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A remark on rational operator monotone functions

Noboru NAKAMURA

Abstract. Recently, M. Nagisa presented the general form of rational
operator monotone functions for any open interval in R = (—o00, 00),
directly deduced from the property of Pick function. Using his results,
we, in particular, determine the form of positive rational operator
monotone functions on (0, 00).

1. Introduction

A (bounded linear) operator A acting on a Hilbert space H is said to
be positive, denoted by A > 0, if (Av,v) > 0 for all v € H. The definition
of positivity induces the order A > B for self-adjoint operators A and B on
H. Let I be an open interval in R. A real-valued continuous function f on
I is operator monotone, if A < B implies 0 < f(A) < f(B) for self-adjoint
operators A and B with spectra in I. The set of such functions, that is,
real continuous operator monotone functions defined on I are denoted by
OM (I). In particular, for I = (0,00), we denote by OM_ (0, c0) the set of
(strictly) positive functions f on I satisfying f € OM(I).

Recently, M. Nagisa presented the general form of rational operator

monotone functions for any open interval I in R as follows ([5]):

Theorem N. The following are equivalent.
(1) f € OM(I) is rational.
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(2) There exist by € R, nonnegative numbers ag, ai, . . ., a, and real numbers
a1, Q9,...,an & I such that
x) = agx + by — L
fl@) =aoz+bo— Y T a

=1

(8) There exist ag,c > 0,by € R, an,0,...,an ¢ I and B1,52,...,0n-1 €
R satisfying that

c(x—p)(x—P2) - (¥ — fn1)

(r—a1)(x—ag) - (x— ay)

f((E) = apx + b() —

and

<L <ag<Po< < Bt < apy.

For a general positive operator monotone function on (0, 00), it is well-

known as Lowner’s integral representation theorem ([2]) that

T

() (L1)

o0

flx)=ax+ 6+ /

0
with nonnegative «, 5 and a positive measure p on (0, 00). From the integral
representation above, we see that f(x) is approximated by az+5+X, g(x),

where

Sen(@) ::foxmi (€= <AL <...<Ap=E) (1.2)
i=1 v

with m; = p((Xi—1, As]), which is an approximate sum of J. gp(x):= fE Y

€ =+
xdp(M) for 0 < e < E < 0.

We assume that all operator monotone functions f are defined on (0, c0)
and positive, and f(0) = lim,_.o f(x) if necessary.

In this paper, we will determine the form of a rational function in
OM (0, 00), that is, positive rational operator monotone function on (0, co),
using Theorem N and Lowner’s integral representation. We show that the
sum of a linear function and an approrimate sum of the integral is nothing

but the form of such a function.



A remark on rational operator monotone functions 3

2. Main results

If f € OM4(0,00) is rational, then, from (1.1) and (1.2), we can expect

that f is represented as
f(z)

1=
with some «, 5 > 0, and m; > 0,\; > 0 for i = 1,2,...,n. (At least one of

coefficients «, 3, my, ..., m,, is nonzero.)

(2.1)

Now we show the following, as expected above:

Proposition 2.1. If f € OM(0,00) is rational, then f has the form of
(2.1).

Proof. We use (2) of Theorem N. Let o; = —\; (A; > 0). Then we have

a;
r) = apr + by — .
f(@) = apz + bo ;H“L)‘i
Now, we assume that
" omx " a
(3 T
= by — .
am—f—ﬁ-ﬁ-;er)\i ao + bg ;er)\i

Then we want to determine «, 8 and m;. By putting x = 0, we obtain
n

B =by— Z %(: f£(0) > 0), so that we have

i=1 "

al - ml
b - — b -
ax + by E ZE - T+ = agx + 0g )\

Hence, from the principal of identity, we obtain a = ag (> 0) and further-

more, since
n n

z (mz)\, — ai)x — az-)\z- _ Z a;
— i+ \) N — T+ N

we obtain m; = §¢ (= 0). Therefore we have

i=1 " i=1

This is the desired.
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The next result is obtained directly from the general case given in Corol-
lary 2.3 in [5]. Here, by an elementary argument, we show the fact for
f € OM(0,00) as the particular case.

Proposition 2.2. If f € OM(0,00) is rational and has an expression as
(2.1), then f(x) has one of the following forms:

a(@+ p)(@ + p2) - (@ + pn) (@ + ping1)
(z+ A1) (@ +X2) -+ (x+ \y)

(B4 Xiymi) (@ + p) (@ + p2) - - (T + pin)
(+ M) (x+A2) - (x+ Ay)

if a>0,

if a=0,
where M1y 125 «oy Bn+1 satisfy
O0< <A <pa<A<...<fpin<Ap<lntl- (ﬁ:0<:>,u1:0.)

Proof. We can put

J(@) = (a:+)\1)(a:—|—gg\3;))~--(x+)\n)’
where
9(@) = (az + B)(@ + A1) -+ (@ + An)
+> maz(@+ M) (@A) (@4 Nign) - (24 An).

i=1
We may assume that m; > 0 for all 7.

If > 0,8 >0 and n is odd, then we have

9(0) = BA1--- A > 0,

g(=A1) =mi(=A) (A1 + A2) - (A1 + Ay) <O,

g(=X2) = ma(=X2)(=A2 + A1) (= A2 + A3) - (A2 + Ap) >0,

g(=An) = mp (=) (=M + A1) (= An + A2) - (= A\ + A1) <O
Then we have real numbers u1, ps, .., i, such that

— gl < —Ap < —pp < —Apo1 << A < —pp < —Ap < —pp < 0.
Hence we see that:

9(x) = a(z + m)(r + p2) - (& + pntr),
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where

O< g <AL <pa <A< ...<pp <Ay < fptl-
Further, if o > 0,3 = 0, then similarly we have the following:
O=p1 <A <pg <Ao< ...<pin <Ay < lUnti-

Again, further with a similar method as above, if & > 0,6 > 0 and n is
even, then we have

g(O) =,3A1~--)\n >0,

g(—)\l) = ml(—)\l)(—)\l + )\2) ce (—)\1 + )\n) < 0,

g(=A2) = ma(=A2)(=A2 + A1) (A2 + A3) -+ (= A2 + An) >0,

Therefore, we have real numbers p1, o, ..., tin+1 such that

g1 < =Ap < —pp < —Apo1 < < A < e < A < —pp < 0.

Hence, we obtain the same result as before for o > 0,3 > 0 and odd n.

Furthermore, if & = 0 and 8 > 0, then we see that:

where
Ogul<>\1<,u2<)\2<...<un<)\n<un+1, (,3:0<:>/L1:0,)
which is desired.

Related to Proposition 2.2, we can obtain the following:

Corollary 2.3. The operator monotone function f(x) on (0,00) given by
(2.1) has one of the following forms:

M1 gl e I Appa(=N) T
afo+ B N (2
< )\1..-)\n ;( )\Z diBn x)‘:E:*)\i .’E‘f‘)\z

L

if a>0,

S ppn s~ An(=N) x
(ﬁJeri) <M+Z <_)\idB (ﬂ:)x—x) :r—l—)\l->

i=1 =1 dz n
if a=0,
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where
0<p1 <X\ <pp<X<...<pin <Ay <fing1, (B=0<+=p1=0,)

App1(z) = (x4 p1) (@ + p2) - - - (T + pnr1),
Ap(z) = (x+m)(@x+p2) - (x4 pn), Bu(z) = (x+M)(@+X2) - (x+ ).

More simply, for (the first case) a > 0, putting o = 1, we have

(@ + ) (x4 p2) - (& + pin) (@ + pin1)
(x+M)(x+ X)) (x4 \y)

[l findl e I Appi(=N) x

and for (the second case) o = 0, putting 5+ > ; m; = 1, we have

(x +p)(@+ p2) - (T + pin)
(x+A)(x+A2) - (z+ \p)

Mo A S NAB (@) |y, ] TN

Examples of rational functions in OM, (0, o).
Let n = 3. For the first case, let A1 =2, s =4, A3 =6,u1 =1,
po =3, u3 =5, g = 7. Then we have

(x+ D)@ +3)@+5)@+7) (35, [z 5w o
(x+2)(z+4)(x+6) B ‘

16 z4+2 x+4 x+6

For the second case, let Ay = 2, Ao = 4, A3 = 6,41 = 1, u0 = 3, u3 = 5.
Then we have

(x+1)(z+3)(z+5) :E+ 2 N 2 N L
(x+2)(x+4)(x+6) 16 z+2 z+4 x+6)

Remark. For a strictly positive function f on (0,00) we can define
fo(z) ;== xf(1/x) (transpose), f*(x):=1/f(1/x) (adjoint) and f*(z):=
x/f(xz) (dual). Then the four functions f, f°, f* and f* are equivalent to

one another with respect to operator monotonicity ([4], [2]).
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For the function in Proposition 2.2, if «, 6 > 0, then the following three

functions f°, f* and f' are also operator monotone:

o) = QL2 -+ g1 (x—I—i) <x+i)...(x+ﬂnl+l)

e (o) (o ) (0 )

M2 A az(x—i—%l) (33+,\i2>(x+ﬁ>
1

e o 2) (o ) (e )

x(x+ A1) (x+A2) - (x+ )
o+ p1) (@ + p2) - (@4 pngr)”

fr(x) =

and

)=
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