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Some Slater’s type trace inequalities for convex functions of

selfadjoint operators in Hilbert spaces

Silvestru Sever Dragomir1,2

Abstract. Some trace inequalities of Slater type for convex functions
of selfadjoint operators in Hilbert spaces under suitable assumptions
for the involved operators are given. Applications for particular cases
of interest are also provided.

1. Introduction

Suppose that I is an interval of real numbers with interior I̊ and f : I →
R is a convex function on I. Then f is continuous on I̊ and has finite left
and right derivatives at each point of I̊. Moreover, if x, y ∈ I̊ and x < y,

then f ′
− (x) ≤ f ′

+ (x) ≤ f ′
− (y) ≤ f ′

+ (y) which shows that both f ′
− and f ′

+

are nondecreasing function on I̊. It is also known that a convex function
must be differentiable except for at most countably many points.

For a convex function f : I → R, the subdifferential of f denoted by ∂f

is the set of all functions φ : I → [−∞,∞] such that φ
(
I̊
)
⊂ R and

f (x) ≥ f (a) + (x − a) φ (a) for any x, a ∈ I.

It is also well known that if f is convex on I, then ∂f is nonempty, f ′
−,

f ′
+ ∈ ∂f and if φ ∈ ∂f , then

f ′
− (x) ≤ φ (x) ≤ f ′

+ (x) for any x ∈ I̊.
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In particular, φ is a nondecreasing function.
If f is differentiable and convex on I̊, then ∂f = {f ′} .

The following result is well known in the literature as Slater inequality:

Theorem 1 (Slater, 1981, [34]). If f : I → R is a nonincreasing (nonde-
creasing) convex function, xi ∈ I, pi ≥ 0 with Pn :=

∑n
i=1 pi > 0 and∑n

i=1 piφ (xi) ̸= 0, where φ ∈ ∂f, then

1
Pn

n∑
i=1

pif (xi) ≤ f

(∑n
i=1 pixiφ (xi)∑n
i=1 piφ (xi)

)
. (1)

As pointed out in [8, p. 208], the monotonicity assumption for the deriva-
tive φ can be replaced with the condition∑n

i=1 pixiφ (xi)∑n
i=1 piφ (xi)

∈ I, (2)

which is more general and can hold for suitable points in I and for not
necessarily monotonic functions.

Let A be a selfadjoint linear operator on a complex Hilbert space (H; ⟨., .⟩) .

The Gelfand map establishes a ∗-isometric isomorphism Φ between the set
C (Sp (A)) of all continuous functions defined on the spectrum of A, de-
noted Sp (A) , and the C∗-algebra C∗ (A) generated by A and the identity
operator 1H on H as follows (see for instance [17, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ(g) ;
(ii) Φ (fg) = Φ (f) Φ (g) and Φ

(
f̄
)

= Φ(f)∗ ;
(iii) ∥Φ(f)∥ = ∥f∥ := supt∈Sp(A) |f (t)| ;
(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for

t ∈ Sp (A) .

With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it the continuous functional calculus for a selfadjoint operator
A.

If A is a selfadjoint operator and f is a real valued continuous function
on Sp (A), then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e.
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f (A) is a positive operator on H. Moreover, if both f and g are real valued
functions on Sp (A) then the following important property holds:

f (t) ≥ g (t) for any t ∈ Sp (A) implies that f (A) ≥ g (A) (P)

in the operator order of B (H) .

For a recent monograph devoted to various inequalities for functions of
selfadjoint operators, see [17] and the references therein. For other results,
see [28], [22] and [24].

The following result that provides an operator version for the Jensen
inequality and can be found in Mond & Pečarić [26] (see also [17, p. 5]):

Theorem 2 (Jensen’s inequality). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) ⊆ [m,M ] for some scalars m, M

with m < M. If f is a convex function on [m,M ] , then

f (⟨Ax, x⟩) ≤ ⟨f (A) x, x⟩ , (MP)

for each x ∈ H with ∥x∥ = 1.

As a special case of Theorem 2 we have the following Hölder-McCarthy
inequality:

Theorem 3 (Hölder-McCarthy, 1967, [23]). Let A be a selfadjoint positive
operator on a Hilbert space H. Then

(i) ⟨Arx, x⟩ ≥ ⟨Ax, x⟩r for all r > 1 and x ∈ H with ∥x∥ = 1;
(ii) ⟨Arx, x⟩ ≤ ⟨Ax, x⟩r for all 0 < r < 1 and x ∈ H with ∥x∥ = 1;
(iii) If A is invertible, then ⟨Arx, x⟩ ≥ ⟨Ax, x⟩r for all r < 0 and x ∈ H

with ∥x∥ = 1.

The following result that provides a reverse of the Jensen inequality has
been obtained in [11]:

Theorem 4 (Dragomir, 2008, [11]). Let I be an interval and f : I → R be
a convex and differentiable function on I̊ (the interior of I) whose derivative
f ′ is continuous on I̊ . If A is a selfadjoint operators on the Hilbert space
H with Sp (A) ⊆ [m,M ] ⊂ I̊ , then

(0 ≤) ⟨f (A) x, x⟩−f (⟨Ax, x⟩) ≤
⟨
f ′ (A) Ax, x

⟩
−⟨Ax, x⟩

⟨
f ′ (A) x, x

⟩
, (3)

for any x ∈ H with ∥x∥ = 1.
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Perhaps more convenient reverses of (MP) are the following inequalities
that have been obtained in the same paper [11]:

Theorem 5 (Dragomir, 2008, [11]). Let I be an interval and f : I → R be
a convex and differentiable function on I̊ (the interior of I) whose derivative
f ′ is continuous on I̊ . If A is a selfadjoint operators on the Hilbert space
H with Sp (A) ⊆ [m,M ] ⊂ I̊ , then

(0 ≤) ⟨f (A) x, x⟩ − f (⟨Ax, x⟩) (4)

≤


1
2 (M − m)

[
∥f ′ (A) x∥2 − ⟨f ′ (A) x, x⟩2

]1/2

1
2 (f ′ (M) − f ′ (m))

[
∥Ax∥2 − ⟨Ax, x⟩2

]1/2

≤ 1
4

(M − m)
(
f ′ (M) − f ′ (m)

)
,

for any x ∈ H with ∥x∥ = 1.

We also have the inequality

(0 ≤) ⟨f (A) x, x⟩ − f (⟨Ax, x⟩) (5)

≤ 1
4

(M − m)
(
f ′ (M) − f ′ (m)

)
−


[⟨Mx − Ax,Ax − mx⟩ ⟨f ′ (M) x − f ′ (A) x, f ′ (A) x − f ′ (m) x⟩]

1
2 ,

∣∣⟨Ax, x⟩ − M+m
2

∣∣ ∣∣∣⟨f ′ (A) x, x⟩ − f ′(M)+f ′(m)
2

∣∣∣
≤ 1

4
(M − m)

(
f ′ (M) − f ′ (m)

)
,

for any x ∈ H with ∥x∥ = 1.

Moreover, if m > 0 and f ′ (m) > 0, then we also have

(0 ≤) ⟨f (A) x, x⟩ − f (⟨Ax, x⟩) (6)

≤


1
4

(M−m)(f ′(M)−f ′(m))√
Mmf ′(M)f ′(m)

⟨Ax, x⟩ ⟨f ′ (A) x, x⟩ ,

(√
M −

√
m

)(√
f ′ (M) −

√
f ′ (m)

)
[⟨Ax, x⟩ ⟨f ′ (A) x, x⟩]

1
2 ,

for any x ∈ H with ∥x∥ = 1.
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In [13] we obtained the following operator version for Slater’s inequality
as well as a reverse of it:

Theorem 6 (Dragomir, 2008, [13]). Let I be an interval and f : I → R be
a convex and differentiable function on I̊ (the interior of I) whose derivative
f ′ is continuous on I̊ . If A is a selfadjoint operator on the Hilbert space H

with Sp (A) ⊆ [m,M ] ⊂ I̊ and f ′ (A) is a positive invertible operator on H

then

0 ≤ f

(
⟨Af ′ (A) x, x⟩
⟨f ′ (A) x, x⟩

)
− ⟨f (A) x, x⟩ (7)

≤ f ′
(
⟨Af ′ (A) x, x⟩
⟨f ′ (A) x, x⟩

)[
⟨Af ′ (A) x, x⟩ − ⟨Ax, x⟩ ⟨f ′ (A) x, x⟩

⟨f ′ (A) x, x⟩

]
,

for any x ∈ H with ∥x∥ = 1.

For other similar results, see [13].
In order to state other new results on Slater type trace inequalities we

need some preliminary facts as follows.

2. Some Facts on Trace of Operators

Let (H, ⟨·, ·⟩) be a complex Hilbert space and {ei}i∈I an orthonormal
basis of H. We say that A ∈ B (H) is a Hilbert-Schmidt operator if∑

i∈I

∥Aei∥2 < ∞. (8)

It is well know that, if {ei}i∈I and {fj}j∈J are orthonormal bases for H

and A ∈ B (H) then∑
i∈I

∥Aei∥2 =
∑
j∈I

∥Afj∥2 =
∑
j∈I

∥A∗fj∥2 (9)

showing that the definition (8) is independent of the orthonormal basis and
A is a Hilbert-Schmidt operator iff A∗ is a Hilbert-Schmidt operator.

Let B2 (H) the set of Hilbert-Schmidt operators in B (H) . For A ∈ B2 (H)
we define

∥A∥2 :=

(∑
i∈I

∥Aei∥2

)1/2

(10)
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for {ei}i∈I an orthonormal basis of H. This definition does not depend on
the choice of the orthonormal basis.

Using the triangle inequality in l2 (I) , one checks that B2 (H) is a vector
space and that ∥·∥2 is a norm on B2 (H) , which is usually called in the
literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator A ∈ B (H) by |A| := (A∗A)1/2 .

Because ∥|A|x∥ = ∥Ax∥ for all x ∈ H, A is Hilbert-Schmidt iff |A| is
Hilbert-Schmidt and ∥A∥2 = ∥|A|∥2 . From (9) we have that if A ∈ B2 (H) ,

then A∗ ∈ B2 (H) and ∥A∥2 = ∥A∗∥2 .

The following theorem collects some of the most important properties of
Hilbert-Schmidt operators:

Theorem 7. We have:

(i) (B2 (H) , ∥·∥2) is a Hilbert space with inner product

⟨A,B⟩2 :=
∑
i∈I

⟨Aei, Bei⟩ =
∑
i∈I

⟨B∗Aei, ei⟩ (11)

and the definition does not depend on the choice of the orthonormal basis
{ei}i∈I ;

(ii) We have the inequalities

∥A∥ ≤ ∥A∥2 (12)

for any A ∈ B2 (H) and

∥AT∥2 , ∥TA∥2 ≤ ∥T∥ ∥A∥2 (13)

for any A ∈ B2 (H) and T ∈ B (H) ;

(iii) B2 (H) is an operator ideal in B (H) , i.e.

B (H)B2 (H)B (H) ⊆ B2 (H) ;

(iv) Bfin (H) , the space of operators of finite rank, is a dense subspace
of B2 (H) ;

(v) B2 (H) ⊆ K (H) , where K (H) denotes the algebra of compact opera-
tors on H.
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If {ei}i∈I is an orthonormal basis of H, we say that A ∈ B (H) is trace
class if

∥A∥1 :=
∑
i∈I

⟨|A| ei, ei⟩ < ∞. (14)

The definition of ∥A∥1 does not depend on the choice of the orthonormal
basis {ei}i∈I . We denote by B1 (H) the set of trace class operators in B (H) .

The following proposition holds:

Proposition 8. If A ∈ B (H) , then the following are equivalent:
(i) A ∈ B1 (H) ;
(ii) |A|1/2 ∈ B2 (H) ;
(ii) A (or |A|) is the product of two elements of B2 (H) .

The following properties are also well known:

Theorem 9. With the above notations:
(i) We have

∥A∥1 = ∥A∗∥1 and ∥A∥2 ≤ ∥A∥1 (15)

for any A ∈ B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) , i.e.

B (H)B1 (H)B (H) ⊆ B1 (H) ;

(iii) We have

B2 (H)B2 (H) = B1 (H) ;

(iv) We have

∥A∥1 = sup {|⟨A,B⟩2| | B ∈ B2 (H) , ∥B∥ ≤ 1} ;

(v) (B1 (H) , ∥·∥1) is a Banach space.
(iv) We have the following isometric isomorphisms

B1 (H) ∼= K (H)∗ and B1 (H)∗ ∼= B (H) ,

where K (H)∗ is the dual space of K (H) and B1 (H)∗ is the dual space of
B1 (H) .
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We define the trace of a trace class operator A ∈ B1 (H) to be

tr (A) :=
∑
i∈I

⟨Aei, ei⟩ , (16)

where {ei}i∈I is an orthonormal basis of H. Note that this coincides with
the usual definition of the trace if H is finite-dimensional. We observe that
the series (16) converges absolutely and it is independent from the choice
of basis.

The following result collects some properties of the trace:

Theorem 10. We have:
(i) If A ∈ B1 (H) then A∗ ∈ B1 (H) and

tr (A∗) = tr (A); (17)

(ii) If A ∈ B1 (H) and T ∈ B (H) , then AT, TA ∈ B1 (H) and

tr (AT ) = tr (TA) and |tr (AT )| ≤ ∥A∥1 ∥T∥ ; (18)

(iii) tr (·) is a bounded linear functional on B1 (H) with ∥tr∥ = 1;
(iv) If A, B ∈ B2 (H) then AB, BA ∈ B1 (H) and tr (AB) = tr (BA) ;
(v) Bfin (H) is a dense subspace of B1 (H) .

Utilising the trace notation we obviously have that

⟨A,B⟩2 = tr (B∗A) = tr (AB∗) and ∥A∥2
2 = tr (A∗A) = tr

(
|A|2

)
for any A, B ∈ B2 (H) .

The following Hölder’s type inequality has been obtained by Ruskai in
[30]

|tr (AB)| ≤ tr (|AB|) ≤
[
tr

(
|A|1/α

)]α [
tr

(
|B|1/(1−α)

)]1−α
(19)

where α ∈ (0, 1) and A, B ∈ B (H) with |A|1/α , |B|1/(1−α) ∈ B1 (H) .

In particular, for α = 1
2 we get the Schwarz inequality

|tr (AB)| ≤ tr (|AB|) ≤
[
tr

(
|A|2

)]1/2 [
tr

(
|B|2

)]1/2
(20)

with A, B ∈ B2 (H) .
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If A and B are selfadjoint operators with A ≤ B and P ∈ B1 (H) with
P ≥ 0, then P 1/2AP 1/2 ≤ P 1/2BP 1/2. Since tr is a positive linear functional
and since tr(XY ) = tr(Y X), it follows that tr (PA) = tr

(
P 1/2AP 1/2

)
≤

tr
(
P 1/2BP 1/2

)
= tr (PB) . Therefore, if A and B are selfadjoint operators

with A ≤ B and P ∈ B1 (H) with P ≥ 0, then

tr (PA) ≤ tr (PB) . (21)

If A ≥ 0 and P ∈ B1 (H) with P ≥ 0, then

0 ≤ tr (PA) ≤ ∥A∥ tr (P ) . (22)

Indeed, since A ≤ ∥A∥ 1H for A ≥ 0, then (22) follows by (21).

Moreover, for any selfadjoint A, − |A| ≤ A ≤ |A|. So it follows by (21)
that

− tr(P |A|) ≤ tr(PA) ≤ tr(P |A|)

i.e.,

|tr (PA)| ≤ tr (P |A|) (23)

for any A a selfadjoint operator and P ∈ B1 (H) with P ≥ 0.

For the theory of trace functionals and their applications the reader is
referred to [33].

For some classical trace inequalities see [5], [7], [29] and [38], which are
continuations of the work of Bellman [2]. For related works the reader can
refer to [1], [3], [5], [18], [19], [20], [21], [31] and [35].

3. Slater Type Trace Inequalities

We denote by B+
1 (H) := {P : P ∈ B1 (H) and P ≥ 0} .

The following result holds:

Theorem 11. Let I be an interval and f : I → R be a convex and dif-
ferentiable function on I̊ (the interior of I) whose derivative f ′ is con-
tinuous on I̊ . If A is a selfadjoint operator on the Hilbert space H with
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Sp (A) ⊆ [m,M ] ⊂ I̊ and f ′ (A) is a positive invertible operator on H, then

0 ≤ f

(
tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
− tr [Pf (A)]

tr (P )
(24)

≤ f ′
(

tr [PAf ′ (A)]
tr [Pf ′ (A)]

)(
tr [PAf ′ (A)]
tr [Pf ′ (A)]

− tr (PA)
tr (P )

)
,

for any P ∈ B+
1 (H) \ {0} .

Proof. Since f is convex and differentiable on I̊, then we have

f ′ (s) (t − s) ≤ f (t) − f (s) ≤ f ′ (t) (t − s) (25)

for any t, s ∈ [m,M ] .
Now, if we fix t ∈ [m,M ] and apply the property (P) for the operator A,

then we have

tf ′ (A) − Af ′ (A) ≤ f (t) · 1H − f (A) ≤ f ′ (t) t · 1H − f ′ (t) A (26)

for any t ∈ [m,M ].
If we apply the property (21) to the inequality (26) then we have

t tr
[
Pf ′ (A)

]
− tr

[
PAf ′ (A)

]
≤ f (t) tr (P ) − tr [Pf (A)] (27)

≤ f ′ (t) t tr (P ) − f ′ (t) tr (PA)

for any P ∈ B+
1 (H) \ {0} .

Now, since A is selfadjoint with m1H ≤ A ≤ M1H and f ′ (A) is positive,
then

mf ′ (A) ≤ Af ′ (A) ≤ Mf ′ (A) .

If we apply again the property (21), then we get

m tr
[
Pf ′ (A)

]
≤ tr

[
PAf ′ (A)

]
≤ M tr

[
Pf ′ (A)

]
,

which shows that

t0 :=
tr [PAf ′ (A)]
tr [Pf ′ (A)]

∈ [m,M ] .

Observe that since f ′ (A) is a positive invertible operator on H, then tr [Pf ′ (A)] >

0 for any P ∈ B+
1 (H) \ {0} .



Some Slater’s type trace inequalities for convex functions 85

Finally, if we put t = t0 in the equation (27), then we get

tr [PAf ′ (A)]
tr [Pf ′ (A)]

tr
[
Pf ′ (A)

]
− tr

[
PAf ′ (A)

]
(28)

≤ f

(
tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
tr (P ) − tr [Pf (A)]

≤ f ′
(

tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
tr [PAf ′ (A)]
tr [Pf ′ (A)]

tr (P )

− f ′
(

tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
tr (PA) ,

which is equivalent to the desired result (24).

Remark 1. It is important to observe that, the condition that f ′ (A) is
a positive invertible operator on H can be replaced with the more general
assumption that

tr [PAf ′ (A)]
tr [Pf ′ (A)]

∈ I̊ and tr
[
Pf ′ (A)

]
̸= 0 (29)

for any P ∈ B+
1 (H)\{0} , which may be easily verified for particular convex

functions f in various examples as follows.
Also, as pointed out by the referee, if ⟨f ′ (A) x, x⟩ > 0 for any x ∈ H,

x ̸= 0, then tr [Pf ′ (A)] > 0 for any P ∈ B+
1 (H) \ {0} and the inequality

(24) is valid as well.

Remark 2. Now, if the function is concave on I̊ and the condition (29)
holds, then we have the inequalities

0 ≤ tr [Pf (A)]
tr (P )

− f

(
tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
(30)

≤ f ′
(

tr [PAf ′ (A)]
tr [Pf ′ (A)]

)(
tr (PA)
tr (P )

− tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
,

for any P ∈ B+
1 (H) \ {0} .

Utilising the inequality (30) for the concave function f : (0,∞) → R,
f (t) = ln t, then we can state that

0 ≤ tr (P lnA)
tr (P )

− ln
(

tr (P )
tr (PA−1)

)
≤

tr
(
PA−1

)
tr (P )

tr (PA)
tr (P )

− 1 (31)
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for any positive invertible operator A and P with P ∈ B+
1 (H) \ {0} .

Utilising the inequality (24) for the convex function f : (0,∞) → R,
f (t) = t−1, then we can state that

0 ≤
tr

(
PA−2

)
tr (PA−1)

−
tr

(
PA−1

)
tr (P )

≤ tr (PA)
tr (P )

tr
(
PA−2

)
tr (PA−1)

−
tr

(
PA−1

)
tr (PA−2)

, (32)

for any positive invertible operator Aand P with P ∈ B+
1 (H) \ {0} .

If we take B = A−1 in (32), then we get the equivalent inequality

0 ≤
tr

(
PB2

)
tr (PB)

− tr (PB)
tr (P )

≤
tr

(
PB2

)
tr (PB)

tr
(
PB−1

)
tr (P )

− tr (PB)
tr (PB2)

, (33)

for any positive invertible operator B and P with P ∈ B1 (H) \ {0} .

If we write the inequality (24) for the convex function f (t) = exp (αt)
with α ∈ R \ {0} , then we get

0 ≤ exp
(

α
tr [PA exp (αA)]
tr [P exp (αA)]

)
− tr [P exp (αA)]

tr (P )
(34)

≤ α exp
(

α
tr [PA exp (αA)]
tr [P exp (αA)]

) (
tr [PA exp (αA)]
tr [P exp (αA)]

− tr (PA)
tr (P )

)
,

for any selfadjoint operator A and P ∈ B+
1 (H) \ {0} .

4. Further Reverses

We use the following Grüss’ type inequalities [14]:

Lemma 12. Let S be a selfadjoint operator with m1H ≤ S ≤ M1H and
f : [m,M ] → C a continuous function of bounded variation on [m,M ]. For
any C ∈ B (H) and P ∈ B+

1 (H) \ {0} we have the inequality∣∣∣∣tr (Pf (S) C)
tr (P )

− tr (Pf (S))
tr (P )

tr (PC)
tr (P )

∣∣∣∣ (35)

≤ 1
2

M∨
m

(f)
1

tr (P )
tr

(∣∣∣∣(C − tr (PC)
tr (P )

1H

)
P

∣∣∣∣)

≤ 1
2

M∨
m

(f)

tr
(
P |C|2

)
tr (P )

−
∣∣∣∣tr (PC)

tr (P )

∣∣∣∣2
1/2

,
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where
M∨
m

(f) is the total variation of f on the interval.

If the function f : [m,M ] → C is Lipschitzian with the constant L > 0
on [m,M ] , i.e.

|f (t) − f (s)| ≤ L |t − s|

for any t, s ∈ [m,M ] , then∣∣∣∣tr (Pf (S) C)
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for any C ∈ B (H) and P ∈ B+
1 (H) \ {0}.

Proof. For the sake of completeness we give here a simple proof.
We observe that, for any λ ∈ C we have
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.

Taking the modulus in (37) and utilising the properties of the trace, we
have ∣∣∣∣tr (PAC)

tr (P )
− tr (PA)

tr (P )
tr (PC)
tr (P )

∣∣∣∣ (38)

=
1

tr (P )

∣∣∣∣tr [
P (A − λ1H)

(
C − tr (PC)

tr (P )
1H

)]∣∣∣∣
=

1
tr (P )

∣∣∣∣tr [
(A − λ1H)

(
C − tr (PC)

tr (P )
1H

)
P

]∣∣∣∣
≤ ∥A − λ1H∥ 1

tr (P )
tr

(∣∣∣∣(C − tr (PC)
tr (P )

1H

)
P

∣∣∣∣)



88 Silvestru Sever Dragomir

for any λ ∈ C, where for the last inequality we used the inequality (18).
From the inequality (38) we have∣∣∣∣tr (Pf (S) C)
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From (39) we get∣∣∣∣tr (Pf (S) C)
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Since f is of bounded variation on [m,M ] , then we have∣∣∣∣f (t) − f (m) + f (M)
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for any t ∈ [m,M ] .
From (41) we get in the order B (H) that∣∣∣∣f (S) − f (m) + f (M)
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Making use of (41) and (42) we get the first inequality in (35).
The second part is obvious by the Schwarz inequality for traces
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and by noticing that
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From (39) we also have∣∣∣∣tr (Pf (S) C)
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Since
|f (t) − f (s)| ≤ L |t − s|

for any t, s ∈ [m,M ] , then we have in the order B (H) that
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and by (44) we get the first inequality in (36).

The second part is obvious.

We also have the following reverse of Schwarz inequality [14]:

Lemma 13. If C is a selfadjoint operator with k1H ≤ C ≤ K1H for some
real numbers k < K, then
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for any P ∈ B+
1 (H) \ {0} .

Proof. If we take in (35) f (t) = t and S = C we get∣∣∣∣∣tr
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Since by (43) we have

tr
(
PC2

)
tr (P )

−
(

tr (PC)
tr (P )

)2

≥ 0,

then by (46) we get

0 ≤
tr

(
PC2

)
tr (P )

−
(

tr (PC)
tr (P )

)2

(47)

≤ 1
2

(K − k)
1

tr (P )
tr

(∣∣∣∣(C − tr (PC)
tr (P )

1H

)
P

∣∣∣∣)

≤ 1
2

(K − k)

[
tr

(
PC2

)
tr (P )

−
(

tr (PC)
tr (P )

)2
]1/2

.

Utilising the inequality between the first and last term in (47) we also
have [
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which proves the last part of (45).

Theorem 14. Let I be an interval and f : I → R be a convex and dif-
ferentiable function on I̊ whose derivative f ′ is continuous on I̊ . If A is a
selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂ I̊ and
f ′ (A) is a positive invertible operator on H, or
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for any P ∈ B+
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0 ≤ f

(
tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
− tr [Pf (A)]

tr (P )
(48)

≤ tr (P )
tr [Pf ′ (A)]

f ′
(

tr [PAf ′ (A)]
tr [Pf ′ (A)]

)
L

(
P,A, f ′ (A)

)
,

for any P ∈ B+
1 (H) \ {0} , where

L
(
P,A, f ′ (A)

)
:=

tr [PAf ′ (A)]
tr (P )

− tr (PA)
tr (P )

tr [Pf ′ (A)]
tr (P )

≤


1
2 (f ′ (M) − f ′ (m)) 1

tr(P ) tr
(∣∣∣(A − tr(PA)

tr(P ) 1H

)
P

∣∣∣)
1
2 (M − m) 1

tr(P ) tr
(∣∣∣(f ′ (A) − tr(Pf ′(A))

tr(P ) 1H

)
P

∣∣∣)

≤


1
2 (f ′ (M) − f ′ (m))

[
tr(PA2)

tr(P ) −
(

tr(PA)
tr(P )

)2
]1/2

1
2 (M − m)

[
tr(P [f ′(A)]2)

tr(P ) −
(

tr(Pf ′(A))
tr(P )

)2
]1/2

≤ 1
4

(
f ′ (M) − f ′ (m)

)
(M − m) .

Proof. Utilising Lemma 12 and Lemma 13 we have

0 ≤ tr (Pf ′ (A) A)
tr (P )

− tr (Pf ′ (A))
tr (P )

tr (PA)
tr (P )

(49)

≤ 1
2

(
f ′ (M) − f ′ (m)

) 1
tr (P )

tr
(∣∣∣∣(A − tr (PA)

tr (P )
1H

)
P

∣∣∣∣)

≤ 1
2

(
f ′ (M) − f ′ (m)

) [
tr

(
PA2

)
tr (P )

−
(

tr (PA)
tr (P )

)2
]1/2

≤ 1
4

(
f ′ (M) − f ′ (m)

)
(M − m)



92 Silvestru Sever Dragomir

and

0 ≤ tr (Pf ′ (A) A)
tr (P )

− tr (Pf ′ (A))
tr (P )

tr (PA)
tr (P )

(50)

≤ 1
2

(M − m)
1

tr (P )
tr

(∣∣∣∣(f ′ (A) − tr (Pf ′ (A))
tr (P )

1H

)
P

∣∣∣∣)

≤ 1
2

(M − m)

tr
(
P [f ′ (A)]2

)
tr (P )

−
(

tr (Pf ′ (A))
tr (P )

)2
1/2

≤ 1
4

(
f ′ (M) − f ′ (m)

)
(M − m)

for any P ∈ B+
1 (H) \ {0} .

The positivity of
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follows by Čebyšev’s trace inequality for synchronous functions of selfad-
joint operators, see [15].

The case of convex and monotonic functions is as follows:

Corollary 15. Let I be an interval and f : I → R be a convex and dif-
ferentiable function on I̊ whose derivative f ′ is continuous on I̊ . If A is a
selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂ I̊ and
f ′ (m) > 0, then
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The proof follows by (48) observing that
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If we consider the monotonic nondecreasing convex function f (t) = tp

with p ≥ 1 and t ≥ 0, then by (51) we have the sequence of inequalities
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for any P ∈ B+
1 (H) \ {0} and A with Sp (A) ⊆ [m,M ] ⊂ (0,∞) .

Theorem 16. Let I be an interval and f : I → R be a convex and twice
differentiable function on I̊ whose second derivative f ′′ is bounded on I̊ , i.e.
there is a positive constant K such that 0 ≤ f ′′ (t) ≤ K for any t ∈ I̊ . If A

is a selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂ I̊

and f ′ (A) is a positive invertible operator on H, or
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for any P ∈ B+
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Therefore, by (54) and (55) we get
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that proves the second and third inequalities in (53).

The last part follows by Lemma 13.

The inequality (53) can be also written for the convex function f (t) = tp

with p ≥ 1 and t ≥ 0, however the details are not presented here.
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