A remark on rational operator monotone functions

Noboru Nakamura

Abstract

Recently, M. Nagisa presented the general form of rational operator monotone functions for any open interval in $\mathbb{R}=(-\infty, \infty)$, directly deduced from the property of Pick function. Using his results, we, in particular, determine the form of positive rational operator monotone functions on $(0, \infty)$.

1. Introduction

A (bounded linear) operator A acting on a Hilbert space H is said to be positive, denoted by $A \geq 0$, if $(A v, v) \geq 0$ for all $v \in H$. The definition of positivity induces the order $A \geq B$ for self-adjoint operators A and B on H. Let I be an open interval in \mathbb{R}. A real-valued continuous function f on I is operator monotone, if $A \leq B$ implies $0 \leq f(A) \leq f(B)$ for self-adjoint operators A and B with spectra in I. The set of such functions, that is, real continuous operator monotone functions defined on I are denoted by $O M(I)$. In particular, for $I=(0, \infty)$, we denote by $O M_{+}(0, \infty)$ the set of (strictly) positive functions f on I satisfying $f \in O M(I)$.

Recently, M. Nagisa presented the general form of rational operator monotone functions for any open interval I in \mathbb{R} as follows ([5]):

Theorem N. The following are equivalent.
(1) $f \in O M(I)$ is rational.

[^0](2) There exist $b_{0} \in \mathbb{R}$, nonnegative numbers $a_{0}, a_{1}, \ldots, a_{n}$ and real numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \notin I$ such that
$$
f(x)=a_{0} x+b_{0}-\sum_{i=1}^{n} \frac{a_{i}}{x-\alpha_{i}}
$$
(3) There exist $a_{0}, c \geq 0, b_{0} \in \mathbb{R}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \notin I$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n-1} \in$ \mathbb{R} satisfying that
$$
f(x)=a_{0} x+b_{0}-\frac{c\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{n-1}\right)}{\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right)}
$$
and
$$
\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\cdots<\beta_{n-1}<\alpha_{n}
$$

For a general positive operator monotone function on $(0, \infty)$, it is wellknown as Löwner's integral representation theorem ([2]) that

$$
\begin{equation*}
f(x)=\alpha x+\beta+\int_{0}^{\infty} \frac{x}{x+\lambda} d \mu(\lambda) \tag{1.1}
\end{equation*}
$$

with nonnegative α, β and a positive measure μ on $(0, \infty)$. From the integral representation above, we see that $f(x)$ is approximated by $\alpha x+\beta+\Sigma_{\epsilon, E}(x)$, where

$$
\begin{equation*}
\Sigma_{\epsilon, E}(x):=\sum_{i=1}^{n} \frac{x}{x+\lambda_{i}} m_{i} \quad\left(\epsilon=\lambda_{0}<\lambda_{1}<\ldots<\lambda_{n}=E\right) \tag{1.2}
\end{equation*}
$$

with $m_{i}=\mu\left(\left(\lambda_{i-1}, \lambda_{i}\right]\right)$, which is an approximate sum of $J_{\epsilon, E}(x):=\int_{\epsilon}^{E} \frac{x}{x+\lambda}$ $\times d \mu(\lambda)$ for $0<\epsilon<E<\infty$.

We assume that all operator monotone functions f are defined on $(0, \infty)$ and positive, and $f(0)=\lim _{x \rightarrow 0} f(x)$ if necessary.

In this paper, we will determine the form of a rational function in $O M_{+}(0, \infty)$, that is, positive rational operator monotone function on $(0, \infty)$, using Theorem N and Löwner's integral representation. We show that the sum of a linear function and an approximate sum of the integral is nothing but the form of such a function.

2. Main results

If $f \in O M_{+}(0, \infty)$ is rational, then, from (1.1) and (1.2), we can expect that f is represented as

$$
\begin{equation*}
f(x)=\alpha x+\beta+\sum_{i=1}^{n} \frac{m_{i} x}{x+\lambda_{i}} \tag{2.1}
\end{equation*}
$$

with some $\alpha, \beta \geq 0$, and $m_{i} \geq 0, \lambda_{i}>0$ for $i=1,2, \ldots, n$. (At least one of coefficients $\alpha, \beta, m_{1}, \ldots, m_{n}$ is nonzero.)

Now we show the following, as expected above:

Proposition 2.1. If $f \in O M_{+}(0, \infty)$ is rational, then f has the form of (2.1).

Proof. We use (2) of Theorem N. Let $\alpha_{i}=-\lambda_{i}\left(\lambda_{i}>0\right)$. Then we have

$$
f(x)=a_{0} x+b_{0}-\sum_{i=1}^{n} \frac{a_{i}}{x+\lambda_{i}}
$$

Now, we assume that

$$
\alpha x+\beta+\sum_{i=1}^{n} \frac{m_{i} x}{x+\lambda_{i}}=a_{0} x+b_{0}-\sum_{i=1}^{n} \frac{a_{i}}{x+\lambda_{i}} .
$$

Then we want to determine α, β and m_{i}. By putting $x=0$, we obtain $\beta=b_{0}-\sum_{i=1}^{n} \frac{a_{i}}{\lambda_{i}}(=f(0) \geq 0)$, so that we have

$$
\alpha x+b_{0}-\sum_{i=1}^{n} \frac{a_{i}}{\lambda_{i}}+\sum_{i=1}^{n} \frac{m_{i} x}{x+\lambda_{i}}=a_{0} x+b_{0}-\sum_{i=1}^{n} \frac{a_{i}}{x+\lambda_{i}} .
$$

Hence, from the principal of identity, we obtain $\alpha=a_{0}(\geq 0)$ and furthermore, since

$$
\sum_{i=1}^{n} \frac{\left(m_{i} \lambda_{i}-a_{i}\right) x-a_{i} \lambda_{i}}{\lambda_{i}\left(x+\lambda_{i}\right)}=-\sum_{i=1}^{n} \frac{a_{i}}{x+\lambda_{i}}
$$

we obtain $m_{i}=\frac{a_{i}}{\lambda_{i}}(\geq 0)$. Therefore we have

$$
f(x)=a_{0} x+\left(b_{0}-\sum_{i=1}^{n} \frac{a_{i}}{\lambda_{i}}\right)+\sum_{i=1}^{n} \frac{\left(a_{i} / \lambda_{i}\right) x}{x+\lambda_{i}}
$$

This is the desired.

The next result is obtained directly from the general case given in Corollary 2.3 in [5]. Here, by an elementary argument, we show the fact for $f \in O M_{+}(0, \infty)$ as the particular case.

Proposition 2.2. If $f \in O M_{+}(0, \infty)$ is rational and has an expression as (2.1), then $f(x)$ has one of the following forms:

$$
\left\{\begin{array}{cl}
\frac{\alpha\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n}\right)\left(x+\mu_{n+1}\right)}{\left(x+\lambda_{1}\right)\left(x+\lambda_{2}\right) \cdots\left(x+\lambda_{n}\right)} & \text { if } \alpha>0 \\
\frac{\left(\beta+\Sigma_{i=1}^{n} m_{i}\right)\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n}\right)}{\left(x+\lambda_{1}\right)\left(x+\lambda_{2}\right) \cdots\left(x+\lambda_{n}\right)} & \text { if } \alpha=0
\end{array}\right.
$$

where $\mu_{1}, \mu_{2}, \ldots, \mu_{n+1}$ satisfy

$$
0 \leq \mu_{1}<\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{n}<\lambda_{n}<\mu_{n+1} \cdot\left(\beta=0 \Longleftrightarrow \mu_{1}=0 .\right)
$$

Proof. We can put

$$
f(x)=\frac{g(x)}{\left(x+\lambda_{1}\right)\left(x+\lambda_{2}\right) \cdots\left(x+\lambda_{n}\right)}
$$

where

$$
\begin{aligned}
g(x)= & (\alpha x+\beta)\left(x+\lambda_{1}\right) \cdots\left(x+\lambda_{n}\right) \\
& +\sum_{i=1}^{n} m_{i} x\left(x+\lambda_{1}\right) \cdots\left(x+\lambda_{i-1}\right)\left(x+\lambda_{i+1}\right) \cdots\left(x+\lambda_{n}\right)
\end{aligned}
$$

We may assume that $m_{i}>0$ for all i.
If $\alpha>0, \beta>0$ and n is odd, then we have

$$
\begin{aligned}
& g(0)=\beta \lambda_{1} \cdots \lambda_{n}>0 \\
& g\left(-\lambda_{1}\right)=m_{1}\left(-\lambda_{1}\right)\left(-\lambda_{1}+\lambda_{2}\right) \cdots\left(-\lambda_{1}+\lambda_{n}\right)<0 \\
& g\left(-\lambda_{2}\right)=m_{2}\left(-\lambda_{2}\right)\left(-\lambda_{2}+\lambda_{1}\right)\left(-\lambda_{2}+\lambda_{3}\right) \cdots\left(-\lambda_{2}+\lambda_{n}\right)>0
\end{aligned}
$$

$$
g\left(-\lambda_{n}\right)=m_{n}\left(-\lambda_{n}\right)\left(-\lambda_{n}+\lambda_{1}\right)\left(-\lambda_{n}+\lambda_{2}\right) \cdots\left(-\lambda_{n}+\lambda_{n-1}\right)<0
$$

Then we have real numbers $\mu_{1}, \mu_{2}, . ., \mu_{n}$ such that

$$
-\mu_{n+1}<-\lambda_{n}<-\mu_{n}<-\lambda_{n-1}<\cdots<-\lambda_{2}<-\mu_{2}<-\lambda_{1}<-\mu_{1}<0
$$

Hence we see that:

$$
g(x)=\alpha\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n+1}\right)
$$

where

$$
0<\mu_{1}<\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{n}<\lambda_{n}<\mu_{n+1} .
$$

Further, if $\alpha>0, \beta=0$, then similarly we have the following:

$$
0=\mu_{1}<\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{n}<\lambda_{n}<\mu_{n+1} .
$$

Again, further with a similar method as above, if $\alpha>0, \beta>0$ and n is even, then we have

$$
\begin{aligned}
& g(0)=\beta \lambda_{1} \cdots \lambda_{n}>0, \\
& g\left(-\lambda_{1}\right)=m_{1}\left(-\lambda_{1}\right)\left(-\lambda_{1}+\lambda_{2}\right) \cdots\left(-\lambda_{1}+\lambda_{n}\right)<0, \\
& g\left(-\lambda_{2}\right)=m_{2}\left(-\lambda_{2}\right)\left(-\lambda_{2}+\lambda_{1}\right)\left(-\lambda_{2}+\lambda_{3}\right) \cdots\left(-\lambda_{2}+\lambda_{n}\right)>0,
\end{aligned}
$$

$$
g\left(-\lambda_{n}\right)=m_{n}\left(-\lambda_{n}\right)\left(-\lambda_{n}+\lambda_{1}\right)\left(-\lambda_{n}+\lambda_{2}\right) \cdots\left(-\lambda_{n}+\lambda_{n-1}\right)>0 .
$$

Therefore, we have real numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{n+1}$ such that

$$
-\mu_{n+1}<-\lambda_{n}<-\mu_{n}<-\lambda_{n-1}<\cdots<-\lambda_{2}<-\mu_{2}<-\lambda_{1}<-\mu_{1}<0 .
$$

Hence, we obtain the same result as before for $\alpha>0, \beta>0$ and odd n.
Furthermore, if $\alpha=0$ and $\beta \geq 0$, then we see that:

$$
g(x)=\left(\beta+\sum_{i=1}^{n} m_{i}\right)\left(x+\mu_{1}\right) \cdots\left(x+\mu_{n}\right),
$$

where

$$
0 \leq \mu_{1}<\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{n}<\lambda_{n}<\mu_{n+1},\left(\beta=0 \Longleftrightarrow \mu_{1}=0,\right)
$$

which is desired.
Related to Proposition 2.2, we can obtain the following:
Corollary 2.3. The operator monotone function $f(x)$ on $(0, \infty)$ given by (2.1) has one of the following forms:

$$
\left\{\begin{array}{c}
\alpha\left(x+\frac{\mu_{1} \cdots \mu_{n+1}}{\lambda_{1} \cdots \lambda_{n}}+\sum_{i=1}^{n}\left(-\frac{1}{\lambda_{i}} \frac{A_{n+1}\left(-\lambda_{i}\right)}{\left.\frac{d}{d x} B_{n}(x)\right|_{x=-\lambda_{i}}}\right) \frac{x}{x+\lambda_{i}}\right) \\
\left(\beta+\sum_{i=1}^{n} m_{i}\right)\left(\frac{\mu_{1} \cdots \mu_{n}}{\lambda_{1} \cdots \lambda_{n}}+\sum_{i=1}^{n}\left(-\frac{1}{\lambda_{i}} \frac{A_{n}\left(-\lambda_{i}\right)}{\left.\frac{d}{d x} B_{n}(x)\right|_{x=-\lambda_{i}}}\right) \frac{x}{x+\lambda_{i}}\right) \\
\text { if } \alpha=0,
\end{array}\right.
$$

where

$$
\begin{gathered}
0 \leq \mu_{1}<\lambda_{1}<\mu_{2}<\lambda_{2}<\ldots<\mu_{n}<\lambda_{n}<\mu_{n+1},\left(\beta=0 \Longleftrightarrow \mu_{1}=0,\right) \\
A_{n+1}(x)=\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n+1}\right), \\
A_{n}(x)=\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n}\right), B_{n}(x)=\left(x+\lambda_{1}\right)\left(x+\lambda_{2}\right) \cdots\left(x+\lambda_{n}\right) .
\end{gathered}
$$

More simply, for (the first case) $\alpha>0$, putting $\alpha=1$, we have

$$
\begin{aligned}
& \frac{\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n}\right)\left(x+\mu_{n+1}\right)}{\left(x+\lambda_{1}\right)\left(x+\lambda_{2}\right) \cdots\left(x+\lambda_{n}\right)} \\
& \quad=x+\frac{\mu_{1} \cdots \mu_{n+1}}{\lambda_{1} \cdots \lambda_{n}}+\sum_{i=1}^{n}\left(-\frac{1}{\lambda_{i}} \frac{A_{n+1}\left(-\lambda_{i}\right)}{\left.\frac{d}{d x} B_{n}(x)\right|_{x=-\lambda_{i}}}\right) \frac{x}{x+\lambda_{i}}
\end{aligned}
$$

and for (the second case) $\alpha=0$, putting $\beta+\sum_{i=1}^{n} m_{i}=1$, we have

$$
\begin{aligned}
& \frac{\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n}\right)}{\left(x+\lambda_{1}\right)\left(x+\lambda_{2}\right) \cdots\left(x+\lambda_{n}\right)} \\
& \quad=\frac{\mu_{1} \cdots \mu_{n}}{\lambda_{1} \cdots \lambda_{n}}+\sum_{i=1}^{n}\left(-\frac{1}{\lambda_{i}} \frac{A_{n}\left(-\lambda_{i}\right)}{d x}\right) \frac{x}{x+\left.B_{n}(x)\right|_{x=-\lambda_{i}}} .
\end{aligned}
$$

Examples of rational functions in $O M_{+}(0, \infty)$.

Let $n=3$. For the first case, let $\lambda_{1}=2, \lambda_{2}=4, \lambda_{3}=6, \mu_{1}=1$, $\mu_{2}=3, \mu_{3}=5, \mu_{4}=7$. Then we have

$$
\frac{(x+1)(x+3)(x+5)(x+7)}{(x+2)(x+4)(x+6)}\left(=x+\frac{35}{16}+\frac{\frac{15}{16} x}{x+2}+\frac{\frac{9}{16} x}{x+4}+\frac{\frac{5}{16} x}{x+6}\right) .
$$

For the second case, let $\lambda_{1}=2, \lambda_{2}=4, \lambda_{3}=6, \mu_{1}=1, \mu_{2}=3, \mu_{3}=5$. Then we have

$$
\frac{(x+1)(x+3)(x+5)}{(x+2)(x+4)(x+6)}\left(=\frac{5}{16}+\frac{\frac{3}{16} x}{x+2}+\frac{\frac{3}{16} x}{x+4}+\frac{\frac{5}{16} x}{x+6}\right) .
$$

Remark. For a strictly positive function f on $(0, \infty)$ we can define $f^{\circ}(x):=x f(1 / x) \quad$ (transpose), $f^{*}(x):=1 / f(1 / x) \quad$ (adjoint) and $f^{\perp}(x):=$ $x / f(x)$ (dual). Then the four functions f, f°, f^{*} and f^{\perp} are equivalent to one another with respect to operator monotonicity ([4], [2]).

For the function in Proposition 2.2, if $\alpha, \beta>0$, then the following three functions f°, f^{*} and f^{\perp} are also operator monotone:

$$
\begin{aligned}
& f^{\circ}(x)=\frac{\alpha \mu_{1} \mu_{2} \cdots \mu_{n+1}}{\lambda_{1} \lambda_{2} \cdots \lambda_{n}} \frac{\left(x+\frac{1}{\mu_{1}}\right)\left(x+\frac{1}{\mu_{2}}\right) \cdots\left(x+\frac{1}{\mu_{n+1}}\right)}{\left(x+\frac{1}{\lambda_{1}}\right)\left(x+\frac{1}{\lambda_{2}}\right) \cdots\left(x+\frac{1}{\lambda_{n}}\right)}, \\
& f^{*}(x)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n}}{\alpha \mu_{1} \mu_{2} \cdots \mu_{n+1}} \frac{x\left(x+\frac{1}{\lambda_{1}}\right)\left(x+\frac{1}{\lambda_{2}}\right) \cdots\left(x+\frac{1}{\lambda_{n}}\right)}{\left(x+\frac{1}{\mu_{1}}\right)\left(x+\frac{1}{\mu_{2}}\right) \cdots\left(x+\frac{1}{\mu_{n+1}}\right)},
\end{aligned}
$$

and

$$
f^{\perp}(x)=\frac{x\left(x+\lambda_{1}\right)\left(x+\lambda_{2}\right) \cdots\left(x+\lambda_{n}\right)}{\alpha\left(x+\mu_{1}\right)\left(x+\mu_{2}\right) \cdots\left(x+\mu_{n+1}\right)} .
$$

Acknowledgement. The author would like to thank Emeritus Professor Saichi Izumino for valuable suggestions.

References

[1] J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc., 79 (1955), 58-71.
[2] F. Hiai and K. Yanagi, Hilbert spaces and linear operators, Makino Shoten, (1995), (in Japanese).
[3] S. Izumino and N. Nakamura, Elementary proofs of operator monotonicity of some functions, Sci. Math. Japon., 77, No. 3 (2015), 363-370.
[4] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
[5] M. Nagisa, A note on rational operator monotone functions, Sci. Math. Japon., Online, e-2014, 145-152.
[6] N. Nakamura, Proofs of operator monotonicity of some functions by using Löwner's integral representation, Toyama Math. J., 36 (2013-2014), 37-43.

Noboru Nakamura

Department of Mathematics
Faculty of Education
Okayama University
3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan
email: n-nakamu@okayama-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 47A63, 47A64.
 Key words and phrases. operator monotone function, Löwner's integral representation, rational operator monotone function.

