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Polynomials and pseudoconvexity for Riemann domains
over C"

Shun SUGIYAMA

Abstract. We prove that a Riemann domain (G, ) over C" is pseu-
doconvex if and only if for any continuous mapping ¢ : D x [0,6] — G
of the form (Foy);(w,t) = pj(w)+a;t (j =1,2,...,n), where (G, 7)
is abstract closure of (G,7), D ={w € C; |w| < e}, e > 0,0 >0,
a; € C and pj(w) is a polynomial of w of degree at most 2, with
©(D x (0,8]) Up(dD x {0}) C G, it follows that »(D x [0,4]) C G.

1. Introduction

A pair (G, ) is called a Riemann domain over C" if G is a connected
Hausdorff space and m : G — C" is a local homeomorphism. There are
several definition of pseudoconvexity for Riemann domains over C"*. Among
others, a Riemann domain (G, 7) is pseudoconvez if it satisfies the continuity
principle, that is, for any continuous mapping ¢ : Dx [0, §] — 5, where D =
{weC; |w| <e}, e >0andd > 0, such that (Top),(w,t) is a holomorphic
function of w in D for any t € [0,6] and for any j € {1,2,...,n} with
(D x (0,8]) Up(dD x {0}) C G, it follows that ¢(D x [0,6]) C G. Here
(E, 7) is abstract closure of (G, 7)(see Section 2). Yasuoka [3] proved that a
domain 2 in C" is pseudoconvex if and only if for any continuous mapping
¢ :D x[0,6] - C", where D ={w e C; |w| <e}, e>0and§ >0, such
that ¢;(w,t) = pj(w)+at (j =1,2,...,n),a; € C, pj(w) is a polynomial of
w of degree at most 2 and (dy1 /0w, dps /0w, ...,0p,/0w) # (0,0,...,0)
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for any t € [0,8] with (D x (0,68]) U (0D x {0}) C Q, it follows that
©(D x [0,6]) C Q.

In this paper, we show that a Riemann domain (G, 7) over C" is pseu-
doconvex if and only if for any continuous mapping ¢ : D x [0,6] — E,
where D = {w € C; |w| <e}, e >0and 6 > 0, such that (T o ¢);(w,t) =
pj(w)+ajt (j =1,2,...,n), a; € C, pj(w) is a polynomial of w of degree at
most 2 with (D x (0,8])Up(Dx{0}) C G, it follows that (D x[0,d]) C G.

2. Riemann domains and abstract boundary points

Let (G,m) be a Riemann domain over C" and let dG be the set of all

filter bases o that satisfies the following four conditions.
(1) There exists a point zp € C™ such that lim7(a) = 2.

(2) For any V' € f.(z0), there exists exactly one connected component U
of 7=1(V) such that U € a.

(3) For any U € a, there exists V € [.(z9) such that U is a connected

component of 7= (V).
(4) o has no accumulation point in G.

Here (3.(29) is the set of all connected open neighborhoods of zp in C". The
set OG is called the abstract boundary of G. We put G = GUOG and define
7:G — C" by

The topology of G is as follows.
For every a € OG and for every U € o we put

U, =UU {B e G ; there exists W € (3 such that W C U}.

Then U, is a fundamental neighborhood of « and 7 is continuous. (E, )

is said to be abstract closure of (G, m) (see Jarnicki-Pflug [1, p. 33]).
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Let F(G) be the set of all filter bases of G satisfying the above three
conditions (1), (2) and (3). We define ¢“ : G — F(G) by

where

a® = {U, ; there exists V € f.(m(x)) such that

U, is a connected component of 7r_1(V) and z € U, }.

Then 0% is well-defined. Moreover for every a € F(G) and for every U € a,

we put
Uo = {8 € F(G) ; there exists W € (3 such that W C U}.

Then the family {U, ; U € a} satisfies the axiom of fundamental system
of neighborhoods. Therefore F(G) is a topological space.

Proposition 2.1. ¢© is homeomorphic.

Proof. 1t is obvious that o is a filter base that satisfies the above three
conditions (1), (2), (3) and lima® = z. We show that ¢ is bijective.

Obviously o@ is injective. To see that ¢© is surjective, we put
Fo(G) = {a € F(G) ; a has an accumulation point in G}.

Then we have F(G) = Fo(G) U dG and Fo(G) NOG = 0. Let a € F(Q).
If o € Fo(G), we can put lima = z € G(see Jarnicki-Pflug [1, p. 30]) and
see that 0% (r) =a® = a. If a € DG, it is clear that 0%(a) = a. Hence o¢
is surjective.

According to the definition of topology, we see that o¢ is homeomorphic.
O

Therefore we can regard G as F(G) by ¢%. Since F(G) and Fy(G) is
useful, we sometimes use these symbols.
Next we consider a subdomain of a Riemann domain over C". Let (G, 7)

be a Riemann domain over C" and let Gy be a subdomain of G. Then
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(Go,7|a,) is a Riemann domain over C". We define the mapping which
allows us to regard G as a subset of G. Let F(Gy) be the set of all filter
bases of G that satisfies the above three conditions (1), (2) and (3). For
every o € F(Gp), we put
a={Cy C G ; there exist U € a and V € f.(lim7(«))

such that U ¢ Cy € 7 1(V)

and Cy is a connected component of 7~ (V)}
and let A @ F(Gp) — F(G), a — a. Then the mapping A is well-defined

and continuous. We put ¢g, = (¢%)71 o A o 0.

Remark 2.1. Let o € EGO. If @ has an accumulation point z, in G, then
a € Fo(G). Especially, lima = lim o = z,,. Since 7 is continuous, it follows
that 7(zq) = 7(lim@) = m(lim ) = lim7(«). Then z, is unique, because
G is a Hausdorff space. If a has no accumulation point in G, then it is
clear that @ € 9G.

An open subset G of G is said to be univalent if 7|, : G1 — w(Gy) is

homeomorphic.

Lemma 2.1. Let (G, 7) be a Riemann domain over C", let Gy be a uni-

valent subdomain of G. Assume that Go satisfies the following condition.

For every z € On(Go) and for every V € [.(z), there exists Vp € [.(z)
such that Vo C V and (7|q,) (Vo) is connected.

Then the following two statements hold.

(1) 7le, . Gy — w(Go) is homeomorphic.
(2) Yay, : Go — (N (G:()) is homeomorphic.
Proof. (1)We define f : 0n(Go) — 5G0, z — . Here a, is an abstract
boundary point of Gy with lim7(c,) = z. Then f is well-defined. In fact,
we put
a, = {C ; there exist V € (.(z) and {2, },en C G such that
C is a connected component of 7~1(V) N Gy and

almost all z, liein C and lim 7(z,) = z}.
v—+00
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We shall show «, € EGO, limm(a,) =z and «, # 0. It is clear that ) ¢ .,
and a, # (.

Let C; and Cy be elements of a,. Then there exist {x(yl)},,eN c G
and {$S/2)}V€N C G such that VEIJPOOTF(.%‘(VU) = z and VEIEOOW(:UI(,Q)) = z.
And there exist Vi € (.(z), Vo € Bc(2), v1 € N and v» € N such that
(350, € €1 € 7Y (V1) N Gy and {2$P},5,, € Co C 77 1(Va) N G,
where C1 is a connected component of 7r*1(V1) N Gg and Cy is a connected
component of 771(V5) N Gy. Since V4 N V4 is an open neighborhood of z,
there is Vg € B.(z) such that 771(Vp) N Gy is connected, Vo C V4 N Va and
there is NV € N such that for every v > N, we get a:,(,l), = 71 (Vo).
We obtain (771(V5) N Go) N C1 # 0 and (7~ 1(Vy) N Go) N Cy # 0. Hence
7 (Vo) NGy € C1 N Cq and 71 (V) NGy € .. Therefore o, is a filter
base of 1.

For any V' € .(z), there is Vg € (3.(2) such that Vo C V and 7~ 1(Vy)NGo
is connected. Then we obtain 7=1(Vp) N Gy € a, and 7(7~1(Vp) N Go) C
Vo N7(Go) C Vo C V. Hence limmi (o) = 2.

We show that for any V € [.(z), there exists exactly one connected
component C of 7=1(V) N Gy such that C € a,. For any V € (.(2), let Cy
and C3 be connected components of 7~ 1(V) NGy that satisfy the following
condition. There exist {x,(j)}yeN CG(i=1,2)and v; € N (i = 1,2) such
that {a:,(,i)}yz,,i C C; (1 =1,2) and VETOO m(z®) = z (i = 1,2). By the
assumption, there exists Vo € B.(z) such that Vo C V and 7=1(Vp) N Gy
is connected. Now Vj contains almost all {W(x,(,l))}yeN and {71‘(1’,(/2))}V6N.
Thus 7= (Vo) N Go N Cy # O and 7= 1(Vo) N Go N Cy # 0. Since C; and
Cy are connected components of 7~1(Vy) N Gy, we have 7=1(Vp) NGy C Cy
and 71 (V) NGy C Cy. Tt follows that C; = Cs.

Obviously «, satisfies that for any U € a, there exists V' € (.(z) such
that U is a connected component of 7=(V). It is clear that o, has no
accumulation point. Therefore «, is an abstract boundary point with
lim7m(a,) = 2.

Then this «, is unique. In fact, suppose that o/ is an abstract boundary
point of Gy with lim7(a/) = z. Assume that o/ # a,. Then there exist
U' € o and U € a, such that U N U’ = (). Moreover there exist V' € 5.(z)
and V' € 3.(z) such that U is a connected component of 7~1(V) N Gy and
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U’ is a connected component of 7=1(V’) N Gy. Now V NV’ is an open
neighborhood of z. Thus there is Vy € (.(z) such that Vo € VNV’ and
7r_1(V0) N Gy is connected by the assumption of Gg. Then it follows that
Unm=t(Vo) c = (Vo) N Go and U' N~ 1(Vp) € #~1(Vp) N Go.

Let {z,},en be determined by U and let {x] },en be determined by U’.
Then there is N € N such that for every v > N, we have 7(z,) € V) and
m(x!) € Vo. Hence U N7 (Vo) # 0 and U' N7—1(Vg) # 0.

Therefore we have UN7~1(Vy) D 771 (Vo) NGp and U'Nt=1(Vp) D 71 (Vo)N
Go. Tt follows that U N a1 (Vg) = 7= (Vo) N Gy and U’ N7~ (Vp) =
771(Vo) N Go. This is a contradiction. Hence f is well-defined. It is easy

to see that f is bijective.

Define F : n(Gy) — Gy as Florcy) = [ and Flr(,) = (7la,) . Then
F is homeomorphic. In fact,we put z € O7(Go) and f(z) = . Let Uy, =
Uu{p e gGo ; there exists W € 3 such that W C U} be a neighborhood of
a. Then there exists V' € (.(z) such that U is a connected component of
7~ 1(V)NGy. By the assumption of Gy, there is Vo € B.(2) such that Vo C V
and 7~ 1(V5) NGy is connected. We shall prove that F(VoNm(Gy)) C (7&2. It
is clear that F(VoNm(Go)) = 71 (VoNna(Go)) = 71 (Vo) NGy € U. Hence
we only have to show that F(VyNar(Gyp)) C {8 € DGy ; there exists W € 3
such that W C U}. Let 29 € VoNon(Gy) and F(zp) = ayp, since Vy € Be(z0),
there is Cy € ag such that Cy € 7~ 1(Vh) N Gy. Since 7~ 1(Vy) N Gy is
connected, then Cy = 71 (V) NGy C U. Thus ap € {B € 56’0 ; there
exists W € (8 such that W C U}. Consequently, F' is continuous. Since

F~! =7, F is homeomorphic. Therefore |G, is homeomorphic.

Je—
Next we shall show (2). Put ¢g, = 1. Then idar(q,) = Toyor|g,
1 .
and 1dw(3GO) =vYorm|g, © W|w(5Go) hold.

om(Go)

—1

In fact, let z € On(Gp) and let 7w|g, (z) = «a, where « is an abstract
boundary point of Gy with lim7(a) = z.
Case 1: a € Fy(G).

=1
Then Y om|g, (2)=v¢(a)=(c%"1(Q)=Ilima =lima € G, it follows
-1

that Toomlg, (2)=7(Ima)=7(lima)=7(lima)=lnr(a)= 2.
Case 2 : a € 0G.
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Then 7(a@) = lim7(a) = lim7(a) = z

Thus we obtain idyx(c,) =T 09 o 7lg, on(Go)”
T(Go

It remains to show that idw(gGo) =yormlg, oT|
Case 1: :UEZG._l o

Then ¢on|g, o7 (x)=1orm|g, om(x)=1(a), where «is an abstract
boundary point of Gy with lim7(a) = w(z). There is 8 € dGy such that
limj3 = hmﬁ =z € G. Thus lim7(8) = 7(x). It follows from bijectivity

of 7r|GO that 3 = a. Therefore, ¥(a) =lima =lim 3 = z.

Case 2 : = € 0G. .
Then there exists 3 € 8G0 such that ¥(f5) = B =xz. Weget Yom|g, ©

_ —1 -1

T(z) =vonlg, oFB) =vorlg (mu(F)=1).

Here « is an abstract boundary point of Gg With lim7(a) = lim7(8) =

$(@Co)" Let x € ¥(0Go).

lim7(3). It follows from bijectivity of 7|g, that B = «a. Thus ¢¥(a) =
W(B) = B = x. It follows that i 5. = W0 e Loz

¥(8Go)’
. -1 o _ A -~
We obtain that ¢|¢(3G0) = Tla, 07r|w(5G0). It follows that ¢ : Go — ¥ (Go)

is homeomorphic. O

Let Gy C G be an open univalent neighborhood of z € G, let | - | be the

maximum norm in C" and let r € (0, +o0]. If

m(Go) = P(n(x),r) ={z€ C"; |n(x) — 2| <r},

then Gy is called a polydisk with radius r and center x and is denoted by
P(z,7). We define

dc(x) = sup{r € (0, +o0] ; P(z,r) exists},

which is called the boundary distance function. The set ]3(56, dc(z)) is called

the mazximal polydisk with center x.

Corollary 2.1. Let (G, 7) be a Riemann domain over C™ and let ﬁ(x, oc(zx))

be a mazximal polydisk. Then both W‘Ig(w75G(x)) : ﬁ(:c, dg(x)) — P(z,0c(x))

and Vg, so2)) P(z,6¢(z)) — wﬁ(%%(z))(ﬁ(w,d@(m))) are homeomor-
phic.
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3. Os-pseudoconvex domains and pseudoconvex domains

After defining the O,,-pseudoconvexity (m € N), we show that the pseu-
doconvexity is equivalent to the Oa-pseudoconvexity. Let (G, ) be a Rie-

mann domain over C".

Definition 3.1. Let m € N and let ¢ : D x [0,4] — G be a continuous
map, where D = {w € C; |w| <e}, e >0and 6 > 0. If (Top);(w,t) =
pj(w) +at (j =1,2,...,n), a; € C, pj(w) is a polynomial of w of degree

at most m, then ¢ is called a family of analytic disks of degree m.

Definition 3.2. We say that G is O,,-pseudoconvez if for any family ¢ of
analytic disks of degree m with (D x (0,6]) U (0D x {0}) C G, we have
©(D % [0,6]) C G.

Remark 3.1. The O,,-pseudoconvexity is invariant under affine transfor-

mations.

For any a € C and for any € € (0,400, the set {z € C; |z —a| <€} is
denoted by D(a,¢).

Lemma 3.1 (Yasuoka [3, Lemma 1]). Let Q@ C C be a domain and let
f:Q — [—o0,+00) be an upper semi-continuous function. If f is not
subharmonic on ), then there exist a € Q, D = D(a,e) € Q, h € C*°(D)
and C' > 0 such that

z) > f(z)  for ze€D.

Theorem 3.1. Let (G,m) be a Riemann domain over C™. Then the fol-

lowing two statements are equivalent.
(1) (G, ) is pseudoconvez.
(2) (G, ) is O2-pseudoconver.

Proof. The implication (1)=-(2) is trivial. We show another implication.
We can assume that G and C" are not homeomorphic. Seeking a contra-

diction, suppose that (G, ) is not pseudoconvex. Then —logdg(x) is not
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plurisubharmonic on G (see Jarnicki—Pflug[1, p. 143]). By an affine trans-
formation which conserves the distance, we can assume that — log dg (7, 1 (w&p))
is not subharmonic on D(0,¢) C {w € C ; |w&]| < dg(x)}. Here z € G,

e >0, mp, = 7r]13(x76G(w)) and & = (£1,&2,...,&,) € R™. It follows from
Lemma 3.1 that there exist a9 € D(0,e), Dy = D(ag,e9) € D(0,¢),

h € C*(Dy) and C > 0 such that

—hz(w) =C for w € Dy,

—h(ag) = log dc:(m; " (ao&o)),
—h(w) < logég(m, H(w&y))  for w € Dy.

By translation, we may let ag = 0. Put

P(w) = P(r; ' (wo), 0c (7, (wE))) and
P(w) = P(wéo, da(m, " (wéo))).

Then we consider the maximal polydisk P (0). By Corollary 2.1, 9P(0) and
0P(0) are homeomorphic. Moreover 0G N V() (8P(0)) # 0. Then there is

u €GN V(0) (3ﬁ(0)) such that 7(u) € 9P(0). We can assume that there

exist 20, .., 20" € D(0,66(m5(0))) such that

T(u) = (56(m;1(0), ..., (1 1(0), 20, ..., 2) € HP(0).

Define hi(w) = —h(w) — C|w|?>. Then h; is harmonic on Dy. Since Dy is
simply connected, there exists exactly one conjugate harmonic function hg
on Dy with ho(0) = 0.

Let p(w) + (terms of order > 3) be the power series expansion of the

holomorphic function exp(hy(w) + iha(w)) at w = 0.

For any § € (0, +o0], we define the family x : Do x [0, ] — C" of analytic
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disks of degree 2 in C" by

[ x1(w,t) = p(w) —t + wéi,
x2(w,t) = p(w) —t + wé,

0
Xk+1(w,t) = Z;(gjzl + w1,

Xn(wvt) = ZT(LO) + wé,.

We can choose Dgy so that
Ip(w) —t| < [exp(hi(w) + ihg(w)) — t| + Ly|w|?

for all (w,t) € Dy x [0, d], where L; is a positive constant.
Moreover we can assume that 0 < dg (7, 1(0)) < 1 by Remark 3.1. Let g

and 0 be sufficiently small. Then we obtain
| exp(h1(w) + iha(w) —t)| > |exp(h1(w) + iha(w)) — t|
for all (w,t) € Dy x [0,4]. Thus
Ip(w) — t| < exp(ha(w) — t) + Ly|w]? (1)
for all (w,t) € Dy x [0, 4]. Since hi(0) > 0, we can easily prove that
log|p(w) =t < hy(w) — t + Lo|w|”

for all (w,t) € Dy x [0, 4], where Lo is a positive constant.
For any 1 € (0, min{eo, L%}) and put D = D(0,e1). Then we have

hi(w) —t + La|lw]® < hy(w) + Clw|* —t = —h(w) — t (2)

for all (w,t) € D x [0,8]. Then we consider |x(w,t) — w&|.
Case 1: |x(w,t) — wéo| = [p(w) —1].
Inequality (2) implies

log [x(w, ) — w&o| = log [p(w) — ¢|
< —h(w) — t < logdg(m,  (wko)) —t
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for all (w,t) € D x [0,8]. Therefore we have

Ix(w, t) — wéo| < da(my " (wéo))

for all (w,t) € D x (0,4].
Case 2: Thereis! € {k+1,k+2,...,n} such that |x(w,t) —w&| = |zl(0)|.
We can choose D so that

129 < b (5 (wEo))

for all w € D by continuity of dg (7, L (w&))).
Thus Case 1 and Case 2 imply

x(w, 1) = wo| < dg(m " (wEo)) 3)
for all (w,t) € D x (0,8]. By inequality (2), for every w € 9D, we get
hi(w) 4 Lo|w|® < hi(w) + Clw|* = —h(w).
Hence
log [p(w)| < hi(w) + La|w]* < —h(w) < log g (m, ' (wo))

for all w € dD. Consequently, we have |p(w)| < g (m; (w&)) for any
w € 0D. It follows that

Ix(w, 0) — wéo| < da(my ' (wéo)) (4)

for all w € 9D. We made preparations to define the family of analytic
disks of degree 2 of G. Put Gy = U P(w) and TG, = T|a,- Then Gy is
connected and 7g, is homeomorphuij(f D(Cf. Narasimhan [2, p. 107]). Define
J:D x(0,8] = Goy C G by J(w,t) = 7, o x(w,t). We shall show that
J is continuous. For any (w,t) € D x (0,6], let U(J(w,t)) be an open
neighborhood of J(w,#). Then we can assume that U(J(w,t)) C P(w).
Since 7y, is open, 7, (U(J(w,t))) is an open neighborhood of x(w,t). Now
x(w,t) is continuous. Therefore there is a neighborhood D’ x T" of (w,t)
such that x(D' x T") C 7, (U(J(w,t))) C P(w). Then we have ;! (x(D’ x
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T')) € U(J(w,t)) C P(w). Morcover there is an open neighborhood D" of
w such that

[wéo — w'éo| < da(my ! (wéo))

for all w' € D”. Therefore for every w' € D", we get P(w) N P(w') # 0
and 7' = 7' on P(w)N P(w'). Put D'N D" = D". Then D" is an
open neighborhood of w and we obtain x (D" x T') € P(w). Therefore
T ((D" x T') C 7 (x(D" x T")) € U(J(w,t)) for any w' € D". Tt
follows that J(D" x T") C U(J(w,t)). This means that J is continuous.
Next we extend J. we define J : D x [0,6] — G by

Gy [0 (t 20,
v VEI}}OO J(’wl,,t,,) (t = 0),

where {(wy,t,)},en satisfies (w,,t,) — (w,0) (v — +o00) and t, # 0 for
any v € N. Then 7 is well-defined and continuous. In fact, first we shall
show that the sequence {z,}yen = {J(wy, t) bven = {7y} o x(wy, t) e
has a limit point.
Case 1: x(w,0) € P(w).

We have 7! o x(w,0) € P(w) C G. Then we show that lim Tl ©

v—+oo
X(wy,t,) = 73 o x(w,0). Let U = U(xy! o x(w,0)) € P(w) an open
neighborhood of 7! o x(w,0), then 7(U) is an open neighborhood of
X(w,0). Since x(w,t) is continuous, there exists N € N such that for
every v > N, we get x(w,,t,) € 7(U) C P(w). Thus for any v > N,
we have P(w) N P(w,) # 0 and ;' = 7! on P(w) N P(w,). Therefore

Tt o x(wy,ty) = mpt o x(wy,t,) € U for all v > N. We get hl}rl 7@3 o
V—rT00

\(wy ) = 751 0 x(1,0).
Case 2 : x(w,0) € OP(w).

We get (Tu) ! o x(w,0) € dP(w) by Corollary 1. Then A o (Ty) L o
x(w,0) € F(G).
Case 2.1: Ao (7,) Lox(w,0)=ae Fo(G).

We can put lima = z. Then 7(z) = x(w,0). We shall show uEToo Tyl o
X(wy,t,) = z. First we show for any V' € S.(x(w,0)), there exists N € N
such that for any v > N, we get 2, € Cy C 7 (V). Here Cy is an



Polynomials and pseudoconvexity for Riemann domains over C" 113

element of o with U C Cpy and U is connected component of 7,1 (V) with
U € (Tw) ! ox(w,0). Assume that there exists V € B.(x(w,0)) such
that for any N € N, there exists v > N such that x, ¢ Cy C 7 (V).
It leads to a contradiction. We can assume that V is sufficiently small.
Then we obtain a subsequence {7, ;) }jen C {7v}sen With z,;) ¢ Cy for
every j € N. Put 7(z,(j)) = x(w,(),tu(j)) = ¢, then 5 € P(w, ;) for
every j € N and there is N € N such that for every j > N, we have
¢j € V. Moreover we obtain P(w,;) N P(w) = 0 for any j > N. In
fact, suppose that there exists jo € N such that P(w,;y)) N P(w) # 0.
Since V' N P(w,;)) # 0 and V N P(w) # (), we can take a sufficiently
small polydisk V such that V N (P(w,;) N P(w)) is connected. Therefore
(V) = U C (W|13(w)u13(wu<j0)))_l(v) C Cy C 7 Y(V). Thus we get
Ty(jo) € Cu. This is a contradiction. It follows that P(w,;)) N P(w) =0
for any j > N. However since w, ;{0 — wé (j — +oc), this is also a

contradiction. Therefore lim x, = x.
v—+00

Case 2.2 : Ao (7,) Lox(w,0)=ac dG.

By the same as above, we get lirf z, = a. Then the limit value
V—1T00

is independent of the choice of a sequence {(wy,t,)} en with (wy,t,) —

(w,0) (v — +0c0) and t, # 0 for any v € N. Hence J is well-defined.

Next we show that .J is continuous. We consider a sequence {(wy,ty) }ven
which satisfies t; = 0 for some 7 € N. In this case, since we need a sequence
with (wy,t,) — (w;,0) (v — 400) and ¢, # 0 for any v € N, we define
a double sequence as follows. When ¢; € N satisfies (wj,,t;,) = (wiy,0),

we take a sequence {t;, j}jen C (0,6] with ‘lilll tiy; = 0. When iy €
j—+oo
N satisfies (wi,,ti,) 7# (wiy,0), we take sequence {t;, ;}jen C (0,d] with

‘ligl tirj = tiy. It follows from the argument in Case 2.1 and Case 2.2
j—+oo

that lim lim J(wi,tm‘) = J(w,()).
1—+00 J—+00

Therefore J is continuous. Inequalities (3) and (4) imply J(D x (0,4]) C G
and J(0D x {0}) C G. Moreover wo.J = . Now (G, ) is Oz-pseudoconvex
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domain, therefore we obtain i(ﬁ x [0,4d]) C G. However,

x(0,0) = (p(0),....p(0), 2%, 2
= (exp(=h(0)), ..., exp(=h(0)), 24, .., 2)
= (exp(log (5 (0))), ... exp(log 6 (15 1 (0))), 240y .., 27)
= (0a(m;1(0)), ... 3 (m; 1 (0)), 2y - -, 22)
=m(u) € 9P™(0)

It follows that ?(0,0) = V() © (7o)~ 0 x(0,0) = u € dG. This is a

contradiction. Therefore G is pseudoconvex. O
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