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Abstract. The purpose of this paper is to give a characterization of
ruled hypersurfaces and homogeneous real hypersurfaces of type (A0),
(A1), and (B) in non-flat complex space forms by using the second
covariant derivatives of the shape operators.

1. Introduction

Let Mn(c) be an n-dimensional complex space form with constant holo-
morphic sectional curvature c ̸= 0, and let J and g be its complex structure
and Kähler metric, respectively. Complete and simply connected complex
space forms are isometric to either a complex projective space CPn(c) or a
complex hyperbolic space CHn(c) decided from c > 0 or c < 0, respectively.

Let M be a connected submanifold of Mn(c) with real codimension 1.
We refer to this simply as a real hypersurface below. The induced metric
of M is denoted by g. For a local unit normal vector field ν of M , we define
the structure vector ξ of M by ξ = −Jν. Further, the structure tensor field
ϕ is defined by JX = ϕX + g(X, ξ)ν. The structure vector ξ is said to be
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principal if Aξ = αξ is satisfied for some function α, where A is the shape
operator of M .

A real hypersurface M is said to be a Hopf hypersurface if the structure
vector ξ of M is principal. In a complex projective space CPn(c), Hopf hy-
persurfaces with constant principal curvatures are simply the homogeneous
real hypersurfaces (for details, see §2 Theorem K). They were classified
by R. Takagi [14] (for details, see §2 Theorem T), and their principal cur-
vatures were also calculated by R. Takagi [15] (for details, see §2). In a
complex hyperbolic space CHn(c), Hopf hypersurfaces with constant prin-
cipal curvatures were classified by J. Berndt [2] (for details, see §2 Theorem
B).

On the other hand, there are important examples of non-Hopf hypersur-
faces in Mn(c), such as ruled hypersurfaces (for definition, see §2), with a
totally geodesic ruling along a curve in Mn(c).

For a real hypersurface M in Mn(c), let T0 be a distribution defined by
T0 = {X ∈ TM | g(X, ξ) = 0}, where TM denotes the tangent bundle of
M . The distribution T0 is called a holomorphic distribution (see [9]). T0

is not integrable on any Hopf homogeneous real hypersurface of Mn(c) but
is integrable on any ruled hypersurface of Mn(c). M. Kimura [5] obtained
some properties of a ruled hypersurface of CPn(c) and gave an example of
minimal ruled hypersurface of CPn(c). There are many characterization
theorems of ruled hypersurfaces in Mn(c) (e.g., [1], [4], [6], [7], [9]). We
also know many characterization theorems of homogeneous real hypersur-
faces by using some formulas of the first covariant derivatives of the shape
operators (e.g., [3], [7], [8], [9]).

In [12], we characterized homogeneous real hypersurfaces of type (A0)
and (B) simultaneously by using the second covariant derivatives of the
shape operators under the conditions that the structure vector fields ξ are
principal as follows:

Theorem N.[12][Theorem 4.1.] Let M be a connected real hypersurface in
a complex space form Mn(c) (n ≥ 2, c ̸= 0) on which the structure vector
ξ is principal with principal curvature α ̸= 0. Then the shape operator A
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satisfies

g((∇2
X,Y A)Z,W ) =

α

4

{
g(ϕAX, Y )g((4ϕA +

2c

α
ϕ)Z,W )

+ g(ϕAX,Z)g((4ϕA +
c

α
ϕ)Y,W )

+g(ϕAX,W )g((4ϕA +
c

α
ϕ)Y,Z)

}
,

X, Y, Z, W ∈ T0,

if and only if M is locally congruent to a homogeneous real hypersurface of
type (A0) or (B).

The purpose of this paper is to generalize the above result. To that end,
we prove the following theorem:

Theorem 4.1. Let M be a connected real hypersurface in a complex space
form Mn(c) (n ≥ 3, c ̸= 0). Then the shape operator A satisfies the
following equation for some nonzero constant a:

g((∇2
X,Y A)Z,W ) =

c

4a
{2g(ϕAX, Y )g((2ϕA + aϕ)Z,W )

+ g(ϕAX,Z)g((4ϕA + aϕ)Y,W )

+g(ϕAX,W )g((4ϕA + aϕ)Y,Z)} ,

X, Y, Z, W ∈ T0,

(4.1)

if and only if M is locally congruent to one of the following:

(A0) a horosphere in CHn(c);

(A1) a geodesic hypersphere in Mn(c) or a tube over a complex hyperbolic
hyperplane CHn−1(c) in CHn(c);

(B) a tube over a totally geodesic and totally real space form of real di-
mension n in Mn(c);

(R) a ruled hypersurface in Mn(c).

In the following all manifolds are assumed to be C∞ and connected.
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2. Preliminaries

In this section, we present some preliminary results of real hypersurfaces
in a complex space form.

Let Mn(c) (c ̸= 0) be an n-dimensional complex space form with constant
holomorphic sectional curvature c and let J and g be its complex structure
and Kähler metric, respectively.

M is a real hypersurface of Mn(c). Further, we denote by g the induced
Riemannian metric on M and by ν a local unit normal vector field along
M in Mn(c).

The Gauss and Weingarten formulas are:

∇XY = ∇XY + g(AX,Y )ν, (2.1)

∇Xν = −AX, (2.2)

where ∇ and ∇ respectively denote the Levi–Civita connection on Mn(c)
and M , and A is the shape operator of M in Mn(c).

We define an almost contact metric structure (ϕ, ξ, η, g) on M as in the
usual way:

ξ = −Jν, η(X) = g(X, ξ), ϕX = (JX)T , X ∈ TM, (2.3)

where ( )T denotes the tangential component of a vector. These structure
tensors satisfy the following equations:

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1, (2.4)

where I denotes the identity mapping of TM .
From (2.1) and (2.3), we easily have

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, (2.5)

∇Xξ = ϕAX, (2.6)

for tangent vectors X, Y ∈ TM .
In our case the Gauss and Codazzi equations of M become

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX

−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ}

+ g(AY,Z)AX − g(AX,Z)AY,

(2.7)
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(∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ} . (2.8)

The Ricci formula of the tensor field T on M is:

∇2
X,Y T −∇2

Y,XT = R(X,Y ) · T, X, Y ∈ TM, (2.9)

where the second covariant derivative ∇2
X,Y T of T is defined by

∇2
X,Y T = ∇X(∇Y T ) −∇∇XY T

and R(X,Y ) acts on T as a derivation.
A real hypersurface M of CPn(c) is said to be a homogeneous real hy-

persurface if it is an orbit of an analytic subgroup of the isometry group of
CPn(c). We know the complete classification of homogeneous real hyper-
surfaces of CPn(c).

Theorem T ([14]). Let M be a homogeneous real hypersurface of CPn(c).
Then M is locally congruent to one of the following spaces:

(A1) a geodesic hypersphere;

(A2) a tube of radius r (0 < r < π√
c
) over a totally geodesic CPk(c) (1 ≤

k ≤ n − 2);

(B) a tube of radius r (0 < r < π
2
√

c
) over a complex quadric Qn−1;

(C) a tube of radius r (0 < r < π
2
√

c
) over CP1 × CPn−1

2
where n (≥ 5) is

odd;

(D) a tube of radius r (0 < r < π
2
√

c
) over a complex Grassmann G2,5 and

n = 9;

(E) a tube of radius r (0 < r < π
2
√

c
) over a Hermitian symmetric space

SO(10)/U(5) and n = 15.

For homogeneity of a real hypersurface in CPn(c), there is a criterion
obtained by M. Kimura [5]. His theorem is

Theorem K ([5]). Let M be a connected real hypersurface in CPn(c).
Then M has constant principal curvatures and the structure vector ξ is
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principal if and only if M is congruent to an open subset of a homogeneous
real hypersurface.

In CHn(c) J. Berndt [2] obtained the complete classification of Hopf
hypersurfaces with constant principal curvatures. His theorem is the fol-
lowing:

Theorem B ([2]). Let M be a connected real hypersurface of CHn(c) (n ≥
2) with constant principal curvatures. Further, assume that the structure
vector ξ is principal. Then M is orientable and holomorphic congruent to
an open part of one of the following hypersurfaces:

(A0) a horosphere in CHn(c);

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
CHn−1(c) in CHn(c);

(A2) a tube of radius r ∈ R+ over a totally geodesic CHk(c) (1 ≤ k ≤ n−2);

(B) a tube of radius r ∈ R+ over a totally geodesic totally real submanifold
RHn.

Concerning the principal curvatures α, λ1, λ2, λ3, λ4 and their mul-
tiplicities mα, mλ1 , mλ2 , mλ3 , mλ4 of homogeneous real hypersurfaces in
CPn(c), we have the following Table 1 (see [15]): Here, α is the principal
curvature corresponding to the principal direction ξ.

Concerning the principal curvatures α, λ1, λ2 and their multiplicities mα,
mλ1 , mλ2 of Hopf homogeneous real hypersurfaces in CHn(c), we have the
following Table 2 (see [10]): Here, α is the principal curvature corresponding
to the principal direction ξ.

Next, we explain some fundamental facts of ruled hypersurfaces in com-
plex space forms (for details, see [1], [4], [5], [6]). Let γ : I → Mn(c) be
an arbitrary (regular) curve in Mn(c). Then for every t (∈ I) there exists
a totally geodesic hyperplane M

(t)
n−1(c) (in Mn(c)) through the point γ(t)

which is orthogonal to the holomorphic plane spanned by γ′(t) and Jγ′(t).
Let M =

∪
t∈I M

(t)
n−1(c). Then M obtains a real hypersurface of Mn(c),

which is called a ruled hypersurface.
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Type Principal curvatures Multiplicities

(A1) α =
√

c cot
√

cr mα = 1

λ1 =
√

c
2

cot
√

c
2

r mλ1 = 2(n − 1)

(A2) α =
√

c cot
√

cr mα = 1

λ1 =
√

c
2

cot
√

c
2

r mλ1 = 2(n − k − 1)

λ2 = −
√

c
2

tan
√

c
2

r mλ2 = 2k

(B) α =
√

c cot
√

cr mα = 1

λ1 =
√

c
2

cot
√

c
2

(r − π
2
√

c
) mλ1 = n − 2

λ2 = −
√

c
2

tan
√

c
2

(r − π
2
√

c
) mλ2 = n − 2

(C) α =
√

c cot
√

cr mα = 1

λi =
√

c
2

cot
√

c
2

(r − πi
2
√

c
) mλi = n − 3 (i = 2, 4)

(i = 1, 2, 3, 4) mλi = 2 (i = 1, 3)

(D) α =
√

c cot
√

cr mα = 1

λi =
√

c
2

cot
√

c
2

(r − πi
2
√

c
) mλi = 4 (i = 1, 2, 3, 4)

(i = 1, 2, 3, 4)

(E) α =
√

c cot
√

cr mα = 1

λi =
√

c
2

cot
√

c
2

(r − πi
2
√

c
) mλi = 8 (i = 2, 4)

(i = 1, 2, 3, 4) mλi = 6 (i = 1, 3)

Table 1: Principal curvatures in CPn(c)

Type Principal curvatures Multipricities

(A0) α =
√
−c 1

λ1 =
√

−c
2

2n − 2

(A) α =
√
−c coth

√
−cr 1

λ1 =
√

−c
2

coth
√

−c
2

r 2(n − k − 1)

λ2 =
√

−c
2

tanh
√

−c
2

r 2k

(B) α =
√
−c tanh

√
−cr 1

λ1 =
√

−c
2

coth
√

−c
2

r n − 1

λ2 =
√

−c
2

tanh
√

−c
2

r n − 1

Table 2: Principal curvatures in CHn(c)

Let T0 = {X ∈ TM | X ⊥ ξ} be the holomorphic distribution of M .
Then the distribution T0 is integrable on a ruled hypersurface M . Fur-



122 Setsuo Nagai

thermore, the shape operator A of M satisfies the following:

Aξ = αξ + U (U ̸= 0),

AU = g(U,U)ξ,

AX = 0, X ⊥ ξ, U,

(2.10)

where U is the T0-component of Aξ (for details, see [6]).
Now, we define the concept of η-parallel second fundamental form as

follows.

Definition 2.1. The shape operator A of a real hypersurface M is said to
be η-parallel if A satisfies the following:

g((∇XA)Y,Z) = 0, X, Y, Z ∈ T0. (2.11)

There are many characterization theorems for ruled hypersurfaces in a
complex space form (see, for example, [1], [4], [5], [6], [7]). The following
proposition can be easily deduced:

Proposition 2.2. Let M be a real hypersurface of a complex space form
Mn(c). If the shape operator A of M satisfies

g(AX,Y ) = 0, X, Y ∈ T0, (2.12)

then M is locally congruent to a ruled hypersurface of Mn(c).

Proof Let X and Y be vector fields of M whose values belong to T0. Then,
accoding to (2.6) and (2.12), we have

g(∇XY, ξ) = −g(Y, ϕAX) = g(AX,ϕY ) = 0.

This means that
∇XY ∈ T0, X, Y ∈ T0. (2.13)

Furthermore, for vector fields X and Y whose values belong to T0, we have

∇XY = ∇XY + g(AX,Y )ν = ∇XY. (2.14)

From (2.13) and (2.14), we conclude that the leaves of the distribution T0

are totally geodesic in M and in Mn(c). Because T0 is J-invariant, all
the leaves of the distribution T0 are totally geodesic complex hyperplanes
Mn−1(c) of Mn(c). This proves the proposition.
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Remark 2.3. For a real hypersurface M of Mn(c), the following two con-
ditions are equivalent (see Proposition 5 in [7]):
(i) The holomorphic distribution T0 is integrable.
(ii) g((ϕA + Aϕ)X,Y ) = 0 for any X, Y ∈ T0.

Remark 2.4. Under the condition of Proposition 2.2, the shape operator
A of M is η-parallel (see [7] Proposition 4).

For ruled real hypersurfaces in a complex space form, M. Kimura and
S. Maeda obtained the following characterization theorem:

Theorem 2.5 (M. Kimura and S. Maeda [7]) Let M be a real hyper-
surface of CPn(c). Then the shape operator A of M is η-parallel and the
holomorphic distribution T0 is integrable if and only if M is locally congru-
ent to a ruled hypersurface of CPn(c).

For a ruled hypersurface of Mn(c), S-S. Ahn, S-B. Lee, and Y-J. Suh ob-
tained the following:

Theorem 2.6 (S-S. Ahn, S-B. Lee, and Y-J. Suh [1]) Let M be a con-
nected real hypersurface of Mn(c), c ̸= 0 and n ≥ 3. If the shape operator
A of M satisfies

g((∇XA)Y,Z) = 0

and

g((Aϕ − ϕA)X,Y ) = 0

for any vector fields X, Y , and Z in T0, and the structure vector field ξ is
not principal, then M is locally congruent to a ruled hypersurface.

3. Lemmas

In this section, we present some lemmas that we will use to prove our
main theorem.

For the shape operators of real hypersurfaces in a non-flat complex space
form Mn(c) (c ̸= 0), we know the following:
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Lemma 3.1 ([11], [13]) Let M be a homogeneous real hypersurface of
type (A) in a non-flat complex space form Mn(c) (c ̸= 0). Then the shape
operator A of M satisfies the following equations:

ϕA − Aϕ = 0, (3.1)

A2 − αA − c

4
I = − c

4
η ⊗ ξ, (3.2)

(∇XA)Y = − c

4
{η(Y )ϕX + g(ϕX, Y )ξ} , (3.3)

where α and I denote the principal curvature in the direction of the structure
vector ξ and the identity mapping of TM , respectively.

Lemma 3.2 ([3]) Let M be a homogeneous real hypersurface of type (A0)
or (B) in a non-flat complex space form Mn(c) (c ̸= 0). Then the shape
operator A of M satisfies the following equations:

ϕA + Aϕ +
c

α
ϕ = 0, (3.4)

A2 +
c

α
A − c

4
I = (α2 +

3
4
c)η ⊗ ξ, (3.5)

(∇XA)Y = − α

4
{2η(X)(Aϕ − ϕA)Y

+η(Y )(Aϕ − 3ϕA)X + g((Aϕ − 3ϕA)X,Y )ξ} .
(3.6)

From Lemma 3.1, Lemma 3.2, Table 1 and Table 2, we have

Lemma 3.3. Let M be a homogeneous real hypersurface of type (A0), (A1),
or (B) in Mn(c) (c ̸= 0). Then, the shape operator A of M satisfies the
following equations for some nonzero constant a:

ϕA + Aϕ + aϕ = 0, (3.7)

(∇XA)Y =
c

4a
{2η(X)(2ϕA + aϕ)Y + η(Y )(4ϕA + aϕ)X

+g((4ϕA + aϕ)X,Y )ξ} .
(3.8)

So, taking the covariant derivative of (3.8), we have the following:
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Lemma 3.4. Let M be a homogeneous real hypersurface of type (A0), (A1),
or (B) in Mn(c) (c ̸= 0). Then, the shape operator A of M satisfies the
following equation for some nonzero constant a:

g((∇2
X,Y A)Z,W ) =

c

4a
{2g(ϕAX, Y )g((2ϕA + aϕ)Z,W )

+ g(ϕAX,Z)g((4ϕA + aϕ)Y,W )

+g(ϕAX,W )g((4ϕA + aϕ)Y,Z)} , X, Y, Z, W ∈ T0.

(3.9)

For a ruled hypersurface in Mn(c) (c ̸= 0), we have

Lemma 3.5. Let M be a ruled hypersurface in Mn(c) (c ̸= 0). Then,
both-sides of (3.9) vanish.

Proof For a ruled hypersurface M , the leaves of the distribution T0 are
totally geodesic both in M and Mn(c). Furthermore, the shape operator
A of M is η-parallel (see [6]). From this it follows that

g((∇2
X,Y A)Z,W )

=g(∇X((∇Y A)Z) − (∇Y A)(∇XZ),W ) − g((∇∇XY A)Z,W )

=0, X, Y, Z, W ∈ T0.

This means that the left side of (3.9) vanishes.

According to (2.10) and Remark 2.3, the right side of (3.9) also vanishes.
This proves the lemma.

The following is known about the principal curvatures of a Hopf hyper-
surface:

Lemma 3.6 ([8], [13]) Let M be a Hopf hypersurface of Mn(c) (n ≥
2, c ̸= 0). Then the principal curvature α corresponding to the structure
vector ξ is locally constant, and for any principal curvature vector X ∈ T0

with AX = λX , we have

(2λ − α)AϕX = (αλ +
c

2
)ϕX.
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4. Proof of Theorem

In this section we shall prove our main theorem.

Theorem 4.1. Let M be a connected real hypersurface in a complex space
form Mn(c) (n ≥ 3, c ̸= 0). Then the shape operator A satisfies the
following equation for some nonzero constant a:

g((∇2
X,Y A)Z,W ) =

c

4a
{2g(ϕAX, Y )g((2ϕA + aϕ)Z,W )

+ g(ϕAX,Z)g((4ϕA + aϕ)Y,W )

+g(ϕAX,W )g((4ϕA + aϕ)Y,Z)} ,

X, Y, Z, W ∈ T0,

(4.1)

if and only if M is locally congruent to one of the following:

(A0) a horosphere in CHn(c);

(A1) a geodesic hypersphere in Mn(c) or a tube over a complex hyperbolic
hyperplane CHn−1(c) in CHn(c);

(B) a tube over a totally geodesic and totally real space form of real di-
mension n in Mn(c);

(R) a ruled hypersurface in Mn(c).

By making use of the Codazzi equation (2.8), we find the following general
formula:

g((∇2
X,Y A)Z − (∇2

X,ZA)Y,W )

=
c

4
{g(ϕAX, Y )g(ϕZ,W ) − g(ϕAX,Z)g(ϕY,W )

−2g(ϕAX,W )g(ϕY,Z)} ,

(4.2)

on arbitrary tangent vectors X, Y , Z, W ∈ T0. Therefore the condition
(4.1) and (4.2) implies that

g(ϕAX,W )g((ϕA + Aϕ + aϕ)Y,Z) = 0. (4.3)

We assume here that a ̸= 0.
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In what follows e1, . . . , e2n−2 denotes an orthonormal basis of T0 at a
point in M , and the index j runs from 1 to 2n − 2. Letting X = ej and
W = ϕej in (4.3), and taking the summation on j, we have

(h − α)g((ϕA + Aϕ + aϕ)Y,Z) = 0, (4.4)

where h and α denote the mean curvature of M and the function defined
by α = g(Aξ, ξ), respectively. Furthermore, letting Y = ej and Z = ϕej in
(4.4) and taking the summation on j, we obtain

(h − α) {(h − α) + (n − 1)a} = 0. (4.5)

From (4.5) either h − α = 0 or (h − α) + (n − 1)a = 0 holds on M , since
M is connected and a ̸= 0. We therefore devide the discussion into the
following two cases:
Case 1. The equation h − α = 0 holds on M .
Case 2. The equation (h − α) + (n − 1)a = 0 holds on M .

We first consider Case 1, in which we have (h−α)+(n−1)a = (n−1)a ̸= 0.
So, from (4.3), the following holds on M :

g(ϕAX, Y ) = 0, X, Y ∈ T0. (4.6)

This leads to

Aξ = αξ + U,

AU = g(U,U)ξ,

AX = 0, X ⊥ ξ, U,

where the vector field U is defined by U = Aξ −αξ. This means that M is
locally congruent to a ruled hypersurface of Mn(c) by Proposition 2.2 (see
also [7]).

On the other hand, let M be a ruled hypersurface of Mn(c). Then, (4.1)
holds by Lemma 3.5.

We next consider Case 2. In this case we have h−α ̸= 0. So, from (4.4),

(ϕA + Aϕ + aϕ)X = −g(ϕU,X)ξ, X ∈ T0. (4.7)
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On the other hand, using (4.1), (2.7), and (2.9), we have
c

4
{g((ϕA + Aϕ)Y,Z)g(ϕX,W ) − g((ϕA + Aϕ)X,Z)g(ϕY,W )

+ g((ϕA + Aϕ)Y,W )g(ϕX,Z) − g((ϕA + Aϕ)X,W )g(ϕY,Z)}

− c

2
{g((ϕA − Aϕ)Z,W )g(ϕX, Y ) + g((ϕA + Aϕ)X,Y )g(ϕZ,W )}

− c

a
g((ϕA + Aϕ)X,Y )g(ϕAZ,W ) + g(AY,Z)g(

c

4
X − A2X,W )

− g(AX,Z)g(
c

4
Y − A2Y,W ) − g(AX,W )g(

c

4
Y − A2Y,Z)

+ g(AY,W )g(
c

4
X − A2X,Z) = 0, X, Y, Z, W ∈ T0

(4.8)

(for details, see [12]).
Combining (4.7) with (4.8), we are led to

g(AY,Z)g(
c

4
X − A2X,W ) − g(AX,Z)g(

c

4
Y − A2Y,W )

−g(AX,W )g(
c

4
Y − A2Y,Z) + g(AY,W )g(

c

4
X − A2X,Z) = 0.

(4.9)

We assert that ξ is principal. We shall prove our assertion by reductio
ad absurdum.

Let Ω be the open subset of M defined by Ω = {p ∈ M |U(p) ̸= 0}. In
the following we assume that the set Ω is not empty and all discussion
concerns the set Ω unless otherwise stated.

We restate the orthonormal frame field e1, e2, . . ., e2n−1 in such a way
that e1 = ξ, e2 = U/∥U∥, e3 = ϕe2, e2i+1 = ϕe2i (i ≥ 2).

We now define the local differentiable functions α, β, γ, δ, and hij as
follows:

α = g(Aξ, ξ), β = g(Aξ, e2), γ = g(Ae2, e2), δ = g(Ae2, e3),

hij = g(Aei, ej), i, j = 1, 2, . . . , 2n − 1.

Hereafter the index p runs 2, 4, . . ., 2(n− 1) and p∗ means p∗ = p + 1. We
further assume that ei (i ≥ 4) are chosen in such a manner that

hij = λiδij . (i, j ≥ 4).

This is in fact possible by (4.7). Furthermore, the following are satisfied by
(4.7):

g(Ae3, e3) = −(γ + a), λp∗ = −(λp + a), p = 4, 6, . . . , 2(n − 1).
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Let us first demonstrate the following lemma:

Lemma 4.2. h2p = h2p∗ = 0 (p = 4, 6, . . . , 2(n − 1)).

Proof Letting X = e2, Y = ϕe2, Z = ep, W = e2 in (4.9), we have

− δ(λp + a)h2p

+

{
γ(λp − a) − β2 − 2γ2 − 2δ2 −

∑
p

h2
2p −

∑
p

h2
2p∗ +

c

4

}
h2p∗

= 0.

(4.10)

Letting X = e2, Y = ϕe2, Z = ep∗, W = ϕe2 in (4.9), we have

δλph2p

+

{
2δ2 + 2(γ + a)2 +

∑
p

h2
2p +

∑
p

h2
2p∗ −

c

4
− (γ + a)(λp + 2a)

}
h2p∗

= 0.

(4.11)

Letting X = e2, Y = ϕe2, Z = ep∗, W = e2 in (4.9), we have{
γ(λp + 2a) + β2 + 2γ2 + 2δ2 +

∑
p

h2
2p +

∑
p

h2
2p∗ −

c

4

}
h2p

+ δλph
2
2p∗ = 0.

(4.12)

Letting X = e2, Y = ϕe2, Z = ep, W = ϕe2 in (4.9), we have{
(γ + a)(λp − a) + 2δ2 + 2(γ + a)2 +

∑
p

h2
2p +

∑
p

h2
2p∗ −

c

4

}
h2p

+ δ(λp + a)h2p∗ = 0.

(4.13)

From (4.10) and (4.11), we have

aδh2p +
{
a(λp − γ) + β2

}
h2p∗ = 0. (4.14)

From (4.12) and (4.13), we have{
a(λp + γ + a) − β2

}
h2p + aδh2p∗ = 0. (4.15)
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Letting X = e2, Y = ep, Z = ep∗, W = ϕe2 in (4.9), we have

{δh2p + (λp − γ)h2p∗}h2p∗ = 0. (4.16)

Letting X = ϕe2, Y = ep, Z = ep∗, W = e2 in (4.9), we have

{(λp + γ + a)h2p + δh2p∗}h2p = 0. (4.17)

From (4.15) and (4.17),
β2h2p = 0,

and from (4.14) and (4.16),

β2h2p∗ = 0.

Since β ≠ 0, the lemma holds.
Secondly, we prove the following lemma:

Lemma 4.3. δ = 0.

Proof We shall prove the lemma by reductio ad absurdum. We assume that
δ ̸= 0 is satisfied. Then, letting X = e2, Y = ep, Z = ep, W = ϕe2 in (4.9)
and using Lemma 4.2, we are led to

λ2
p + aλp −

c

4
= 0. (4.18)

This leads to λp ̸= 0 since c ̸= 0. Letting X = e2, Y = ep, Z = ep, W = e2

in (4.9), we have

γ(λ2
p −

c

4
) − (β2 + γ2 + δ2)λp = 0. (4.19)

Combining (4.18) with (4.19), we have

aγ + β2 + γ2 + δ2 = 0. (4.20)

Letting X = ϕe2, Y = ep, Z = ep, W = ϕe2 in (4.9), we have

(γ + a)(λ2
p −

c

4
) + λp

{
δ2 + (γ + a)2 − c

4

}
= 0. (4.21)

Combining (4.18) with (4.21), we have

δ2 + (γ2 + aγ − c

4
) = 0. (4.22)
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Letting X = e2, Y = ep∗, Z = ep∗, W = ϕe2 in (4.9), we have

(γ + a)
{

(λp + a)2 − c

4

}
− (λp + a)

{
δ2 + (γ + a)2 − c

4

}
= 0. (4.23)

Combining (4.18) with (4.23), we have{
γ(γ + a) + δ2

}
λp + a(δ2 + γ2 + aγ − c

4
) = 0. (4.24)

From (4.22), (4.24), and λp ̸= 0, we are led to

c = 0,

which is a contradiction, so δ = 0 must be satisfied.
Thirdly, we establish the following lemma:

Lemma 4.4.
λp = λp∗ = −a

2
, γ = −(

c

2a
+ a).

Proof Letting X = e2, Y = ϕe2, Z = ϕe2, W = e2 in (4.9) and using
Lemma 4.2 and Lemma 4.3, we have

(γ + a)β2 + (2γ + a)(γ2 + aγ − c

4
) = 0. (4.25)

Equation (4.21) is reduced to

(λp + γ + a)
{

λp(γ + a) − c

4

}
= 0. (4.26)

Also, (4.23) is reduced to

(λp − γ)
{

(λp + a)(γ + a) +
c

4

}
= 0. (4.27)

Letting X = ep, Y = ep∗, Z = ep∗, W = ep in (4.9), we have

(2λp + a)(λ2
p + aλp −

c

4
) = 0. (4.28)

We assert that λp ̸= γ. If λp = γ were satisfied, we would have (γ+a)β2 = 0
from (4.25) and (4.28). Since β ̸= 0, we further would have γ = −a. Then,
from (4.26) and (4.28) we would be led to c = 0 which is a contradiction,
so λp ̸= γ must be satisfied.

We assert that λp ̸= −(γ + a). If this were not so, we would have
(γ + a)β2 = 0 from (4.25) and (4.27). Since β ̸= 0, we further would have
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γ = −a. Then, from (4.26) and (4.28) we would be led to c = 0 which is a
contradiction, so λp ̸= −(γ + a) must be satisfied.

Therefore from (4.26) and (4.27) we get λp = −a
2 , γ = −( c

2a + a). This
completes the proof.

We end this section with a proof of our main theorem. From Lemma 4.4,
(4.25) is reduced to

2a2β2 + (a2 + c)2 = 0

which is a contradiction, so the structure vector ξ must be principal. This
leads to our main theorem as follows. Since ξ is principal, (4.7) is reduced
to

ϕA + Aϕ + aϕ = 0. (4.29)

Then, from Lemma 3.6, M has at most three distinct constant principal
curvatures. So, owing to Theorem K and Theorem B, M is locally con-
gruent to a homogeneous real hypersurface of type (A) or (B) in Mn(c)
(c ̸= 0). Among these homogeneous real hypersurfaces, (4.29) is satisfied
by type (A0), (A1), or (B). This concludes the proof of the theorem by the
arguments above.
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