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A remark on rational operator monotone functions

Noboru Nakamura

Abstract. Recently, M. Nagisa presented the general form of rational
operator monotone functions for any open interval in R = (−∞,∞),
directly deduced from the property of Pick function. Using his results,
we, in particular, determine the form of positive rational operator
monotone functions on (0,∞).

1. Introduction

A (bounded linear) operator A acting on a Hilbert space H is said to
be positive, denoted by A ≥ 0, if (Av, v) ≥ 0 for all v ∈ H. The definition
of positivity induces the order A ≥ B for self-adjoint operators A and B on
H. Let I be an open interval in R. A real-valued continuous function f on
I is operator monotone, if A ≤ B implies 0 ≤ f(A) ≤ f(B) for self-adjoint
operators A and B with spectra in I. The set of such functions, that is,
real continuous operator monotone functions defined on I are denoted by
OM(I). In particular, for I = (0,∞), we denote by OM+(0,∞) the set of
(strictly) positive functions f on I satisfying f ∈ OM(I).

Recently, M. Nagisa presented the general form of rational operator
monotone functions for any open interval I in R as follows ([5]):

Theorem N. The following are equivalent.
(1) f ∈ OM(I) is rational.
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(2) There exist b0 ∈ R, nonnegative numbers a0, a1, . . . , an and real numbers
α1, α2, . . . , αn /∈ I such that

f(x) = a0x + b0 −
n∑

i=1

ai

x − αi
.

(3) There exist a0, c ≥ 0, b0 ∈ R, α1, α2, . . . , αn /∈ I and β1, β2, . . . , βn−1 ∈
R satisfying that

f(x) = a0x + b0 −
c(x − β1)(x − β2) · · · (x − βn−1)
(x − α1)(x − α2) · · · (x − αn)

and

α1 < β1 < α2 < β2 < · · · < βn−1 < αn.

For a general positive operator monotone function on (0,∞), it is well-
known as Löwner’s integral representation theorem ([2]) that

f(x) = αx+β +
∫ ∞

0

x

x + λ
dµ(λ) (1.1)

with nonnegative α, β and a positive measure µ on (0,∞). From the integral
representation above, we see that f(x) is approximated by αx+β+Σϵ,E(x),
where

Σϵ,E(x) :=
n∑

i=1

x

x + λi
mi (ϵ = λ0 < λ1 < ... < λn = E) (1.2)

with mi = µ((λi−1, λi]), which is an approximate sum of Jϵ,E(x):=
∫ E
ϵ

x
x+λ

×dµ(λ) for 0 < ϵ < E < ∞.

We assume that all operator monotone functions f are defined on (0,∞)
and positive, and f(0) = limx→0 f(x) if necessary.

In this paper, we will determine the form of a rational function in
OM+(0,∞), that is, positive rational operator monotone function on (0,∞),
using Theorem N and Löwner’s integral representation. We show that the
sum of a linear function and an approximate sum of the integral is nothing
but the form of such a function.
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2. Main results

If f ∈ OM+(0,∞) is rational, then, from (1.1) and (1.2), we can expect
that f is represented as

f(x) = αx + β +
n∑

i=1

mix

x + λi
, (2.1)

with some α, β ≥ 0, and mi ≥ 0, λi > 0 for i = 1, 2, ..., n. (At least one of
coefficients α, β,m1, ...,mn is nonzero.)

Now we show the following, as expected above:

Proposition 2.1. If f ∈ OM+(0,∞) is rational, then f has the form of
(2.1).

Proof. We use (2) of Theorem N. Let αi = −λi (λi > 0). Then we have

f(x) = a0x + b0 −
n∑

i=1

ai

x + λi
.

Now, we assume that

αx + β +
n∑

i=1

mix

x + λi
= a0x + b0 −

n∑
i=1

ai

x + λi
.

Then we want to determine α, β and mi. By putting x = 0, we obtain

β = b0 −
n∑

i=1

ai

λi
(= f(0) ≥ 0), so that we have

αx + b0 −
n∑

i=1

ai

λi
+

n∑
i=1

mix

x + λi
= a0x + b0 −

n∑
i=1

ai

x + λi
.

Hence, from the principal of identity, we obtain α = a0 (≥ 0) and further-
more, since

n∑
i=1

(miλi − ai)x − aiλi

λi(x + λi)
= −

n∑
i=1

ai

x + λi
,

we obtain mi = ai
λi

(≥ 0). Therefore we have

f(x) = a0x +

(
b0 −

n∑
i=1

ai

λi

)
+

n∑
i=1

(ai/λi)x
x + λi

.

This is the desired.
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The next result is obtained directly from the general case given in Corol-
lary 2.3 in [5]. Here, by an elementary argument, we show the fact for
f ∈ OM+(0,∞) as the particular case.

Proposition 2.2. If f ∈ OM+(0,∞) is rational and has an expression as
(2.1), then f(x) has one of the following forms:

α(x + µ1)(x + µ2) · · · (x + µn)(x + µn+1)
(x + λ1)(x + λ2) · · · (x + λn)

if α > 0,

(β + Σn
i=1mi)(x + µ1)(x + µ2) · · · (x + µn)
(x + λ1)(x + λ2) · · · (x + λn)

if α = 0,

where µ1, µ2, ..., µn+1 satisfy

0 ≤ µ1 < λ1 < µ2 < λ2 < . . . < µn < λn < µn+1. (β = 0 ⇐⇒ µ1 = 0.)

Proof. We can put

f(x) =
g(x)

(x + λ1)(x + λ2) · · · (x + λn)
,

where
g(x) = (αx + β)(x + λ1) · · · (x + λn)

+
n∑

i=1

mix(x + λ1) · · · (x + λi−1)(x + λi+1) · · · (x + λn).

We may assume that mi > 0 for all i.

If α > 0, β > 0 and n is odd, then we have
g(0) = βλ1 · · ·λn > 0,

g(−λ1) = m1(−λ1)(−λ1 + λ2) · · · (−λ1 + λn) < 0,

g(−λ2) = m2(−λ2)(−λ2 + λ1)(−λ2 + λ3) · · · (−λ2 + λn) > 0,
...

g(−λn) = mn(−λn)(−λn + λ1)(−λn + λ2) · · · (−λn + λn−1) < 0.

Then we have real numbers µ1, µ2, .., µn such that

−µn+1 < −λn < −µn < −λn−1 < · · · < −λ2 < −µ2 < −λ1 < −µ1 < 0.

Hence we see that:

g(x) = α(x + µ1)(x + µ2) · · · (x + µn+1),
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where
0 < µ1 < λ1 < µ2 < λ2 < . . . < µn < λn < µn+1.

Further, if α > 0, β = 0, then similarly we have the following:

0 = µ1 < λ1 < µ2 < λ2 < . . . < µn < λn < µn+1.

Again, further with a similar method as above, if α > 0, β > 0 and n is
even, then we have

g(0) = βλ1 · · ·λn > 0,

g(−λ1) = m1(−λ1)(−λ1 + λ2) · · · (−λ1 + λn) < 0,

g(−λ2) = m2(−λ2)(−λ2 + λ1)(−λ2 + λ3) · · · (−λ2 + λn) > 0,
...

g(−λn) = mn(−λn)(−λn + λ1)(−λn + λ2) · · · (−λn + λn−1) > 0.

Therefore, we have real numbers µ1, µ2, ..., µn+1 such that

−µn+1 < −λn < −µn < −λn−1 < · · · < −λ2 < −µ2 < −λ1 < −µ1 < 0.

Hence, we obtain the same result as before for α > 0, β > 0 and odd n.
Furthermore, if α = 0 and β ≥ 0, then we see that:

g(x) =

(
β +

n∑
i=1

mi

)
(x + µ1) · · · (x + µn) ,

where

0 ≤ µ1 < λ1 < µ2 < λ2 < . . . < µn < λn < µn+1, (β = 0 ⇐⇒ µ1 = 0, )

which is desired.

Related to Proposition 2.2, we can obtain the following:

Corollary 2.3. The operator monotone function f(x) on (0,∞) given by
(2.1) has one of the following forms:

α

(
x +

µ1 · · ·µn+1

λ1 · · ·λn
+

n∑
i=1

(
− 1

λi

An+1(−λi)
d
dxBn(x)|x=−λi

)
x

x + λi

)
if α > 0,(

β +
n∑

i=1

mi

)(
µ1 · · ·µn

λ1 · · ·λn
+

n∑
i=1

(
− 1

λi

An(−λi)
d
dxBn(x)|x=−λi

)
x

x + λi

)
if α = 0,
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where

0 ≤ µ1 < λ1 < µ2 < λ2 < . . . < µn < λn < µn+1, (β = 0 ⇐⇒ µ1 = 0, )

An+1(x) = (x + µ1)(x + µ2) · · · (x + µn+1),

An(x) = (x+µ1)(x+µ2) · · · (x+µn), Bn(x) = (x+λ1)(x+λ2) · · · (x+λn).

More simply, for (the first case) α > 0, putting α = 1, we have

(x + µ1)(x + µ2) · · · (x + µn)(x + µn+1)
(x + λ1)(x + λ2) · · · (x + λn)

= x +
µ1 · · ·µn+1

λ1 · · ·λn
+

n∑
i=1

(
− 1

λi

An+1(−λi)
d
dxBn(x)|x=−λi

)
x

x + λi

and for (the second case) α = 0, putting β +
∑n

i=1 mi = 1, we have

(x + µ1)(x + µ2) · · · (x + µn)
(x + λ1)(x + λ2) · · · (x + λn)

=
µ1 · · ·µn

λ1 · · ·λn
+

n∑
i=1

(
− 1

λi

An(−λi)
d
dxBn(x)|x=−λi

)
x

x + λi
.

Examples of rational functions in OM+(0,∞).
Let n = 3. For the first case, let λ1 = 2, λ2 = 4, λ3 = 6, µ1 = 1,

µ2 = 3, µ3 = 5, µ4 = 7. Then we have

(x + 1)(x + 3)(x + 5)(x + 7)
(x + 2)(x + 4)(x + 6)

(
= x +

35
16

+
15
16x

x + 2
+

9
16x

x + 4
+

5
16x

x + 6

)
.

For the second case, let λ1 = 2, λ2 = 4, λ3 = 6, µ1 = 1, µ2 = 3, µ3 = 5.
Then we have

(x + 1)(x + 3)(x + 5)
(x + 2)(x + 4)(x + 6)

(
=

5
16

+
3
16x

x + 2
+

3
16x

x + 4
+

5
16x

x + 6

)
.

Remark. For a strictly positive function f on (0,∞) we can define
f◦(x) := xf(1/x) (transpose), f∗(x) := 1/f(1/x) (adjoint) and f⊥(x) :=
x/f(x) (dual). Then the four functions f, f◦, f∗ and f⊥ are equivalent to
one another with respect to operator monotonicity ([4], [2]).
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For the function in Proposition 2.2, if α, β > 0, then the following three
functions f◦, f∗ and f⊥ are also operator monotone:

f◦(x) =
αµ1µ2 · · ·µn+1

λ1λ2 · · ·λn

(
x + 1

µ1

)(
x + 1

µ2

)
· · ·

(
x + 1

µn+1

)
(
x + 1

λ1

)(
x + 1

λ2

)
· · ·

(
x + 1

λn

) ,

f∗(x) =
λ1λ2 · · ·λn

αµ1µ2 · · ·µn+1

x
(
x + 1

λ1

) (
x + 1

λ2

)
· · ·

(
x + 1

λn

)
(
x + 1

µ1

)(
x + 1

µ2

)
· · ·

(
x + 1

µn+1

) ,

and
f⊥(x) =

x(x + λ1)(x + λ2) · · · (x + λn)
α(x + µ1)(x + µ2) · · · (x + µn+1)

.
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