. vc ← vn
step 12. end-if
step 13. t = t+ 1
step 14. end-while

Noted that the search space of Xg is builded in a hypercube whose center is Xg in

semidiameter r, where r = ρ× r. The constant ρ is set to 0.978.

70

The improved gravitational search algorithm is combined with chaotic local search.

It should be noticed that the local search is only applied to the current global best

agent Xg obtained from the GSA. Compared with carrying out local search on all

agents, it is expected that this scheme can not only save computational times, but

also produce competitive good solutions. The procedure of CGSA is described in the

following.

Chaotic Gravitational Search Algorithm
for all agents i (i=1,2,,N)do

initialize position xi randomly in search space
end-for
while termination criteria not satisfied do
for all agent i do

Compute overall force Fi
d(t) according

to Eqs. (2)-(5)

Compute acceleration ai
d(t) according to Eq. (6)

Update velocity according to Eq. (9)
Update position according to Eq. (10)

end-for
Find out the global best agent Xg

Implement chaotic local search approach (CLS)
Decrease chaotic local search radius using r = ρ× r

end-while

5.5 Numerical simulation

5.5.1 Experimental setup

For evaluating the performance of the proposed algorithm, six benchmark optimiza-

tion problems in Table 5.1 are used, where functions f1-f3 are unimodal functions,

while functions f4-f6 are multimodal functions with plenty of local minima and the

number of the local minima in these functions increases exponentially with the di-

mension of the function. The population size of all constructed algorithms is set to be

50. The maximum iteration number is set to 1000. In order to eliminate stochastic

71

Table 5.1: The function name, definition, dimension, feasible interval of variants, and the known
global minimum of six benchmark function.

Function name Definition Dim Interval Global minimum
Sphere f1(X) =

∑n
i=1 x

2
i 30 [-100,100] 0.0

Schwefel 2.22 f2(X) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [-10,10] 0.0

Rosenbrock f3(X) =
∑n−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2] 30 [-30,30] 0.0

Schwefel 2.26 f4(X) = −
∑n

i=1 sin(
√

(|xi|)) 30 [-500,500] -418.9829D

Ackley f5(X) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i) 30 [-32,32] 0.0

−exp(1n
∑n

i=1 cos(2πxi)) + 20 + e
Griewank f6(X) = 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 30 [-600,600] 0.0

discrepancy and give the statical analysis, each algorithm is repeated 30 times. The

constants ε, α and G0 are set to 1000, 1.0E-100 and 100 respectively. The experiments

are conducted in Microsoft Visual Studio 2010 on a personal PC.

5.5.2 Results and discussions

We firstly compared the performance during GSA, CGSA1, CGSA2, CGSA3, CGSA4,

and CGSA5. Table 5.2 to Table 5.7 recorded the minimum fitness, maximum fitness

and average fitness for each algorithm on the benchmark functions respectively. From

these tables, it is clear that all chaotic GSAs perform better than GSA, suggesting that

chaotic search as a local search approach is able to enhance the global search capacity

of the algorithm and prevent the search to stick on a local solution. Moreover the

average fitness of the best-so-far solutions found by CGSA3, CGSA4 perform better

than CGSA1 for all the six functions, which indicates that the sinusoidal map and

gauss map possess the better searching performance than the logistic map used in [98].

Thus, it is evident that the searching dynamics of GSA is definitely effected by the

distribution characteristics of chaos, and meanwhile the famous logistic map is might

not the best choice for the utilization for many optimization problems.

In order to analysis the final best-so-far solution in details, a box-and whisker

diagram is used in Fig. 5.2. The vertical axis indicates the fitness values of the final

72

solutions and the horizontal axis represents the six algorithms. From Fig. 5.2, it is

apparent that CGSA2, CGSA3 and CGSA4 generate better solutions than CGSA1

in terms of not only the maximum, average, and minimum values, but also the lower

quartile, median, and upper quartile values of the final best-so-far solutions for f2-f4

and f6. CGSA5 outperforms CGSA1 on f2, f3, f4 and f6. In particular, CGSA5

produces significant better solutions than the other algorithms on f4. The reason

seems to be distinct distribution characteristics of the sinus map where most of the

chaotic values are located around 0.4. To sum up, it can be concluded that: 1)

hybridization of GSA with chaos is demonstrated to be an essential aspect of the

high performance; 2) the four newly incorporated chaotic maps generally exhibit

better influence on improving the performance of GSA than the logistic map; and 3)

however, there is no specific chaotic maps can enable GSA to achieve the best solution

for all optimization problems, suggesting that the performance of hybrid CGSAs are

related not only to the search capacity of the algorithm, but also to the landscape of

the solved problems.

To give some insights to how the chaotic local search on the search dynamics of

GSA, the convergence trendline figures of function f2, f3, f4, and f6 obtained by the

six algorithms are given in Fig. 5.3. In this figure, the horizontal axis represents the

iteration and the vertical axis denotes the average fitness best-so-far solutions in loga-

rithmic scales. The convergence graphs of the last 100 iteration are embedded aiming

to show the differences more clearly. It is difficult to distinguish the convergence

Table 5.2: Statistical results of different methods for Sphere function (f1).
Method Minimum fitness Maximum fitness Average fitness
GSA 1.21E-17 3.25E-17 2.08E-17

CGSA-1 1.38E-17 3.11E-17 2.11E-17
CGSA-2 8.18E-18 3.50E-17 1.99E-17
CGSA-3 1.11E-17 3.69E-17 2.01E-17
CGSA-4 1.10E-17 4.05E-17 1.98E-17
CGSA-5 1.38E-17 3.65E-17 2.19E-17

73

graphs for the six algorithms on f1 since the algorithm has quite quick convergence

speed mainly manipulated by the GSA rather than the chaotic local search. The

search behaviors of algorithms on multimodal functions f4 and f6 are quite illumi-

nating. CGSA3, CGSA4 and CGSA5 performs much faster convergence speed than

the other algorithms on multimodal functions, suggesting that the gauss map, the

sinusoidal map and the sinus map might be more suitable for helping algorithms to

jump out of the local solutions.

Furthermore, we define the ratio of best-so-far solutions found by the five chaot-

ic maps to those found by GSA verse the iteration. We assume AFGSA, AFCGSA1,

AFCGSA2, AFCGSA3, AFCGSA4, and AFCGSA5 represent the average fitness of best-so-

far solution found by GSA, CGSA1, CGSA2, CGSA3, CGSA4, and CGSA5, respec-

tively. The ratio is defined as follows:

Ra =
AFcandidate

AFGSA

(5.17)

where the candidate is obtained from one of the CGSAs. Fig. 5.4 depicts the ratios

of algorithms verse the iteration where the values of the solutions found by GSA are

set as the basis, thus forming a horizontal line in the figure. For Fig. 5.4(a), (b) and

(d), the values above this line indicate worse solutions found by the algorithm than

those by GSA, while the values below the line denote better ones. For Fig. 5.4(c), the

inverse cases happen since the values of solutions are negative numbers. From Fig.

Table 5.3: Statistical results of different methods for Schwefel function (f2).
Method Minimum fitness Maximum fitness Average fitness
GSA 1.44E-8 3.11E-8 2.28E-8

CGSA-1 1.56E-8 3.04E-8 2.21E-8
CGSA-2 1.48E-8 3.30E-8 2.10E-8
CGSA-3 1.40E-8 3.18E-8 2.11E-8
CGSA-4 1.54E-8 3.13E-8 2.06E-8
CGSA-5 1.38E-8 3.05E-8 2.03E-8

74

Table 5.4: Statistical results of different methods for Rosenbrock function (f3).
Method Minimum fitness Maximum fitness Average fitness
GSA 25.70 152.14 35.19

CGSA-1 25.44 85.49 27.62
CGSA-2 24.80 136.43 33.29
CGSA-3 25.07 27.06 25.42
CGSA-4 25.17 25.58 25.43
CGSA-5 23.73 82.17 29.75

Table 5.5: Statistical results of different methods for Schwefel 2.26 function (f4).
Method Minimum fitness Maximum fitness Average fitness
GSA -3617.23 -2178.52 -2844.65

CGSA-1 -4288.88 -2321.88 -3110.29
CGSA-2 -7693.55 -4158.85 -5250.43
CGSA-3 -7001.99 -3645.29 -5050.60
CGSA-4 -7180.01 -3448.26 -4887.43
CGSA-5 -12561.4 -12123.8 -12383.54

5.4, it is clear that chaotic GSAs significantly outperform GSA on f3, f4 and f6.

On the other hand, chaotic GSAs still has capacity of jumping out of local minima

on the latter search phases which can be observed from the subfigure of Fig. 5.4(a),

although they only produce slightly better solutions than GSA.

5.6 Conclusion

In this paper, improved gravitational search algorithms (CGSA) using five different

chaotic maps were proposed to testify optimization problems. These chaotic maps

were utilized to carry out the chaotic local search which is inserted into GSA. The

architecture of such resultant hybrid algorithm is mingled with chaotic local search

and GSA. Experimental results indicated that the chaotic search can effectively im-

prove the current solution found by GSA, thus improving the convergence speed, and

further obtaining a higher probability of jumping out of the local optima.

Moreover, the distribution characteristics of the five chaotic maps were also ob-

served. Results suggested that the four newly introduced chaotic maps in this paper

75

Table 5.6: Statistical results of different methods for Ackley function (f5).
Method Minimum fitness Maximum fitness Average fitness
GSA 2.64E-9 4.42E-9 3.40E-9

CGSA-1 2.56E-9 4.70E-9 3.49E-9
CGSA-2 2.63E-9 4.91E-9 3.39E-9
CGSA-3 2.52E-9 4.45E-9 3.42E-9
CGSA-4 2.32E-9 4.49E-9 3.42E-9
CGSA-5 2.90E-9 4.73E-9 3.41E-9

Table 5.7: Statistical results of different methods for Griewank function (f6).
Method Minimum fitness Maximum fitness Average fitness
GSA 1.37 12.52 4.28

CGSA-1 1.25 4.50 2.17
CGSA-2 1.01E-14 4.41E-2 3.60E-3
CGSA-3 1.60E-14 7.31E-2 1.02E-2
CGSA-4 1.02E-14 7.5E-2 7.17E-3
CGSA-5 3.62E-2 0.88 0.38

generally exhibit better influence on improving the performance of GSA than the lo-

gistic map. Nevertheless, there is no specific chaotic maps can enable GSA to achieve

the best solution for all optimization problems, suggesting that the performance of

hybrid CGSAs are related not only to the search capacity of the algorithm, but also

to the landscape of the solved problems. In the future, we plan to adaptively use mul-

tiple chaotic maps simultaneously in the chaotic search to construct a more powerful

CGSA and analyze the search dynamics of the algorithm.

76

Figure 5.2: Statistical values of the final best-so-far solution obtained by the six algorithms.

G
SA

CG
SA

1

CG
SA

2

CG
SA

3

CG
SA

4

CG
SA

5

1

2

3

4

x 10
−17

"
n

a
l

b
e

st
 s

o
lu

ti
o

n
s

(a) f1

G
SA

CG
SA

1

CG
SA

2

CG
SA

3

CG
SA

4

CG
SA

5

1.5

2

2.5

3

x 10
−8

"
n

a
l

b
e

st
 s

o
lu

ti
o

n
s

(b) f2

G
SA

CG
SA

1

CG
SA

2

CG
SA

3

CG
SA

4

CG
SA

5

50

100

150

"
n

a
l

b
e

st
 s

o
lu

ti
o

n
s

(c) f3

G
SA

CG
SA

1

CG
SA

2

CG
SA

3

CG
SA

4

CG
SA

5

−12000

−10000

−8000

−6000

−4000

−2000

"
n

a
l

b
e

st
 s

o
lu

ti
o

n
s

(d) f4

G
SA

CG
SA

1

CG
SA

2

CG
SA

3

CG
SA

4

CG
SA

5

3

4

5
x 10

−9

"
n

a
l

b
e

st
 s

o
lu

ti
o

n
s

(e) f5

G
SA

CG
SA

1

CG
SA

2

CG
SA

3

CG
SA

4

CG
SA

5
0

5

10

"
n

a
l

b
e

st
 s

o
lu

ti
o

n
s

(f) f6

Figure 5.3: The average fitness trendlines of the best-so far solution found by the six algorithms.

0 200 400 600 800 1000
10

−10

10
−5

10
0

10
5

10
10

10
15

 Iteration

 a
v

e
ra

g
e

 b
e

st
−

so
−

fa
r

(a) f2

0 200 400 600 800 1000
10

0

10
2

10
4

10
6

10
8

10
10

 Iteration

 a
v

e
ra

g
e

 b
e

st
−

so
−

fa
r

(b) f3

0 200 400 600 800 1000
−10

5

−10
4

−10
3

 Iteration

 a
v

e
ra

g
e

 b
e

st
−

so
−

fa
r

(c) f4

0 200 400 600 800 1000
10

−4

10
−2

10
0

10
2

10
4

 Iteration

 a
v

e
ra

g
e

 b
e

st
−

so
−

fa
r

(d) f6

GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5

900 920 940 960 980 1000
10

−8

10
−7

10
−6 GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5

900 920 940 960 980 1000

10
1.41

10
1.52

GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5

GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5

77

Figure 5.4: The ratio of best-so-far solutions found by the six algorithms.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Iteration

 r
a

ti
o

 o
f

b
e

st
−

so
−

fa
r

so
lu

ti
o

n

(a) f2

GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5900 920 940 960 980 1000
0.8

1

1.2

0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 Iteration

 r
a

ti
o

 o
f

b
e

st
−

so
−

fa
r

so
lu

ti
o

n

(b) f3

GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5

0 200 400 600 800 1000
0

1

2

3

4

5

 Iteration

 R
a

ti
o

 o
f

b
e

st
−

so
−

fa
r

so
lu

ti
o

n

(c) f4

GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Iteration

 R
a

ti
o

 o
f

b
e

st
−

so
−

fa
r

so
lu

ti
o

n

(d) f6

GSA

CGSA1

CGSA2

CGSA3

CGSA4

CGSA5

78

Chapter 6

General Conclusions and Remarks

In this thesis, we investigate both artificial neural networks and evolutionary algo-

rithms, together with their application in solving various problems. Artificial neural

networks(ANNs) is the popular and promising area of artificial intelligence research.

it has many learning methods and a variety of network architectures and it can be

connected with different computational capabilities to produce neural networks. ANN

is a purely computational model based on the human brain’s organizational structure.

In the past few years, the research of ANNs has made great progress, and success-

fully solved many modern computer practical problems in the fields of automatic

control, intelligent robot, biology, economics, and pattern recognition and prediction

estimation. Basically, ANNs always show good intelligence. Prediction is one of the

main applications of ANN. We know that ANN’s traditional prediction method has

excellent classification and pattern recognition ability. Some special features make

ANN a better predictive tool. Distinctive features also make predictions valuable and

attractive. However, due to the high volatility, irregular motions and non-stationarity

of the travel time series, traditional methods often suffer from prediction accuracy

problems. In this study, with the rapid development of international tourism, it has

become a growing industries with very fast speed in this world. Therefore, the predic-

tion of tourism demand has been a challenge to the international tourism market. A

new single dendritic neuron model (SDNM) is proposed to perform tourism demand

79

forecasting. First, we use phase space reconstruction to analyze the characteristics

of tourism and reconstruct the time series into appropriate phase space points. The

maximum Lyapunov exponent is then used to identify the chaotic properties of the

time series used to determine the prediction limit. Finally, we use SDNM for short-

term forecasting. The experimental results of monthly foreign tourists arriving in

Japan show that the proposed SDNM model is more efficient and accurate than oth-

er neural networks including multilayer perceptrons, neuro-fuzzy inference systems,

Elman networks and haploid neurons. On the other hand, multi-objective process-

ing using -Doher differential evolution based on adaptive mutation will be described.

Differential evolution (DE) is a well-known and robust population-based stochastic

real parameter optimization algorithm in continuous space. DE has recently been

shown to be superior to several well-known stochastic optimization methods in solv-

ing multi-objective problems. However, its performance is still limited in finding a

uniform distribution and approaching the optimal Pareto front. To mitigate this

limitation and reduce the computational cost, an adaptive mutation operator is in-

troduced to avoid premature convergence by adaptively adjusting the mutation scale

factor F and using the -dominance strategy to update the archives that store non-

dominated solutions. Experiments based on five widely used multi-objective functions

were performed. The simulation results demonstrate the effectiveness of our proposed

approach in solving the Pareto frontier convergence and diversity aspects.

In the future, we plan to use proposed evolutionary algorithms, especially the

chaotic mechanisms embedded evolutionary algorithms, to train the artificial neural

network to further improve its performance. Following aspects are planed to be

carried out in the near future:

• First of all, this research opens the door of the investigation of the hybridization

of evolutionary algorithms and the dendritic neural computation models. Inno-

80

vative ideas should be thought regarding how to effectively use merits of both

approach to achieve a better efficient computational hybrid model.

• Second, advanced evolutionary algorithms, such the particle swarm optimiza-

tion, artificial immune algorithms, gravitational search algorithms, should also

be considered to be used as the learning algorithm for dendritic neural model.

• Moreover, the architecture of the dendritic neural model should be modified

along with the learning of the algorithms, aiming to provide a more flexible

answer when use it to solving complex real-world problems, especially in Big

Data or dynamic environments.

• Last but not least, detailed analysis of user-defined parameters should be done

to extract some general guidelines when designing related neural computational

models.

81

Bibliography

[1] Http://www.jnto.go.jp/.

[2] Http://www.tourism.jp/.

[3] H. Qu and H. Q. Zhang, “Projecting international tourist arrivals in east asia

and the pacific to the year 2005,” Journal of Travel Research, vol. 35, no. 1, pp.

27–34, 1996.

[4] C. Goh and R. Law, “Modeling and forecasting tourism demand for arrivals with

stochastic nonstationary seasonality and intervention,” Tourism Management,

vol. 23, no. 5, pp. 499–510, 2002.

[5] R. Law, “Initially testing an improved extrapolative hotel room occupancy rate

forecasting technique,” Journal of Travel & Tourism Marketing, vol. 16, no. 2-3,

pp. 71–77, 2004.

[6] C. Burger, M. Dohnal, M. Kathrada, and R. Law, “A practitioners guide to

time-series methods for tourism demand forecastinga case study of durban,

south africa,” Tourism Management, vol. 22, no. 4, pp. 403–409, 2001.

[7] F.-L. Chu, “Forecasting tourism demand: a cubic polynomial approach,”

Tourism Management, vol. 25, no. 2, pp. 209–218, 2004.

[8] J. H. Kim and T. Ngo, “Modelling and forecasting monthly airline passenger

flows among three major australian cities,” Tourism Economics, vol. 7, no. 4,

pp. 397–412, 2001.

82

[9] H. Song and G. Li, “Tourism demand modelling and forecastinga review of

recent research,” Tourism Management, vol. 29, no. 2, pp. 203–220, 2008.

[10] E. Olmedo, “Comparison of near neighbour and neural network in travel fore-

casting,” Journal of Forecasting, vol. 35, pp. 217–223, 2016.

[11] F.-L. Chu, “A piecewise linear approach to modeling and forecasting demand

for macau tourism,” Tourism Management, vol. 32, no. 6, pp. 1414–1420, 2011.

[12] K.-H. Huarng, T. H.-K. Yu, and F. Sole Parellada, “An innovative regime

switching model to forecast taiwan tourism demand,” The Service Industries

Journal, vol. 31, no. 10, pp. 1603–1612, 2011.

[13] X. Hong, R. J. Mitchell, S. Chen, C. J. Harris, K. Li, and G. W. Irwin, “Model

selection approaches for non-linear system identification: a review,” Interna-

tional Journal of Systems Science, vol. 39, no. 10, pp. 925–946, 2008.

[14] U. Thissen, R. Van Brakel, A. De Weijer, W. Melssen, and L. Buydens, “Using

support vector machines for time series prediction,” Chemometrics and Intelli-

gent Laboratory Systems, vol. 69, no. 1, pp. 35–49, 2003.

[15] P.-F. Pai, H. Wei-Chiang, C. Ping-Teng, and C. Chen-Tung, “The application

of support vector machines to forecast tourist arrivals in barbados: An empirical

study,” International Journal of Management, vol. 23, no. 2, p. 375, 2006.

[16] W.-C. Hong, Y. Dong, L.-Y. Chen, and S.-Y. Wei, “Svr with hybrid chaotic

genetic algorithms for tourism demand forecasting,” Applied Soft Computing,

vol. 11, no. 2, pp. 1881–1890, 2011.

[17] C.-H. Wang, “Predicting tourism demand using fuzzy time series and hybrid

grey theory,” Tourism management, vol. 25, no. 3, pp. 367–374, 2004.

83

[18] C. Goh and R. Law, “Incorporating the rough sets theory into travel demand

analysis,” Tourism Management, vol. 24, no. 5, pp. 511–517, 2003.

[19] C. Goh, R. Law, and H. M. Mok, “Analyzing and forecasting tourism demand:

A rough sets approach,” Journal of Travel Research, vol. 46, no. 3, pp. 327–338,

2008.

[20] M. Alvarez-Diaz, J. Mateu-Sbert, and J. Rossello-Nadal, “Forecasting tourist

arrivals to balearic islands using genetic programming,” International Journal

of Computational Economics and Econometrics, vol. 1, no. 1, pp. 64–75, 2009.

[21] R. Law and N. Au, “A neural network model to forecast japanese demand for

travel to hong kong,” Tourism Management, vol. 20, no. 1, pp. 89–97, 1999.

[22] R. Law, “Back-propagation learning in improving the accuracy of neural

network-based tourism demand forecasting,” Tourism Management, vol. 21,

no. 4, pp. 331–340, 2000.

[23] V. Cho, “A comparison of three different approaches to tourist arrival forecast-

ing,” Tourism Management, vol. 24, no. 3, pp. 323–330, 2003.

[24] S. C. Kon and L. W. Turner, “Neural network forecasting of tourism demand,”

Tourism Economics, vol. 11, no. 3, pp. 301–328, 2005.

[25] A. Palmer, J. J. Montano, and A. Sesé, “Designing an artificial neural network

for forecasting tourism time series,” Tourism Management, vol. 27, no. 5, pp.

781–790, 2006.

[26] C.-F. Chen, M.-C. Lai, and C.-C. Yeh, “Forecasting tourism demand based on

empirical mode decomposition and neural network,” Knowledge-Based Systems,

vol. 26, pp. 281–287, 2012.

84

[27] O. Claveria, E. Monte, and S. Torra, “Tourism demand forecasting with neural

network models: different ways of treating information,” International Journal

of Tourism Research, vol. 17, no. 5, pp. 492–500, 2015.

[28] L. Wang, Y. Zeng, and T. Chen, “Back propagation neural network with adap-

tive differential evolution algorithm for time series forecasting,” Expert Systems

with Applications, vol. 42, no. 2, pp. 855–863, 2015.

[29] K.-Y. Chen and C.-H. Wang, “Support vector regression with genetic algorithms

in forecasting tourism demand,” Tourism Management, vol. 28, no. 1, pp. 215–

226, 2007.

[30] M. Khashei, S. R. Hejazi, and M. Bijari, “A new hybrid artificial neural networks

and fuzzy regression model for time series forecasting,” Fuzzy Sets and Systems,

vol. 159, no. 7, pp. 769–786, 2008.

[31] K.-Y. Chen, “Combining linear and nonlinear model in forecasting tourism de-

mand,” Expert Systems with Applications, vol. 38, no. 8, pp. 10 368–10 376,

2011.

[32] P.-F. Pai, K.-C. Hung, and K.-P. Lin, “Tourism demand forecasting using novel

hybrid system,” Expert Systems with Applications, vol. 41, no. 8, pp. 3691–3702,

2014.

[33] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural

networks:: The state of the art,” International Journal of Forecasting, vol. 14,

no. 1, pp. 35–62, 1998.

[34] M. Ardalani-Farsa and S. Zolfaghari, “Chaotic time series prediction with resid-

ual analysis method using hybrid elman–narx neural networks,” Neurocomput-

ing, vol. 73, no. 13, pp. 2540–2553, 2010.

85

[35] V. Cho, “A study on the temporal dynamics of tourism demand in the asia

pacific region,” International Journal of Tourism Research, vol. 11, no. 5, pp.

465–485, 2009.

[36] J. P. Teixeira and P. O. Fernandes, “Tourism time series forecast-different ann

architectures with time index input,” Procedia Technology, vol. 5, pp. 445–454,

2012.

[37] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”

IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[38] R. Sitte and J. Sitte, “Analysis of the predictive ability of time delay neural

networks applied to the s&p 500 time series,” IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, vol. 30, no. 4, pp.

568–572, 2000.

[39] X. Lin, Z. Yang, and Y. Song, “Short-term stock price prediction based on echo

state networks,” Expert systems with applications, vol. 36, no. 3, pp. 7313–7317,

2009.

[40] R. Chandra, “Competition and collaboration in cooperative coevolution of el-

man recurrent neural networks for time-series prediction,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 26, no. 12, pp. 3123–3136, 2015.

[41] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems

and saving energy in wireless communication,” Science, vol. 304, no. 5667, pp.

78–80, 2004.

[42] Y. Todo, H. Tamura, K. Yamashita, and Z. Tang, “Unsupervised learnable neu-

ron model with nonlinear interaction on dendrites,” Neural Networks, vol. 60,

pp. 96–103, 2014.

86

[43] A. Destexhe and E. Marder, “Plasticity in single neuron and circuit computa-

tions,” Nature, vol. 431, no. 7010, pp. 789–795, 2004.

[44] Z. Sha, L. Hu, Y. Todo, J. Ji, S. C. Gao, and Z. Tang, “A breast cancer classifier

using a neuron model with dendritic nonlinearity,” IEICE Trans. Inf. & Syst.,

vol. E98-D, no. 7, pp. 1365–1376, 2015.

[45] J. Ji, S. C. Gao, J. Cheng, Z. Tang, and Y. Todo, “An approximate logic neuron

model with a dendritic structure,” Neurocomputing, vol. 173, pp. 1775–1783,

2016.

[46] F. Takens, Detecting strange attractors in turbulence. Springer, 1981.

[47] R. Yadav, P. Kalra, and J. John, “Time series prediction with single multiplica-

tive neuron model,” Applied Soft Computing, vol. 7, pp. 1157–1163, 2007.

[48] L. Zhao and Y. Yang, “Pso-based single multiplicative neuron model for time

series prediction,” Expert Systems with Applications, vol. 36, no. 2, pp. 2805–

2812, 2009.

[49] C. Zhang, W. Wu, and Y. Xiong, “Convergence analysis of batch gradient algo-

rithm for three classes of sigma-pi neural networks,” Neural Processing Letters,

vol. 26, no. 3, pp. 177–189, 2007.

[50] R. P. Costa and P. J. Sjöström, “One cell to rule them all, and in the dendrites

bind them,” Frontiers in Synaptic Neuroscience, vol. 3, 2011, article 5.

[51] C. Koch, T. Poggio, and V. Torre, “Nonlinear interactions in a dendritic tree:

localization, timing, and role in information processing,” Proceedings of the

National Academy of Sciences, vol. 80, no. 9, pp. 2799–2802, 1983.

[52] N. Brunel, V. Hakim, and M. J. Richardson, “Single neuron dynamics and

computation,” Current opinion in neurobiology, vol. 25, pp. 149–155, 2014.

87

[53] L. Abbott and W. G. Regehr, “Synaptic computation,” Nature, vol. 431, no.

7010, pp. 796–803, 2004.

[54] A. Destexhe and E. Marder, “Plasticity in single neuron and circuit computa-

tions,” Nature, vol. 431, no. 7010, pp. 789–795, 2004.

[55] Y.-N. Jan and L. Y. Jan, “Branching out: mechanisms of dendritic arboriza-

tion,” Nature Reviews Neuroscience, vol. 11, no. 5, pp. 316–328, 2010.

[56] B. W. Mel and C. Koch, “Sigma-pi learning: On radial basis functions and

cortical associative learning.” in NIPS, 1989, pp. 474–481.

[57] M. P. Jadi, B. F. Behabadi, A. Poleg-Polsky, J. Schiller, and B. W. Mel, “An

augmented two-layer model captures nonlinear analog spatial integration effects

in pyramidal neuron dendrites,” Proceedings of the IEEE, vol. 102, no. 5, pp.

782–798, 2014.

[58] F. Gabbiani, H. G. Krapp, C. Koch, and G. Laurent, “Multiplicative compu-

tation in a visual neuron sensitive to looming,” Nature, vol. 420, no. 6913, pp.

320–324, 2002.

[59] C. Koch and I. Segev, “The role of single neurons in information processing,”

Nature Neuroscience, vol. 3, pp. 1171–1177, 2000.

[60] T. Jiang, D. Wang, J. Ji, Y. Todo, and S. C. Gao, “Single dendritic neu-

ron with nonlinear computation capacity: A case study on xor problem,” in

2015 IEEE International Conference on Progress in Informatics and Comput-

ing (PIC). IEEE, 2015, pp. 20–24.

[61] R. Legenstein and W. Maass, “Branch-specific plasticity enables self-

organization of nonlinear computation in single neurons,” Journal of Neuro-

science, vol. 31, no. 30, pp. 10 787–10 802, 2011.

88

[62] P. Grassberger and I. Procaccia, “Estimation of the kolmogorov entropy from

a chaotic signal,” Physical Review A, vol. 28, no. 4, pp. 2591–2593, 1983.

[63] A. M. Fraser and H. L. Swinney, “Independent coordinates for strange attractors

from mutual information,” Physical Review A, vol. 33, no. 2, pp. 1134–1140,

1986.

[64] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining lyapunov

exponents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3,

pp. 285–317, 1985.

[65] P. Shang, X. Na, and S. Kamae, “Chaotic analysis of time series in the sediment

transport phenomenon,” Chaos, Solitons & Fractals, vol. 41, no. 1, pp. 368–379,

2009.

[66] H. D. I. Abarbanel, Analysis of observed chaotic data. Springer, 1996.

[67] G. Taguchi, R. Jugulum, and S. Taguchi, Computer-based robust engineering:

essentials for DFSS. ASQ Quality Press, 2004.

[68] J. F. Khaw, B. Lim, and L. E. Lim, “Optimal design of neural networks using

the taguchi method,” Neurocomputing, vol. 7, no. 3, pp. 225–245, 1995.

[69] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal repre-

sentations by error propagation. Institute for Cognitive Science, University of

California, San Diego, 1985.

[70] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp.

179–211, 1990.

[71] C. Vairappan, H. Tamura, S. C. Gao, and Z. Tang, “Batch type local search-

based adaptive neuro-fuzzy inference system (anfis) with self-feedbacks for time-

series prediction,” Neurocomputing, vol. 72, pp. 1870–1877, 2009.

89

[72] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical

approach to global optimization. Springer, 2006.

[73] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-

the-art,” IEEE Transactions on Evolutionary Computation, no. 99, pp. 1–28,

2010.

[74] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution with

optional external archive,” IEEE Transactions on Evolutionary Computation,

vol. 13, no. 5, pp. 945–958, 2009.

[75] J. Wang, J. Liao, Y. Zhou, and Y. Cai, “Differential evolution enhanced with

multiobjective sorting-based mutation operators,” IEEE Transactions on Cy-

bernetics, vol. 12, no. 44, pp. 2792–2805, 2014.

[76] L. V. Santana-Quintero and C. A. C. Coello, “An algorithm based on differential

evolution for multi-objective problems,” International Journal of Computational

Intelligence Research, vol. 1, no. 1, pp. 151–169, 2005.

[77] Y.-N. Wang, L.-H. Wu, and X.-F. Yuan, “Multi-objective self-adaptive differ-

ential evolution with elitist archive and crowding entropy-based diversity mea-

sure,” Soft Computing, vol. 14, no. 3, pp. 193–209, 2010.

[78] J. Zhang and A. C. Sanderson, “Self-adaptive multi-objective differential evo-

lution with direction information provided by archived inferior solutions,” in

IEEE Congress on Evolutionary Computation, 2008, pp. 2801–2810.

[79] W. Gong and Z. Cai, “An improved multiobjective differential evoluton based on

pareto-adaptive epsilon-dominance and orthogonal design,” European Journal

of Operational Research, vol. 198, no. 2, pp. 576–601, 2009.

90

[80] B. Chen, Y. Lin, W. Zeng, D. Zhang, and Y.-W. Si, “Modified differential evo-

lution algorithm using a new diversity maintenance strategy for multi-objective

optimization problems,” Applied Intelligence, pp. 1–25, 2015.

[81] J. K. Chong and K. C. Tan, “An opposition-based self-adaptive hybridized

differential evolution algorithm for multi-objective optimization (osade),” in

Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary

Systems. Springer, 2015, pp. 447–461.

[82] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a compar-

ative case study and the strength pareto approach,” IEEE Transactions on

Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[83] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining convergence and

diversity in evolutionary multiobjective optimization,” Evolutionary computa-

tion, vol. 10, no. 3, pp. 263–282, 2002.

[84] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da Fonseca,

“Performance assessment of multiobjective optimizers: An analysis and review,”

IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 117–132,

2003.

[85] K. Fang and C. Ma, “Orthogonal and uniform experimental design,” Beijing:

Science press, 2001.

[86] Y. W. Leung and Y. Wang, “An orthogonal genetic algorithm with quantiza-

tion for global numerical optimization,” IEEE Transactions on Evolutionary

Computation, vol. 5, no. 1, pp. 41–53, 2001.

[87] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-

tiobjective genetic algorithm: Nsga-II,” IEEE Transactions on Evolutionary

Computation, vol. 6, no. 2, pp. 182–197, 2002.

91

[88] S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “On stability and conver-

gence of the population-dynamics in differential evolution,” AI Communication-

s, vol. 22, no. 1, pp. 1–20, 2009.

[89] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting

control parameters in differential evolution: A comparative study on numeri-

cal benchmark problems,” IEEE Transactions on Evolutionary Computation,

vol. 10, no. 6, pp. 646–657, 2006.

[90] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary

algorithms: Empirical results,” Evolutionary computation, vol. 8, no. 2, pp.

173–195, 2000.

[91] A. Hernández-Dı́az, L. Santana-Quintero, C. Coello Coello, and J. Molina,

“Pareto-adaptive ε-dominance,” Evolutionary Computation, vol. 15, no. 4, pp.

493–517, 2007.

[92] K. Deb,Multi-objective optimization using evolutionary algorithms. JohnWiley

& Sons, 2001, vol. 16.

[93] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto

evolutionary algorithm,” in Proc. Evolutionary Methods for Design Optimiza-

tion and Control with Applications to Industrial Problems, 2001, pp. 95–100.

[94] M.-R. Chen and Y.-Z. Lu, “A novel elitist multiobjective optimization algorith-

m: Multiobjective extremal optimization,” European Journal of Operational

Research, vol. 188, no. 3, pp. 637–651, 2008.

[95] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Gsa: a gravitational search

algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232–2248, 2009.

92

[96] P. K. Roy, “Solution of unit commitment problem using gravitational search al-

gorithm,” International Journal of Electrical Power & Energy Systems, vol. 53,

pp. 85–94, 2013.

[97] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Bgsa: binary gravitational

search algorithm,” Natural Computing, vol. 9, no. 3, pp. 727–745, 2010.

[98] S. Gao, C. Vairappan, Y. Wang, Q. Cao, and Z. Tang, “Gravitational search

algorithm combined with chaos for unconstrained numerical optimization,” Ap-

plied Mathematics and Computation, vol. 231, pp. 48–62, 2014.

[99] L. Bing and J. Weisun, “Chaos optimization method and its application,” Con-

trol Theory and Applications, vol. 14, no. 4, pp. 613–615, 1997.

[100] J. Yang, J. Z. Zhou, W. Wu, F. Liu, C. Zhu, and G. Cao, “A chaos algorithm

based on progressive optimality and tabu search algorithm,” in Proceedings of

2005 International Conference on Machine Learning and Cybernetics, vol. 5.

IEEE, 2005, pp. 2977–2981.

[101] H. Xu, Y. Zhu, T. Zhang, and Z. Wang, “Application of mutative scale chaos

optimization algorithm in power plant units economic dispatch,” Journal of

Harbin Institute of Technology, vol. 32, no. 4, pp. 55–58, 2000.

[102] M. Bucolo, R. Caponetto, L. Fortuna, M. Frasca, and A. Rizzo, “Does chaos

work better than noise?” IEEE Circuits and Systems Magazine, vol. 2, no. 3,

pp. 4–19, 2002.

[103] R. Resnick, D. Halliday, and J. Walker, Fundamentals of physics. John Wiley,

1988.

[104] P. Schroeder, “Gravity from the ground up,” Proceedings of the NPA, vol. 7,

pp. 498–503, 2010.

93

[105] R. Mansouri, F. Nasseri, and M. Khorrami, “Effective time variation of g in

a model universe with variable space dimension,” Physics Letters A, vol. 259,

no. 3, pp. 194–200, 1999.

[106] S. Talatahari, B. Farahmand Azar, R. Sheikholeslami, and A. Gandomi, “Im-

perialist competitive algorithm combined with chaos for global optimization,”

Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3,

pp. 1312–1319, 2012.

[107] R. M. May, “Simple mathematical models with very complicated dynamics,”

Nature, vol. 261, no. 5560, pp. 459–467, 1976.

[108] A. Baranovsky and D. Daems, “Design of one-dimensional chaotic maps with

prescribed statistical properties,” International Journal of Bifurcation and

Chaos, vol. 5, no. 06, pp. 1585–1598, 1995.

[109] M. S. Tavazoei and M. Haeri, “Comparison of different one-dimensional maps as

chaotic search pattern in chaos optimization algorithms,” Applied Mathematics

and Computation, vol. 187, no. 2, pp. 1076–1085, 2007.

[110] T. Xiang, X. Liao, and K. Wong, “An improved particle swarm optimization

algorithm combined with piecewise linear chaotic map,” Applied Mathematics

and Computation, vol. 190, no. 2, pp. 1637–1645, 2007.

