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Generalized lacunary strong Zweier convergent sequence
spaces

Kuldip RAJ and Suruchi PANDOH

Abstract. In this paper we introduce generalized double Zweier lacu-
nary convergent sequence spaces via sequence of Orlicz functions over
n-normed spaces. We also make an effort to study some topological
properties and inclusion relations between these spaces. Furthermore,
we study the concept of double lacunary statistical Zweier convergence
over n-normed spaces.

1. Introduction

In [10], Hardy introduced the concept of regular convergence for double
sequences. Some important work on double sequences is also found by
Bromwich [27]. By the convergence of a double sequence we mean the
convergence of the Pringsheim sense i.e., a double sequence x = (z;;) has
Pringsheim limit L (denoted by P —limx = L) provided that given ¢ > 0
there exists n € N such that |z;; — L| < € whenever ¢,j > n [2]. In case
L =0, we say that double sequence x = (z;;) is a Pringsheim null sequence.
The double sequence x = (x;;) is bounded if there exists a positive integer
K such that |z;;] < K for all i and j. We denote by 2, the space of all

bounded double sequences.

Definition 1.1. [8] The double sequence I, s = {(ky,ls)} is called double
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lacunary if there exist two increasing integers sequences (k) and (l5) such
that

ko=0,h, =k, —k,_1 — 00 asr — o

and

lo=0,hg =13 — 11 — 00 as s — oo.
Let ks = kplg, hy s = hyhs, and 0, is determined by
Is ={(k,1) : kpoy <k <kpandls_ <1<},

k. ls
y s =

— and grs = 0.
s—1
Definition 1.2. An Orlicz function M : [0,00) — [0,00) is a continuous,
non-decreasing and convex function such that M(0) = 0, M(x) > 0 for
x > 0 and M(z) — o0 as © — oo. If convexity of Orlicz function
is replaced by M(x +y) < M(x) + M(y), then this function is called a
modulus function.

Lindenstrauss and Tzafriri [15] used the idea of Orlicz to define the sequence

space,

EM:{x:(mk)Ew:iM(@) < 00, f0r50m6p>0}
k=1

is known as an Orlicz sequence space. The space £y is a Banach space with

the norm

p

. N (el
|]:U||—1nf{p>0.;M< )31}.

Also it was shown in [15] that every Orlicz sequence space {y; contains a
subspace isomorphic to {,(p > 1). An Orlicz function M can always be

represented in the following integral form

where 1 is known as the kernel of M, is a right differentiable for t >
0, n(0) =0, n(t) >0, n is non-decreasing and n(t) — 0o as t — oo.
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The notion of difference sequence spaces was introduced by Kizmaz [14]
who studied the difference sequence spaces lo(A), ¢(A) and ¢o(A). The
notion was further generalized by Et and Colak [23] by introducing the
spaces loo(A™), ¢(A™) and co(A™). Let w denote the set of all real and
complex sequences and n be a non-negative integer, then for Z = ¢, ¢y and

lso, we have sequence spaces
Z(A™) ={x = (x) e w: (A"xy) € Z},

where A"z = (A"zy) = (A" 1z, — A" lzp4) and Axy, = 2, for all

k € N, which is equivalent to the following binomial representation

Anl'k = Z(—l)v ( Z ) Thtov-

v=0

Taking n = 1, we get the spaces studied by Et and Colak [23]. Similarly,

we can define difference operators on double sequences as:

Azp; = (o) — Thit1) — (Tha1] — Thopt,141)

= Tkl — Thi+l — Tht1] + Te+1,1+1,
and
-1 -1 -1 -1
Arpy = A" wp — A" T rp g — A" T+ A" T4

For more details about sequence spaces see ([17], [18], [26]) and references

therein.

Definition 1.3. A sequence M = (My,) of Orlicz functions is said to be a
Musielak-Orlicz function (see [21, 16]). A sequence N = (Ny) defined by

Nk(U) = sup{|v|u - Mk(u) Tu > O}’ k=1,2,---

is called a complementary function of the Musielak-Orlicz function (My).
For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space

tam and its subspace hag are defined as follows

tpm = {:Bew:IM(cx) < oo for some c>0},
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hap = {ZL‘ ew: Ipm(ex) < oo forall ¢ > O},
where Irq is a convexr modular defined by
Im(z) =) M(a), &= (z1) € ta.
k=1

We consider tpq equipped with the Luxemburg norm

]| :inf{k >0 IM<%> < 1}

or equipped with the Orlicz norm
1
I|z]|° = inf{%(l +1M(/m)) k> o}.

A Musielak-Orlicz function M = (My) is said to satisfy Ag-condition if
there exist constants a, K > 0 and a sequence ¢ = (cx)5o, € I} (the

positive cone of I') such that the inequality
Mk(2u) < KMk(u) + ck
holds for all k € N and u € R", whenever My (u) < a.

Definition 1.4. Let X be a linear metric space. A functionp : X — R is

called a paranorm, if
1. p(x) >0 for all x € X;
2. p(—z) = p(x) for all x € X;
3. plx +y) <p(x)+ply) for all z,y € X;

4. if (An) is a sequence of scalars with A\, — X asn — oo and (x,) is
a sequence of vectors with p(z, —x) — 0 asn — oo, then p(Anx, —

Ax) — 0 asn — oo.

A paranorm p for which p(x) = 0 implies x = 0 is called a total paranorm
and the pair (X, p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see

[5] Theorem 10.4.2, pp. 183).
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Definition 1.5. A sequence space E is said to be solid (or normal) if
(agzy) € E whenever (xy) € E and for all sequence (ay) of scalars with
lag| <1 for all k € N.

Definition 1.6. A sequence space E is said to be symmetric if (xg) € E

implies (T () € E, where 7 is a permutation of N.

Definition 1.7. A sequence space E is said to be a sequence algebra if
(xxyr) € E whenever (z), (yx) € E.

Definition 1.8. A sequence space E is said to be convergence free if (y) €

E whenever (zx) € E and x, = 0 implies y, = 0.

Definition 1.9. Let K = {k1 < ko < ---} C N and let E be a sequence
space. A K-step space of E is a sequence space \&. = {(zy,)) € w: (x1) €

Definition 1.10. A canonical preimage of a sequence (xy,) € )\}E( s a

sequence (yy) € w defined by

. Ty, ifkeK
k= 0, otherwise.

A canonical preimage of a step space )\g 1$ a set of canonical preimages of
all the elements in )\}E(, that is, y is in the canonical preimage of )\f( if and

only if y is a canonical preimage of some x € /\%

Definition 1.11. A sequence space E is said to be monotone if it contains

the canonical preimages of its step spaces.

The concept of 2-normed spaces was initially developed by Géhler [25] in
the mid of 1960’s, while that for n-normed spaces one can see in Misiak
[1]. Since then, many others have studied this concept and obtained various
results, see Gunawan ([11], [12]) and Gunawan and Mashadi [13]. Let n € N
and X be a real linear space of dimension d, where d > n > 2. A real valued

function |[|,...,-|| on X™ satisfying the following four conditions:
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1. ||x1, z2,...,2,|| = 0 if and only if x1,x9,...,x, are linearly depen-
dent in X,
2. ||z1, g, ..., xy,|| is invariant under permutation,
3. ||axy, za,. .., xn|| = || ||z1,22,...,2y]| for any « € R, and
4. |lx 4+ ' za, .. x| < |2y xe, . x|+ |2 20, |
is called an n-norm on X, and the pair (X, ||-,...,-||) is called an n-normed

space over the field R.

For example, we may take X = R" being equipped with the n-norm

||z1, xa, ..., x,||p = the volume of the n-dimensional parallelopiped spanned

by the vectors x1,x2, ..., x, which may be given explicitly by the formula
|21, @2, .. 2| = | det(z4)],

where xz; = (zi1, T2, ..., Tin) € R" foreachi =1,2,...,n. Let (X,||-,...,-||)

be an n-normed space of dimension d > n > 2 and {a,as,...,a,} be lin-

early independent set in X. Then the following function ||,..., || on

X1 defined by

[|x1, 2, ...  Xn—1l|oo = max{||z1,22,...,Tn-1,0i|| :1=1,2,...,n}
defines an (n — 1)-norm on X with respect to {a1,as,...,an}.
A sequence (z) in an n-normed space (X, ||-,...,||) is said to converge to

some L € X if

klim ||z — L,21,...,2n—1|| = 0 for every z1,...,2,—1 € X.
— 00
A sequence (z) in an n-normed space (X, ||-,...,-||) is said to be a Cauchy

sequence if
lim |z —2p, 21,...,2n—1|| =0 for every zi,...,2,—1 € X.
k,p—00
If every Cauchy sequence in X converges to some L € X, then X is said
to be complete with respect to the n-norm. A complete n-normed space is
said to be an n-Banach space. For more details on n-normed spaces, see

[19], [20] and references therein.
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2. Lacunary strongly Zweier convergent sequence spaces

Zweier sequence spaces for single sequences were defined and studied by
Sengoniil [22], Esi and Sapsizoglu [4], Khan et. al [28], [29]. Esi and Acikgoz
[3] defined the double Zweier sequence spaces [W?2, Z], [Ny, ., Z]o, [N, ., Z]
and [Ny, ,, Z]oo as the set of all double sequences such that Z—transforms
of them are in [W?], [Ny, Jo, [No,.] and [Ny, ,]o which were introduced by

Savag in [7], Savag and Patterson in [9].

7,87 r,s?

We define the double sequences v = (v;;) and w = (w;;) which will be
used throughout the paper, as Z-transform of a sequence z = (z;;) and

y = (yi;) respectively i.e.,

1 ..
vij = 5(@ij +@ig-1) and wi = S(yy + yij-1); (4,5 € N). (2.1)
Let (X,||,...,||) be an n-normed space and W (n — X) denotes the space

of X-valued sequences. Let M = (M;;) be a Musielak-Orlicz function, p =
(pij) be a bounded double sequence of positive real numbers and u = (u;;)
be a double sequence of strictly positive real numbers. In the present paper

we introduce the new double Zweier sequence spaces as follows:

(No,.. Z, M, A" pyus, ||+ -5+l

o IND Pij
- {x:(xij)ip_liglhrs.ZMZ'J[“U(H p”’zl"“’zn—lH)] =0
“(4,9)E L,

for some p > O},

[NGr,sa Z,M,A",p,u, ”a R ”]
A"y — L Pij
= {x:(zij) : P —lim ZMij [uij(“Lazla e ,Zn—lHﬂ =0
8 hr,s Y p
(4,9)EIr s
for some L and p > 0},
[N97-,sa ZaMaAn7p7u> ”a SRR ”]OO
1 A" Pij
o (|
r,s Mprs, ° p
(Z,])elr,s
for some p > 0}
and

[W2,Z,M7An,p>uv ||7 ) ||]



16 Kuldip RAJ and Suruchi PANDOH

1 m,n A" — L Pij
= {[E:(ﬁl])P—hmi ZM” [uij(“Lazla”'vznle>i| ]:0
m,n mn@'j:ll P

for some L and p > O}.

Remark 2.1. Let us consider a few special cases of the above sequence
spaces:

(i) If M;;j(z) = , for all 4,5 € N, then above sequence space reduces to
[No, .o 2 A%, - llos [Ny s 20 Ayt 1yl [Nay s 20 AT,
s ll]oo and [W2, Z, A" p,u, || ..., ]|]-

(ii) By taking (p;;) = 1, for all 4,5 € N, then the above space becomes

[Ner,sv ZvMaAn7u> Ha SRR '”]07 [Ner,sv ZvMaAn7u7 H7 s H]7 [Nerysa Z, M, A",
u, || ..oy |loe and [W2, Z, M, A" u, ||-, ..., ||].

(iii) By taking (u;;) = 1, for all 4,5 € N, then we get the above space as
[Ner,sv ZvMaAn7p7 Hv SRR 'H]07 [Nar,sa ZanAnapa H: SRR H]: [Ner,sa ZaM7Ana
b, Hv sy H]OO and [W27Z7M7Anapa ||7 ceey ||]

(iv) If we take M;;(z) = =, (pij) =1, (us5) =1, for all 4,5 € N, and n =0
then the above space reduces to [N@T,S,Z, -5 ll]os [NgT,S,Z, | E |1 X
[No,..» Z, |- -, ||]oc and W2 Z ..l

(v) Also, if we take (p;;) = 1, (us5) = 1, for all 4,j € N, and n = 0 then
the above space reduces to [Ny, ., Z, M, ||-,..., |0, [No,., Z, M, |-, ...,-[l],
[Ner,s7 ZvMa ”7 RN ”]OO and [W27 Z7M7 H? R H]

The following inequality will be used through out the paper. If 0 < p;; <
supp;j = G, D = max(1, 2G*1) then

|laij + 0[P < D(|ag|P 4 |bi;[P7) (2.2)

for all 4,7 € N and a;j,b;; € C. Also |a|Pii < max(1,|a|%) for all a € C.

The main purpose of this paper is to introduce double Zweier lacunary
strongly convergent sequence spaces over n-normed spaces and study dif-
ferent properties of these spaces like linearity, paranorm, solidity and mono-
tone etc. Some inclusion relations between these spaces are also established.
Finally, we study the concept of the double Zweier lacunary statistical con-

vergence over n-normed Spaces.



Generalized lacunary strong Zweier convergent sequence spaces 17

3. Main Results

Theorem 3.1. Let M = (M;j) be a sequence of Orlicz functions, p = (pij;)
be any bounded double sequence of positive real numbers and u = (u;j) be a
double sequence of strictly positive real numbers. Then the double Zweier se-
quence spaces [Ny, ., Z, M, A" p,u,||-,...,[lo, [No,,, Z, M, A" p,u, |-, ..., -[]],
[Ne,... Z, M, A" p,u, |- ..., ||loc and (W2 Z, M, A" p,u,|-,...,-||] are lin-

ear spaces over the field R of real numbers .

Proof. Let x = (v4),y = (yi;) € [No,., Z, M, A", p,u, |- ..., ||]oo. Let
«, 8 € R. Then there exist positive real numbers p;, ps such that

A, Dij
sup Z Mm{ul](H Y , 21 .,znle)] < 00,
r,s 7,8
(i,9)€lr,s
A" w; Pij
sup Z Mw[“m(” ” zl,...,zn,lHﬂ < 00.
T,8 h/'I‘S .
(7])6-[7',5

Let p3 = max(2|a|p1, 2|f|p2). Since M;;’s are non-decreasing and convex so

by using inequality (2.2), We have

ow + pw Dij
Suph Z Ml] |:uZJ(H i ﬁ z])wzlw"azn—lH)] !
L O V=7 p3
Ao,
< Sy [ ([T 1)
r,s

(7/7.7 elr.s
An Wi 45 Pij
—|—uij<Hﬂ,Zl,...,zn,1H)} !
p3

1 1 A"y Dij
< Dsuphrs Z 2P”MZ][UU<H ij Zl,...,%q”)}
(4,9)€lr s
1 A"w; Dij
A S TN =
(,9)Elr,s
A Dij
< Dsup Z MIJ[UZJ(H i Zl?"'vznflu)] ’
T,8 .8 ..
’ (1’7])61’!‘,5
A"w Pij
D 3 [ ]
"s s (ivj)elr,s
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Thus, ax+ By € [Ny, ,, Z, M, A", p,u, ||, ..., [|]oo- This proves that [N, ,
Z, M, A" pu, |- ...,|]]c is a linear space. Similarly we can prove that
[NGT,sa ZaM’ An,p, u, Ha SRR 'H]Oa [Nﬂr,sa Z, M, An,p,uv ||7 SRR ||] and [W27
Z, M, A", p,u,|-,...,||] are linear spaces. O

Theorem 3.2. Let M = (M;j) be a sequence of Orlicz functions, p = (p;j)
be any bounded double sequence of positive real numbers and u = (u;;) be
a double sequence of strictly positive real numbers. Then the double Zweier

sequence space [Ny ., Z, M, A" p,u, |-, ..., ||]ec i a paranormed space with

r,87

paranormed defined by

A" Pij
ZMZ] |:U’L](H % 3 %1y - "7277,—1H):| HS 17

J)EIr s

g(x) = inf (p)p# :sup

r,s Iy s(

for some p > 0},

where 0 < p;; < suppi; = G and H = max(1,G).

Proof. (i) Clearly g(z) > 0 for z = (x;;) € [Ny
Since M;;(0) =0, we get g(0) = 0.

(i) g(—2) = g().

(iii) Let = (xi5) and y = (yi5) € [Ne,,, Z, M, A", p,u, ||, ..., |]oo, then

there exist positive numbers p; and ps such that

'rs’

Ay, Dij
S o (<
and AR
Pij
sup Z MZJ[UZJ(H i Zlu"'vzn—1H>i| ]Sl-
r,s T8

(inj)EI?",S

Let p = p1 + p2. Then by using Minkowski’s inequality, we have

DPij
sup Z Mz][“zg(Hszlw--azn—lH)} ’
T8 hrs l P
(4,3)€Ir,s
1 A™ vy + wi; pis
= sup Z Mij[“ij(Hle])azla---azan)} ’
rs Nps  f p1+ p2
(17.7)6]7',5
1 A",
< su M{u(H .., 2 H)
ph Z 1g | Yig P1+P2 1 n—1

"% (i,§)€lr,s
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s ([ D"
N R
p1+p2’ el

()it 3 ol

TS ,. .
’ " (4,5)€lr,s

2 1 A™w Pij
2 o T [ )]

h
"e "s (i,j)ef'r,s

< 1
and thus

g(z +y)
: By ™(vi; + wij) 2l
= inf M; [ul ("#,zl,...,znﬂ“)} <1
{() ,(])Zehsj ! p1+ p2

T,8 hTS(ZJ EITS
Pi N Pij
+inf{(p ) G : sup - ZMW [u”<H w” ..,zn_1H>] "< 1}-
8 7"8 ’J EIT,S

Therefore, g(z +y) < g(z) + ¢g(y). Finally, we prove that the scalar multi-

plication is continuous. Let A be any complex number. By definition,

(e e

(i,5)€l

Amy; H
ZMU |:u2]<H UJ Zlv"wzn—lH)} H<1}a

(4,5)Elr,s

D;

9(Ar) = inf {(ﬂ)’? sup

8 hTS

Pij
= inf < (|A|t
i {075 s
where ¢ = & > 0. Since [A[P9 < max(1, [A[*"PPi7), we have
g9(Azx) < max(1, |/\|Su"p“)

mf{tpfllj sup ZM,][UU<HAUU 1,..-,Zn—1H>}pg§1}.

TS .
"3 (1,5)Eln,s

So, the fact that the scalar multiplication is continuous follows from the

above inequality. This completes the proof of the theorem. O

Theorem 3.3. If 0 < p;j < q;j < oo for each i@ and j, then we have
[NQT’S,Z,M,ATL,]),U, ”a a”]OO - [Ner,s’Z’MvAnaQaua ||7’||]OO
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Proof. Let x = (.’L‘Z]) S [Ng
exists p > 0 such that

A", Pij
> o[22 ] <

"% (i,§)Elr,s

Z,M,A" pu ..., |]]o. Then there

r,87

7,8

T, . Dij
This implies that M;; [uij(H¥’zl""’Z"_1H)] "< 1 for sufficiently

large values of 7 and j. Since M;;’s are non-decreasing, we get

5 |22 ]

sup
r,s Irs (ij)Elr.s
A"y Pij
< M;; [Um(H ”7217~--72n—1H>}
"e (’LJ EL« s p

< 00.
Thus, z = (zi5) € [No,,,Z, M, A", q,u,|-,...,||]oc. This completes the
proof. ]

Theorem 3.4. Suppose M = (M;;) be a sequence of Orlicz functions, p =
(pij) be a bounded double sequence of positive real numbers and v = (u;;)
be a double sequence of strictly positive real numbers. Then

(3) If 0 < inf p;; < p;j <1, then

[New,sa ZvMaAn7p7u7 H7 sy H]OO C [N9r757Z7M7An7u7 H7 DRI H]OO

(#t) If 1 < p;j < supp;j < oo, then

[NOT-,Sv ZvMaAn7u7 Ha ) H]oo - [N97»,57Z7Ma Anvpauv ||7 SERE) ||]oo
Proof. (i) Let z = (z45) € [Ny, ., Z, M, A", p,u,|-,...,|[]c. Since 0 <

inf p;; <1, we obtain the following

Z M;; |:'U/L](H Afovij - TN zn71H>]

sup
h

R (RS

AMv;; Dij

j
< sup sz[“zy(” p ,21,--~7Zn71H>}
8
(’L,j elrs

< oo,

Z,M, A", u, Hv:H]OO
(ii) Let p;; > 1 for each ¢ and j and supp;; < oo. Let & = (x45) €

and hence z = (x;5) € [Ny

r,s)
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[Ng, ., Z, M, A" u,||-,...,|[]Joc- Then for each 0 < e < 1 there exists a
positive integer IV such that

7,87

Ay
sup Z M;; [UU(H v”,zl,...,zn_lHﬂ <e<1 forallr,s > N.
T,8 hTs(])EI p

This implies that

A", Dij
su My [ (| =2 2102 )
rsphrs Z ij | Wij P 21 Zn—1
(1,9)€lr,s
Al
< Suph Z Mij |:’UJ1J(H lJ,Zl,...,Zn,1H)1|
S el P
< 0oQ.
Therefore, x = (v45) € [Ny, ,, Z, M, A", p,u, ||-,...,|]oc - This completes
the proof. ]

Theorem 3.5. Let M’ = (M];) and M" = (M]}) be two sequences of Or-
licz functions, then we have [Ny, ,, Z, M', A", p,u, ||, ..., ||ocN[No,,, Z, M",
Anvpv u, H: R H}oo - [NGT,Sa Za MI + Mllv Anapvua H7 R H]oo

Proof. Let x = (z;;) € [Ny
Dy Uy ||y ..y +||Joo- Then

A", Pij
Z M;; [ul](H ”,zl,...,zn_lHﬂ ’, for some p; > 0

Z,M A" p,u, || ..., leN[No,,, Z,M", A",

7‘57

r,s Nrs (i) Elrs 1%
and
A, Dij
1" . %)
sTuSp s Z Mij [UU<H p ,21,---7271—1”)] < o0, for some py > 0.

(4,5)€Irs

Let p = max{p1, p2}. The result follows from the inequality

A"y, Pij
sup E (M{j+M/, [uU<H ] Zl""’Z”*lHﬂ !
8 .8 ..
’ ’ (17])617»,5
A", D
U T Y N |
r,s Ips 7 P
(17.7)6 T8
A" Dij
" 1]
S ()
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A", Dij
> | p”,zl,...,zn_lHﬂ ’

N Pis
+DSUph Z MZ/; |:uZJ<H vl]azlv"wzn—lH)} !
r,s Ips (i) Elrs P
< ©00.
A", Dij
Thus, sup Z (MZIJ—l—MZ) {uij (H Uiy SRy e Zn—1 H)} ’ < 0. There-
r,s s (i.7)Elrs 1%

fore, z = (x4;) € [Ny, ., Z, M + M", A" p,u,|-, ..., |[loc. This completes
the proof. O

Theorem 3.6. For a sequence of Orlicz functions M = (M;j) , p = (pij)
be any bounded double sequence of positive real numbers and u = (u;j) be a

double sequence of strictly positive real numbers. Then

(7') [N9T757Z7M7An7p7 u, H77H]0 C [N9r737Z7M7An7p7u7 H77H]OO
(7’7’) [NQT,NZ:MaAnapau? Ha:H] - [NGT,5727M7An7p7u7 Ha;”]oo
Proof. The proof is easy so we omit it. O

Theorem 3.7. The double Zweier sequence space [Ny, ., Z, M, A", p, u,

Iy ll]oo is solid.

Proof. Suppose x = (x;5) € [Ny, ., Z, M, A", p,u,||-,..., |l

r,s?

1

sup
r,s s

A"y - Pis
Z Mz][uzg<H v”,zh...,zan)} " < 00, for some p > 0.
()€l P

Let (a;) be a double sequence of scalars such that || <1 forall i,5 € N.

Then we get
AnOé"'U“ Dij
sup Z M;; {uz’j(HM,Zh---,Zn—lH)}
7,8 hrs L P
’ ’ (’L,])EIT,S
1 A", Dpij
< sup Z Mzg[uzg<H Uvzlu--~7zn—1H>i|
e s (4,9)€r,s p
< ©o0.

This completes the proof. O



Generalized lacunary strong Zweier convergent sequence spaces 23

Theorem 3.8. The double Zweier sequence space [Ngm,Z,M,A”,p,u,
-5, [[loc s monotone.
Proof. The proof is trivial so we omit it. O
Theorem 3.9. The double Zweier sequence spaces [Ny, ., Z, M, A", p, u,
H'v AR 'H]O; [Ner,s7 Z, M, A", p, u, ||7 SRR H]; [NQT,sv Z,M,A", p,u, Hv SR H]OO
and (W2, Z, M, A" p,u, |- ...,-||] are linearly isomorphic to the double se-
quence spaces [N977S7Ma A", p,u, H7 R 'H]07 [NQT,57M7 A" p,u, Ha SRR H];
[No,. ., M, A" pu, ||, ..., ||]c and (W2 M, A" p,u,|-,...,-||], respectively,
i.€.,
(7') [N9T757 Z7M7 Anvpa u, H7 ety H]O ~ [N9T757M7 Anvpvua H7 DRI 'H]07
(1’7’) [NQT,N Z7M7 Anapa u, Hv SR H] ~ [Ner,vaa An,p,u’ Ha ceey H];
(7'7'@) [NGT,@ ZaMa An?]o?u) ”’ ERRR) H]oo ~ [NGT,Sva Anapauv ||7 SRR) ||]oo
(iv) [W2, Z,M, A", p,u, ”a R ”] ~ [W2’Ma A" p,u, ||7 SRR H]
Proof. We consider only [Ny, ,, Z, M, A", p,u,|-,...,-|]Jo. Weshould show
the existence of a linear bijection between the double sequence spaces
[Ner,y Zan An,p’% ”a R ”]0 and [Ner,57M7 Anapa u, Ha LR H]O Con-
sider the transformation Z from [Ny, ,, Z, M, A", p,u, ||, ...,-|[lo to [N, .,
Ma Anapauv Hv R H]O by
r—Zr=v, v=(v)
and
1 .
vij = §($z‘j +xij—1); (4,7 € N).
The linearity of Z is clear. Further, it is trivial that x = 0 whenever Zx =0
and hence 7 is injective. Let v = (vy;) € [Ny, ,, M, A", p,u,|-,...,[]o and

define the sequence x = (z;5) by

J
2 =2 (=17 Fvg, (Vi€ N).
k=0

Then

12l (e, 2. M A% o
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L@y +xi1) Dis
LSy [ ([ )]

,] elrs p

= sup
r,s r s

Al 22]: | vik-i-?i:(—l)(j_l)_kvik)
Z M;; [u” (H k=0 k=0 7

J)EIrs P
Dij
-

= sup
TS r s(

Ay, Pij
S M (| =220z

( 7])617" s

= sup
8 h‘TS

which says that = (zi;) € [Ny, ., Z, M, A", p,u,|-,...,||Jo. Additionally,
we Observe tha’t H‘TH[NGT,S)Z)MaAnvpu“ﬂH'7~~7'||]00 = HUH[Ngr,s’M7An’p7uaH'7“~:'H]OO'
Thus, we have that the transform Z is surjective. Hence, Z is a linear bijec-
Z7 M7 ATL72?7 u

M,A™ pouy |-, . .., ||]o are linearly isomorphic. The

7,87

tion which therefore says us the double sequence spaces [Ny
H‘? R H]O a’nd I:Ner,.s?

others can be proved similarly. This completes the proof. O

r,87

Theorem 3.10. Let 0, s be a double lacunary sequence. Then

(7’) {WZ,Z,M,An,p,U, HaaH] c [Nem,Z,./\/l,A”,p,u, Ha?”] Zf
liminf g, > 1 and liminfgs > 1;

(Zl) [NGT,5727M7An7p7u7 H77H] - [W2727M7An7p7u7 H?v”] Zf
limsup g, < oo and limsupq; < oo;

(7’“’) [NQT’S,Z,M,AP’L,]),U, HavH] = [WQ,Z,M,An,p,U, ||’a||] Zf

1 <liminfgq, < oo and 1 < limsupgs < co.

Proof. (i) Suppose that liminf g, > 1 and liminf g > 1. Then there exists
§ > 0 such that both ¢, > 146 and g > 1+ 6. This implies = > %5 and

hf > 1i§ If & = (z45) € W2, Z, M, A", p,u,||,...,||], then we obtain the
following:
1 A — L Pij
AT‘S = n Z MZ][“’LJ(H - 7217"'azn71H)1| ’
TS . P
(7])61”‘5

S ([ )

i=1 j=1



Generalized lacunary strong Zweier convergent sequence spaces 25

rllsl

ANG vm Dij
ij | Wij ,Z ey Bp—1
=1 j=1

XIZMMMV% S ¢

1=kKp— 1+1.7 1
A";; Pij
3 S (|2 ]
_] =ls_1+1 2=1
k:Tls< 1 o e A", — L Dij
S
hr,s Kyl Z:Z_: T P

rllsl

—ﬂﬁ*umlgszm%% S-S
R L apt O LB )

Z:kr—1+1
1 & ke 1 A"y pis
1 ij
X R Z R )]
s j:ls—1+1 T T
Since z = (zi;) € W2, Z, M, A", p,u,||,...,||] the last two terms tend to

zero in the pringsheim sense, thus

A = ;;f§<kjlsiiMij[Uij(\1%;L,21,._.,zn_lu)m
. ls ..
s (e B a2 )]

=1 j5=1

+0(1)
Since hy s = kpls—kpls—1—kr—1ls+k,—1ls—1 we are granted for the following:

< -
hrs T4

Kyl < (ﬂ)z and kr_1ls—1 1
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and

krfllsfl (
hr,s r 1ls 1

are both pringsheim null sequences. Thus A, is a pringsheim null se-

e

p

1ls—1

S |22 L)
i=1 j=1
quence.
Therefore, x = (z45) € [Ny, ,, Z, M, A", p,u, ||-,...,||].
(ii) Suppose that limsupg, < oo and limsupgs < oo, then there exists
K > 0 such that ¢ < K, g; < K for all » and s. Let z = () €

[No,.., Z, M, A", p,u,|-...,-|] and € > 0. Also there exist ro > 0 and
sp > 0 such that for every k > rg and [ > sg
Ay — L Dij
AkJ = — Z Mij |:uij<HL,Zl,. . .,Zn_lu)] ! < €.
(4,0)€1k 1 P

Let N =max{A;;:1 <k <rpand1 <1< sy} and p and ¢ be such that
kr—1<p<k.andls_1 < q <ls. Then we obtain the following

p,q
1 M An’l)ij —L Pij
Pq E i | Wig\ || = %1y, 2n—-1
i,7=1,1 p

br L A"y Dij
B ()
1=1 j5=1
1 o A — Dij
S il > > M [“J(H P ’Zl""’Z”*H)]
TR pg=11 \ (i,j)el, 4
1 T0,50 1
Y Z hp.gAp.q + el hypgAp.q
r—1ts—l p,g=1,1 r—1ts—l (ro<p<r)U(so<g<s)
N T0,50 1
< — h —_— hy oA
— kr—]_ls—]_ Z P,q + kr—lls—]_ Z LU iy 217
p,q=1,1 (ro<p<r)U(so<gq<s)
< 7]\71{:%[307‘080 + ( sup Ap,q) ! hp.q
rtlss (p2r0)(g250) Frotlat (s <ass)
< NkTOZSOTOSO +e 1 Z hpq
- kr—lls—l kr—lls—l ’
(ro<p<r)U(s0<q<s)
Nk’r‘()lS()TOSO T 6K2.

<
o kr—lls—l
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Since k. and [5; both approach infinity as both r and s approach infinity, it
follows that

P,q

1 A" — L Pbij

P —lim — Z Mij[uij<H7Uw ,Zl,...,zn,1H>:| !
PP p

Therefore, z = (z;;) € W2, Z, M, A", p,u, ||-,...,|].

(iii) Combining (i) and (ii), we can easily prove (iii).

Example: Suppose liminf, ¢, = 1 or liminf;gs = 1, and assume without

loss of generality that liminf, ¢, = 1 [6]; then there exists an ordinary

ko ;
subsequence {kq,} of the lacunary sequences ¢, such that —43 < 1+ %
@

ko .
and —— > j where a; > a1 + 2. Let us define z as follows:
o

{ 1, ifi€l,, andje N
ZL‘ij:

0, otherwise.

Then clearly the rows are not in [Ny, ,, Z, M, A" p,u,|-,...,-[|] but each

row is such that x is in |oq,1]; where |o1,:1] = {x . for some L,P —
m,n

1
lim — Z |z ;—L| = 0}. Therefore, each row is in [W?2, Z, M, A", p, u,
mnmn

ij=1,1
|-,...,]]]. Since the double lacunary sequence 6, s is factorable, so we have
[WZ’ Z, M, An,p,u, ||7 L) H] ¢ [N9r,37 Z, Ma An,p,u, H’ Tt H] O

4. Lacunary Zweier statistical convergence sequence space
The following definition was presented by Mursaleen and Edely in [24]:

Definition 4.1. [2/] A real double sequence x = (x;;) is said to be statis-
tically convergent to L, provided that for each € > 0

1
P —lim —|{(i,) :i < dj<n,lzi;—L|>e|=
lim ——[{(i, )+ < m and j < nlwi; — L] = e}| = 0

where the vertical bars indicate the number of elements in the closed set.
In this case we write sty — lim;; x;; = L and we denote the set of all P—

statistical convergent double sequences by sto.

Remark 4.2. (a) If x is a convergent double sequences then it is also

statistically convergent to the same number. Since there are only a finite
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number of bounded(unbounded) rows and/or columns,
K(m,n) < sym + son,

where s1 and sy are finite numbers, which can conclude that x is statistically
convergent.

(b) If = is statistically convergent to the number L, then L is determined
uniquely.

(¢) If x is statistically convergent, then x need not be convergent. Also it

is not necessarily bounded. For example, let x = (x;5) be defined as

ij, ifi and j are squares
Tis —
Y 1, otherwise.

It is easy to see that sty — limx;; = 1, since the cardinality of the set
{(i,) : |zij — 1| > €} < Vi3 for every e > 0 but = is neither convergent

or bounded.

Recently, in [7], Savag defined double lacunary statistical convergence as

follows:

Definition 4.3. [7] A real double sequence x = (x;;) is said to be S, -
convergent to L, provided that for each ¢ > 0

1
P —lim

7,8 hr,s

{(i,5) € Irs : |z;; — L| > €}| = 0.

Definition 4.4. A real double sequence x = (z;5) is said to be double la-

cunary statistical Zweier convergent to L, provided that for each € > 0

1
P —lim

T8 hr,s

{(,5) € Is : [vij — L[ = €} = 0
where v; ; is the form in (2.1).

Theorem 4.5. Let 0, ; be a double lacunary sequence. If x;; — L([Ny
H'v sy H])’ then Tijj — L([Ser,s’ Za Hv SRR H])

Z,

r,s7
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Proof. If e >0 and x;; — L([N(?ma Z,||-..,-||]) then we can write
h':rl,s Z HUZ] _L,Zl,-..,zn_ln
(1,9)Elr,s
> > [ L I
hrs Vi — 21y e ey Zpe
T h v » <1, s #n—1

r,S L.
7 (6,5) €l s & 5 (@i i )= Ly215n2n—1 || >€

1 .
> |{(z,j)€Ir,s:HUU—L,zl,...,zn,lH26}|
hr,s
It follows that x;; — L([Se, ., Z,||-,...,-|l]), that is [Ny, ., Z,[-,...,-[]] C
[S0,..,Z, ], .., ||] and the inclusion is strict. To show this, we can establish

an example as follows.

Example 4.6. Let v;; be the form of (2.1) and v = (v;j) is defined as

follows:

vij N 2 [\3/ hr,s] [\3/ hr,s] Tt [\3/ hr,s] 0 0
0 0 0 e 0 0 0

It is clear that © = (z;;) is an unbounded double sequence and for € > 0

and for every z1,...,2,-1 € X,

.1 .

P—tim —[{(i,§) € Ins : [vig = L1, 20| 2 €}
™S Nps
1 [¢/hrs)
rs h o
Therefore, x;; — 0([Sy,.., Z,|-,...,-||]. But
P—l}ﬂgl Z Hvij,zl,...,zn_lH

"% (6,5l s

R A (A (VR 0

2, 2’
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Therefore x;; - 0[Ny, ., Z,|-,...,-||]. This completes the proof.

r,s7

O]

Theorem 4.7. Let 0,5 be a double lacunary sequence. If x = (z;;) € 1%
and xij — L([So, ., Z, ||~ -ll1), then wij — L([No, ., Z, ||~ - -[I])-

7,8
Proof. Suppose that z = (z;;) € I2, then there exists a positive integer

K such that ||v;j — L, 21,...,2p—1|| < K for all i, j € N. Therefore we have,

for every € > 0

P*ligl " Z ”Uij*L,Zl,...,anln
’ (ZJ)EI’P,S
1
= hf Z HUij—L,Zl,...,Zn_l”
e (1,§)ELr, s &l % (@i j+Ti ) —Ly21,0n2n—1 ]| >€
1
+h Z ||7Jij—L,Zl,...,Zn_1H
% ()l &el| & (w425 Loz 21| <e
K o
< h {(l,])é[r,siHUU—L,Zl,-H,anlH26}‘4—6.
T,8
Therefore, & = (z5) € 1%, and zi; — L([Sy, ., Z, |, ..,-||]) implies z;; —
L([Noyys Z, ||+ -»-l)- u

Corollary 4.8. Let 0, be a double lacunary sequence, then

[Novos Z, |l 10 8 = [S0rs Zo |15 -] N 2

Proof. It follows directly from Theorem 4.4. and Theorem 4.6. O
Theorem 4.9. For any sequence of Orlicz functions M, [Ny, ., Z, M, |-,
1 € 100s Zo e I
Proof. Let z = (xi5) € [Ny,,,Z,M,||-,...,-||]. Then for ¢ > 0 and for
every zi,...,2n—1 € X
S B ]

’k (1,9)€lr,s p

> hi Z M”H Uiij,Zl,...,znlm

s ..
B (’L,j)elr,s&”%(xi7j+ﬂfi7j)—L,Zl,...,Zn71 ||Z€

1

€ ..
> h—Mi-<7)|{(z,j) €y vy — Lz, zne] > e}\.
T,8 P



Generalized lacunary strong Zweier convergent sequence spaces 31

This shows that = (z5) € [So, ., Z, [, -, |l])- O
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