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Polynomials and pseudoconvexity for Riemann domains

over Cn

Shun Sugiyama

Abstract. We prove that a Riemann domain (G, π) over Cn is pseu-
doconvex if and only if for any continuous mapping φ : D× [0, δ] → G

of the form (π ◦φ)j(w, t) = pj(w)+ajt (j = 1, 2, . . . , n), where (G, π)
is abstract closure of (G, π), D = {w ∈ C ; |w| < ε}, ε > 0, δ > 0,
aj ∈ C and pj(w) is a polynomial of w of degree at most 2, with
φ(D × (0, δ]) ∪ φ(∂D × {0}) ⊂ G, it follows that φ(D × [0, δ]) ⊂ G.

1. Introduction

A pair (G, π) is called a Riemann domain over Cn if G is a connected
Hausdorff space and π : G → Cn is a local homeomorphism. There are
several definition of pseudoconvexity for Riemann domains over Cn. Among
others, a Riemann domain (G, π) is pseudoconvex if it satisfies the continuity
principle, that is, for any continuous mapping φ : D×[0, δ] → G, where D =
{w ∈ C ; |w| < ε}, ε > 0 and δ > 0, such that (π◦φ)j(w, t) is a holomorphic
function of w in D for any t ∈ [0, δ] and for any j ∈ {1, 2, . . . , n} with
φ(D × (0, δ]) ∪ φ(∂D × {0}) ⊂ G, it follows that φ(D × [0, δ]) ⊂ G. Here
(G, π) is abstract closure of (G, π)(see Section 2). Yasuoka [3] proved that a
domain Ω in Cn is pseudoconvex if and only if for any continuous mapping
φ : D × [0, δ] → Cn, where D = {w ∈ C ; |w| < ε}, ε > 0 and δ > 0, such
that φj(w, t) = pj(w)+ajt (j = 1, 2, . . . , n), aj ∈ C, pj(w) is a polynomial of
w of degree at most 2 and (∂φ1/∂w, ∂φ2/∂w, . . . , ∂φn/∂w) ̸= (0, 0, . . . , 0)
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for any t ∈ [0, δ] with φ(D × (0, δ]) ∪ φ(∂D × {0}) ⊂ Ω, it follows that
φ(D × [0, δ]) ⊂ Ω.

In this paper, we show that a Riemann domain (G, π) over Cn is pseu-
doconvex if and only if for any continuous mapping φ : D × [0, δ] → G,
where D = {w ∈ C ; |w| < ε}, ε > 0 and δ > 0, such that (π ◦ φ)j(w, t) =
pj(w)+ajt (j = 1, 2, . . . , n), aj ∈ C, pj(w) is a polynomial of w of degree at
most 2 with φ(D×(0, δ])∪φ(∂D×{0}) ⊂ G, it follows that φ(D×[0, δ]) ⊂ G.

2. Riemann domains and abstract boundary points

Let (G, π) be a Riemann domain over Cn and let ∂G be the set of all
filter bases α that satisfies the following four conditions.

(1) There exists a point z0 ∈ Cn such that limπ(α) = z0.

(2) For any V ∈ βc(z0), there exists exactly one connected component U

of π−1(V ) such that U ∈ α.

(3) For any U ∈ α, there exists V ∈ βc(z0) such that U is a connected
component of π−1(V ).

(4) α has no accumulation point in G.

Here βc(z0) is the set of all connected open neighborhoods of z0 in Cn. The
set ∂G is called the abstract boundary of G. We put G = G∪∂G and define
π : G → Cn by

π(x) =

π(x) (x ∈ G),

lim π(x) (x ∈ ∂G).

The topology of G is as follows.
For every α ∈ ∂G and for every U ∈ α we put

Ûα = U ∪ {β ∈ ∂G ; there exists W ∈ β such that W ⊂ U}.

Then Ûα is a fundamental neighborhood of α and π is continuous. (G, π)
is said to be abstract closure of (G, π) (see Jarnicki–Pflug [1, p. 33]).
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Let F(G) be the set of all filter bases of G satisfying the above three
conditions (1), (2) and (3). We define σG : G → F(G) by

σG(x) =

αx (x ∈ G),

x (x ∈ ∂G),

where

αx = {Ux ; there exists V ∈ βc(π(x)) such that

Ux is a connected component of π−1(V ) and x ∈ Ux}.

Then σG is well-defined. Moreover for every α ∈ F(G) and for every U ∈ α,
we put

Uα = {β ∈ F(G) ; there exists W ∈ β such that W ⊂ U}.

Then the family {Uα ; U ∈ α} satisfies the axiom of fundamental system
of neighborhoods. Therefore F(G) is a topological space.

Proposition 2.1. σG is homeomorphic.

Proof. It is obvious that αx is a filter base that satisfies the above three
conditions (1), (2), (3) and lim αx = x. We show that σG is bijective.
Obviously σG is injective. To see that σG is surjective, we put

F0(G) = {α ∈ F(G) ; α has an accumulation point in G}.

Then we have F(G) = F0(G) ∪ ∂G and F0(G) ∩ ∂G = ∅. Let α ∈ F(G).
If α ∈ F0(G), we can put lim α = x ∈ G(see Jarnicki–Pflug [1, p. 30]) and
see that σG(x) = αx = α. If α ∈ ∂G, it is clear that σG(α) = α. Hence σG

is surjective.
According to the definition of topology, we see that σG is homeomorphic.

Therefore we can regard G as F(G) by σG. Since F(G) and F0(G) is
useful, we sometimes use these symbols.

Next we consider a subdomain of a Riemann domain over Cn. Let (G, π)
be a Riemann domain over Cn and let G0 be a subdomain of G. Then



104 Shun Sugiyama

(G0, π|G0) is a Riemann domain over Cn. We define the mapping which
allows us to regard G0 as a subset of G. Let F(G0) be the set of all filter
bases of G0 that satisfies the above three conditions (1), (2) and (3). For
every α ∈ F(G0), we put

α̂ = {CU ⊂ G ; there exist U ∈ α and V ∈ βc(limπ(α))

such that U ⊂ CU ⊂ π−1(V )

and CU is a connected component of π−1(V )}

and let ∧ : F(G0) → F(G), α 7→ α̂. Then the mapping ∧ is well-defined
and continuous. We put ψG0 = (σG)−1 ◦ ∧ ◦ σG0 .

Remark 2.1. Let α ∈ ∂G0. If α has an accumulation point xα in G, then
α̂ ∈ F0(G). Especially, lim α̂ = lim α = xα. Since π is continuous, it follows
that π(xα) = π(lim α̂) = π(limα) = lim π(α). Then xα is unique, because
G is a Hausdorff space. If α has no accumulation point in G, then it is
clear that α̂ ∈ ∂G.

An open subset G1 of G is said to be univalent if π|G1 : G1 → π(G1) is
homeomorphic.

Lemma 2.1. Let (G, π) be a Riemann domain over Cn, let G0 be a uni-
valent subdomain of G. Assume that G0 satisfies the following condition.

For every z ∈ ∂π(G0) and for every V ∈ βc(z), there exists V0 ∈ βc(z)

such that V0 ⊂ V and (π|G0)
−1(V0) is connected.

Then the following two statements hold.

(1) π|G0 : G0 → π(G0) is homeomorphic.

(2) ψG0 : G0 → ψG0(G0) is homeomorphic.

Proof. (1)We define f : ∂π(G0) → ∂G0, z 7→ αz. Here αz is an abstract
boundary point of G0 with limπ(αz) = z. Then f is well-defined. In fact,
we put

αz = {C ; there exist V ∈ βc(z) and {xν}ν∈N ⊂ G such that

C is a connected component of π−1(V ) ∩ G0 and

almost all xν lie in C and lim
ν→+∞

π(xν) = z}.
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We shall show αz ∈ ∂G0, lim π(αz) = z and αz ̸= ∅. It is clear that ∅ /∈ αz

and αz ̸= ∅.
Let C1 and C2 be elements of αz. Then there exist {x(1)

ν }ν∈N ⊂ G

and {x(2)
ν }ν∈N ⊂ G such that lim

ν→+∞
π(x(1)

ν ) = z and lim
ν→+∞

π(x(2)
ν ) = z.

And there exist V1 ∈ βc(z), V2 ∈ βc(z), ν1 ∈ N and ν2 ∈ N such that
{x(1)

ν }ν≥ν1 ⊂ C1 ⊂ π−1(V1) ∩ G0 and {x(2)
ν }ν≥ν2 ⊂ C2 ⊂ π−1(V2) ∩ G0,

where C1 is a connected component of π−1(V1)∩G0 and C2 is a connected
component of π−1(V2) ∩ G0. Since V1 ∩ V2 is an open neighborhood of z,
there is V0 ∈ βc(z) such that π−1(V0) ∩ G0 is connected, V0 ⊂ V1 ∩ V2 and
there is N ∈ N such that for every ν > N , we get x

(1)
ν , x

(2)
ν ∈ π−1(V0).

We obtain (π−1(V0) ∩ G0) ∩ C1 ̸= ∅ and (π−1(V0) ∩ G0) ∩ C2 ̸= ∅. Hence
π−1(V0) ∩ G0 ⊂ C1 ∩ C2 and π−1(V0) ∩ G0 ∈ αz. Therefore αz is a filter
base of G1.

For any V ∈ βc(z), there is V0 ∈ βc(z) such that V0 ⊂ V and π−1(V0)∩G0

is connected. Then we obtain π−1(V0) ∩ G0 ∈ αz and π(π−1(V0) ∩ G0) ⊂
V0 ∩ π(G0) ⊂ V0 ⊂ V . Hence lim π1(αz) = z.

We show that for any V ∈ βc(z), there exists exactly one connected
component C of π−1(V ) ∩ G0 such that C ∈ αz. For any V ∈ βc(z), let C1

and C2 be connected components of π−1(V )∩G0 that satisfy the following
condition. There exist {x(i)

ν }ν∈N ⊂ G (i = 1, 2) and νi ∈ N (i = 1, 2) such
that {x(i)

ν }ν≥νi ⊂ Ci (i = 1, 2) and lim
ν→+∞

π1(x(i)
ν ) = z (i = 1, 2). By the

assumption, there exists V0 ∈ βc(z) such that V0 ⊂ V and π−1(V0) ∩ G0

is connected. Now V0 contains almost all {π(x(1)
ν )}ν∈N and {π(x(2)

ν )}ν∈N.
Thus π−1(V0) ∩ G0 ∩ C1 ̸= ∅ and π−1(V0) ∩ G0 ∩ C2 ̸= ∅. Since C1 and
C2 are connected components of π−1(V0)∩G0, we have π−1(V0)∩G0 ⊂ C1

and π−1(V0) ∩ G0 ⊂ C2. It follows that C1 = C2.
Obviously αz satisfies that for any U ∈ αz, there exists V ∈ βc(z) such

that U is a connected component of π−1(V ). It is clear that αz has no
accumulation point. Therefore αz is an abstract boundary point with
lim π(αz) = z.

Then this αz is unique. In fact, suppose that α′ is an abstract boundary
point of G0 with limπ(α′) = z. Assume that α′ ̸= αz. Then there exist
U ′ ∈ α′ and U ∈ αz such that U ∩ U ′ = ∅. Moreover there exist V ∈ βc(z)
and V ′ ∈ βc(z) such that U is a connected component of π−1(V ) ∩G0 and
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U ′ is a connected component of π−1(V ′) ∩ G0. Now V ∩ V ′ is an open
neighborhood of z. Thus there is V0 ∈ βc(z) such that V0 ⊂ V ∩ V ′ and
π−1(V0) ∩ G0 is connected by the assumption of G0. Then it follows that
U ∩ π−1(V0) ⊂ π−1(V0) ∩ G0 and U ′ ∩ π−1(V0) ⊂ π−1(V0) ∩ G0.

Let {xν}ν∈N be determined by U and let {x′
ν}ν∈N be determined by U ′.

Then there is N ∈ N such that for every ν > N , we have π(xν) ∈ V0 and
π(x′

ν) ∈ V0. Hence U ∩ π−1(V0) ̸= ∅ and U ′ ∩ π−1(V0) ̸= ∅.
Therefore we have U∩π−1(V0) ⊃ π−1(V0)∩G0 and U ′∩π−1(V0) ⊃ π−1(V0)∩
G0. It follows that U ∩ π−1(V0) = π−1(V0) ∩ G0 and U ′ ∩ π−1(V0) =
π−1(V0) ∩ G0. This is a contradiction. Hence f is well-defined. It is easy
to see that f is bijective.

Define F : π(G0) → G0 as F |∂π(G0) = f and F |π(G0) = (π|G0)
−1. Then

F is homeomorphic. In fact,we put z ∈ ∂π(G0) and f(z) = αz. Let Ûαz =
U ∪{β ∈ ∂G0 ; there exists W ∈ β such that W ⊂ U} be a neighborhood of
αz. Then there exists V ∈ βc(z) such that U is a connected component of
π−1(V )∩G0. By the assumption of G0, there is V0 ∈ βc(z) such that V0 ⊂ V

and π−1(V0)∩G0 is connected. We shall prove that F (V0∩π(G0)) ⊂ Ûαz . It
is clear that F (V0 ∩π(G0)) = π−1(V0 ∩π(G0)) = π−1(V0)∩G0 ⊂ U . Hence
we only have to show that F (V0∩∂π(G0)) ⊂ {β ∈ ∂G0 ; there exists W ∈ β

such that W ⊂ U}. Let z0 ∈ V0∩∂π(G0) and F (z0) = α0, since V0 ∈ βc(z0),
there is C0 ∈ α0 such that C0 ⊂ π−1(V0) ∩ G0. Since π−1(V0) ∩ G1 is
connected, then C0 = π−1(V0) ∩ G1 ⊂ U . Thus α0 ∈ {β ∈ ∂G0 ; there
exists W ∈ β such that W ⊂ U}. Consequently, F is continuous. Since
F−1 = π1, F is homeomorphic. Therefore π|G0 is homeomorphic.

Next we shall show (2). Put ψG0 = ψ. Then id∂π(G0) = π◦ψ◦π|G0

−1∣∣∣
∂π(G0)

and id
ψ(∂G0)

= ψ ◦ π|G0

−1
◦ π|

ψ(∂G0)
hold.

In fact, let z ∈ ∂π(G0) and let π|G0

−1
(z) = α, where α is an abstract

boundary point of G0 with lim π(α) = z.
Case 1 : α̂ ∈ F0(G).

Then ψ ◦ π|G0

−1
(z) = ψ(α) = (σG)−1(α̂) = lim α̂ = lim α ∈ G, it follows

that π ◦ ψ ◦ π|G0

−1
(z) = π(lim α̂) = π(limα) = π(limα) = lim π(α) = z.

Case 2 : α̂ ∈ ∂G.
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Then π(α̂) = lim π(α̂) = lim π(α) = z.

Thus we obtain id∂π(G0) = π ◦ ψ ◦ π|G0

−1∣∣∣
∂π(G0)

.

It remains to show that id
ψ(∂G0)

= ψ ◦ π|G0

−1
◦ π|

ψ(∂G0)
. Let x ∈ ψ(∂G0).

Case 1 : x ∈ G.
Then ψ◦π|G0

−1
◦π(x) = ψ◦π|G0

−1
◦π(x) = ψ(α), where α is an abstract

boundary point of G0 with lim π(α) = π(x). There is β ∈ ∂G0 such that
lim β̂ = lim β = x ∈ G. Thus limπ(β) = π(x). It follows from bijectivity

of π|G0

−1
that β = α. Therefore, ψ(α) = lim α = lim β = x.

Case 2 : x ∈ ∂G.
Then there exists β ∈ ∂G0 such that ψ(β) = β̂ = x. We get ψ ◦ π|G0

−1
◦

π(x) = ψ ◦ π|G0

−1
◦ π(β̂) = ψ ◦ π|G0

−1
(limπ(β̂)) = ψ(α).

Here α is an abstract boundary point of G0 with lim π(α) = lim π(β̂) =

lim π(β). It follows from bijectivity of π|G0

−1
that β = α. Thus ψ(α) =

ψ(β) = β̂ = x. It follows that id
ψ(∂G0)

= ψ ◦ π|G0

−1
◦ π|

ψ(∂G0)
.

We obtain that ψ|−1

ψ(∂G0)
= π|G0

−1
◦π|

ψ(∂G0)
. It follows that ψ : G0 → ψ(G0)

is homeomorphic.

Let G0 ⊂ G be an open univalent neighborhood of x ∈ G, let | · | be the
maximum norm in Cn and let r ∈ (0, +∞]. If

π(G0) = P (π(x), r) = {z ∈ Cn ; |π(x) − z| < r},

then G0 is called a polydisk with radius r and center x and is denoted by
P̂ (x, r). We define

δG(x) = sup{r ∈ (0,+∞] ; P̂ (x, r) exists},

which is called the boundary distance function. The set P̂ (x, δG(x)) is called
the maximal polydisk with center x.

Corollary 2.1. Let (G, π) be a Riemann domain over Cn and let P̂ (x, δG(x))

be a maximal polydisk. Then both π|
bP (x,δG(x))

: P̂ (x, δG(x)) → P (x, δG(x))

and ψ
bP (x,δG(x))

: P̂ (x, δG(x)) → ψ
bP (x,δG(x))

(P̂ (x, δG(x))) are homeomor-
phic.
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3. O2-pseudoconvex domains and pseudoconvex domains

After defining the Om-pseudoconvexity (m ∈ N), we show that the pseu-
doconvexity is equivalent to the O2-pseudoconvexity. Let (G, π) be a Rie-
mann domain over Cn.

Definition 3.1. Let m ∈ N and let φ : D × [0, δ] → G be a continuous
map, where D = {w ∈ C ; |w| < ε}, ε > 0 and δ > 0. If (π ◦ φ)j(w, t) =
pj(w) + ajt (j = 1, 2, . . . , n), aj ∈ C, pj(w) is a polynomial of w of degree
at most m, then φ is called a family of analytic disks of degree m.

Definition 3.2. We say that G is Om-pseudoconvex if for any family φ of
analytic disks of degree m with φ(D × (0, δ]) ∪ φ(∂D × {0}) ⊂ G, we have
φ(D × [0, δ]) ⊂ G.

Remark 3.1. The Om-pseudoconvexity is invariant under affine transfor-
mations.

For any a ∈ C and for any ε ∈ (0, +∞], the set {z ∈ C ; |z − a| < ε} is
denoted by D(a, ε).

Lemma 3.1 (Yasuoka [3, Lemma 1]). Let Ω ⊂ C be a domain and let
f : Ω → [−∞,+∞) be an upper semi-continuous function. If f is not
subharmonic on Ω, then there exist a ∈ Ω, D = D(a, ε) b Ω, h ∈ C∞(D)
and C > 0 such that 

hzz(z) = −C for z ∈ D,

h(a) = f(a),
h(z) ≥ f(z) for z ∈ D.

Theorem 3.1. Let (G, π) be a Riemann domain over Cn. Then the fol-
lowing two statements are equivalent.

(1) (G, π) is pseudoconvex.

(2) (G, π) is O2-pseudoconvex.

Proof. The implication (1)⇒(2) is trivial. We show another implication.
We can assume that G and Cn are not homeomorphic. Seeking a contra-
diction, suppose that (G, π) is not pseudoconvex. Then − log δG(x) is not
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plurisubharmonic on G (see Jarnicki–Pflug[1, p. 143]). By an affine trans-
formation which conserves the distance, we can assume that − log δG(π−1

x (wξ0))
is not subharmonic on D(0, ε) ⊂ {w ∈ C ; |wξ0| < δG(x)}. Here x ∈ G,
ε > 0, πx = π|

bP (x,δG(x))
and ξ0 = (ξ1, ξ2, . . . , ξn) ∈ Rn. It follows from

Lemma 3.1 that there exist a0 ∈ D(0, ε), D0 = D(a0, ε0) b D(0, ε),
h ∈ C∞(D0) and C > 0 such that


−hzz(w) = C for w ∈ D0,

−h(a0) = log δG(π−1
x (a0ξ0)),

−h(w) ≤ log δG(π−1
x (wξ0)) for w ∈ D0.

By translation, we may let a0 = 0. Put

P̂ (w) = P̂ (π−1
x (wξ0), δG(π−1

x (wξ0))) and

P (w) = P (wξ0, δG(π−1
x (wξ0))).

Then we consider the maximal polydisk P̂ (0). By Corollary 2.1, ∂P (0) and
∂P̂ (0) are homeomorphic. Moreover ∂G∩ψ

bP (0)
(∂P̂ (0)) ̸= ∅. Then there is

u ∈ ∂G∩ψ
bP (0)

(∂P̂ (0)) such that π(u) ∈ ∂P (0). We can assume that there

exist z
(0)
k+1, . . . , z

(0)
n ∈ D(0, δG(π−1

x (0))) such that

π(u) = (δG(π−1
x (0)), . . . , δG(π−1

x (0)), z(0)
k+1, . . . , z

(0)
n ) ∈ ∂P (0).

Define h1(w) = −h(w) − C|w|2. Then h1 is harmonic on D0. Since D0 is
simply connected, there exists exactly one conjugate harmonic function h2

on D0 with h2(0) = 0.

Let p(w) + (terms of order ≥ 3) be the power series expansion of the
holomorphic function exp(h1(w) + ih2(w)) at w = 0.

For any δ ∈ (0, +∞], we define the family χ : D0× [0, δ] → Cn of analytic
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disks of degree 2 in Cn by

χ(w, t) =



χ1(w, t) = p(w) − t + wξ1,

χ2(w, t) = p(w) − t + wξ2,
...
χk(w, t) = p(w) − t + wξk,

χk+1(w, t) = z
(0)
k+1 + wξk+1,

...
χn(w, t) = z

(0)
n + wξn.

We can choose D0 so that

|p(w) − t| ≤ | exp(h1(w) + ih2(w)) − t| + L1|w|3

for all (w, t) ∈ D0 × [0, δ], where L1 is a positive constant.
Moreover we can assume that 0 < δG(π−1

x (0)) < 1 by Remark 3.1. Let ε0

and δ be sufficiently small. Then we obtain

| exp(h1(w) + ih2(w) − t)| ≥ | exp(h1(w) + ih2(w)) − t|

for all (w, t) ∈ D0 × [0, δ]. Thus

|p(w) − t| ≤ exp(h1(w) − t) + L1|w|3 (1)

for all (w, t) ∈ D0 × [0, δ]. Since h1(0) > 0, we can easily prove that

log |p(w) − t| ≤ h1(w) − t + L2|w|3

for all (w, t) ∈ D0 × [0, δ], where L2 is a positive constant.
For any ε1 ∈ (0,min{ε0,

C
L2

}) and put D = D(0, ε1). Then we have

h1(w) − t + L2|w|3 ≤ h1(w) + C|w|2 − t = −h(w) − t (2)

for all (w, t) ∈ D × [0, δ]. Then we consider |χ(w, t) − wξ0|.
Case 1 : |χ(w, t) − wξ0| = |p(w) − t|.

Inequality (2) implies

log |χ(w, t) − wξ0| = log |p(w) − t|

≤ −h(w) − t ≤ log δG(π−1
x (wξ0)) − t
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for all (w, t) ∈ D × [0, δ]. Therefore we have

|χ(w, t) − wξ0| < δG(π−1
x (wξ0))

for all (w, t) ∈ D × (0, δ].
Case 2 : There is l ∈ {k+1, k+2, . . . , n} such that |χ(w, t)−wξ0| = |z(0)

l |.
We can choose D so that

|z(0)
l | < δG(π−1

x (wξ0))

for all w ∈ D by continuity of δG(π−1
x (wξ0)).

Thus Case 1 and Case 2 imply

|χ(w, t) − wξ0| < δG(π−1
x (wξ0)) (3)

for all (w, t) ∈ D × (0, δ]. By inequality (2), for every w ∈ ∂D, we get

h1(w) + L2|w|3 < h1(w) + C|w|2 = −h(w).

Hence

log |p(w)| ≤ h1(w) + L2|w|3 < −h(w) ≤ log δG(π−1
x (wξ0))

for all w ∈ ∂D. Consequently, we have |p(w)| < δG(π−1
x (wξ0)) for any

w ∈ ∂D. It follows that

|χ(w, 0) − wξ0| < δG(π−1
x (wξ0)) (4)

for all w ∈ ∂D. We made preparations to define the family of analytic
disks of degree 2 of G. Put G0 =

⋃
w∈D

P̂ (w) and πG0 = π|G0 . Then G0 is

connected and πG0 is homeomorphic (cf. Narasimhan [2, p. 107]). Define
J : D × (0, δ] → G0 ⊂ G by J(w, t) = π−1

w ◦ χ(w, t). We shall show that
J is continuous. For any (w, t) ∈ D × (0, δ], let U(J(w, t)) be an open
neighborhood of J(w, t). Then we can assume that U(J(w, t)) ⊂ P̂ (w).
Since πw is open, πw(U(J(w, t))) is an open neighborhood of χ(w, t). Now
χ(w, t) is continuous. Therefore there is a neighborhood D′ × T ′ of (w, t)
such that χ(D′×T ′) ⊂ πw(U(J(w, t))) ⊂ P (w). Then we have π−1

w (χ(D′×
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T ′)) ⊂ U(J(w, t)) ⊂ P̂ (w). Moreover there is an open neighborhood D′′ of
w such that

|wξ0 − w′ξ0| < δG(π−1
x (wξ0))

for all w′ ∈ D′′. Therefore for every w′ ∈ D′′, we get P (w) ∩ P (w′) ̸= ∅
and π−1

w = π−1
w′ on P (w) ∩ P (w′). Put D′ ∩ D′′ = D′′′. Then D′′′ is an

open neighborhood of w and we obtain χ(D′′′ × T ′) ⊂ P (w). Therefore
π−1

w′ (χ(D′′′ × T ′)) ⊂ π−1
w (χ(D′′′ × T ′)) ⊂ U(J(w, t)) for any w′ ∈ D′′′. It

follows that J(D′′′ × T ′) ⊂ U(J(w, t)). This means that J is continuous.
Next we extend J . we define J : D × [0, δ] → G by

J(w, t) =

J(w, t) (t ̸= 0),

lim
ν→+∞

J(wν , tν) (t = 0),

where {(wν , tν)}ν∈N satisfies (wν , tν) → (w, 0) (ν → +∞) and tν ̸= 0 for
any ν ∈ N. Then J is well-defined and continuous. In fact, first we shall
show that the sequence {xν}ν∈N = {J(wν , tν)}ν∈N = {π−1

wν
◦ χ(wν , tν)}ν∈N

has a limit point.
Case 1 : χ(w, 0) ∈ P (w).

We have π−1
w ◦ χ(w, 0) ∈ P̂ (w) ⊂ G. Then we show that lim

ν→+∞
π−1

wν
◦

χ(wν , tν) = π−1
w ◦ χ(w, 0). Let U = U(π−1

w ◦ χ(w, 0)) ⊂ P̂ (w) an open
neighborhood of π−1

w ◦ χ(w, 0), then π(U) is an open neighborhood of
χ(w, 0). Since χ(w, t) is continuous, there exists N ∈ N such that for
every ν > N , we get χ(wν , tν) ∈ π(U) ⊂ P (w). Thus for any ν > N ,
we have P (w) ∩ P (wν) ̸= ∅ and π−1

w = π−1
wν

on P (w) ∩ P (wν). Therefore
π−1

w ◦ χ(wν , tν) = π−1
wν

◦ χ(wν , tν) ∈ U for all ν > N . We get lim
ν→+∞

π−1
wν

◦

χ(wν , tν) = π−1
w ◦ χ(w, 0).

Case 2 : χ(w, 0) ∈ ∂P (w).
We get (πw)−1 ◦ χ(w, 0) ∈ ∂P̂ (w) by Corollary 1. Then ∧ ◦ (πw)−1 ◦

χ(w, 0) ∈ F(G).
Case 2.1 : ∧ ◦ (πw)−1 ◦ χ(w, 0) = α ∈ F0(G).

We can put lim α = x. Then π(x) = χ(w, 0). We shall show lim
ν→+∞

π−1
wν

◦
χ(wν , tν) = x. First we show for any V ∈ βc(χ(w, 0)), there exists N ∈ N
such that for any ν > N , we get xν ∈ CU ⊂ π−1(V ). Here CU is an
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element of α with U ⊂ CU and U is connected component of π−1
w (V ) with

U ∈ (πw)−1 ◦ χ(w, 0). Assume that there exists V ∈ βc(χ(w, 0)) such
that for any N ∈ N, there exists ν > N such that xν /∈ CU ⊂ π−1(V ).
It leads to a contradiction. We can assume that V is sufficiently small.
Then we obtain a subsequence {xν(j)}j∈N ⊂ {xν}ν∈N with xν(j) /∈ CU for
every j ∈ N. Put π(xν(j)) = χ(wν(j), tν(j)) = ζj , then ζj ∈ P (wν(j)) for
every j ∈ N and there is N ∈ N such that for every j > N , we have
ζj ∈ V . Moreover we obtain P (wν(j)) ∩ P (w) = ∅ for any j > N . In
fact, suppose that there exists j0 ∈ N such that P (wν(j0)) ∩ P (w) ̸= ∅.
Since V ∩ P (wν(j)) ̸= ∅ and V ∩ P (w) ̸= ∅, we can take a sufficiently
small polydisk V such that V ∩ (P (wν(j)) ∩ P (w)) is connected. Therefore
π−1

w (V ) = U ⊂ (π|
bP (w)∪ bP (wν(j0))

)−1(V ) ⊂ CU ⊂ π−1(V ). Thus we get
xν(j0) ∈ CU . This is a contradiction. It follows that P (wν(j)) ∩ P (w) = ∅
for any j > N . However since wν(j)ξ0 → wξ0 (j → +∞), this is also a
contradiction. Therefore lim

ν→+∞
xν = x.

Case 2.2 : ∧ ◦ (πw)−1 ◦ χ(w, 0) = α ∈ ∂G.

By the same as above, we get lim
ν→+∞

xν = α. Then the limit value

is independent of the choice of a sequence {(wν , tν)}ν∈N with (wν , tν) →
(w, 0) (ν → +∞) and tν ̸= 0 for any ν ∈ N. Hence J is well-defined.

Next we show that J is continuous. We consider a sequence {(wν , tν)}ν∈N

which satisfies ti = 0 for some i ∈ N. In this case, since we need a sequence
with (wν , tν) → (wi, 0) (ν → +∞) and tν ̸= 0 for any ν ∈ N, we define
a double sequence as follows. When i1 ∈ N satisfies (wi1 , ti1) = (wi1 , 0),
we take a sequence {ti1,j}j∈N ⊂ (0, δ] with lim

j→+∞
ti1,j = 0. When i2 ∈

N satisfies (wi2 , ti2) ̸= (wi2 , 0), we take sequence {ti2,j}j∈N ⊂ (0, δ] with
lim

j→+∞
ti2,j = ti2 . It follows from the argument in Case 2.1 and Case 2.2

that lim
i→+∞

lim
j→+∞

J(wi, ti,j) = J(w, 0).

Therefore J is continuous. Inequalities (3) and (4) imply J(D× (0, δ]) ⊂ G

and J(∂D×{0}) ⊂ G. Moreover π◦J = χ. Now (G, π) is O2-pseudoconvex
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domain, therefore we obtain J(D × [0, δ]) ⊂ G. However,

χ(0, 0) = (p(0), . . . , p(0), z(0)
k+1, . . . , z

(0)
n )

= (exp(−h(0)), . . . , exp(−h(0)), z(0)
k+1, . . . , z

(0)
n )

= (exp(log δG(π−1
x (0))), . . . , exp(log δG(π−1

x (0))), z(0)
k+1, . . . , z

(0)
n )

= (δG(π−1
x (0)), . . . , δG(π−1

x (0)), z(0)
k+1, . . . , z

(0)
n )

= π(u) ∈ ∂Pn(0).

It follows that J(0, 0) = ψ
bP (0)

◦ (π0)−1 ◦ χ(0, 0) = u ∈ ∂G. This is a
contradiction. Therefore G is pseudoconvex.
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