Polynomials and pseudoconvexity for Riemann domains over \mathbb{C}^n

Shun Sugiyama

Abstract. We prove that a Riemann domain (G, π) over \mathbb{C}^n is pseudoconvex if and only if for any continuous mapping $\varphi : \overline{D} \times [0, \delta] \to \overline{\overline{G}}$ of the form $(\overline{\overline{\pi}} \circ \varphi)_j(w, t) = p_j(w) + a_j t \ (j = 1, 2, \dots, n)$, where $(\overline{\overline{G}}, \overline{\overline{\pi}})$ is abstract closure of (G, π) , $D = \{w \in \mathbb{C} : |w| < \varepsilon\}$, $\varepsilon > 0$, $\delta > 0$, $a_j \in \mathbb{C}$ and $p_j(w)$ is a polynomial of w of degree at most 2, with $\varphi(\overline{D} \times (0, \delta)) \cup \varphi(\partial D \times \{0\}) \subset G$, it follows that $\varphi(\overline{D} \times [0, \delta]) \subset G$.

1. Introduction

A pair (G,π) is called a $Riemann\ domain\ over\ \mathbb{C}^n$ if G is a connected Hausdorff space and $\pi:G\to\mathbb{C}^n$ is a local homeomorphism. There are several definition of pseudoconvexity for Riemann domains over \mathbb{C}^n . Among others, a Riemann domain (G,π) is pseudoconvex if it satisfies the continuity principle, that is, for any continuous mapping $\varphi:\overline{D}\times[0,\delta]\to\overline{\overline{G}}$, where $D=\{w\in\mathbb{C}\;|\,w|<\varepsilon\},\,\varepsilon>0$ and $\delta>0$, such that $(\overline{\pi}\circ\varphi)_j(w,t)$ is a holomorphic function of w in D for any $t\in[0,\delta]$ and for any $j\in\{1,2,\ldots,n\}$ with $\varphi(\overline{D}\times(0,\delta])\cup\varphi(\partial D\times\{0\})\subset G$, it follows that $\varphi(\overline{D}\times[0,\delta])\subset G$. Here $(\overline{\overline{G}},\overline{\pi})$ is abstract closure of (G,π) (see Section 2). Yasuoka [3] proved that a domain Ω in \mathbb{C}^n is pseudoconvex if and only if for any continuous mapping $\varphi:\overline{D}\times[0,\delta]\to\mathbb{C}^n$, where $D=\{w\in\mathbb{C}\;|\,|w|<\varepsilon\},\,\varepsilon>0$ and $\delta>0$, such that $\varphi_j(w,t)=p_j(w)+a_jt\ (j=1,2,\ldots,n),\,a_j\in\mathbb{C},\,p_j(w)$ is a polynomial of w of degree at most 2 and $(\partial\varphi_1/\partial w,\partial\varphi_2/\partial w,\ldots,\partial\varphi_n/\partial w)\neq(0,0,\ldots,0)$

 $^{2010\ \}textit{Mathematics Subject Classification}.\quad \text{Primary } 32\text{D}26\ ; \ \text{Secondary } 32\text{F}15,\ 32\text{T}99.$

for any $t \in [0, \delta]$ with $\varphi(\overline{D} \times (0, \delta]) \cup \varphi(\partial D \times \{0\}) \subset \Omega$, it follows that $\varphi(\overline{D} \times [0, \delta]) \subset \Omega$.

In this paper, we show that a Riemann domain (G, π) over \mathbb{C}^n is pseudoconvex if and only if for any continuous mapping $\varphi: \overline{D} \times [0, \delta] \to \overline{\overline{G}}$, where $D = \{w \in \mathbb{C} : |w| < \varepsilon\}$, $\varepsilon > 0$ and $\delta > 0$, such that $(\overline{\overline{\pi}} \circ \varphi)_j(w, t) = p_j(w) + a_j t \ (j = 1, 2, ..., n), \ a_j \in \mathbb{C}$, $p_j(w)$ is a polynomial of w of degree at most 2 with $\varphi(\overline{D} \times (0, \delta]) \cup \varphi(\partial D \times \{0\}) \subset G$, it follows that $\varphi(\overline{D} \times [0, \delta]) \subset G$.

2. Riemann domains and abstract boundary points

Let (G, π) be a Riemann domain over \mathbb{C}^n and let $\overline{\partial}G$ be the set of all filter bases α that satisfies the following four conditions.

- (1) There exists a point $z_0 \in \mathbb{C}^n$ such that $\lim \pi(\alpha) = z_0$.
- (2) For any $V \in \beta_c(z_0)$, there exists exactly one connected component U of $\pi^{-1}(V)$ such that $U \in \alpha$.
- (3) For any $U \in \alpha$, there exists $V \in \beta_c(z_0)$ such that U is a connected component of $\pi^{-1}(V)$.
- (4) α has no accumulation point in G.

Here $\beta_c(z_0)$ is the set of all connected open neighborhoods of z_0 in \mathbb{C}^n . The set $\overline{\overline{\partial}}G$ is called the *abstract boundary* of G. We put $\overline{\overline{G}} = G \cup \overline{\overline{\partial}}G$ and define $\overline{\overline{\pi}} : \overline{\overline{G}} \to \mathbb{C}^n$ by

$$\overline{\overline{\pi}}(x) = \begin{cases} \pi(x) & (x \in G), \\ \lim \pi(x) & (x \in \overline{\overline{\partial}}G). \end{cases}$$

The topology of $\overline{\overline{G}}$ is as follows.

For every $\alpha \in \overline{\overline{\partial}}G$ and for every $U \in \alpha$ we put

$$\widehat{U}_{\alpha} = U \cup \{ \beta \in \overline{\overline{\partial}}G \; ; \text{ there exists } W \in \beta \text{ such that } W \subset U \}.$$

Then \widehat{U}_{α} is a fundamental neighborhood of α and $\overline{\overline{\pi}}$ is continuous. $(\overline{\overline{G}}, \overline{\overline{\pi}})$ is said to be *abstract closure* of (G, π) (see Jarnicki–Pflug [1, p. 33]).

Let $\mathcal{F}(G)$ be the set of all filter bases of G satisfying the above three conditions (1), (2) and (3). We define $\sigma^G : \overline{\overline{G}} \to \mathcal{F}(G)$ by

$$\sigma^{G}(x) = \begin{cases} \alpha^{x} & (x \in G), \\ x & (x \in \overline{\overline{\partial}}G), \end{cases}$$

where

 $\alpha^x = \{U_x ; \text{ there exists } V \in \beta_c(\pi(x)) \text{ such that}$ $U_x \text{ is a connected component of } \pi^{-1}(V) \text{ and } x \in U_x \}.$

Then σ^G is well-defined. Moreover for every $\alpha \in \mathcal{F}(G)$ and for every $U \in \alpha$, we put

$$U_{\alpha} = \{ \beta \in \mathcal{F}(G) ; \text{ there exists } W \in \beta \text{ such that } W \subset U \}.$$

Then the family $\{U_{\alpha} ; U \in \alpha\}$ satisfies the axiom of fundamental system of neighborhoods. Therefore $\mathcal{F}(G)$ is a topological space.

Proposition 2.1. σ^G is homeomorphic.

Proof. It is obvious that α^x is a filter base that satisfies the above three conditions (1), (2), (3) and $\lim \alpha^x = x$. We show that σ^G is bijective. Obviously σ^G is injective. To see that σ^G is surjective, we put

$$\mathcal{F}_0(G) = \{ \alpha \in \mathcal{F}(G) ; \alpha \text{ has an accumulation point in } G \}.$$

Then we have $\mathcal{F}(G) = \mathcal{F}_0(G) \cup \overline{\overline{\partial}}G$ and $\mathcal{F}_0(G) \cap \overline{\overline{\partial}}G = \emptyset$. Let $\alpha \in \mathcal{F}(G)$. If $\alpha \in \mathcal{F}_0(G)$, we can put $\lim \alpha = x \in G$ (see Jarnicki-Pflug [1, p. 30]) and see that $\sigma^G(x) = \alpha^x = \alpha$. If $\alpha \in \overline{\overline{\partial}}G$, it is clear that $\sigma^G(\alpha) = \alpha$. Hence σ^G is surjective.

According to the definition of topology, we see that σ^G is homeomorphic.

Therefore we can regard $\overline{\overline{G}}$ as $\mathcal{F}(G)$ by σ^G . Since $\mathcal{F}(G)$ and $\mathcal{F}_0(G)$ is useful, we sometimes use these symbols.

Next we consider a subdomain of a Riemann domain over \mathbb{C}^n . Let (G, π) be a Riemann domain over \mathbb{C}^n and let G_0 be a subdomain of G. Then

 $(G_0, \pi|_{G_0})$ is a Riemann domain over \mathbb{C}^n . We define the mapping which allows us to regard $\overline{\overline{G_0}}$ as a subset of $\overline{\overline{G}}$. Let $\mathcal{F}(G_0)$ be the set of all filter bases of G_0 that satisfies the above three conditions (1), (2) and (3). For every $\alpha \in \mathcal{F}(G_0)$, we put

$$\widehat{\alpha} = \{C_U \subset G : \text{there exist } U \in \alpha \text{ and } V \in \beta_c(\lim \pi(\alpha)) \}$$

such that $U \subset C_U \subset \pi^{-1}(V)$
and C_U is a connected component of $\pi^{-1}(V)$

and let $\wedge : \mathcal{F}(G_0) \to \mathcal{F}(G)$, $\alpha \mapsto \widehat{\alpha}$. Then the mapping \wedge is well-defined and continuous. We put $\psi_{G_0} = (\sigma^G)^{-1} \circ \wedge \circ \sigma^{G_0}$.

Remark 2.1. Let $\alpha \in \overline{\partial}G_0$. If α has an accumulation point x_{α} in G, then $\widehat{\alpha} \in \mathcal{F}_0(G)$. Especially, $\lim \widehat{\alpha} = \lim \alpha = x_{\alpha}$. Since π is continuous, it follows that $\pi(x_{\alpha}) = \pi(\lim \widehat{\alpha}) = \pi(\lim \alpha) = \lim \pi(\alpha)$. Then x_{α} is unique, because G is a Hausdorff space. If α has no accumulation point in G, then it is clear that $\widehat{\alpha} \in \overline{\partial}G$.

An open subset G_1 of G is said to be univalent if $\pi|_{G_1}: G_1 \to \pi(G_1)$ is homeomorphic.

Lemma 2.1. Let (G, π) be a Riemann domain over \mathbb{C}^n , let G_0 be a univalent subdomain of G. Assume that G_0 satisfies the following condition.

For every $z \in \partial \pi(G_0)$ and for every $V \in \beta_c(z)$, there exists $V_0 \in \beta_c(z)$ such that $V_0 \subset V$ and $(\pi|_{G_0})^{-1}(V_0)$ is connected.

Then the following two statements hold.

- (1) $\overline{\overline{\pi|_{G_0}}}: \overline{\overline{G_0}} \to \overline{\pi(G_0)}$ is homeomorphic.
- (2) $\psi_{G_0}: \overline{\overline{G_0}} \to \psi_{G_0}(\overline{\overline{G_0}})$ is homeomorphic.

Proof. (1)We define $f: \partial \pi(G_0) \to \overline{\overline{\partial}} G_0$, $z \mapsto \alpha_z$. Here α_z is an abstract boundary point of G_0 with $\lim \pi(\alpha_z) = z$. Then f is well-defined. In fact, we put

$$\alpha_z = \{C \text{ ; there exist } V \in \beta_c(z) \text{ and } \{x_\nu\}_{\nu \in \mathbb{N}} \subset G \text{ such that } C \text{ is a connected component of } \pi^{-1}(V) \cap G_0 \text{ and }$$
 almost all x_ν lie in C and $\lim_{\nu \to +\infty} \pi(x_\nu) = z\}.$

We shall show $\alpha_z \in \overline{\overline{\partial}} G_0$, $\lim \pi(\alpha_z) = z$ and $\alpha_z \neq \emptyset$. It is clear that $\emptyset \notin \alpha_z$ and $\alpha_z \neq \emptyset$.

Let C_1 and C_2 be elements of α_z . Then there exist $\{x_{\nu}^{(1)}\}_{\nu\in\mathbb{N}}\subset G$ and $\{x_{\nu}^{(2)}\}_{\nu\in\mathbb{N}}\subset G$ such that $\lim_{\nu\to+\infty}\pi(x_{\nu}^{(1)})=z$ and $\lim_{\nu\to+\infty}\pi(x_{\nu}^{(2)})=z$. And there exist $V_1\in\beta_c(z),\ V_2\in\beta_c(z),\ \nu_1\in\mathbb{N}$ and $\nu_2\in\mathbb{N}$ such that $\{x_{\nu}^{(1)}\}_{\nu\geq\nu_1}\subset C_1\subset\pi^{-1}(V_1)\cap G_0$ and $\{x_{\nu}^{(2)}\}_{\nu\geq\nu_2}\subset C_2\subset\pi^{-1}(V_2)\cap G_0$, where C_1 is a connected component of $\pi^{-1}(V_1)\cap G_0$ and C_2 is a connected component of $\pi^{-1}(V_2)\cap G_0$. Since $V_1\cap V_2$ is an open neighborhood of z, there is $V_0\in\beta_c(z)$ such that $\pi^{-1}(V_0)\cap G_0$ is connected, $V_0\subset V_1\cap V_2$ and there is $N\in\mathbb{N}$ such that for every $\nu>N$, we get $x_{\nu}^{(1)},\ x_{\nu}^{(2)}\in\pi^{-1}(V_0)$. We obtain $(\pi^{-1}(V_0)\cap G_0)\cap C_1\neq\emptyset$ and $(\pi^{-1}(V_0)\cap G_0)\cap C_2\neq\emptyset$. Hence $\pi^{-1}(V_0)\cap G_0\subset C_1\cap C_2$ and $\pi^{-1}(V_0)\cap G_0\in\alpha_z$. Therefore α_z is a filter base of G_1 .

For any $V \in \beta_c(z)$, there is $V_0 \in \beta_c(z)$ such that $V_0 \subset V$ and $\pi^{-1}(V_0) \cap G_0$ is connected. Then we obtain $\pi^{-1}(V_0) \cap G_0 \in \alpha_z$ and $\pi(\pi^{-1}(V_0) \cap G_0) \subset V_0 \cap \pi(G_0) \subset V$. Hence $\lim \pi_1(\alpha_z) = z$.

We show that for any $V \in \beta_c(z)$, there exists exactly one connected component C of $\pi^{-1}(V) \cap G_0$ such that $C \in \alpha_z$. For any $V \in \beta_c(z)$, let C_1 and C_2 be connected components of $\pi^{-1}(V) \cap G_0$ that satisfy the following condition. There exist $\{x_{\nu}^{(i)}\}_{\nu \in \mathbb{N}} \subset G$ (i = 1, 2) and $\nu_i \in \mathbb{N}$ (i = 1, 2) such that $\{x_{\nu}^{(i)}\}_{\nu \geq \nu_i} \subset C_i$ (i = 1, 2) and $\lim_{\nu \to +\infty} \pi_1(x_{\nu}^{(i)}) = z$ (i = 1, 2). By the assumption, there exists $V_0 \in \beta_c(z)$ such that $V_0 \subset V$ and $\pi^{-1}(V_0) \cap G_0$ is connected. Now V_0 contains almost all $\{\pi(x_{\nu}^{(1)})\}_{\nu \in \mathbb{N}}$ and $\{\pi(x_{\nu}^{(2)})\}_{\nu \in \mathbb{N}}$. Thus $\pi^{-1}(V_0) \cap G_0 \cap C_1 \neq \emptyset$ and $\pi^{-1}(V_0) \cap G_0 \cap C_2 \neq \emptyset$. Since C_1 and C_2 are connected components of $\pi^{-1}(V_0) \cap G_0$, we have $\pi^{-1}(V_0) \cap G_0 \subset C_1$ and $\pi^{-1}(V_0) \cap G_0 \subset C_2$. It follows that $C_1 = C_2$.

Obviously α_z satisfies that for any $U \in \alpha_z$, there exists $V \in \beta_c(z)$ such that U is a connected component of $\pi^{-1}(V)$. It is clear that α_z has no accumulation point. Therefore α_z is an abstract boundary point with $\lim \pi(\alpha_z) = z$.

Then this α_z is unique. In fact, suppose that α' is an abstract boundary point of G_0 with $\lim \pi(\alpha') = z$. Assume that $\alpha' \neq \alpha_z$. Then there exist $U' \in \alpha'$ and $U \in \alpha_z$ such that $U \cap U' = \emptyset$. Moreover there exist $V \in \beta_c(z)$ and $V' \in \beta_c(z)$ such that U is a connected component of $\pi^{-1}(V) \cap G_0$ and

U' is a connected component of $\pi^{-1}(V') \cap G_0$. Now $V \cap V'$ is an open neighborhood of z. Thus there is $V_0 \in \beta_c(z)$ such that $V_0 \subset V \cap V'$ and $\pi^{-1}(V_0) \cap G_0$ is connected by the assumption of G_0 . Then it follows that $U \cap \pi^{-1}(V_0) \subset \pi^{-1}(V_0) \cap G_0$ and $U' \cap \pi^{-1}(V_0) \subset \pi^{-1}(V_0) \cap G_0$.

Let $\{x_{\nu}\}_{\nu\in\mathbb{N}}$ be determined by U and let $\{x'_{\nu}\}_{\nu\in\mathbb{N}}$ be determined by U'. Then there is $N\in\mathbb{N}$ such that for every $\nu>N$, we have $\pi(x_{\nu})\in V_0$ and $\pi(x'_{\nu})\in V_0$. Hence $U\cap\pi^{-1}(V_0)\neq\emptyset$ and $U'\cap\pi^{-1}(V_0)\neq\emptyset$. Therefore we have $U\cap\pi^{-1}(V_0)\supset\pi^{-1}(V_0)\cap G_0$ and $U'\cap\pi^{-1}(V_0)\supset\pi^{-1}(V_0)\cap G_0$. It follows that $U\cap\pi^{-1}(V_0)=\pi^{-1}(V_0)\cap G_0$ and $U'\cap\pi^{-1}(V_0)=\pi^{-1}(V_0)\cap G_0$. This is a contradiction. Hence f is well-defined. It is easy to see that f is bijective.

Define $F: \overline{\pi(G_0)} \to \overline{\overline{G_0}}$ as $F|_{\partial \pi(G_0)} = f$ and $F|_{\pi(G_0)} = (\pi|_{G_0})^{-1}$. Then F is homeomorphic. In fact,we put $z \in \partial \pi(G_0)$ and $f(z) = \alpha_z$. Let $\widehat{U}_{\alpha_z} = U \cup \{\beta \in \overline{\overline{\partial}} G_0 : \text{there exists } W \in \beta \text{ such that } W \subset U\}$ be a neighborhood of α_z . Then there exists $V \in \beta_c(z)$ such that U is a connected component of $\pi^{-1}(V) \cap G_0$. By the assumption of G_0 , there is $V_0 \in \beta_c(z)$ such that $V_0 \subset V$ and $\pi^{-1}(V_0) \cap G_0$ is connected. We shall prove that $F(V_0 \cap \overline{\pi(G_0)}) \subset \widehat{U}_{\alpha_z}$. It is clear that $F(V_0 \cap \pi(G_0)) = \pi^{-1}(V_0 \cap \pi(G_0)) = \pi^{-1}(V_0) \cap G_0 \subset U$. Hence we only have to show that $F(V_0 \cap \partial \pi(G_0)) \subset \{\beta \in \overline{\overline{\partial}} G_0 : \text{there exists } W \in \beta \text{ such that } W \subset U\}$. Let $z_0 \in V_0 \cap \partial \pi(G_0)$ and $F(z_0) = \alpha_0$, since $V_0 \in \beta_c(z_0)$, there is $C_0 \in \alpha_0$ such that $C_0 \subset \pi^{-1}(V_0) \cap G_0$. Since $\pi^{-1}(V_0) \cap G_1$ is connected, then $C_0 = \pi^{-1}(V_0) \cap G_1 \subset U$. Thus $\alpha_0 \in \{\beta \in \overline{\overline{\partial}} G_0 : \text{there exists } W \in \beta \text{ such that } W \subset U\}$. Consequently, F is continuous. Since $F^{-1} = \overline{\pi}_1$, F is homeomorphic. Therefore $\overline{\pi|_{G_0}}$ is homeomorphic.

Next we shall show (2). Put $\psi_{G_0} = \psi$. Then $\mathrm{id}_{\partial \pi(G_0)} = \overline{\overline{\pi}} \circ \psi \circ \overline{\overline{\pi|_{G_0}}}^{-1} \Big|_{\partial \pi(G_0)}$ and $\mathrm{id}_{\psi(\overline{\overline{\partial}}G_0)} = \psi \circ \overline{\overline{\overline{\pi|_{G_0}}}}^{-1} \circ \overline{\overline{\pi}} \Big|_{\psi(\overline{\overline{\partial}}G_0)}$ hold.

In fact, let $z \in \partial \pi(G_0)$ and let $\overline{\overline{\pi}|_{G_0}}^{-1}(z) = \alpha$, where α is an abstract boundary point of G_0 with $\lim \pi(\alpha) = z$.

Case 1 : $\widehat{\alpha} \in \mathcal{F}_0(G)$.

Then $\psi \circ \overline{\overline{\pi|_{G_0}}}^{-1}(z) = \psi(\alpha) = (\sigma^G)^{-1}(\widehat{\alpha}) = \lim \widehat{\alpha} = \lim \alpha \in G$, it follows that $\overline{\overline{\pi}} \circ \psi \circ \overline{\overline{\pi|_{G_0}}}^{-1}(z) = \overline{\overline{\pi}}(\lim \widehat{\alpha}) = \overline{\overline{\pi}}(\lim \alpha) = \pi(\lim \alpha) = \lim \pi(\alpha) = z$.

Case 2: $\widehat{\alpha} \in \overline{\overline{\partial}}G$.

Then $\overline{\overline{\pi}}(\widehat{\alpha}) = \lim \pi(\widehat{\alpha}) = \lim \pi(\alpha) = z$. Thus we obtain $\operatorname{id}_{\partial \pi(G_0)} = \overline{\overline{\pi}} \circ \psi \circ \overline{\overline{\pi|_{G_0}}}^{-1} \Big|_{\partial \pi(G_0)}$. It remains to show that $\operatorname{id}_{\psi(\overline{\overline{\partial}}G_0)} = \psi \circ \overline{\overline{\pi|_{G_0}}}^{-1} \circ \overline{\overline{\pi}} \Big|_{\psi(\overline{\overline{\partial}}G_0)}$. Let $x \in \psi(\overline{\overline{\partial}}G_0)$.

Case 1: $x \in G$. Then $\psi \circ \overline{\pi|_{G_0}}^{-1} \circ \overline{\overline{\pi}}(x) = \psi \circ \overline{\overline{\pi|_{G_0}}}^{-1} \circ \pi(x) = \psi(\alpha)$, where α is an abstract boundary point of G_0 with $\lim \pi(\alpha) = \pi(x)$. There is $\beta \in \overline{\overline{\partial}}G_0$ such that $\lim \widehat{\beta} = \lim \beta = x \in G$. Thus $\lim \pi(\beta) = \pi(x)$. It follows from bijectivity of $\overline{\pi|_{G_0}}^{-1}$ that $\beta = \alpha$. Therefore, $\psi(\alpha) = \lim \alpha = \lim \beta = x$.

Case 2: $x \in \overline{\partial}G$.

Then there exists $\beta \in \overline{\overline{\partial}}G_0$ such that $\psi(\beta) = \widehat{\beta} = x$. We get $\psi \circ \overline{\overline{\pi|_{G_0}}}^{-1} \circ \overline{\overline{\pi}}(x) = \psi \circ \overline{\overline{\pi|_{G_0}}}^{-1} \circ \overline{\overline{\pi}}(\widehat{\beta}) = \psi \circ \overline{\overline{\pi|_{G_0}}}^{-1} (\lim \pi(\widehat{\beta})) = \psi(\alpha)$.

Here α is an abstract boundary point of G_0 with $\lim \pi(\alpha) = \lim \pi(\widehat{\beta}) = \lim \pi(\widehat{\beta}) = \lim \pi(\beta)$. It follows from bijectivity of $\overline{\pi|_{G_0}}^{-1}$ that $\beta = \alpha$. Thus $\psi(\alpha) = \psi(\beta) = \widehat{\beta} = x$. It follows that $\operatorname{id}_{\psi(\overline{\partial}G_0)} = \psi \circ \overline{\pi|_{G_0}}^{-1} \circ \overline{\pi}|_{\psi(\overline{\partial}G_0)}$.

We obtain that $\psi|_{\psi(\overline{\partial}G_0)}^{-1} = \overline{\pi|_{G_0}}^{-1} \circ \overline{\pi}|_{\psi(\overline{\partial}G_0)}$. It follows that $\psi : \overline{G_0} \to \psi(\overline{G_0})$ is homomorphic.

is homeomorphic.

Let $G_0 \subset G$ be an open univalent neighborhood of $x \in G$, let $|\cdot|$ be the maximum norm in \mathbb{C}^n and let $r \in (0, +\infty]$. If

$$\pi(G_0) = P(\pi(x), r) = \{ z \in \mathbb{C}^n ; |\pi(x) - z| < r \},\$$

then G_0 is called a *polydisk* with radius r and center x and is denoted by $\widehat{P}(x,r)$. We define

$$\delta_G(x) = \sup\{r \in (0, +\infty] ; \widehat{P}(x, r) \text{ exists}\},$$

which is called the boundary distance function. The set $\hat{P}(x, \delta_G(x))$ is called the maximal polydisk with center x.

Corollary 2.1. Let (G, π) be a Riemann domain over \mathbb{C}^n and let $\widehat{P}(x, \delta_G(x))$ be a maximal polydisk. Then both $\overline{\pi|_{\widehat{P}(x,\delta_G(x))}}:\overline{\widehat{P}(x,\delta_G(x))}\to \overline{P(x,\delta_G(x))}$ and $\psi_{\widehat{P}(x,\delta_G(x))}: \overline{\widehat{P}(x,\delta_G(x))} \to \psi_{\widehat{P}(x,\delta_G(x))}(\overline{\widehat{P}(x,\delta_G(x))})$ are homeomorphic.

3. O_2 -pseudoconvex domains and pseudoconvex domains

After defining the O_m -pseudoconvexity $(m \in \mathbb{N})$, we show that the pseudoconvexity is equivalent to the O_2 -pseudoconvexity. Let (G, π) be a Riemann domain over \mathbb{C}^n .

Definition 3.1. Let $m \in \mathbb{N}$ and let $\varphi : \overline{D} \times [0, \delta] \to \overline{\overline{G}}$ be a continuous map, where $D = \{w \in \mathbb{C} : |w| < \varepsilon\}, \ \varepsilon > 0 \ \text{and} \ \delta > 0$. If $(\overline{\overline{\pi}} \circ \varphi)_j(w, t) = p_j(w) + a_j t \ (j = 1, 2, ..., n), \ a_j \in \mathbb{C}, \ p_j(w) \ \text{is a polynomial of } w \ \text{of degree}$ at most m, then φ is called a family of analytic disks of degree m.

Definition 3.2. We say that G is O_m -pseudoconvex if for any family φ of analytic disks of degree m with $\varphi(\overline{D} \times (0, \delta]) \cup \varphi(\partial D \times \{0\}) \subset G$, we have $\varphi(\overline{D} \times [0, \delta]) \subset G$.

Remark 3.1. The O_m -pseudoconvexity is invariant under affine transformations.

For any $a \in \mathbb{C}$ and for any $\varepsilon \in (0, +\infty]$, the set $\{z \in \mathbb{C} : |z - a| < \varepsilon\}$ is denoted by $D(a, \varepsilon)$.

Lemma 3.1 (Yasuoka [3, Lemma 1]). Let $\Omega \subset \mathbb{C}$ be a domain and let $f: \Omega \to [-\infty, +\infty)$ be an upper semi-continuous function. If f is not subharmonic on Ω , then there exist $a \in \Omega$, $D = D(a, \varepsilon) \subseteq \Omega$, $h \in C^{\infty}(\overline{D})$ and C > 0 such that

$$\begin{cases} h_{z\overline{z}}(z) = -C & for \ z \in D, \\ h(a) = f(a), \\ h(z) \ge f(z) & for \ z \in D. \end{cases}$$

Theorem 3.1. Let (G, π) be a Riemann domain over \mathbb{C}^n . Then the following two statements are equivalent.

- (1) (G,π) is pseudoconvex.
- (2) (G,π) is O_2 -pseudoconvex.

Proof. The implication $(1)\Rightarrow(2)$ is trivial. We show another implication. We can assume that G and \mathbb{C}^n are not homeomorphic. Seeking a contradiction, suppose that (G,π) is not pseudoconvex. Then $-\log \delta_G(x)$ is not

plurisubharmonic on G (see Jarnicki–Pflug[1, p. 143]). By an affine transformation which conserves the distance, we can assume that $-\log \delta_G(\pi_x^{-1}(w\xi_0))$ is not subharmonic on $D(0,\varepsilon)\subset \{w\in\mathbb{C}\; ;\; |w\xi_0|<\delta_G(x)\}$. Here $x\in G$, $\varepsilon>0,\; \pi_x=\pi|_{\widehat{P}(x,\delta_G(x))}$ and $\xi_0=(\xi_1,\xi_2,\ldots,\xi_n)\in\mathbb{R}^n$. It follows from Lemma 3.1 that there exist $a_0\in D(0,\varepsilon),\; D_0=D(a_0,\varepsilon_0)\subseteq D(0,\varepsilon),\; h\in C^\infty(\overline{D}_0)$ and C>0 such that

$$\begin{cases}
-h_{z\overline{z}}(w) = C & \text{for } w \in D_0, \\
-h(a_0) = \log \delta_G(\pi_x^{-1}(a_0\xi_0)), \\
-h(w) \le \log \delta_G(\pi_x^{-1}(w\xi_0)) & \text{for } w \in D_0.
\end{cases}$$

By translation, we may let $a_0 = 0$. Put

$$\widehat{P}(w) = \widehat{P}(\pi_x^{-1}(w\xi_0), \delta_G(\pi_x^{-1}(w\xi_0))) \text{ and } P(w) = P(w\xi_0, \delta_G(\pi_x^{-1}(w\xi_0))).$$

Then we consider the maximal polydisk $\widehat{P}(0)$. By Corollary 2.1, $\partial P(0)$ and $\overline{\overline{\partial}}\widehat{P}(0)$ are homeomorphic. Moreover $\overline{\overline{\partial}}G \cap \psi_{\widehat{P}(0)}(\overline{\overline{\partial}}\widehat{P}(0)) \neq \emptyset$. Then there is $u \in \overline{\overline{\partial}}G \cap \psi_{\widehat{P}(0)}(\overline{\overline{\partial}}\widehat{P}(0))$ such that $\overline{\overline{\pi}}(u) \in \partial P(0)$. We can assume that there exist $z_{k+1}^{(0)}, \ldots, z_n^{(0)} \in D(0, \delta_G(\pi_x^{-1}(0)))$ such that

$$\overline{\overline{\pi}}(u) = (\delta_G(\pi_x^{-1}(0)), \dots, \delta_G(\pi_x^{-1}(0)), z_{k+1}^{(0)}, \dots, z_n^{(0)}) \in \partial P(0).$$

Define $h_1(w) = -h(w) - C|w|^2$. Then h_1 is harmonic on D_0 . Since D_0 is simply connected, there exists exactly one conjugate harmonic function h_2 on D_0 with $h_2(0) = 0$.

Let p(w) + (terms of order ≥ 3) be the power series expansion of the holomorphic function $\exp(h_1(w) + ih_2(w))$ at w = 0.

For any $\delta \in (0, +\infty]$, we define the family $\chi : \overline{D_0} \times [0, \delta] \to \mathbb{C}^n$ of analytic

disks of degree 2 in \mathbb{C}^n by

$$\chi(w,t) = \begin{cases} \chi_1(w,t) = p(w) - t + w\xi_1, \\ \chi_2(w,t) = p(w) - t + w\xi_2, \\ \vdots \\ \chi_k(w,t) = p(w) - t + w\xi_k, \\ \chi_{k+1}(w,t) = z_{k+1}^{(0)} + w\xi_{k+1}, \\ \vdots \\ \chi_n(w,t) = z_n^{(0)} + w\xi_n. \end{cases}$$

We can choose D_0 so that

$$|p(w) - t| \le |\exp(h_1(w) + ih_2(w)) - t| + L_1|w|^3$$

for all $(w,t) \in D_0 \times [0,\delta]$, where L_1 is a positive constant.

Moreover we can assume that $0 < \delta_G(\pi_x^{-1}(0)) < 1$ by Remark 3.1. Let ε_0 and δ be sufficiently small. Then we obtain

$$|\exp(h_1(w) + ih_2(w) - t)| \ge |\exp(h_1(w) + ih_2(w)) - t|$$

for all $(w,t) \in D_0 \times [0,\delta]$. Thus

$$|p(w) - t| \le \exp(h_1(w) - t) + L_1|w|^3 \tag{1}$$

for all $(w,t) \in D_0 \times [0,\delta]$. Since $h_1(0) > 0$, we can easily prove that

$$\log |p(w) - t| \le h_1(w) - t + L_2|w|^3$$

for all $(w,t) \in D_0 \times [0,\delta]$, where L_2 is a positive constant.

For any $\varepsilon_1 \in (0, \min\{\varepsilon_0, \frac{C}{L_2}\})$ and put $D = D(0, \varepsilon_1)$. Then we have

$$h_1(w) - t + L_2|w|^3 \le h_1(w) + C|w|^2 - t = -h(w) - t$$
 (2)

for all $(w,t) \in \overline{D} \times [0,\delta]$. Then we consider $|\chi(w,t) - w\xi_0|$.

Case 1:
$$|\chi(w,t) - w\xi_0| = |p(w) - t|$$
.

Inequality (2) implies

$$\log |\chi(w,t) - w\xi_0| = \log |p(w) - t|$$

$$\leq -h(w) - t \leq \log \delta_G(\pi_x^{-1}(w\xi_0)) - t$$

for all $(w,t) \in \overline{D} \times [0,\delta]$. Therefore we have

$$|\chi(w,t) - w\xi_0| < \delta_G(\pi_x^{-1}(w\xi_0))$$

for all $(w,t) \in \overline{D} \times (0,\delta]$.

Case 2: There is $l \in \{k+1, k+2, \ldots, n\}$ such that $|\chi(w,t) - w\xi_0| = |z_l^{(0)}|$. We can choose \overline{D} so that

$$|z_l^{(0)}| < \delta_G(\pi_x^{-1}(w\xi_0))$$

for all $w \in \overline{D}$ by continuity of $\delta_G(\pi_x^{-1}(w\xi_0))$.

Thus Case 1 and Case 2 imply

$$|\chi(w,t) - w\xi_0| < \delta_G(\pi_x^{-1}(w\xi_0))$$
(3)

for all $(w,t) \in \overline{D} \times (0,\delta]$. By inequality (2), for every $w \in \partial D$, we get

$$h_1(w) + L_2|w|^3 < h_1(w) + C|w|^2 = -h(w).$$

Hence

$$\log |p(w)| \le h_1(w) + L_2|w|^3 < -h(w) \le \log \delta_G(\pi_x^{-1}(w\xi_0))$$

for all $w \in \partial D$. Consequently, we have $|p(w)| < \delta_G(\pi_x^{-1}(w\xi_0))$ for any $w \in \partial D$. It follows that

$$|\chi(w,0) - w\xi_0| < \delta_G(\pi_x^{-1}(w\xi_0))$$
(4)

for all $w \in \partial D$. We made preparations to define the family of analytic disks of degree 2 of $\overline{\overline{G}}$. Put $G_0 = \bigcup_{w \in \overline{D}} \widehat{P}(w)$ and $\pi_{G_0} = \pi|_{G_0}$. Then G_0 is connected and π_{G_0} is homeomorphic (cf. Narasimhan [2, p. 107]). Define $J: \overline{D} \times (0, \delta] \to G_0 \subset \overline{\overline{G}}$ by $J(w, t) = \pi_w^{-1} \circ \chi(w, t)$. We shall show that J is continuous. For any $(w, t) \in \overline{D} \times (0, \delta]$, let U(J(w, t)) be an open neighborhood of J(w, t). Then we can assume that $U(J(w, t)) \subset \widehat{P}(w)$. Since π_w is open, $\pi_w(U(J(w, t)))$ is an open neighborhood of $\chi(w, t)$. Now $\chi(w, t)$ is continuous. Therefore there is a neighborhood $D' \times T'$ of (w, t) such that $\chi(D' \times T') \subset \pi_w(U(J(w, t))) \subset P(w)$. Then we have $\pi_w^{-1}(\chi(D' \times T')) \subset \pi_w(U(J(w, t))) \subset P(w)$.

T') $\subset U(J(w,t)) \subset \widehat{P}(w)$. Moreover there is an open neighborhood D'' of w such that

$$|w\xi_0 - w'\xi_0| < \delta_G(\pi_x^{-1}(w\xi_0))$$

for all $w' \in D''$. Therefore for every $w' \in D''$, we get $P(w) \cap P(w') \neq \emptyset$ and $\pi_w^{-1} = \pi_{w'}^{-1}$ on $P(w) \cap P(w')$. Put $D' \cap D'' = D'''$. Then D''' is an open neighborhood of w and we obtain $\chi(D''' \times T') \subset P(w)$. Therefore $\pi_{w'}^{-1}(\chi(D''' \times T')) \subset \pi_w^{-1}(\chi(D''' \times T')) \subset U(J(w,t))$ for any $w' \in D'''$. It follows that $J(D''' \times T') \subset U(J(w,t))$. This means that J is continuous. Next we extend J. we define $\overline{J}: \overline{D} \times [0,\delta] \to \overline{\overline{G}}$ by

$$\overline{\overline{J}}(w,t) = \begin{cases} J(w,t) & (t \neq 0), \\ \lim_{\nu \to +\infty} J(w_{\nu}, t_{\nu}) & (t = 0), \end{cases}$$

where $\{(w_{\nu},t_{\nu})\}_{\nu\in\mathbb{N}}$ satisfies $(w_{\nu},t_{\nu})\to (w,0)$ $(\nu\to+\infty)$ and $t_{\nu}\neq 0$ for any $\nu\in\mathbb{N}$. Then \overline{J} is well-defined and continuous. In fact, first we shall show that the sequence $\{x_{\nu}\}_{\nu\in\mathbb{N}}=\{J(w_{\nu},t_{\nu})\}_{\nu\in\mathbb{N}}=\{\pi_{w_{\nu}}^{-1}\circ\chi(w_{\nu},t_{\nu})\}_{\nu\in\mathbb{N}}$ has a limit point.

Case 1 : $\chi(w,0) \in P(w)$.

We have $\pi_w^{-1} \circ \chi(w,0) \in \widehat{P}(w) \subset G$. Then we show that $\lim_{\nu \to +\infty} \pi_{w_{\nu}}^{-1} \circ \chi(w_{\nu},t_{\nu}) = \pi_w^{-1} \circ \chi(w,0)$. Let $U = U(\pi_w^{-1} \circ \chi(w,0)) \subset \widehat{P}(w)$ an open neighborhood of $\pi_w^{-1} \circ \chi(w,0)$, then $\pi(U)$ is an open neighborhood of $\chi(w,0)$. Since $\chi(w,t)$ is continuous, there exists $N \in \mathbb{N}$ such that for every $\nu > N$, we get $\chi(w_{\nu},t_{\nu}) \in \pi(U) \subset P(w)$. Thus for any $\nu > N$, we have $P(w) \cap P(w_{\nu}) \neq \emptyset$ and $\pi_w^{-1} = \pi_{w_{\nu}}^{-1}$ on $P(w) \cap P(w_{\nu})$. Therefore $\pi_w^{-1} \circ \chi(w_{\nu},t_{\nu}) = \pi_{w_{\nu}}^{-1} \circ \chi(w_{\nu},t_{\nu}) \in U$ for all $\nu > N$. We get $\lim_{\nu \to +\infty} \pi_{w_{\nu}}^{-1} \circ \chi(w_{\nu},t_{\nu}) = \pi_w^{-1} \circ \chi(w,0)$.

Case 2: $\chi(w,0) \in \partial P(w)$.

We get $(\overline{\overline{\pi}}_w)^{-1} \circ \chi(w,0) \in \overline{\overline{\partial}} \widehat{P}(w)$ by Corollary 1. Then $\wedge \circ (\overline{\overline{\pi}}_w)^{-1} \circ \chi(w,0) \in \mathcal{F}(G)$.

Case 2.1 : $\wedge \circ (\overline{\overline{\pi}}_w)^{-1} \circ \chi(w,0) = \alpha \in \mathcal{F}_0(G)$.

We can put $\lim \alpha = x$. Then $\pi(x) = \chi(w,0)$. We shall show $\lim_{\nu \to +\infty} \pi_{w_{\nu}}^{-1} \circ \chi(w_{\nu},t_{\nu}) = x$. First we show for any $V \in \beta_c(\chi(w,0))$, there exists $N \in \mathbb{N}$ such that for any $\nu > N$, we get $x_{\nu} \in C_U \subset \pi^{-1}(V)$. Here C_U is an

element of α with $U \subset C_U$ and U is connected component of $\pi_w^{-1}(V)$ with $U \in (\overline{\pi}_w)^{-1} \circ \chi(w,0)$. Assume that there exists $V \in \beta_c(\chi(w,0))$ such that for any $N \in \mathbb{N}$, there exists $\nu > N$ such that $x_{\nu} \notin C_U \subset \pi^{-1}(V)$. It leads to a contradiction. We can assume that V is sufficiently small. Then we obtain a subsequence $\{x_{\nu(j)}\}_{j\in\mathbb{N}} \subset \{x_{\nu}\}_{\nu\in\mathbb{N}}$ with $x_{\nu(j)} \notin C_U$ for every $j \in \mathbb{N}$. Put $\pi(x_{\nu(j)}) = \chi(w_{\nu(j)}, t_{\nu(j)}) = \zeta_j$, then $\zeta_j \in P(w_{\nu(j)})$ for every $j \in \mathbb{N}$ and there is $N \in \mathbb{N}$ such that for every j > N, we have $\zeta_j \in V$. Moreover we obtain $P(w_{\nu(j)}) \cap P(w) = \emptyset$ for any j > N. In fact, suppose that there exists $j_0 \in \mathbb{N}$ such that $P(w_{\nu(j_0)}) \cap P(w) \neq \emptyset$. Since $V \cap P(w_{\nu(j)}) \neq \emptyset$ and $V \cap P(w) \neq \emptyset$, we can take a sufficiently small polydisk V such that $V \cap (P(w_{\nu(j)}) \cap P(w))$ is connected. Therefore $\pi_w^{-1}(V) = U \subset (\pi|_{\widehat{P}(w) \cup \widehat{P}(w_{\nu(j_0)})})^{-1}(V) \subset C_U \subset \pi^{-1}(V)$. Thus we get $x_{\nu(j_0)} \in C_U$. This is a contradiction. It follows that $P(w_{\nu(j)}) \cap P(w) = \emptyset$ for any j > N. However since $w_{\nu(j)}\xi_0 \to w\xi_0$ $(j \to +\infty)$, this is also a contradiction. Therefore $\lim_{\nu \to +\infty} x_{\nu} = x$.

Case 2.2: $\wedge \circ (\overline{\overline{\pi}}_w)^{-1} \circ \chi(w,0) = \alpha \in \overline{\overline{\partial}}G$.

By the same as above, we get $\lim_{\nu \to +\infty} x_{\nu} = \alpha$. Then the limit value is independent of the choice of a sequence $\{(w_{\nu}, t_{\nu})\}_{\nu \in \mathbb{N}}$ with $(w_{\nu}, t_{\nu}) \to (w, 0)$ $(\nu \to +\infty)$ and $t_{\nu} \neq 0$ for any $\nu \in \mathbb{N}$. Hence \overline{J} is well-defined.

Next we show that $\overline{\overline{J}}$ is continuous. We consider a sequence $\{(w_{\nu}, t_{\nu})\}_{\nu \in \mathbb{N}}$ which satisfies $t_i = 0$ for some $i \in \mathbb{N}$. In this case, since we need a sequence with $(w_{\nu}, t_{\nu}) \to (w_i, 0)$ $(\nu \to +\infty)$ and $t_{\nu} \neq 0$ for any $\nu \in \mathbb{N}$, we define a double sequence as follows. When $i_1 \in \mathbb{N}$ satisfies $(w_{i_1}, t_{i_1}) = (w_{i_1}, 0)$, we take a sequence $\{t_{i_1,j}\}_{j \in \mathbb{N}} \subset (0, \delta]$ with $\lim_{j \to +\infty} t_{i_1,j} = 0$. When $i_2 \in \mathbb{N}$ satisfies $(w_{i_2}, t_{i_2}) \neq (w_{i_2}, 0)$, we take sequence $\{t_{i_2,j}\}_{j \in \mathbb{N}} \subset (0, \delta]$ with $\lim_{j \to +\infty} t_{i_2,j} = t_{i_2}$. It follows from the argument in Case 2.1 and Case 2.2 that $\lim_{i \to +\infty} \lim_{j \to +\infty} J(w_i, t_{i,j}) = \overline{\overline{J}}(w, 0)$.

Therefore $\overline{\overline{J}}$ is continuous. Inequalities (3) and (4) imply $\overline{\overline{J}}(\overline{D} \times (0, \delta]) \subset G$ and $\overline{\overline{J}}(\partial D \times \{0\}) \subset G$. Moreover $\overline{\overline{\pi}} \circ \overline{\overline{J}} = \chi$. Now (G, π) is O_2 -pseudoconvex

domain, therefore we obtain $\overline{\overline{J}}(\overline{D} \times [0, \delta]) \subset G$. However,

$$\begin{split} \chi(0,0) &= (p(0),\dots,p(0),z_{k+1}^{(0)},\dots,z_n^{(0)}) \\ &= (\exp(-h(0)),\dots,\exp(-h(0)),z_{k+1}^{(0)},\dots,z_n^{(0)}) \\ &= (\exp(\log\delta_G(\pi_x^{-1}(0))),\dots,\exp(\log\delta_G(\pi_x^{-1}(0))),z_{k+1}^{(0)},\dots,z_n^{(0)}) \\ &= (\delta_G(\pi_x^{-1}(0)),\dots,\delta_G(\pi_x^{-1}(0)),z_{k+1}^{(0)},\dots,z_n^{(0)}) \\ &= \overline{\overline{\pi}}(u) \in \partial P^n(0). \end{split}$$

It follows that $\overline{\overline{J}}(0,0) = \psi_{\widehat{P}(0)} \circ (\overline{\overline{\pi}}_0)^{-1} \circ \chi(0,0) = u \in \overline{\overline{\partial}}G$. This is a contradiction. Therefore G is pseudoconvex.

References

- [1] M. Jarnicki and P. Pflug, *Extension of Holomorphic Functions*, Walter de Gruyter, Berlin, 2000.
- [2] R. Narasimhan, Several Complex Variables, Univ. Chicago Press, Chicago, 1971.
- [3] T. Yasuoka, Polynomials and pseudoconvexity, *Math. Sem. Notes Kobe Univ.*, **11**(1983), 139–148.

Shun Sugiyama Department of Mathematics Graduate School of Science Hiroshima University 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan e-mail: m155957@hiroshima-u.ac.jp

(Received August 2, 2016)