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Invariant metrics on homogeneous spaces with equivalent

isotropy summands

Marina Statha∗

Abstract. The space of G-invariant metrics on a homogeneous space
G/H is in one-to-one correspondence with the set of inner products
on the tangent space m ∼= To(G/H), which are invariant under the
isotropy representation. When all the isotropy summands are inequiv-
alent to each other, then the metric is called diagonal. We will describe
a special class of G-invariant metrics in the case where the isotropy
representation of G/H contains some equivalent isotropy summands.
Even though this problem has been considered sporadically in the
bibliography, in the present article we provide a more systematic and
organized description of such metrics. This will enable us to simplify
the problem of finding G-invariant Einstein metrics for homogeneous
spaces. We also provide some applications.

1. Introduction

A homogeneous manifold M is a manifold which admits a transitive

group of diffeomorphisms. However, in general there might be several dis-
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tinct transitive groups, i.e. non conjugate transitive subgroups of the diffeo-

morphism group of M , and these subgroups can be abstractly isomorphic.

If we fix a compact Lie group G acting on a homogeneous manifold M ,

then after choosing a basepoint, we can write M as the coset space G/H,

where H is the isotropy group at the basepoint. From the theorem of My-

ers and Steenrod [15] it follows that the isometry group Iso(M) of M , is a

Lie group and that the isotropy subgroup H is a closed compact subgroup

of Iso(M). One of the fundamental properties of a homogeneous space is

that, if we know the value of a geometrical quantity at a given point, then

we can calculate its value at any other point of G/H by using translation

maps. Hence all calculations reduce to a single point which, for simplicity,

can be chosen to be the identity coset o = eH ∈ G/H.

A Riemannian manifold (M, g) is called Einstein if the metric g satisfies

the condition Ric(g) = λg for some λ ∈ R. We refer to [7] and [21], [22] for

old and new results on homogeneoous Einstein manifolds. The structure

of the set of invariant Einstein metrics on a given homogeneous space is

still not very well understood in general. The situation is only clear for

few classes of homogeneous spaces. For an arbitrary compact homogeneous

space G/H it is not clear if the set of invariant Einstein metrics (up to

isometry and up to scaling) is finite or not. A finiteness conjecture states

that this set is in fact finite if the isotropy representation of G/H consists

of pairwise inequivalent irreducible components ([9]).

A large class of homogeneous spaces are the reductive homogeneous

spaces. For these spaces there exists a subspace m of g such that g = h⊕m

and Ad(H)m ⊂ m. The tangent space of M at o is canonically identified

with m. A major class of reductive homogeneous spaces are the isotropy

irreducible homogeneous spaces. These spaces have been studied by J. Wolf

in [25], where he proved that if G/H is an isotropy irreducible homogeneous

space, then G/H admits a unique (up to scalar) G-invariant metric, which

is also Einstein. Later, M. Wang and W. Ziller in [23] and [24], gave a com-

plete classification of such spaces. The most important examples of isotropy

irreducible homogeneous spaces are the irreducible symmetric spaces, clas-

sified by E. Cartan in 1926. More generally, in [7] it is shown that a non

compact irreducible homogeneous space is symmetric. If the reductive ho-
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mogeneous space is not isotropy irreducible, then its isotropy representation

splits into a direct sum of irreducible subrepresentations. Examples of such

spaces are the generalized flag manifolds, Wallach spaces, the projective

space CP2n+1 and the Stiefel manifolds.

Generalized flag manifolds with two and four isotropy summands are

classified using a method based on Riemannian submersions by A. Arvan-

itoyeorgos and I. Chrysikos in [2], [3]. In general, homogeneous spaces

with two irreducible isotropy summands were classified by W. Dickinson

and M. Kerr in [11]. This classification is achieved under the assump-

tions that G is a compact, connected and simple Lie group, H is a closed

subgroup of G and G/H is simply connected. It should be noted that in

this classification there is only one example of a homogeneous space having

equivalent subrepresentations, namely the space SO(8)/G2
∼= S7×S7. The

G-invariant Einstein metrics on this space as well as on the homogeneous

spaces Spin(7)/U(3) ∼= S7 × S6, Spin(8)/U(3) ∼= S7 × G+
2 (R8) and on

the Stiefel manifold V2Rn+1 ∼= SO(n + 1)/SO(n − 1), where the isotropy

representation splits into equivalent subrepresentations, were classified by

M. Kerr in [14]. The Allof-Wallach spaces Wk,l = SU(3)/SO(2) when

(k, l) = (1, 0) and (k, l) = (1, 1) are two examples of homogeneous spaces

with equivalent subrepresentations. In general, the space of invariant Rie-

mannian metrics on Wk,l, is parametrized by four positive parameters. For

(k, l) = (1, 0) and (k, l) = (1, 1) this space depends on 6 and 10 positive real

numbers, respectively. By using the variational approach Yu. Nikonorov in

[16] proved that there are at most two invariant Einstein metrics on W1,1.

Morever, he constructed a new invariant Einstein metric on W1,0 which is

not diagonal with respect to the Ad(T )-invariant decomposition of SU(3),

where T is a maximal torus in SU(3).

Finally, A. Arvanitoyeorgos, Yu. Nikonorov and V. V. Dzhepko proved

that for s > 1 and k > l ≥ 3 the Stiefel manifold SO(sk + l)/SO(l)

admits at least four SO(sk + l)-invariant Einstein metrics, two of which

are Jensen’s metrics. The special case SO(2k+ l)/SO(l) admitting at least

four SO(2k+l)-invariant Einstein metrics was treated in [4]. Corresponding

results for the quaternionic Stiefel manifolds Sp(sk+l)/Sp(l) were obtained

in [5]. Recently, it was proved by A. Arvanitoyeorgos, Y. Sakane and the
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author in [6], that the Stiefel manifold V4Rn ∼= SO(n)/ SO(n − 4) admits

two more SO(n)-invariant Einstein metrics and that V5R7 ∼= SO(7)/SO(5)

admits four more SO(7)-invariant Einstein metrics.

In the present paper we studyG-invariant metrics on homogeneous spaces

G/H for which the isotropy representation contains equivalent subrepresen-

tations or isotropy summands. For such spaces the diagonal metrics are not

unique. We odserve that the normalizer NG(H) acts on the space of all G-

invariant metrics MG by isometries, and we can choose a subgroup K of

NG(H) such that the action of K on MG determines a subset of MG.

Our approach is analysized in Section 3 and is summarized in the following

Theorem:

Theorem 1.1. Let M = G/H be a homogeneous space of a compact

semisimple Lie group G and let K be a closed subgroup of G such that

H ⊂ K ⊂ NG(H), where NG(H) is the normalizer of H in G.

(1) The non trivial action (φ,A) 7→ φ ◦ A ◦ φ−1 of the set ΦK = {φ =

Ad(k)|m : k ∈ K} ⊂ Φ = {ϕ = Ad(n)|m : n ∈ NG(H) ⊂ Aut(m), on

the setMG of all G-invariant metrics on G/H is well defined.

(2) The set (MG)ΦK = {A ∈MG : φ◦Aφ−1 = A for all φ ∈ ΦK} of fixed
points of the action in (1) determines a subset of all Ad(H)-invariant

inner products on m, called Ad(K)-invariant inner products. This set

in turn, determines a subsetMG,K ofMG.

Theorems of the above type are useful for the study of geometrical problems

(e.g. finding G-invariant Einstein metrics) on homogeneous space whose

isotropy representation contains equivalent summands (see for example [6]).

The paper is organized as follows: In Section 2 we recall some useful

results from representation theory. In Section 3 we analyse the action of

the normalizer NG(H) on the set ofMG of all G-invariant metrics on G/H.

By restricting this action to a closed subgroup K of G such that H ⊂ K ⊂
NG(H), we obtain a subset MG,K of all G-invariant metrics MG. As a

consequence, various geometrical objects (such as Ricci tensor) are easier

to by described. In Section 4 we relate such a choice of subgroup K (i.e.

H ⊂ K ⊂ NG(H)) to Riemannian submersions K/H → G/H → G/K.
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2. Review of representation theory

A finite dimensional (real or complex) representation of a Lie group G

is a homomorphism φ : G → Aut(V ), where V is a finite dimensional

(real or complex) vector space. The dimension of the representation is

the dimension of the vector space V . If there is no non trivial subspace

W ⊂ V with φ(W ) ⊂W then the representation φ called irreducible. The

complexification of a real representation φ : G→ Aut(V ) is defined as the

complex representation φ⊗ C : G→ Aut(V ⊗ C).

Definition 2.1. Two representations φ1 : G → Aut(V1) and φ2 : G →
Aut(V2) are called equivalent (φ1

∼= φ2 or V1 ∼= V2) if V1 and V2 are G-

isomorphic, i.e. there exists a linear isomorphism f : V1 → V2 such that

f(φ1(g)v) = φ2(g)f(v), for all g ∈ G and v ∈ V1. Such an f is also called

G-equivariant map (or intertwining map).

A useful observation is the following.

Theorem 2.2. (Schur’s Lemma) If φ : G → Aut(V ) is an irreducible

complex representation and f ∈ Hom(V, V ) is a G-equivariant map, then

f = cId for some c ∈ C.

For every representation φ : G→ Aut(V ) of a compact topological group

G there exists a G-invariant inner product ⟨·, ·⟩ on V , i.e. ⟨φ(g)u, φ(g)v⟩ =
⟨u, v⟩, for all g ∈ G and u, v ∈ V . From this it follows that any rep-

resentation of a compact topological group is a direct sum of irreducible

representations i.e. φ ∼= φ1⊕· · ·⊕φn : G→ Aut(V1⊕· · ·⊕Vn), where each
of φi : G→ Aut(Vi) (i = 1, 2, . . . , n) is irreducible.

If φ is a real (resp. complex) irreducible representation and ⟨·, ·⟩1, ⟨·, ·⟩2
are two G-invariant inner products (resp. hermitian inner products) on V ,

then from the above theorem it follows that ⟨·, ·⟩1 = c⟨·, ·⟩2, for some c ∈ R
(resp. c ∈ C). Therefore, if φ ∼= φ1 ⊕ · · · ⊕ φn and assuming that φi are

mutually inequivalent, then all G-invariant inner products on V are given

by

⟨·, ·⟩ = x1 ⟨·, ·⟩|V1 + · · ·+ xn ⟨·, ·⟩|Vn , xi ∈ R, i = 1, . . . , n

where ⟨Vi, Vj⟩ = 0 for i ̸= j. Any other G-invariant inner product on V
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can be expressed as (·, ·) = ⟨A·, ·⟩, where A : V → V is a positive definite,

symmetric, G-equivariant linear map.

If φi and φj are equivalent for some i and j, then the above inner prod-

uct is not unique, and ⟨Vi, Vj⟩ does not necessarily vanish, thus the matrix

of the operator A has some non zero non diagonal elements. To find the

number of non diagonal elements, we need to determine the dimension of

the space of intertwining maps between the pairs of equivalent representa-

tions. For example, let φ1
∼= φ2 and φi, i = 1, 2 be irreducible as real

representations. The complexification of φ1 is not necessarily irreducible.

After complexifying φ1, there are three possibilities ([14]):

1. If φ1 ⊗ C is irreducible, we call φ1 orthogonal.

2. If φ1 ⊗ C = ψ ⊕ ψ̄ and ψ is not equivalent to ψ̄, we call φ1 unitary.

3. If φ1 ⊗ C = ψ ⊕ ψ̄ and ψ is equivalent to ψ̄, we call φ1 symplectic.

The space of intertwining maps is 1-dimensional in the orthogonal case, 2-

dimensional in the unitary case, and 4-dimensional in the symplectic case.

Thus if in the decomposition of V = V1⊕V2⊕· · ·⊕Vn we have r equivalent

summands (or modules), then the number of non diagonal elements in the

orthogonal case is r(r−1)
2 , in the unitary case it is r(r − 1) and in the

symplectic case it is 2r(r − 1). In the present article we describe a special

class of G-invariant metrics on a homogeneous spaces G/H which contain

equivalent isotropy summands.

Definition 2.3. The adjoint representation of G is the homomorphism

Ad ≡ AdG : G→ Aut(g) given by Ad(g) = (dIg)e, where Ig : G→ G, x 7→
gxg−1, and g is the Lie algebra of G.

Denote by λ̃n the standard representation of GLnR and by λn the stan-

dard representation of SO(n) (or O(n)). It is λn = λ̃n|SO(n) : GLnR →
Aut(Rn). Then the adjoint representation AdSO(n) of SO(n) (or O(n)) is

equivalent to ∧2λn, where ∧2 denotes the second exterior power of λn.

Also, we have that AdU(n)⊗C = µn ⊗ µ̄n and AdSp(n)⊗C = S2νn, where

µn = µ̃n|U(n) : GLnC → Aut(Cn), νn = ν̃n|Sp(n) : GLnH → Aut(Hn).
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Here µ̃n, ν̃n are the standard representations of GLnC and GLnH re-

spectively, and S2 is the second symmetric power of νn. Recall that if

π : G → Aut(V ), π′ : G′ → Aut(W ) are two representations of G and G′

respectively, then the following identities are valid:

∧2(π ⊕ π′) = ∧2π ⊕ ∧2π′ ⊕ (π ⊗ π′), S2(π ⊕ π′) = S2π ⊕ S2π′ ⊕ (π ⊗ π′).

Let M be a smooth manifold and let G be a Lie group acting on M on

the left by the map α : G ×M → M, (g,m) 7→ α(g,m) = gm. For all

g ∈ G, let αg : M → M be the corresponding diffeomorphism of M . If

H = {g ∈ G : gp = p} is the isotropy subgroup at the point p ∈ M , then

the isotropy representation of H at p is the homomorphism

θ : H −→ Aut(TpM)

h 7−→ (dαh)p : TpM → TpM, (1)

where TpM is the tangent space of M at the point p. In the case where the

above action is also transitive, i.e. for p, q ∈M there exists g ∈ G such that

q = gp, then M is diffeomorphic to the homogeneous space G/H, where H

is the isotropy subgroup at the identity coset o = eH. By (1) the isotropy

representation of G/H is the homomorphism

AdG/H : H −→ Aut(To(G/H))

h 7−→ (dτh)o : To(G/H)→ To(G/H),

where τh : G/H → G/H, gH 7→ hgH. A large class of homogeneous

spaces are the reductive homogeneous spaces. For such spaces there exists

a subspace m of the Lie algebra g such that g = h ⊕ m and Ad(h)m ⊂ m

for all h ∈ H, that is m is Ad(H)-invariant. If the subgroup H is compact

such decomposition always exists. Then we have a canonical isomorphism

m ∼= To(G/H) given by X ↔ X∗
o =

d

dt
(exp(tX))o|t=0, where exp(tX) is

the one parameter subgroup of G generated by X.

The next proposition is useful to compute the isotropy representation of

the reductive homogeneous space ([1]).
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Proposition 2.4. Let G/H be a reductive homogeneous space and let g =

h ⊕ m be a reductive decomposition of g. Let h ∈ H, X ∈ h and Y ∈ m.

Then

AdG(h)(X + Y ) = AdG(h)X +AdG(h)Y

that is, the restriction AdG
∣∣
H

splits into the sum AdH ⊕AdG/H .

We give some examples of computations.

Example 2.5. We consider the homogeneous space G/H = SO(k1 + k2 +

k3)/(SO(k1) × SO(k2) × SO(k3)) with k1, k2, k3 ≥ 2, which is an example

of a generalized Wallach space ([18]). These spaces were recently classified

independently by Yu. Nikonorov in [17] and Z. Chen, Y. Kang, K. Liang in

[10]. Let σi : SO(k1) × SO(k2) × SO(k3) → SO(ki) be the projection onto

the factor SO(ki), (i = 1, 2, 3) and let pki = λki ◦ σi. Then we have the

following:

AdG
∣∣
H

= ∧2λk1+k2+k3

∣∣
H

= ∧2(pk1 ⊕ pk2 ⊕ pk3) = ∧2pk1 ⊕ ∧2pk2
⊕ ∧2 pk3 ⊕ (pk1 ⊗ pk2)⊕ (pk1 ⊗ pk3)⊕ (pk2 ⊗ pk3).

Observe that the dimension of the representation ∧2pk1 ⊕∧2pk2 ⊕∧2pk3 is(
k1
2

)
+
(
k2
2

)
+
(
k3
2

)
, which is equal to the dimension of the adjoint representa-

tion of H = SO(k1)×SO(k2)×SO(k3), AdH : SO(k1)×SO(k2)×SO(k3)→
Aut(so(k1) ⊕ so(k2) ⊕ so(k3)). Therefore, the isotropy representation of

G/H is given by

AdG/H ∼= (pk1 ⊗ pk2)⊕ (pk1 ⊗ pk3)⊕ (pk2 ⊗ pk3), (2)

which is a direct sum of irreducible and non equivalent subrepresentations

of dimensions kikj , i ̸= j. The tangent space m of G/H decomposes into

three Ad(H)-invariant submodules m = m12 ⊕m13 ⊕m23.

Let us consider the case where H1 = SO(l1) × SO(l2) × SO(l3) and

l1+l2+l3 < k1+k2+k3−1. Then we see that the isotropy representation of

the homogeneous space G/H1 contains some equivalent subrepresentations.

Indeed,

AdG
∣∣
H1

= ∧2λl1+l2+l3

∣∣
H1

= ∧2(pl1 ⊕ pl2 ⊕ pl3 ⊕ 1n) = ∧2pl1 ⊕ ∧2pl2
⊕ ∧2 pl3 ⊕ ∧21n ⊕ (pl1 ⊗ pl2)⊕ (pl1 ⊗ pl3)⊕ (pl2 ⊗ pl3)

⊕(pl1 ⊗ 1n)⊕ (pl2 ⊗ 1n)⊕ (pl3 ⊗ 1n)
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= ∧2pl1 ⊕ ∧2pl2 ⊕ ∧2pl3 ⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
(n2)

⊕(pl1 ⊗ pl2)⊕ (pl1 ⊗ pl3)

⊕(pl2 ⊗ pl3)⊕ pl1 ⊕ · · · ⊕ pl1︸ ︷︷ ︸
n

⊕ pl2 ⊕ · · · ⊕ pl2︸ ︷︷ ︸
n

⊕ pl3 ⊕ · · · ⊕ pl3︸ ︷︷ ︸
n

.

where n = (k1 + k2 + k3) − (l1 + l2 + l3) and 1n = 1⊕ · · · ⊕ 1︸ ︷︷ ︸
n−times

. As before,

the representation ∧2pl1 ⊕ ∧2pl2 ⊕ ∧2pl3 is the adjoint representation of

H1 = SO(l1) × SO(l2) × SO(l3), thus the isotropy representation of the

homogeneous space G/H1 is

AdG/H1 = 1⊕ · · · ⊕ 1⊕ (pl1 ⊗ pl2)⊕ (pl1 ⊗ pl3)⊕ (pl2 ⊗ pl3)

⊕pl1 ⊕ · · · ⊕ pl1 ⊕ pl2 ⊕ · · · ⊕ pl2 ⊕ pl3 ⊕ · · · ⊕ pl3 .

Observe that the last 3n representations of dimensions li, (i = 1, 2, 3) are

equivalent. Thus the tangent space of G/H1 decomposes into a sum of(
n
2

)
+ 3n+ 3 Ad(H1)-invariant submodules mi. Similar result is true if we

takeH2 = SO(m1)×SO(m2) withm1+m2 < k1+k2+k3−1, orH3 = SO(d)

with d < k1+ k2+ k3− 1. In the special case where H4 = SO(k3), then the

homogeneous space G/H4 is the Stiefel manifold Vk1+k2Rk1+k2+k3 . In this

case the isotropy representation is given as follows:

AdG
∣∣
H4

= ∧2λk1+k2+k3

∣∣
H4

= ∧2(λk3 ⊕ 1k1+k2)

= ∧2λk3 ⊕ ∧21k1+k2 ⊕ (λk3 ⊕ 1k1+k2)

= ∧2λk3 ⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
(k1+k2

2 )

⊕λk3 ⊕ · · · ⊕ λk3︸ ︷︷ ︸
k1+k2

= AdSO(k3)⊕1⊕ · · · ⊕ 1⊕ λk3 ⊕ · · · ⊕ λk3 ,

hence the isotropy representation is AdG/H4 = 1⊕ · · · ⊕ 1⊕λk3 ⊕ · · · ⊕λk3 ,
where the last k1+k2 representations are equivalent. Analogous results can

be obtained for G = SU(k1 + k2 + k3) or Sp(k1 + k2 + k3). We summarize

the above computations in the following table:
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H subgroup of G m =
⊕s

i=1mi non equiv.rep. equiv.rep.

SO(k1)× SO(k2)× SO(k3)

k1, k2, k3 ≥ 2 s = 3 ✓
SO(l1)× SO(l2)× SO(l3)

l1 + l2 + l3 <

k1 + k2 + k3 − 1

n = (k1 + k2 + k3)− s =
(
n
2

)
+

(l1 + l2 + l3) +3n+ 3 ✓
SO(m1)× SO(m2)

m1 +m2 <

k1 + k2 + k3 − 1

n = (k1 + k2 + k3)− s =
(
n
2

)
+

(m1 +m2) +2n+ 1 ✓
SO(d)

d < k1 + k2 + k3 − 1

n = (k1 + k2 + k3)− d s =
(
n
2

)
+ n ✓

SO(k3)

n = k1 + k2 s =
(
n
2

)
+ n ✓

Table 1: The number of isotropy summands for the homogeneous space

G/H = SO(k1+k2+k3)/H. The four last spaces contain equivalent isotropy

summands.

In the last four cases the complete description of Ad(Hi)-invariant inner

products is much more difficult, because ⟨mi,mj⟩ are not necessarily zero

for i ̸= j.

Example 2.6. We compute the complexified isotropy representation of

the Stiefel manifold VkHn ∼= Sp(n)/Sp(n − k), i.e. AdSp(n)/Sp(n−k)⊗C :

Sp(n− k)→ Aut(m⊗ C). It is

AdSp(n)⊗C
∣∣∣
Sp(n−k)

= S2νn

∣∣∣
Sp(n−k)

= S2(νn−k ⊕ 1k ⊕ 1k)

= S2νn−k ⊕ S2(1k ⊕ 1k)⊕ (νn−k ⊗ (1k ⊕ 1k))

= S2νn−k ⊕ 1⊕ · · · ⊕ 1︸ ︷︷ ︸
(2k+1

2 )

⊕ νn−k ⊕ · · · ⊕ νn−k︸ ︷︷ ︸
2k

= AdSp(n−k)⊗C⊕ 1⊕ · · · ⊕ 1⊕ νn−k ⊕ · · · ⊕ νn−k,
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so from Proposition 2.4 we have that AdSp(n)/Sp(n−k)⊗C = 1 ⊕ · · · ⊕ 1 ⊕
νn−k ⊕ · · · ⊕ νn−k. Therefore the complexified tangent space m ⊗ C of

Sp(n)/Sp(n− k) can be written as a direct sum of
(
2k+1
2

)
and 2k complex

subspaces, of dimensions 1 and 2(n− k) respectively.

Example 2.7. Consider the projective space CP2n+1 ∼= Sp(n+1)/Sp(n)×
U(1). Then according to Proposition 2.4 the complexified isotropy repre-

sentation of this space is determined by the equation

AdSp(n+1)⊗C
∣∣
Sp(n)×U(1)

= (AdSp(n)×U(1)⊗C)⊕ (AdSp(n+1)/ Sp(n)×U(1)⊗C).

Observe that the dimension of the adjoint representation of Sp(n) × U(1)

is 2n2 + n+ 1. We now compute,

AdSp(n+1)⊗C
∣∣
Sp(n)×U(1)

= S2νn+1

∣∣
Sp(n)×U(1)

= S2(νn ⊕ µ1 ⊕ µ̄1)

= S2νn ⊕ S2µ1 ⊕ S2µ̄1

⊕(νn ⊗ µ1)⊕ (νn ⊗ µ̄1)⊕ (µ1 ⊕ µ̄1)

=
(
S2νn ⊕ (µ1 ⊗ µ̄1)

)
⊕ S2µ1 ⊕ S2µ̄1

⊕(νn ⊗ µ1)⊕ (νn ⊗ µ̄1)

= AdSp(n)×U(1)⊗C⊕ S2µ1 ⊕ S2µ̄1

⊕(νn ⊗ µ1)⊕ (νn ⊗ µ̄1),

where the fourth equality holds because the dimension of S2νn ⊕(µ1⊗µ̄1) is
equal to the dimension of the adjoint representation of Sp(n)×U(1). Hence,

the isotropy representation decomposes into a sum of four irreducible sub-

representations of dimensions 1, 1, 2n and 2n respectively, that is

AdSp(n+1)/ Sp(n)×U(1)⊗C = S2µ1 ⊕ S2µ̄1 ⊕ (νn ⊗ µ1)⊕ (νn ⊗ µ̄1).

Thus, the complexified tangent space m⊗ C of Sp(n+ 1)/Sp(n)× U(1) is

written as a direct sum of four complex subspaces as m⊗C = p1⊕p2⊕p3⊕p4.
The real subspace m splits into two real subspaces of dimension 2 and 4n

respectively, i.e. m = m1⊕m2, where m⊗C = p1⊕p2 and m2⊗C = p3⊕p4.

It is worth mentioning that W. Ziller in [26] proved that the projective

space CP2n+1 ∼= Sp(n + 1)/Sp(n) × U(1) admits precisely two Einstein

metrics.
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In general all Lie groups G which act on the projective spaces CPn,HPn

and CαP
2 where classified by Onishchik [19], according to the following

table:

G H G/H isotr. repr.

SU(n+ 1) S(U(1)×U(n)) CPn irreducible

Sp(n+ 1) Sp(n)× Sp(1) HPn irreducible

F4 Spin(9) CaP
2 irreducible

Sp(n+ 1) Sp(n)×U(1) CP2n+1 m = m1 ⊕m2

Table 2: Transitive actions on projective spaces.

Observe that in the first three cases the isotropy representations are

irreducible, which means that the only G-invariant metric on these spaces

is the standard homogeneous Riemannian metric (i.e. the metric induced

by the negative of the Killing form B of g). By J. Wolf ([25]) this metric

is Einstein.

3. A special class of G-invariant metrics on G/H

Let G be a compact Lie group and H a closed subgroup so that G acts

almost effectively on G/H. Let g, h be the Lie algebras of G and H and

let g = h ⊕ m be a reductive decomposition of g with respect to some

Ad(G)-invariant inner product on g, i.e. Ad(h)m ⊂ m for all h ∈ H where

m ∼= To(G/H), o = eH. For G semisimple, the negative of the Killing form

B of g is an Ad(G)-invariant inner product on g, therefore we can choose

the above decomposition with respect to this form. A Riemannian metric

g on a homogeneous space G/H is called G-invariant if the diffeomorphism

τα : G/H → G/H, τα(gH) = αgH is a isometry. The following proposition

gives a description of G-invariant metrics on homogeneous spaces.

Proposition 3.1. Let G/H be a homogeneous space. Then there exists a

one-to-one correspondence between:

1. G-invariant metrics g on G/H

2. AdG/H-invariant inner products ⟨·, ·⟩ on m, that is

⟨AdG/H(h)X, AdG/H(h)Y ⟩ = ⟨X, Y ⟩ for all X,Y ∈ m, h ∈ H and
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3. (if H is compact and m = h⊥ with respect to the negative of the Killing

form B of G) AdG/H-equivariant, B-symmetric1 and positive definite

operators A : m→ m such that

⟨X,Y ⟩ = B(A(X), Y ).

We call such an inner product AdG(H)-invariant, or simply Ad(H)-invariant

From the above proposition we can see that the set of all Ad(H)-invariant

inner products on m can be parametrized by Ad(H)-equivariant, symmetric

and positive definite operators A : m→ m. Thus we have

MG ←→

{
A : m→ m

∣∣∣ Ad(H)-equivariant, symmetric

and positive definite operator

}
.

It is clear that if m decomposes into a direct sum of Ad(H)-invariant irre-

ducible and pairwise inequivalent modules mi of dimension di (i = 1, . . . , s),

that is m = m1 ⊕ · · · ⊕ ms, then all Ad(H)-invariant inner products on m

are given by

⟨·, ·⟩ = x1(−B)|m1 + · · ·+ xs(−B)|ms , xi ∈ R+, i = 1, . . . , s.

In this case the matrix of the operator A with respect to some (−B)-

orthonormal adapted basis B of m is given by

[A]B =


x1Idd1 0

. . .

0 xsIdds

 .

In this case the G-invariant metrics are called diagonal. However, if the

decomposition of m contains r equivalent orthogonal modules mi, then the

matrix of the operator A with respect to some (−B)-orthonormal adapted

basis D of m is given by

[A]D =


x1Idd1 α12Idd1 · · · α1sIdd1
α12Idd2 x2Idd2 · · · α2sIdd2

...
...

. . .
...

α1sIdds α2sIdds · · · xsIdds

 .

1Or B(·, ·)-self-adjoint endomorphisms m.
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The number of αij is r(r−1)
2 . For the unitary and symplectic case, we

consider for simplicity the case where the decomposition of m contains two

equivalent modules, say m1
∼= m2, of dimension d. Here there are two

and four non diagonal elements respectively. For example in the unitary

case, the matrix of the operator A with respect to some (−B)-orthonormal

adapted basis D of m is given by linear combinations of the matrices

J1 =

(
0 α1Id2d

α1Id2d 0

)
, J2 =


0 0 0 α2Idd

0 0 −α2Idd 0

0 −α2Idd 0 0

α2Idd 0 0 0

 ,

α1, α2 ∈ R+. The idea behind our approach is to try to eliminate some of

the non diagonal elements in the above matrix, and restrict the study to the

diagonal metrics. For the same problem in the case of a Lie group, K. Y.

Ha and J. B. Lee in [13] classified the left-invariant Riemannian metrics for

each simply connected three-dimensional Lie group up to automorphism.

The main idea there was to identify all automorphisms of the Lie algebra

of these groups, and then define an action of the automorphism group on

the set of all left invariant inner products on the Lie algebras of these Lie

groups2. More precisely, let G be a Lie group and g the corresponding Lie

algebra of G. Let M be the set of all left invariant inner products of g.

Then Aut(g) acts on M by

Aut(g)×M→M, (ϕ , ⟨·, ·⟩) 7→
⟨
ϕ−1· , ϕ−1·

⟩
.

Under this action we can define an equivalence relation ∼ on M as follows:

⟨·, ·⟩ ∼ ⟨·, ·⟩′ ⇐⇒ there exists ϕ ∈ Aut(g) such that ⟨·, ·⟩′ = ⟨ϕ−1· , ϕ−1·⟩.

Now, let G/H be a homogeneous space (H is the isotropy subgroup at the

identity coset eH) with reductive decomposition g = h ⊕ m with respect

to some Ad(G)-invariant inner product of g. Let Aut(G,H) be the set

2In general, the group of automorphisms of a Lie group G defines an action on the

set of all metrics on G by Aut(G) × {metrics on G} → {metrics on G}, (θ, g(·, ·)) 7→
θg(·, ·) := gθ(dθ

−1·, dθ−1·). Note that if the metric g is left-invariant, then the metric gθ

is not necessarily left-invariant.
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of all automorphisms of G which preserve the group H. It can be shown

that if ϕ ∈ Aut(G,H), then ϕ induces a G-equivariant diffeomorphism ϕ̃ :

G/H → G/H. Then it is easy to see that thisG-equivariant diffeomorphism

defines an action on the set of all G-invariant metrics MG, transforming

each G-invariant metric g into a metric isometric to it. In general, every

G-equivariant diffeomorphism of G/H is a right translation by an element

of NG(H), and for some α ∈ NG(H) the map α 7→ Rα, where Rα : G/H →
G/H is G-equivariant and sends each gH to gα−1H. This induces an

isomorphism of NG(H)/H onto the group of Aut(G/H) ([8]). Next, we

describe when the set Aut(G/H) ∼= NG(H)/H defines an action on the set

of all G-invariant metricsMG of a homogeneous space G/H.

First we recall the following fact. Let G1 and G2 be Lie subgroups of

a Lie group G. If G1 ⊂ G2, then G1 is a subgroup of the Lie group G2,

and g1 ⊂ g2. Conversely, if g1 ⊂ g2 and the group G1 is connected, then

G1 ⊂ G2. From this we have:

Lemma 3.2. (cf. [12]) Let G be a Lie group and H be a closed, connected

subgroup of G, with g and h the corresponding Lie algebras. Then the group

NG(H) = {g ∈ G : gHg−1 = H} is equal to the group NG(h) = {g ∈ G :

Ad(g)h ⊂ h}.

Proof. We need to show that (a)NG(H) ⊂ NG(h) and (b)NG(h) ⊂ NG(H).

For (a), let g ∈ NG(H). Then gHg−1 = H and by the above fact we have

that ghg−1 = h, i.e. Ad(g)h = h, hence g ∈ NG(h). For (b), if g ∈ NG(h)

then Ad(g)h ⊂ h. Since Ad(g)h is the Lie algebra of gHg−1 and H is

connected it follows that gHg−1 ⊂ H. Obviously H ⊂ gHg−1, hence we

obtain that g ∈ NG(H).

The following proposition is central in our study.

Proposition 3.3. Let n ∈ NG(H) and Ad(n) : g → g. Then the operator

Ad(n)|m : m → g takes values in m, that is ϕ = Ad(n)|m ∈ Aut(m). Also,

(Ad(n)|m)−1 = (Ad(n)|m)t.

Proof. Let n ∈ NG(H) and Y ∈ h. Using Lemma 3.2, for any subspace h

of g, the normalizer NG(h) is given by NG(h) = {g ∈ G : Ad(g)h ⊂ h} =
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NG(H). Therefore, it follows that

Ad(n)Y ∈ h. (3)

Let X ∈ m = h⊥. Then by using (3) and the Ad(G)-invariance of B we

obtain that

B(Ad(n)−1X,Y ) = B(Ad(n)−1X,Ad(n)−1Ad(n)Y ) = B(X,Ad(n)Y ) = 0,

hence Ad(n)−1X ∈ m. Finally, for n ∈ NG(H) and using the Ad(G)-

invariance of B, we have that B(Ad(n)|mX, Ad(n)|mY ) = B(X,Y ). Since

in general it is B(Ad(n)|mX, Ad(n)|mY ) = B(X, (Ad(n)|m)t Ad(n)|mY ), it

follows that (Ad(n)|m)−1 = (Ad(n)|m)t.

Consider the set Φ = {ϕ = Ad(n)|m : n ∈ NG(H)}. Then by Proposition

3.3 Φ is contained in Aut(m), hence we can define the isometric action3

Φ×MG →MG, (ϕ , A) 7→ ϕ ◦A ◦ ϕ−1 ≡ Ã. (4)

Lemma 3.4. The action of Φ onMG is well defined.

Proof. We need to show that the operator Ã is

(a) Ad(H)-equivariant, i.e. Ad(H) ◦ Ã = Ã ◦Ad(H) or

Ad(H) ◦ Ã ◦Ad(H)−1 = Ã and

(b) B-symmetric and positive definite.

For (a), let n ∈ NG(H) and we compute:

Ad(H) ◦ Ã ◦Ad(H)−1 = Ad(H) ◦
(
Ad(n) ◦A ◦Ad(n)−1

)
◦Ad(H)−1

= Ad(Hn) ◦A ◦Ad(Hn)−1

= Ad(nH) ◦A ◦Ad(nH)−1

= Ad(n) ◦
(
Ad(H) ◦A ◦Ad(H)−1

)
◦Ad(n)−1

= Ad(n) ◦A ◦Ad(n)−1 = Ã.

3This action is essentially the action of NG(H) on MG, or equivalently the action of

the group NG(H)/H on MG.
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In the third equality we used the fact that n ∈ NG(H), and in the fifth

equality the fact that the operator A is Ad(H)-equivariant. For (b), let

X,Y ∈ m. We will show that the operator Ã is B-symmetric:

B(ÃX, Y ) = B(Ad(n) ◦A ◦Ad(n)−1X, Y )

= B(Ad(n) ◦A ◦Ad(n)−1X, Ad(n)Ad(n)−1Y )

= B(A ◦Ad(n)−1X, Ad(n)−1Y )

= B(Ad(n)−1X, A ◦Ad(n)−1Y )

= B(Ad(n)Ad(n)−1X, Ad(n) ◦A ◦Ad(n)−1Y )

= B(X, ÃY ).

In the third and fifth equality we used that the Killing form B is Ad(G)-

invariant and in the fourth equality we used the fact that the operator A

is B-symmetric. Finally, we show that Ã is positive definite. Let X ∈ m

with X ̸= 0. Then by Proposition 3.3 we have that Ad(n)X ∈ m for all

n ∈ NG(H), therefore it is

B(ÃX,X) = B(Ad(n) ◦A ◦Ad(n)−1X, X)

= B(Ad(n) ◦A ◦Ad(n)−1X, Ad(n)Ad(n)−1X)

= B(A ◦Ad(n)−1X, Ad(n)−1X)

= B(A(Ad(n)−1X), Ad(n)−1X) > 0

where in the third equality we used that the Killing form B is Ad(G)-

invariant.

Corollary 3.5. Let n ∈ NG(H). Then the metrics corresponding to the

operator A are equivalent, up to the automorphism Ad(n) : m→ m, to the

metrics corresponding to the operator Ã.

Example 3.6. ([14]) We consider the Stiefel manifold V2R4 ∼= SO(4)/ SO(2)

and we will describe all SO(4)-invariant metrics. A reductive decomposi-

tion m of the Lie algebra so(4), with respect to negative of Killing form

B(·, ·) of SO(4), and for the embedding of so(2) ↪→

(
0 0

0 so(2)

)
∈ so(4), is
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the set

m =

{(
D2 C

−Ct O2

)
: D2 = diag(0, 0), C ∈M2R

}
= span{eij = Eij − Eji : 1 ≤ i < j ≤ 4},

where Eij denotes the 4 × 4 matrix with 1 in (ij)-entry and 0 elsewhere.

According to Example 2.5 the isotropy representation of SO(4)/ SO(2) is

AdSO(4)/SO(2) = 1⊕λ2⊕λ2, thus m can be written as a direct sum of three

Ad(SO(2))-invariant subspaces, of dimensions 1, 2, 2 as follows

m = m1 ⊕m2 ⊕m3.

Hence m1 = span{e12}, m2 = span{e1j : j = 3, 4} and m3 = span{e2j :

j = 3, 4}. Observe that m1 = so(2) ↪→

(
so(2) 0

0 0

)
∈ so(4). Since in

the isotropy representation the last two representations are equivalent and

λ2 ⊗ C ∼= λ2, the space of intertwining maps is 1-dimensional. There-

fore, Proposition 3.1 implies that the matrix of the Ad(SO(2))-equivariant,

symmetric and positive definite operator A : m → m with respect to some

(−B)-orthonormal basis adapted to m, is given by

[A] =

x1Id1 0 0

0 x2Id2 αId2

0 αId2 x3Id2

 α ∈ R+.

Here it is NSO(4)(SO(2)) = SO(2) ∼= S1. The Lie algebra of SO(2) is

generated by the element e12 ↪→ so(4). We consider the one parameter

group exp(te12) of SO(2), and we compute the matrix of the operator

Ad(exp(te12)) : m → m with respect to the basis {eij} of m. We have

the following:

Ad(exp(te12))e12 = ete12e12(e
te12)−1

=


cos t sin t 0 0

− sin t cos t 0 0

0 0 1 0

0 0 0 1

×


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

×
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×


cos t − sin t 0 0

sin t cos t 0 0

0 0 1 0

0 0 0 1

 = e12.

Similarly, we obtain that

Ad(exp(te12))e13 = cos t · e13 − sin t · e23,

Ad(exp(te12))e14 = cos t · e14 − sin t · e24,

Ad(exp(te12))e23 = sin t · e13 + cos t · e23,

Ad(exp(te12))e24 = sin t · e14 + cos t · e24.

In the above calculations we used the fact that for any matrix group G we

have that Ad(g)X = gXg−1 for all g ∈ G, and X ∈ g. Hence, the matrix

of the operator Ad(exp(te12)) is

[Ad(exp(te12))] =


1 0 0 0 0

0 cos t 0 sin t 0

0 0 cos t 0 sin t

0 − sin t 0 cos t 0

0 0 − sin t 0 cos t

 .

If we set φ = Ad(exp(te12)), then the action (4) at the matrix level is given

by

([Ad(exp(te12))] , [A]) 7→ [Ad(exp(te12))] · [A] · [Ad(exp(te12))]
−1 ≡ [Ã].

After some calculations we obtain that

[Ã] =

x1Id1 0 0

0 kId2 mId2

0 mId2 cId2

 ,

where k = x2+(x3−x2) sin2 t+2α sin t cos t,m = (x3−x2) sin t cos t+α cos 2t

and c = x3 + (x2 − x3) sin2 t − 2α sin t cos t. Obviously, we can find t such

that m = (x3 − x2) sin t cos t + α cos 2t = 0. Therefore, without loss of

generality, and since A and Ã are isometric, we can assume that the matrix

of the operator A is such that α = 0 (i.e. diagonal).
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The important points in the previous example are that, we have exactly

one non diagonal element in the matrix of the metric ⟨·, ·⟩ = −B(A·, ·) and
that the normalizer of SO(2) in SO(4) is the circle S1 ∼= SO(2). These

enable us to eliminate the non diagonal element, since it is possible to de-

scribe the complete action of the normalizer on the space of all G-invariant

metrics. This situation occurs in [14]. In the case where the group NG(H)

(or NG(H)/H) is isomorphic to some other Lie group (see for example [16])

then it is more complicated to describe explicitly the action of NG(H) on

MG, so we try to confine our study in a suitable subset ofMG.

From the action (4) we obtain the following interesting consequenses.

Let

(MG)Φ = {A ∈MG : ϕ ◦A ◦ ϕ−1 = A for all ϕ ∈ Φ}

be the set of all fixed points4 of the action Φ on MG (which is subset of

MG). Any element of (MG)Φ parametrizes all Ad(NG(H))-invariant inner

products of m and thus defines a subset of all inner product on m. Since

H ⊂ NG(H), Proposition 3.1 can be restated as follows:

Proposition 3.7. Let G/H be a homogeneous space. Then there exists a

one-to-one correspondence between:

(1) G-invariant metrics on G/H,

(2) Ad(H)-invariant inner products ⟨·, ·⟩ on m,

(3) Fixed points (MG)ΦH = {A ∈MG : ψ◦A◦ψ−1 = A, for all ψ ∈ ΦH}
of the action ΦH = {ϕ = Ad(h)|m : h ∈ H} ⊂ Φ onMG.

Observe that (MG)Φ ⊂ (MG)ΦH . In the case where NG(H) ̸= S1, we

can work with some appropriate closed subset K of the Lie group G, such

that H ⊂ K ⊂ NG(H). Then the fixed point set of the non trivial action

of the set ΦK = {φ = Ad(k)|m : k ∈ K} ⊂ Φ onMG is

(MG)ΦK = {A ∈MG : φ ◦A ◦ φ−1 = A for all φ ∈ ΦK},
4Let G be a Lie group and M a manifold. Consider the action of G on M :

G×M → M, (g,m) 7→ g ·m.

The subset MG = {m ∈ M : g ·m = m for all g ∈ G} of M is called the fixed point set

of the action.
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Figure 1: Inclusions of certain invariant inner products in g

and this set determines a subset of all Ad(K)-invariant inner products of

m. We have the inclusions (MG)Φ ⊂ (MG)ΦK ⊂ (MG)ΦH .

By Proposition 3.7 the subset (MG)ΦK is in one-to-one correspondence

with a subsetMG,K of all G-invariant metrics, call it Ad(K)-invariant, as

shown in the Figure 2.

In the special case where H = {e}, then NG(H) = G, thus the fixed

points of the action (4) are the Ad(G)-invariant inner products on g, which

correspond to the bi-invariant metrics on the Lie group G.

We will now make an appropriate choice of the subgroup K in G.

Proposition 3.8. Let K be a subgroup of G with H ⊂ K ⊂ G and such

that K = L × H, for some subgroup L of G. Then K is contained in

NG(H).

Proof. We will show that if k = (l, h) ∈ K = L×H then kHk−1 = H (that

is k ∈ NG(H)). We identify H with {e} × H, where {e} is the identity

element of G, so we will show that k
(
{e} ×H

)
k−1 = {e} ×H. It is

k
(
{e} ×H

)
k−1 = (l, h)

(
{e} ×H

)
(l, h)−1 = (l, h)

(
{e} ×H

)
(l−1, h−1)

= (l, h)(e,X)(l−1, h−1), for all X ∈ H

= (l, hX)(l−1, h−1) = (ll−1, hXh−1) = (e, hXh−1)

= {e} ×H,

hence K = L×H ⊂ NG({e} ×H) = NG(H).
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Figure 2: Correspondence between Ad(K)-invariant inner products on g

and a subset of G-invariant metrics on G/H.

Also from [20] we have the following result:

Proposition 3.9. Let the group G and the subgroup H of G. Then H ◁

NG(H) ≤ G, and whenever H ◁ J ≤ G, then J is a subgroup of NG(H)

(here A ◁ G means that A is a normal subgroup of G).

4. Ad(K)-invariant metrics and Riemannian submersions

In the present section we will relate the Ad(K)-invariant metrics on

G/H defined in the previous section, to Riemannian submersions. For

H ⊂ K ⊂ G such that K ⊂ NG(H), we consider the fibration

K/H → G/H → G/K.

Let a and p be the orthogonal complements of h in k (i.e. k = h ⊕ a), and

of k in g (i.e. g = k⊕ p), with respect to the negative of the Killing form of

g. We assume that a is also Ad(K)-invariant subspace of k. The spaces a

and p are called vertical and horizontal subspaces of g. Then we have the

decomposition g = h⊕m = h⊕ a⊕ p.

Any Ad(K)-invariant inner product on p defines a G-invariant metric ǧ

on G/K and any Ad(H)-invariant inner product on a defines a K-invariant

metric ĝ on K/H. The direct sum of these inner products on a⊕ p defines
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a G-invariant metric

g = ĝ + ǧ (5)

on G/H, called submersion metric. As this metric can be determined by

an Ad(K)-invariant inner product on m ∼= To(G/H) = a⊕p, it corresponds

to an element of (MG)ΦK , as defined in the previous section. Hence we

have the following:

Proposition 4.1. Let M = G/H be a homogeneous space and let K be a

closed subgroup of G chosen as in the Proposition 3.8. Then the metric (5)

is an element of (MG)ΦK .

Example 4.2. Let M = G/H = SO(k1 + k2 + k3)/SO(k3) (k1, k2, k3 ≥ 2)

be the Stiefel manifold Vk1+k2Rk1+k2+k3 , and let K = L×H = (SO(k1)×
SO(k2))×SO(k3). Then by Proposition 3.8 it is K ⊂ NG(H). We consider

the fibration

SO(k1)× SO(k2)× SO(k3)

SO(k3)
// SO(k1 + k2 + k3)

SO(k3)

��
SO(k1 + k2 + k3)

SO(k1)× SO(k2)× SO(k3)

Then the base space G/K is a generalized Wallach space and it is known

by Example 2.5 (cf. (2)) that the isotropy representation is a direct sum

of three non equivalent subrepresentations. Therefore, the tangent space

p ∼= To(G/K) decomposes into three Ad(K)-invariant and non equivalent

modules p12 ⊕ p13 ⊕ p23 of dimensions kikj , i ̸= j. The tangent space

a ∼= To(K/H) of the fiber K/H is the Lie algebra so(k1) ⊕ so(k2), and

it is Ad(H)-invariant. Also a is Ad(K)-invariant, thus the tangent space

m ∼= To(G/H) of the total space G/H can be written as m = a ⊕ p, and

thus decomposed into five Ad(K)-invariant non equivalent modules:

m = a⊕ p = so(k1)⊕ so(k2)⊕ p12 ⊕ p13 ⊕ p23.

Therefore, any Ad(K)-invariant metric is diagonal and determined by Ad(K)-

invariant inner products on m of the form:

⟨·, ·⟩ = x1 (−B)|so(k1) + x2 (−B)|so(k2)
+x12 (−B)|p12 + x13 (−B)|p13 + x23 (−B)|p23 .
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These inner products are the Ad(K)-invariant inner products of Figure 2.

New invariant Einstein metrics on the Stiefel manifold Vk1+k2Rk1+k2+k3 ∼=
SO(k1 + k2 + k3) / SO(k3), with respect to the above inner products, were

studied in [6].
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