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A characterization of ruled hypersurfaces and homogeneous
real hypersurfaces of type (A4p), (41), and (B) in non-flat
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Abstract. The purpose of this paper is to give a characterization of
ruled hypersurfaces and homogeneous real hypersurfaces of type (Ap),
(A1), and (B) in non-flat complex space forms by using the second
covariant derivatives of the shape operators.

1. Introduction

Let M, (c) be an n-dimensional complex space form with constant holo-
morphic sectional curvature ¢ # 0, and let J and g be its complex structure
and Kéahler metric, respectively. Complete and simply connected complex
space forms are isometric to either a complex projective space CP,(c) or a
complex hyperbolic space CH,,(c) decided from ¢ > 0 or ¢ < 0, respectively.

Let M be a connected submanifold of M, (c) with real codimension 1.
We refer to this simply as a real hypersurface below. The induced metric
of M is denoted by g. For a local unit normal vector field v of M, we define
the structure vector £ of M by ¢ = —Jv. Further, the structure tensor field
¢ is defined by JX = ¢X + g(X,&)v. The structure vector ¢ is said to be
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principal if A = £ is satisfied for some function «, where A is the shape

operator of M.

A real hypersurface M is said to be a Hopf hypersurface if the structure
vector £ of M is principal. In a complex projective space CP,(c), Hopf hy-
persurfaces with constant principal curvatures are simply the homogeneous
real hypersurfaces (for details, see §2 Theorem K). They were classified
by R. Takagi [14] (for details, see §2 Theorem T), and their principal cur-
vatures were also calculated by R. Takagi [15] (for details, see §2). In a
complex hyperbolic space CH,(c), Hopf hypersurfaces with constant prin-
cipal curvatures were classified by J. Berndt [2] (for details, see §2 Theorem
B).

On the other hand, there are important examples of non-Hopf hypersur-
faces in M, (c), such as ruled hypersurfaces (for definition, see §2), with a

totally geodesic ruling along a curve in M, (c).

For a real hypersurface M in M,(c), let Ty be a distribution defined by
To = {X €e TM|g(X,§) =0}, where TM denotes the tangent bundle of
M. The distribution Tp is called a holomorphic distribution (see [9]). Tp
is not integrable on any Hopf homogeneous real hypersurface of M, (c) but
is integrable on any ruled hypersurface of M,(c). M. Kimura [5] obtained
some properties of a ruled hypersurface of CP,(c) and gave an example of
minimal ruled hypersurface of CP,(c). There are many characterization
theorems of ruled hypersurfaces in Mp(c) (e.g., [1], [4], [6], [7], [9]). We
also know many characterization theorems of homogeneous real hypersur-
faces by using some formulas of the first covariant derivatives of the shape
operators (e.g., [3], [7], [8], [9])-

In [12], we characterized homogeneous real hypersurfaces of type (Ap)
and (B) simultaneously by using the second covariant derivatives of the
shape operators under the conditions that the structure vector fields & are

principal as follows:

Theorem N.[12][Theorem 4.1.] Let M be a connected real hypersurface in
a complex space form M, (c) (n > 2, ¢ # 0) on which the structure vector

& is principal with principal curvature o # 0. Then the shape operator A
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satisfies

«a 2c
Ty A1Z) =% {g0AX, V)g((104 + X))
c
+ 9(0AX, Z)g((40A + a(ﬁ)Y, W)
c
+9(PAX, W)g((46A + ~6)Y, Z) }
X, Y, Z, W ey,
if and only if M is locally congruent to a homogeneous real hypersurface of
type (Ag) or (B).

The purpose of this paper is to generalize the above result. To that end,

we prove the following theorem:

Theorem 4.1. Let M be a connected real hypersurface in a complex space
form My(c) (n > 3, ¢ # 0). Then the shape operator A satisfies the

following equation for some nonzero constant a:

9((Viy A)Z, W) = {29(9AX, Y )g((26A + ad)Z, W)

+9(0AX, 2)9((49A + ag)Y, W)
+9(0AX, W)g((40A + ad)Y, Z)},
X, Y, Z, W €Ty,

(4.1)

if and only if M 1is locally congruent to one of the following:
(Ag) a horosphere in CHy(c);

(A1) a geodesic hypersphere in M, (c) or a tube over a complex hyperbolic
hyperplane CHy,_1(c) in CHy(c);

(B) a tube over a totally geodesic and totally real space form of real di-

mension n in M,(c);
(R) a ruled hypersurface in M,(c).

In the following all manifolds are assumed to be C'* and connected.
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2. Preliminaries

In this section, we present some preliminary results of real hypersurfaces
in a complex space form.

Let M, (c) (¢ # 0) be an n-dimensional complex space form with constant
holomorphic sectional curvature ¢ and let J and g be its complex structure
and Kahler metric, respectively.

M is a real hypersurface of M, (c). Further, we denote by g the induced
Riemannian metric on M and by v a local unit normal vector field along
M in M,(c).

The Gauss and Weingarten formulas are:

vxy =VxY + g(AX, Y)I/, (2.1)
Vxv = —AX, (2.2)
where V and V respectively denote the Levi-Civita connection on M,(c)
and M, and A is the shape operator of M in M,(c).
We define an almost contact metric structure (¢, &, n, g) on M as in the

usual way:
E=—Jv, n(X) =g(X,¢), oX = (JX)", X eTM,  (23)

where ()7 denotes the tangential component of a vector. These structure

tensors satisfy the following equations:

¢2:_I+77®€7 p€ =0, nogp=0, 77(5):17 (24)

where I denotes the identity mapping of T'M.
From (2.1) and (2.3), we easily have

Vx§ = pAX, (2.6)
for tangent vectors X, Y € T M.
In our case the Gauss and Codazzi equations of M become
R(X,Y)Z =7 {g(Y.2)X = g(X, )Y + g(¢Y, 2)6X
~9(6X, 2)8Y —2g(¢X,Y)$Z} (2.7)
+g(AY, Z2)AX — g(AX, Z)AY,
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(VxA)Y = (Vy A)X = £ {n(X)8Y —n(¥)oX —29(6X,V)E} . (28)
The Ricci formula of the tensor field 7" on M is:
ViyT - VixT=R(X,Y)- T, X,Y€eTM, (2.9)
where the second covariant derivative v%{,yT of T is defined by
ViyT =Vx(VyT) = Vy,yT

and R(X,Y) acts on T as a derivation.
A real hypersurface M of CP,(c) is said to be a homogeneous real hy-
persurface if it is an orbit of an analytic subgroup of the isometry group of

CP,(c). We know the complete classification of homogeneous real hyper-
surfaces of CP,(c).

Theorem T ([14]). Let M be a homogeneous real hypersurface of CP,(c).

Then M 1is locally congruent to one of the following spaces:
(A1) a geodesic hypersphere;

(A2) a tube of radius r (0 < r < %) over a totally geodesic CPy(c) (1 <
kE<n-—2)

(B) a tube of radius r (0 <r < QLﬁ) over a complex quadric Qn_1;

(C) a tube of radius r (0 <1 < 2Lﬁ) over CPy x (CP% where n (> 5) is
odd;

(D) a tube of radius r (0 <r < QLﬁ) over a complex Grassmann Ga 5 and
n=29;

(E) a tube of radius r (0 < r < 2L\/E) over a Hermitian symmetric space

SO(10)/U(5) and n = 15.

For homogeneity of a real hypersurface in CP,(c), there is a criterion
obtained by M. Kimura [5]. His theorem is

Theorem K ([5]). Let M be a connected real hypersurface in CP,(c).

Then M has constant principal curvatures and the structure vector & is
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principal if and only if M is congruent to an open subset of a homogeneous
real hypersurface.

In CH,(c) J. Berndt [2] obtained the complete classification of Hopf
hypersurfaces with constant principal curvatures. His theorem is the fol-

lowing:

Theorem B ([2]). Let M be a connected real hypersurface of CHy(c) (n >
2) with constant principal curvatures. Further, assume that the structure
vector € is principal. Then M is orientable and holomorphic congruent to

an open part of one of the following hypersurfaces:
(Ao) a horosphere in CHy(c);

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
CHy,—1(c) in CHp(c);

(A2) a tube of radius r € Ry over a totally geodesic CHy(c) (1 < k < n—2);

(B) a tube of radius r € Ry over a totally geodesic totally real submanifold
RH,.

Concerning the principal curvatures a, A1, Ao, A3z, A\q and their mul-
tiplicities mq, my,, my,, my,, my, of homogeneous real hypersurfaces in
CP,(c), we have the following Table 1 (see [15]): Here, « is the principal
curvature corresponding to the principal direction &.

Concerning the principal curvatures a;, A1, Ay and their multiplicities mq,
My, M, of Hopf homogeneous real hypersurfaces in CH,,(c), we have the
following Table 2 (see [10]): Here, ais the principal curvature corresponding
to the principal direction &.

Next, we explain some fundamental facts of ruled hypersurfaces in com-
plex space forms (for details, see [1], [4], [5], [6]). Let v: I — My(c) be
an arbitrary (regular) curve in M, (c). Then for every t (€ I) there exists
a totally geodesic hyperplane 7531(0) (in M, (c)) through the point ()
which is orthogonal to the holomorphic plane spanned by +/(t) and J~/(t).
Let M = Uer 75)_1(0) Then M obtains a real hypersurface of M,(c),

which is called a ruled hypersurface.
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Type Principal curvatures Multiplicities
(Ar) a = \/ccoty/cr me =1
AL = %cot %r my, =2(n—1)
(A2) a = +/ccot+/cr Ma =1
)\1276C0t§7’ myx, =2(n—k—1)
A2 = — % tan %r my, = 2k
(B) a = \/ccot \/cr me =1
)\1=§cot§(r—2$€) myx, =n—2
A2:f§tan§(r72:’/a) My, =N — 2
(©) a = +/ccot+/er ma =1
)\izgcot%(rf;:}z) my, =n—3 (i=2,4)
(i=1,2 3 4) mx, =2 (i =1, 3)
(D) a = \/ccot+/cr me =1
Ai = ¥ cot Y (r — 7%) ma, =4 (i=1,2,3,4)
(i=1,2 3, 4)
(E) a = \/ccot+/cr me =1
)\izgcotg(r—;}z) my, =8 (1 =2,4
(i=1,2 3 4) my, =6 (i=1,3

Let TO =

Table 1: Principal curvatures in CP,(c)

Type Principal curvatures Multipricities
(Ao) a=+—c 1
A1 = \/? 2n — 2
(A) a = y/—ccothy/—cr 1
Alzgcoth@r 2(n—k—1)
A2 = @ tanh @r 2k
(B) a = y/—ctanhy/—cr 1
Alz‘/;iccoth‘/?r n—1
Agz@tanh@r n—1

Table 2: Principal curvatures in CH,(c)
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{X eTM| X L&} be the holomorphic distribution of M.

Then the distribution Tj is integrable on a ruled hypersurface M. Fur-
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thermore, the shape operator A of M satisfies the following;:
A =al+U (U #0),
AU = g(U,U)¢, (2.10)
AX =0, X 1¢ U,

where U is the Th-component of A¢ (for details, see [6]).

Now, we define the concept of n-parallel second fundamental form as

follows.

Definition 2.1. The shape operator A of a real hypersurface M is said to
be n-parallel if A satisfies the following:

g(VxAY,Z2)=0, X,Y,ZeT. (2.11)

There are many characterization theorems for ruled hypersurfaces in a
complex space form (see, for example, [1], [4], [5], [6], [7]). The following

proposition can be easily deduced:

Proposition 2.2. Let M be a real hypersurface of a complex space form
M (c). If the shape operator A of M satisfies

g(AX,)Y)=0, X,Y €Ty, (2.12)
then M s locally congruent to a ruled hypersurface of M,/(c).

Proof Let X and Y be vector fields of M whose values belong to Ty. Then,
accoding to (2.6) and (2.12), we have

9(VxY,§) = —g(Y,0AX) = g(AX,¢Y) = 0.
This means that
VxY eTy, X,Y eTy. (2.13)
Furthermore, for vector fields X and Y whose values belong to T, we have
VxY =VxY + g(AX,Y)r = VyY. (2.14)

From (2.13) and (2.14), we conclude that the leaves of the distribution Tp
are totally geodesic in M and in M,(c). Because Ty is J-invariant, all
the leaves of the distribution Ty are totally geodesic complex hyperplanes
M ,,_1(c) of M,(c). This proves the proposition. O



A characterization of ruled hypersurfaces and homogeneous real hypersurfaces 123

Remark 2.3. For a real hypersurface M of M,(c), the following two con-
ditions are equivalent (see Proposition 5 in [7]):

(i) The holomorphic distribution Tjy is integrable.

(77) g((pA+ AP)X,Y) =0 for any X, Y € Tp.

Remark 2.4. Under the condition of Proposition 2.2, the shape operator
A of M is n-parallel (see [T] Proposition 4).

For ruled real hypersurfaces in a complex space form, M. Kimura and

S. Maeda obtained the following characterization theorem:

Theorem 2.5 (M. Kimura and S. Maeda [7]) Let M be a real hyper-
surface of CP,(c). Then the shape operator A of M is n-parallel and the
holomorphic distribution Ty is integrable if and only if M is locally congru-

ent to a ruled hypersurface of CP,(c).

For a ruled hypersurface of M,(c), S-S. Ahn, S-B. Lee, and Y-J. Suh ob-

tained the following;:

Theorem 2.6 (S-S. Ahn, S-B. Lee, and Y-J. Suh [1]) Let M be a con-
nected real hypersurface of My, (c), ¢ # 0 and n > 3. If the shape operator
A of M satisfies

9(VxA)Y,Z) =0

and
9((Ap —0A)X,Y) =0

for any vector fields X, Y, and Z in Ty, and the structure vector field & is

not principal, then M 1is locally congruent to a ruled hypersurface.

3. Lemmas

In this section, we present some lemmas that we will use to prove our
main theorem.

For the shape operators of real hypersurfaces in a non-flat complex space
form M, (c) (c # 0), we know the following:
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Lemma 3.1 ([11], [13]) Let M be a homogeneous real hypersurface of
type (A) in a non-flat complex space form My (c) (c # 0). Then the shape
operator A of M satisfies the following equations:

A — Ap =0, (3.1)
A2 A 21 - —gn ® ¢, (3.2)
(VXA = =2 {n(Y)8X + g(6X,Y)e}, (3.3)

where a and I denote the principal curvature in the direction of the structure

vector £ and the identity mapping of T M, respectively.

Lemma 3.2 ([3]) Let M be a homogeneous real hypersurface of type (Ap)
or (B) in a non-flat complex space form M,(c) (c # 0). Then the shape
operator A of M satisfies the following equations:

GA+Ap+ 6 =0, (3.4)
2, Ca Cr (a2
AP~ A= Tl = (0" + o B, (3.5)

(VXA == T {20(X)(4é - pA)Y
+0(Y)(A6 — 36A)X + g((Ad — 364)X,Y)E}

(3.6)

From Lemma 3.1, Lemma 3.2, Table 1 and Table 2, we have

Lemma 3.3. Let M be a homogeneous real hypersurface of type (Ao), (A1),
or (B) in My(c) (c # 0). Then, the shape operator A of M satisfies the

following equations for some nonzero constant a:
PA+ Ap+ap =0, (3.7)

(VxA)Y =1 {20(X)(264 + ag)Y +n(Y)(46A + ag) X
+9((40A + ap) X, Y)E} .

(3.8)

So, taking the covariant derivative of (3.8), we have the following:
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Lemma 3.4. Let M be a homogeneous real hypersurface of type (Ao), (A1),
or (B) in My(c) (c #0). Then, the shape operator A of M satisfies the

following equation for some nonzero constant a:

9(Vey A)Z,W) =1 {20(6AX, Y )g((26A + a8) 2, W)

+ 9(0AX, Z)g((49A + ap)Y, W)
+9(pAX, W)g((49A +ad)Y, 2)}, X, Y, Z, W € T.
(3.9)

For a ruled hypersurface in M, (c) (c # 0), we have

Lemma 3.5. Let M be a ruled hypersurface in My(c) (c # 0). Then,
both-sides of (3.9) vanish.

Proof For a ruled hypersurface M, the leaves of the distribution Ty are
totally geodesic both in M and M,(c). Furthermore, the shape operator
A of M is n-parallel (see [6]). From this it follows that

9(VxyA)Z,W)
=9(Vx((VyA)Z) — (Vy A)(VxZ), W) — g((VvxvA)Z, W)
-0, X,Y,Z WeT.

This means that the left side of (3.9) vanishes.
According to (2.10) and Remark 2.3, the right side of (3.9) also vanishes.
This proves the lemma. O

The following is known about the principal curvatures of a Hopf hyper-

surface:

Lemma 3.6 ([8], [13]) Let M be a Hopf hypersurface of My(c) (n >
2, ¢ #0). Then the principal curvature o corresponding to the structure

vector £ is locally constant, and for any principal curvature vector X € Tj
with AX = X , we have

2\ — a)AX = (aX + §)¢X.
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4. Proof of Theorem

In this section we shall prove our main theorem.

Theorem 4.1. Let M be a connected real hypersurface in a complex space
form My(c) (n > 3, ¢ # 0). Then the shape operator A satisfies the

following equation for some nonzero constant a:

9((Viey A)Z.W) == {29(6AX, Y )g((20A + ad)Z, W)

+9(0AX, Z)g((49A + ag)Y, W)
+9(0AX, W)g((40A + a®)Y, Z)} ,
X, Y, Z, W e Ty,

(4.1)

if and only if M is locally congruent to one of the following:
(Ao) a horosphere in CHy(c);

(A1) a geodesic hypersphere in M, (c) or a tube over a complex hyperbolic
hyperplane CHy,_1(c) in CHy(c);

(B) a tube over a totally geodesic and totally real space form of real di-

mension n in M,(c);

(R) a ruled hypersurface in M,/(c).

By making use of the Codazzi equation (2.8), we find the following general

formula:
9(ViyA)Z — (VX zA)Y, W)
=1 {9(0AX,Y)g(0Z, W) — g(9AX, Z)g(6Y, W) (4.2)
_29(¢AX7 W)g(¢Y7 Z)} ;

on arbitrary tangent vectors X, Y, Z, W € T,. Therefore the condition
(4.1) and (4.2) implies that

9(PAX, W)g((pA + Ap + )Y, Z) = 0. (4.3)

We assume here that a # 0.
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In what follows eq,...,es,_o denotes an orthonormal basis of T at a
point in M, and the index j runs from 1 to 2n — 2. Letting X = e; and

W = ¢e; in (4.3), and taking the summation on j, we have

where h and o denote the mean curvature of M and the function defined
by o = g(Ag,€), respectively. Furthermore, letting Y = e; and Z = ¢e; in

(4.4) and taking the summation on j, we obtain
(h—a){(h—a)+(n—1)a} =0. (4.5)

From (4.5) either h —a =0 or (h — «) + (n — 1)a = 0 holds on M, since
M is connected and a # 0. We therefore devide the discussion into the
following two cases:
Case 1. The equation h — «a = 0 holds on M.
Case 2. The equation (h — ) + (n — 1)a = 0 holds on M.

We first consider Case 1, in which we have (h—a)+(n—1)a = (n—1)a # 0.
So, from (4.3), the following holds on M:

9(pAX,Y) =0, X,Y €Tp. (4.6)
This leads to
A§ =al + U,
AU = g(U,U)g,

AX =0, X 1€,

where the vector field U is defined by U = A£ — a&. This means that M is
locally congruent to a ruled hypersurface of M, (c) by Proposition 2.2 (see
also [7]).

On the other hand, let M be a ruled hypersurface of M,(c). Then, (4.1)
holds by Lemma 3.5.

We next consider Case 2. In this case we have h —a # 0. So, from (4.4),

(A + Ad +ad)X = —g(¢U, X)¢, X € To. (4.7)
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On the other hand, using (4.1), (2.7), and (2.9), we have
1904+ AQ)Y. 2)g(0X. W) — g((6A + AD)X. Z)g(oY. W)
+ 9((PA+ AQ)Y.W)g(9X, Z) — g((6A+ AD)X, W)g(6Y. 2))
5 0((0A ~ A9)Z,W)g(6X.Y) + 9((9A + AQ)X. Y )g(6Z, W)}

(4.8)
— ~9((0A + AD)X,Y)g(OAZ W) + g(AY, Z)g({X — A°X, W)
— 9(AX. Z)g([Y — APV W) — g(AX, W)g([Y — A°Y. 2)
+ g(AY, W)g(zX —A2X,Z)=0, X,Y,Z, WeT
(for details, see [12]).
Combining (4.7) with (4.8), we are led to
9(AY, Z)g(SX — A*X, W) — g(AX, Z)g(5Y — A%Y, W)
4 4 (4.9)

—g(AX,W)g(5Y = AY. Z) + g(AY,W)g(7 X — A*X,Z) = 0.

We assert that ¢ is principal. We shall prove our assertion by reductio
ad absurdum.

Let Q be the open subset of M defined by = {p € M|U(p) # 0}. In
the following we assume that the set (2 is not empty and all discussion
concerns the set €2 unless otherwise stated.

We restate the orthonormal frame field ey, es, ..., es,—1 in such a way
that e; =&, ea = U/||U]||, es = dea, e2it1 = pea; (i > 2).

We now define the local differentiable functions «, 3, 7, 4, and h;; as

follows:

= g(A€7£)7 ﬂ = g(A€7 62)’ = g(A62a 62)3 0= g(AQZa 63),
hij = g(Aei,ej), i, 5 =1,2,...,2n— 1.

Hereafter the index p runs 2, 4, ..., 2(n — 1) and p* means px =p+ 1. We

further assume that e; (i > 4) are chosen in such a manner that
hij = Nidij. (i, j = 4).

This is in fact possible by (4.7). Furthermore, the following are satisfied by
(4.7):

g(A63a€3) = _(’7+ CL), >‘p* = _()‘p + a)’ b= 4a 6> cee ,2(71 - 1)
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Let us first demonstrate the following lemma:
Lemma 4.2. hy, = hgp, =0 (p=4,6,...,2(n—1)).
Proof Letting X = ey, Y = ¢ey, Z =e,, W = €3 in (4.9), we have

— (5()\]; + a)hgp

+ {V(Ap —a) — % —29% —26% — Z h3 Z h2p* } hops«  (4.10)
p

=0.
Letting X = eg, Y = ¢ea, Z = epe, W = ¢ez in (4.9), we have

SAphap

{252+2('y—|—a +Zh +Zh2p*— v+a)(>\p+2a)}h2p*

=0.
(4.11)
Letting X = e2, Y = ¢ea, Z = ey, W = €3 in (4.9), we have
{W(Ap+2a)+ﬁ2+272+252+2h +Zh2p*—j}th )
4.12
P

Letting X = eg, Y = ¢ea, Z = ep, W = ¢pez in (4.9), we have

{(7—1—a)()\ —a)+252+2(7+‘1 +Zh +Zh2p*_i}h2p (4.13)

+ 0(Ap + a)hop = 0.
From (4.10) and (4.11), we have
adhap + {a(Xp — ) + 52} hop = 0. (4.14)
From (4.12) and (4.13), we have

{a(X\p + 7+ a) — 5%} hop + abhop. = 0. (4.15)
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Letting X = e2, Y = ¢p, Z = eps, W = ¢ez in (4.9), we have
{6hap + (Ap — V) haps } hops = 0. (4.16)

Letting X = ¢eg, Y =€y, Z = eps, W = ez in (4.9), we have

{(Ap + v+ a)hop + Shopy} hop = 0. (4.17)
From (4.15) and (4.17),
Bhay, = 0,
and from (4.14) and (4.16),
B haps = 0.
Since B # 0, the lemma holds. O

Secondly, we prove the following lemma:
Lemma 4.3. § = 0.

Proof We shall prove the lemma by reductio ad absurdum. We assume that
0 # 0 is satisfied. Then, letting X =es, Y =e,, Z =¢,, W = ¢ez in (4.9)
and using Lemma 4.2, we are led to

c
4
This leads to A, # 0 since ¢ # 0. Letting X = e, Y =¢,, Z =¢€,, W = e

in (4.9), we have

A2+ad, — — =0. (4.18)

YOG = =) = (B +77 +6%)A, = 0. (4.19)
Combining (4.18) with (4.19), we have
ay+ P+~ +62=0. (4.20)

Letting X = ¢eg, Y =€y, Z = ey, W = ¢pez in (4.9), we have

2_ ¢ 2 2 _ 6\ _
(r+a)OE =)+ {2+ (r+a) 4} 0. (4.21)
Combining (4.18) with (4.21), we have
2+ (Y +ay—S)=0. (4.22)

4
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Letting X = e2, Y = ey, Z = €py, W = ¢eg in (4.9), we have

(y+a) {()\p +a)? — z} —(A\p+a) {52 +(y+a)? - z} =0. (4.23)

Combining (4.18) with (4.23), we have

{v(y+a) + 6%} Ay + a(6% + % + ay — g) = 0. (4.24)

From (4.22), (4.24), and A, # 0, we are led to
c=0,

which is a contradiction, so § = 0 must be satisfied. O
Thirdly, we establish the following lemma:
Lemma 4.4.

a c
2’ 2a
Proof Letting X = ez, Y = ¢ea, Z = ¢ea, W = ez in (4.9) and using

Lemma 4.2 and Lemma 4.3, we have

Ap = Apx = — 7 =—(5-+a).

c

(y+a)B% 4 (2y +a)(V* +ay — Z) = 0. (4.25)
Equation (4.21) is reduced to
c
o +r+a) {Mplr+a) - T} =0. (4.26)
Also, (4.23) is reduced to
c
M= {Ap+a)r+a)+ 7} =0. (4.27)

Letting X = ey, Y = eps, Z = eps, W = ¢, in (4.9), we have
c

(20 + a)(A2 + adp — 1

)= 0. (4.28)

We assert that A, # 7. If \, = v were satisfied, we would have (y+a)3? = 0
from (4.25) and (4.28). Since 3 # 0, we further would have v = —a. Then,
from (4.26) and (4.28) we would be led to ¢ = 0 which is a contradiction,
so A\p # v must be satisfied.

We assert that A\, # —(y + a). If this were not so, we would have
(v +a)B% = 0 from (4.25) and (4.27). Since 3 # 0, we further would have
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~v = —a. Then, from (4.26) and (4.28) we would be led to ¢ = 0 which is a
contradiction, so A\, # —(v + a) must be satisfied.

Therefore from (4.26) and (4.27) we get A\, = —5, v = —(5; +a). This
completes the proof. O

We end this section with a proof of our main theorem. From Lemma 4.4,
(4.25) is reduced to

2a%6% + (a®> +¢)* =0

which is a contradiction, so the structure vector £ must be principal. This
leads to our main theorem as follows. Since ¢ is principal, (4.7) is reduced
to

A+ A+ ag = 0. (4.29)

Then, from Lemma 3.6, M has at most three distinct constant principal
curvatures. So, owing to Theorem K and Theorem B, M is locally con-
gruent to a homogeneous real hypersurface of type (A) or (B) in M,(c)
(¢ # 0). Among these homogeneous real hypersurfaces, (4.29) is satisfied
by type (Ap), (A1), or (B). This concludes the proof of the theorem by the

arguments above.
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