
DOCTORAL DISSERTATION 

 

 

 

Magnetic and thermal properties of caged cubic compounds RT2Al20 

(R = Nd, Tm and T = Ti, V) 

かご状立方晶化合物 RT2Al20 (R = Nd, Tm, T = Ti, V)の磁気的お

よび熱的物性 

 

 

Qiankun Lei 

Supervisor: Prof. Katsuhiko Nishimura 

Graduate School of Science and Engineering for Education 

University of Toyama 

Toyama, Japan 

July, 2016



I 

 

Abstract 

The ternary intermetallic compounds RT2X20 (R = rare earths and uranium, T = transition 

metals, X = Al, Zn and Cd) crystallize in the cubic CeCr2Al20-type structure (space group: 

𝐹𝑑3𝑚, No. 227), where R ions are encapsulated in the Frank-Kasper cages formed by sixteen 

neighboring X ions. The magnetic properties of most rare earth compounds RT2X20 are 

determined by the rare-earth magnetic moments that origin in the partially filled 4f electronic 

shell. Due to the unique crystal structure of RT2X20, localized 4f electrons of R ions can obtain 

itinerancy by hybridizing with conduction electrons in s, p, and d shells. Because of the 

competing localized and itinerant characters of the 4f electrons, some of the caged 

compounds of RT2X20 manifest a diverse range of novel physical properties at low 

temperatures, such as heavy fermion behavior, valence fluctuations, multipole ordering, 

quantum criticality, and unconventional superconductivity. The studies of these attractive 

physical properties will lead to deeper understandings of the basic problems of physics as 

well as potential spintronic and thermoelectric applications. 

In the RT2X20 system, magnetic properties of RT2Zn20 (R = rare earth, T = Fe, Co, Ru, Rh, 

Os, and Ir) have been systematically investigated, and a wide variety of correlated electron 

phenomena have been observed. The isostructural compounds RT2Al20 (R = rare earth, T = 

Ti, V, Cr, Mn, Nb, Mo, Ta, and W) are expected to have similar intriguing physical properties, 

which have been reported for PrT2Al20 (T = Ti, V, Cr, and Nb), SmT2Al20 (T = Ti, V, Cr, and 

Ta), TmTi2Al20, and YbT2Al20 (T = Ti, V and Cr). 
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In this thesis, we focus on the Nd-based compounds NdT2Al20 (T = Ti, V) with Kramers 

4f 3 configurations of Nd3+ ions and the Tm-based system TmV2Al20 with non-Kramers 4f 12 

configurations of Tm3+ ions, where Nd and Tm are neighboring elements of Pr and Yb, 

respectively, and Tm3+ (4f 12) ion is the hole analog of Pr3+ (4f 2) ion. Single crystals of the 

RT2Al20 (R = Nd, Tm and T = Ti, V) as well as the nonmagnetic isostructural single crystals 

of RT2Al20 (R = La, Lu and T = Ti, V) were made by the Al-self flux method. The crystal 

structures were determined by powder X-ray diffraction. The crystallographic orientations of 

the selected single crystals were obtained by Laue back-reflection of X-rays, and the oriented 

single crystals were cut along required directions by a spark erosion cutting machine for 

further anisotropic measurements. Magnetic and transport properties of single crystalline 

RT2Al20 (R = Nd, Tm and T = Ti, V) were investigated systematically with the nonmagnetic 

reference compounds RT2Al20 (R = La, Lu and T = Ti, V). 

An antiferromagnetic (AFM) phase transition was observed in NdTi2Al20 at TN = 1.4 K. 

The temperature dependence of magnetization follows the Curie-Weiss law above 100 K in 

an applied field of 0.1 T along the [110] direction, with an effective magnetic moment eff = 

3.56 B (Nd3+: 3.64 B) and a Curie-Weiss temperature P = − 28.50 K. Specific heats of the 

NdTi2Al20 and LaTi2Al20 single crystals were measured in applied fields up to 9 T. Magnetic 

specific heats of NdTi2Al20 were obtained by subtracting the experimental data of single 

crystalline LaTi2Al20 from those of NdTi2Al20 single crystals. No observable anisotropy was 

found in magnetization or specific heat measurements in small applied fields at low 

temperatures. A noticeable change of slope in magnetic entropy Smag (T) was observed near 

5 K in zero field where Smag (T) = R ln 2 [5.76 J/mol∙K, R is the gas constant]. These results 
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suggest a 6 doublet ground state of the Nd3+ ion in NdTi2Al20. The experimental results were 

analyzed by theoretical calculations, and a CEF scheme 6 (0 K, doublet) – 8
(1) (53K, 

quartet) – 8
(2) (443 K, quartet) was proposed. 

The magnetization M and specific heat C were measured for single crystals of NdV2Al20 

in the temperature range from 0.5 to 300 K with applied magnetic fields along the three 

principal axes, [100], [110], and [111]. Temperature dependences of resistivities for 

NdV2Al20 and the LaV2Al20 were measured down to 1.9 K in zero field.  A ferromagnetic 

(FM) phase transition was observed at the Curie temperature TC = 1.8 K in both magnetization 

and specific heat measurements. The field dependences of M show an anisotropy at 0.5 K. 

The easy axis of magnetization is [100] at low fields and changes to [110] in applied fields 

above 2 T. On cooling below 2 K in zero field, the specific heat divided by temperature C/T 

shows an enhanced value with a large electronic specific heat coefficient  of about 2 

J/(mol∙K2). A large C / T value of more than 1 J/(mol∙K2) remains in an applied field of 9 T 

below TC. The magnetic entropy Smag for NdV2Al20 in zero field is R ln 4 near the Curie 

temperature TC and reaches R ln 6 near 20 K, suggesting a quartet ground state and a doublet 

first excited state. The temperature dependence of resistivity for NdV2Al20 shows a − log T 

dependence around 10 K. The CEF calculations for energy scheme were carried out, which 

were found to be unable to explain the observed magnetizations and specific heats 

consistently. These results suggest a heavy fermion state for NdV2Al20.  

Physical properties of TmV2Al20 single crystals were investigated by magnetization, 

specific heat, and electrical resistivity measurements. No phase transition has been observed 
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down to 0.5 K.  Magnetic anisotropy measurements clarified the easy and hard axes of 

magnetization are along the [100] direction and [111] direction, respectively. The specific 

heat of nonmagnetic isostructural single crystal of LuV2Al20 was used to obtain the magnetic 

specific heats of the TmV2Al20. The Cmag / T value increases up to 6 J/(mol∙K2) near 0.6 K 

when cooled down below 2 K in zero external field. The magnetic entropy in zero field 

reaches R ln 5 near 10 K, suggesting that the ground state of Tm3+ ions is a nonmagnetic 

doublet state with the first excited magnetic triplet state nearby (a pseudo-fivefold degenerate 

state). The electrical resistivity for TmV2Al20 was measured down to 2 K, an overall CEF 

splitting of about 90 K was suggested by the observed magnetic part of resistivity. The 

experimental results were reproduced by theoretical calculations, and an energy level scheme 

was proposed: Γ3 (0 K, doublet) – Γ5
(1) (2 K, triplet) – Γ2 (59 K, singlet) – Γ5

(2) (65 K, triplet) 

– Γ4 (74 K, triplet) – Γ1 (85 K, singlet). The enhanced value of Cmag / T in the lowest 

temperature region in zero field was explained by assuming an energy splitting of the doublet 

ground state. 
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1. Introduction 

1.1. Rare earth intermetallic compounds 

In the past few decades, intermetallic compounds containing rare earths and / or transition 

metals have been intensively investigated for their structures and versatile physical properties, 

such as RT2X20 (R = rare earths and U, T = transition metals, X = Al, Zn, and Cd) [1–10], 

RT2Al10 (R = rare earths, T = transition metals) [11–18], filled skutterudites RT4X12 (R = rare 

earths and U, T = Fe, Ru, Os, X = P, As, Sb) [19–27], and RTX (R = rare earths, T = transition 

metals, X = p-block elements) [28–34]. These rare-earth-based intermetallic compounds 

provide rich testing grounds for studying the magnetic properties associated with the 4f 

electrons in both local moment and correlated electron systems. A wide variety of interesting 

physical phenomena like Kondo effect [35,36], heavy fermion behavior [3,5,37–42], mixed 

valences [43–46], multipole ordering [47–49], quantum criticality [44,50–52], and 

unconventional superconductivity [53,54] have been observed in these compounds. 

1.2. Cubic crystal structure of RT2X20 

The ternary intermetallic compounds RT2X20 crystallize in the cubic CeCr2Al20-type 

structure (space group: 𝐹𝑑3𝑚, No. 227). [55–58] The crystal structure is shown in Figure 

1.1, in which R (8a) and T (16d) atoms each occupy their single unique sites with cubic (Td) 

and trigonal (3̅𝑚) point symmetry respectively, and X atoms have three different sites, i.e., 

16c, 48f, and 96g for X(1), X(2), and X(3), respectively  [1,10,59–62]. Since R and T atoms 
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are exclusively encapsulated in the Frank-Kasper polyhedron formed by X atoms, there are 

no R–R, T–T or R–T nearest neighbors (NN) and rare-earth magnetic moments are well 

isolated from each other. On the other hand, R atoms are surrounded by sixteen X atoms with 

large coordination number, which will lead to strong hybridization between the surrounding 

conduction electrons and the 4f electrons (c-f hybridization) despite of the well-localized 

character of the 4f electrons. [8,63–65] The unique crystal structure and electronic structures 

bring about various exciting physical phenomena and provide an opportunity to study the 

strongly correlated electronic states. 

 

Figure 1.1: Crystal structure of RT2X20. R (8a) and T (16d)  atoms each occupy their single unique sites 

with cubic (Td) and trigonal (3̅𝑚) point symmetry respectively, and X atoms have three different sites, 

i.e., 16c, 48f, and 96g for X(1) , X(2) , and X(3) , respectively.  [65] 
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1.3. Review of previous studies on RT2X20 

The ternary intermetallic caged compounds RT2X20 (R = rare earths and U, T = transition 

metals, X = Al, Zn, and Cd) have been studied intensively experimentally and theoretically 

due to their unique structure and novel physical properties, especially when the 4f  or 5f shell 

of R ion is close to empty, full or half filled (Ce, Pr, Sm, Yb, and U). [2,5,9,66,67] 

In these compounds, R ion locates in a cubic symmetry site (Td) surrounded by a cage of 

sixteen X ions as its nearest neighbors. Because of the large coordination number, strong 

hybridizations between the conduction electrons (c electrons) and the 4f electrons of the rare 

earth ions are expected. [68,69] The c-f hybridization may result in a large density of states 

(DOS) near the fermi surface and various correlated electron behaviors. 

Ce-based compound CeRu2Zn20 is found to be a dense Kondo compound, and shows 

typical behaviors of a heavy fermion system with enhanced magnetic susceptibility and 

electronic specific-heat coefficient due to a large density of states at the fermi energy. [9] 

Pr-based compounds PrT2Zn20 (T = Ir, Rh) [47,54,70–73] and PrT2Al20 (T = Ti, V, Cr, 

Nb) [2,3,36,37,48,53,65,74–84] have been intensively investigated because of their 

correlated electron behaviors, such as Kondo effects, multipolar order, and heavy fermion 

superconductivity. In most of the Pr-based 1-2-20 systems, the CEF ground state is a non-

Kramers doublet 3 state without magnetic dipole moment. A degenerate ground state with 

multipoles and multipole ordering can be realized in the cubic CEF. 
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Quadrupole ordering at TQ = 0.11 K and superconducting state below TC = 0.05 K have 

been found in PrIr2Zn20. [47] Simultaneous superconducting and AFM transitions occur at 

TC = TQ = 0.06 K in PrRh2Zn20, in which the Pr3+ is the non-Kramers 3 doublet with the 

quadrupolar degrees of freedom. [72] PrT2Al20 (T = Ti, V) with the non-Kramers doublet 3 

ground state show Kondo effects and multipole ordering. Chemical pressure effect induced 

by the smaller ionic radius of V than Ti leads to stronger Kondo coupling, enhanced Kondo 

effect, and the suppression of the quadrupolar ordering in PrV2Al20, compared to 

PrTi2Al20. [36,53,76,79,82] PrTi2Al20 and PrV2Al20 exhibit FM and AFM quadrupolar phase 

transitions at TFQ = 2 K and TAFQ = 0.6 K, respectively. [36,48,78] Superconductivity was 

found at TC = 200 mK in PrTi2Al20 with the nonmagnetic ferroquadrupolar state. The 

quadrupolar Kondo lattice PrTi2Al20 exhibits superconductivity at TC = 200 mK in the 

nonmagnetic ferroquadrupolar state. [53] Superconductivity at TC = 50 mK in the 

antiferroquadrupole-ordered state and double transitions at TQ = 0.75 K and T* = 0.65 K 

associated with quadrupole and octupole degrees of freedom of the Γ3 doublet were observed 

in PrV2Al20. [82] 

PrCr2Al20 was found to be Kondo lattice and no phase transition was observed down to 

400 mK in electrical resistivity measurement or 1.8 K in magnetic susceptibility 

measurements. [59] No phase transitions has been found down to 0.6 K in PrNb2Al20 in 

magnetization, electrical resistivity and specific heat measurements. A non-Kramers Γ3 

doublet ground state was proposed, and a upturn in C/T and a non-Fermi liquid behavior in 

resistivity at low temperatures were observed. [69] The 93Nb nuclear quadrupole resonance 
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(NQR) demonstrated the absence of magnetic dipole phase transition down to 75 mK in 

PrNb2Al20. [75] 

Unusual field-insensitive phase transitions, heavy fermion behaviors, and mixed valence 

states have been found in Sm-based compounds SmT2Al20 (T = Ti, V, Cr, and Ta) [35,66,85] 

Yb-based compounds YbT2Zn20 (T = Fe, Co, Ru, Rh, Os, and Ir) are heavy electron 

compounds with large local moment degeneracy. [5,86] A field-induced antiferro-

quadrupolar ordering based on the 3-type quadrupole moment has been reported for the 

heavy fermion compound YbCo2Zn20. [87] 

Some of the U-based compounds heavy fermion compounds have also been reported, such 

as localized heavy fermion compounds UM2Zn20 (M = Co, Rh) [88], and heavy fermion 

compound UIr2Zn20 with a paramagnetic ground state. [89] 

However, the other rare earths systems in the RT2X20 family which are expected to 

manifest similar interesting physical properties have rarely been studied [90]. As hole 

analogs of PrT2X20 (Pr3+: 4f 2), the Tm-based compounds TmT2X20 (Tm3+: 4f 12), which might 

be of similar attractive physical properties, are of particular interest to us. 

Although no strongly correlated electronic system has been discovered in NdT2X20 system. 

Interesting phenomena have been reported for some of the Nd-based intermetallic 

compounds. Quadrupolar susceptibility [91], unusual local disorder [19], as well as 

ferromagnetism and possible heavy-fermion behavior [92] have been observed in single 

crystals of filled-skutterudite NdOs4Sb12, which also crystalizes in cubic structure (space 



6 

 

group: 𝐼𝑚3, No.204). NdRu2Zn20 was found to be of an isotropic Γ6 ground state with a Curie 

temperature of 1.9 K, and the magnetic and thermal properties were well explained by 

theoretical calculations. [6] We have made single crystals of NdT2Al20 (T = Ti, V, and Cr), 

in which antiferromagnetic phase transition was observed in NdTi2Al20 at the Néel 

temperatures TN = 1.45 K, and NdV2Al20 and NdCr2Al20  ferromagnetically ordered at the 

Curie temperatures of TC = 1.8 K and TC = 1.7 K, respectively. [7] The CEF ground states of 

Nd3+ ions were determined to be doublet Γ6 for NdTi2Al20 and NdCr2Al20, while the ground 

state of NdV2Al20 was unclear because of its anomalous thermal behaviors. These interesting 

results motivated us to systematically study the physical properties of the Nd-based 

compounds NdT2Al20 (T = transition metals). 

In this thesis, we systematically study the magnetic and transport properties of Nd-based 

compounds NdT2Al20 (T = Ti, V) with Kramers 4f 3 configurations of Nd3+ ions and a new 

Tm-based system TmV2Al20 with non-Kramers f 12 configurations of Tm3+ ion, with the hope 

of finding new heavy fermion system in the RT2X20 family. 

1.4. Outline of the thesis 

This thesis will be presented as follows. With the research background reviewed in this 

chapter, physics of rare earth magnetism will be briefly introduced in chapter two. In chapter 

three, experimental methods such as details of the growth of single crystals, the preparation 

and characterization of the samples, and the measurement techniques of magnetization, 

specific heat, and electrical resistivity will be introduced. Chapter four will report the detailed 

experimental results of magnetization, specific heat, and resistivity measurements for the as-
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prepared single crystals of NdTi2Al20 as well as the theoretical calculations using the CEF 

model. The magnetic and transport properties of the NdV2Al20 will be discussed in chapter 

five with the nonmagnetic single crystals of LaV2Al20 as the reference compound. In chapter 

six, physical properties of TmV2Al20 single crystals will be presented with analyses of CEF 

calculations. 
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2. Theoretical background 

In this chapter, physical concepts and theories necessary for the analyses and discussions 

in the subsequent chapters are briefly reviewed. The physics of rare earth magnetism are 

introduced in Section 2.1. Section 2.2 is dedicated to the crystalline field effects in cubic 

symmetry site. 

2.1. Localized magnetism of rare earths 

The rare earth elements or metals typically include scandium (Sc, atomic number Z = 21), 

yttrium (Y, Z = 39) and the fifteen lanthanide elements (Ln) from lanthanum (La, Z = 57) to 

lutetium (Lu, Z = 71). By the principle of lowest energy, lanthanide elements adopt either the 

[Xe]4f n6s2 or [Xe]4f n-15d16s2 configuration, where [Xe] is the electronic configuration of 

xenon 1s22s22p63s23p63d104s24p64d105s25p6, and n is an integer from 1 to 14. [93] 

The magnetism of the rare earths originates from the partially filled 4f shells. Figure 2.1 

shows the radial wave functions of 4f, 5s, 5p, 5d, 6s, and 6p electrons for Ce, [93] in which 

the 4f-electron shell has a relatively small radius and is shielded from outer disturbances by 

the full shells of 5s and 5p. The partially filled 4f shells carry magnetic moments. The 

magnetic moments of the 4f shells are localized because of the small radiuses, and the direct 

interactions between the neighboring 4f moments are negligible. 
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Figure 2.1: Radial wave functions of 4f, 5s, 5p, 5d, 6s, and 6p electrons for Ce. The radius unit is the 

atomic unit a0 = 0.529 Å. [93] 

The ionization energy of the 4f electrons is slightly higher than that of 5d electrons, and 

thus the rare earths usually are trivalent in compounds. However, divalent (Eu, Sm, Tm and 

Yb) or tetravalent (Ce, Pr, and Tb) configurations may occur in some cases. The atomic 

radius decreases with increasing atomic number Z from La to Lu because of increasing 

Coulomb attraction between the nuclei and the 4f electrons, which is known as the lanthanide 

contraction (Eu and Yb show irregularity). The electron configurations of the neutral atoms 

and the trivalent ions, as well as the atomic radiuses for the rare earth elements are shown in 

Table 2.1.  [93] 
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Table 2.1: The electron configurations and atomic radiuses of the rare earth elements. [93] 

 

2.1.1. Hund’s rules 

Magnetism of the rare earth element origin in the spin and orbital motion of the electrons 

in the partially filled 4f shells, in which the total spin angular momentum S, the total orbital 

angular momentum L and the total angular momentum J are involved. 

Hund’s rules can be used to determine the values of total spin angular momentum S, the 

total orbital angular momentum L, and the total angular momentum J for the free ion in the 

ground state as long as we know the number of electrons in the partially filled electron shell. 

The three rules are [94]: 
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1) The ground state has the largest total spin S that is consistent with the exclusion 

principle. 

2) The total orbital angular momentum L of the ground state also takes its largest value 

that is consistent with the exclusion principle and the first rule. 

3) For shells that are less than half-filled, the total angular momentum J = | L−S |. For 

shells that are more than half-filled, J = | L+S |. 

Table 2.2: Ground-state properties of the trivalent rare earth ions. [95] 

 

Table 2.2 summarizes the ground-state properties of the trivalent rare earth ions, where N 

is the number of 4f electrons of the R3+ ion, the Landé factor 𝑔𝐽 = 1 +
𝐽(𝐽+1)+𝑆(𝑆+1)−𝐿(𝐿+1)

2𝐽(𝐽+1)
  , 
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the Bohr magneton  𝜇𝐵 =
𝑒ℏ

2𝑚
 , the saturated moment  𝜇𝑠𝑎𝑡 = 𝑔𝐽𝐽𝜇𝐵 , and the effective 

magnetic moment 𝜇𝑒𝑓𝑓 = 𝑔𝐽𝜇𝐵√𝐽(𝐽 + 1). 

2.1.2. Curie law and Curie-Weiss law 

The magnetic properties of a system can be determined by quantum numbers of the atoms 

and the numbers of atoms N in the system. 

When a magnetic field (H) is applied along the quantization direction (z-axis), the 

degeneracy of the ground state will be split into 2J+1 equally spaced energy levels and the 

overall splitting is proportional to the applied field. The energies of these 2J+1 levels are 

 𝐸𝐻 = −𝜇0𝝁 ∙ 𝑯 = − 𝜇0𝜇𝑧𝐻 = 𝜇0𝑔𝐽𝑚𝜇𝐵𝐻, (2.1) 

The magnetization of a system depends on how the energy levels of the atoms are 

occupied. For instance, at temperature of absolute zero, only the lowest level for each of the 

N atoms is occupied, therefore, the magnetization of the system 

 𝑀 = −𝑁𝑔𝐽𝐽𝜇𝐵. (2.2) 

At nonzero temperatures, how higher energy levels will be occupied depends on both the 

temperature and the magnetic field. The relative population of each level in an applied field 

of H at the temperature of T can be estimated by the Boltzmann distribution, and the 

probability of finding an atom with energy Ei is given by 

 𝑃𝑖 =
exp (− 𝐸𝑖 𝑘𝐵𝑇)⁄

∑ exp (− 𝐸𝑖 𝑘𝐵𝑇)⁄𝑖
 , (2.3) 
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Then, the magnetization M can be obtained from the statistical average 〈𝜇𝑧〉 of the magnetic 

moment 𝜇𝑧 = 𝑔𝐽𝑚𝜇𝐵 for all the N atoms in the system: 

 𝑀 = 𝑁〈𝜇𝑧〉 = 𝑁
∑ −𝑔𝐽𝑚𝜇𝐵 exp(−

𝑔𝐽𝑚𝜇0𝜇𝐵𝐻

𝑘𝐵𝑇
)

𝐽
𝑚=−𝐽

∑ exp(−
𝑔𝐽𝑚𝜇0𝜇𝐵𝐻

𝑘𝐵𝑇
)

𝐽
𝑚=−𝐽

= 𝑁𝑔𝜇𝐵
𝑑

𝑑𝑥
(ln ∑ 𝑒𝑚𝑥𝐽

𝑚=−𝐽 ) , (2.4) 

where x = 𝑔𝐽𝑚𝜇0 𝜇𝐵 𝐻/𝑘𝐵𝑇 , and 𝑔 ≡ 𝑔𝐽. With some mathematical treatments of Equation 

(2.4) we may find 

 𝑀 = 𝑁𝑔𝜇𝐵𝐽𝐵𝐽(𝑦) , (2.5) 

in which the Brillouin function 

 𝐵𝐽(𝑦) =
2𝐽+1

2𝐽
𝑐𝑜𝑡ℎ

(2𝐽+1)𝑦

2𝐽
−

1

2𝐽
𝑐𝑜𝑡ℎ

𝑦

2𝐽
 , (2.6) 

and 

 𝑦 =
𝑔𝐽𝜇𝐵𝜇0𝐻

𝑘𝐵𝑇
 . (2.7) 

Equation (2.5) can be much simpler in low magnetic fields at high temperatures. For 

instance, with J = 9/2 and 𝑔 = 8/11, the y value of Nd3+ in an external field of 0.1 T at room 

temperature (298 K) is determined to be 0.00074 by adopting Equation (2.7) and the relevant 

physical constants of Bohr magneton μB = 9.274 × 10−24 J·T−1 and the Boltzmann constant 

kB = 1.380 × 10−23 J·K−1. 

As we can see, the y value is far less than 1 ( 𝑦 = 0.00074 ≪ 1 ) in the above mentioned 

condition, in this case we can use only the first term of series expansion of the Brillouin 

function. Since  

 B𝐽(𝑦) =
𝐽+1

3𝐽
𝑦 −

[(𝐽+1)2+𝐽2](𝐽+1)

90𝐽3 𝑦3 + 𝑂(𝑦5), (2.8) 
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the magnetization M can be obtained, 

 𝑀 = 𝑁𝑔𝜇𝐵𝐽𝐵𝐽(𝑦) = 𝑁𝑔𝜇𝐵𝐽 ⋅
𝐽+1

3𝐽
⋅

𝑔𝐽𝜇𝐵𝜇0𝐻

𝑘𝐵𝑇
=

𝑁𝜇0𝑔2𝐽(𝐽+1)𝜇𝐵
2 𝐻

3𝑘𝐵𝑇
. (2.9) 

The magnetic susceptibility defined as 𝜒 = 𝑀/𝐻 can be obtained from Equation (2.9), 

 𝜒 =
𝑀

𝐻
=

𝑁𝜇0𝑔2𝐽(𝐽+1)𝜇𝐵
2

3𝑘𝐵𝑇
=

𝑁𝜇𝑒𝑓𝑓
2

3𝑘𝐵
=

𝐶

𝑇
 , (2.10) 

and the Curie constant 

 𝐶 =  
𝑁𝜇0𝑔2𝐽(𝐽+1)𝜇𝐵

2

3𝑘𝐵
 , (2.11) 

Equation (2.10) is known as Curie’s law, and the associated effective moment 

 𝜇𝑒𝑓𝑓 = 𝑔√𝐽(𝐽 + 1)𝜇𝐵 . (2.12) 

Note that Curie law is the result of the thermal average involving only the 2J+1 equally 

spaced levels when a magnetic field is applied on one multiplet level. Deviations from Curie 

law may occur when more than 2J + 1 levels are involved or when the energy levels are not 

equally spaced. The electrostatic fields or the crystalline electric field (CEF) can lead to the 

latter situation, which will be discussed in the next section. 

Interactions between the magnetic moments are neglected in deriving the Curie`s law, as 

have been described above. These interactions are taken into account within the model of the 

molecular field, in which an effective field (the molecular field) Hm = M is added to the 

external applied field H. In this case, the magnetization 

 𝑀 =
𝐶

𝑇
(𝐻 + 𝐻𝑚) =

𝐶

𝑇
(𝐻 + 𝛼𝑀). (2.13) 

Therefore, the magnetic susceptibility can be written as 
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 𝜒 =
𝑀

𝐻
=

𝐶

𝑇−𝛼𝐶
=

𝐶

𝑇−𝜃𝑃
=

𝑁𝜇𝑒𝑓𝑓
2

3𝑘𝐵(𝑇−𝜃𝑝)
. (2.14) 

which is known as the Curie-Weiss law, and 𝜃𝑃 is paramagnetic Curie temperature. 

The inverse susceptibility is linear at high temperatures, which allows us to determine 𝜃𝑝 

and 𝜇𝑒𝑓𝑓 experimentally by a linear fitting of the H / M vs T curve. 

2.1.3. Kondo effect and RKKY interaction 

A single magnetic impurity in a nonmagnetic metal host may couple with the conduction 

electrons through exchange interaction and lead to the so-called single-ion Kondo effect, in 

which the local moment tends to be screened by the conduction electrons. It can be used to 

explain the local minimum and the subsequent logarithmic increase in the electrical 

resistivity with decreasing temperature in dilute magnetic alloys. [96,97] 

The single-ion Kondo effect is usually found in diluted compounds with a small amount 

of magnetic impurities, in which the magnetic moments do not interact with each other, 

directly or indirectly, because of the large distance between them. When the localized 

magnetic moments completely occupy a lattice site and form a Kondo lattice (Heavy Fermion 

system), the distance between the neighboring magnetic moments is relatively small. In this 

case, although the direct Coulomb interaction between the magnetic moments is still 

negligible, they may interact indirectly via the so-called Ruderman-Kittel-Kasuya-Yosida 

(RKKY) interaction mediated by the spin polarization of the conduction electrons. 

In the rare earth intermetallic compounds, the Kondo effect and RKKY interaction 

compete with each other. The RKKY interaction enhances the long-range magnetic order, 
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while the Kondo effect favors a nonmagnetic ground state and tend to quench the magnetic 

moments. Doniach’s phase diagram [98], as shown in Figure 2.2, can be used to illustrates 

the competition between the Kondo effect and the RKKY interaction. The characteristic 

temperatures of the Kondo effect TK, RKKY interaction TRKKY, and the magnetic ordering 

temperature Tmag are displayed as a function of 𝐽𝑐𝑓𝐷(𝜀𝐹) , where 𝐽𝑐𝑓 is the exchange 

interaction between the magnetic moment and conduction electrons, and 𝐷(𝜀𝐹) is the 

electronic density of states (DOS) at the Fermi energy 𝜀𝐹. The characteristic temperatures are 

given by: 𝑇𝑅𝐾𝐾𝑌 ∝  |𝐽𝑐𝑓|
2

𝐷(𝜀𝐹) and 𝑇𝐾 ∝ exp(−
1

|𝐽𝑐𝑓|𝐷(𝜀𝐹)
). [99] 

 

Figure 2.2: Doniach’s phase diagram.  [98] 

When the parameter 𝐽𝑐𝑓𝐷(𝜀𝐹)  is small, the Kondo effect is negligible, the RKKY 

interaction dominates and a magnetically ordered stated is formed. As 𝐽𝑐𝑓𝐷(𝜀𝐹)increases, the 
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Kondo effect become more important, but magnetic ordering state is still observed in low 

temperature region. 

When Kondo effect and RKKY interaction are of the same order of magnitude, heavy-

fermion behaviors can be observed. Since TK increases faster than TRKKY, the ordering 

temperature Tmag will drop after a local maximum and thus lead to a quantum phase transition 

at 0 K. Experimentally, such a quantum critical point (QCP) can be realized at 𝐽𝑐𝑓𝐷(𝜀𝐹) =

𝐽𝑐𝑓𝐷𝑐(𝜀𝐹)  by chemical substitution or by controlling non-thermal parameters such as 

pressure and magnetic field. Non-Fermin liquid (NFL) behavior can often be observed near 

the QCP. The QCP is where the transition between a magnetic state and a paramagnetic Fermi 

liquid state occurs. When the parameter 𝐽𝑐𝑓𝐷(𝜀𝐹)  is large, the Kondo effect become 

dominant, resulting in paramagnetic Fermi liquid (FL) ground state. [100] 

2.2. Crystalline electric field effects 

Apart from the magnetic fields, electrostatic fields from the surrounding ions (ligands), 

which is known as crystalline electric field (CEF), can also lift the (2J+1)-fold degeneracy 

of the Hund’s rules ground state for rare earth ions and thus affect their magnetic properties 

in solids at low temperatures. The crystalline electric field has a symmetry determined by the 

crystal structure, and is able to orient the electronic charge cloud into an energetically 

favorable direction. [101] 

The CEF has a great influence on transition metals with partially filled 3d shell, and an 

energy sequence of CEF > LS coupling (Russel-Saunders) > applied magnetic field was 
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involved in the formation of the electronic states. The CEF may quench the orbital 

contribution to the total magnetic moment. However, the CEF splitting of the localized 4f 

shell of rare earths or 5f shell of actinide is relatively small: LS coupling > CEF > applied 

magnetic field, so that it can be seen as a perturbation that lift the (2J+1)-fold ground state 

degeneracy of free ions. Furthermore, CEF can lead to magnetic anisotropy in the 

intermetallic compounds. 

2.2.1. Stevens equivalent operators 

The crystal-field potential due to the surrounding ions at the site of the magnetic ion is 

 𝑉𝐶𝐸𝐹(𝒓) = |𝑒| ∫
𝜌(𝑹)

|𝒓−𝑹|
 , (2.15) 

where 𝜌(𝑹)  is the charge density of the surrounding electrons and nuclei. Since the 

surrounding charges causing the crystal field are outside the electron shells of the central rare 

earth ions, the CEF potential VCEF satisfies the Laplace equation, 

 ∇𝑉𝐶𝐸𝐹 = 0 , (2.16) 

and can be expanded in spherical harmonics 𝑌𝑛
𝑚(𝜃, 𝜑) as 

 𝑉𝐶𝐸𝐹 = ∑ ∑ 𝐴𝑛
𝑚𝑟𝑛𝑌𝑛

𝑚(𝜃, 𝜑)𝑛
−𝑛

∞
𝑛=0  . (2.17) 

Here, 𝐴𝑛
𝑚 are the CEF coefficients, the values of which depend on the crystal structure and 

determine the strength of the CEF interaction. 

For 4f configuration with total angular momentum J, the matrix elements due to the CEF 

energy are 
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 ⟨𝐽𝑀𝑖|𝐴𝑛
𝑚𝑟𝑛𝑌𝑛

𝑚(𝜃, 𝜑)|𝐽𝑀𝑘⟩ = 𝐴𝑛
𝑚⟨𝑅|𝑟𝑛|𝑅⟩⟨𝛷𝑖|𝑌𝑛

𝑚(𝜃, 𝜑)|𝛷𝑘⟩ . (2.18) 

The wave function |𝛷> can be expanded in spherical harmonic functions up to n =3 for 

the f electrons (l = 3), and all the terms of ⟨𝛷𝑖|𝑌𝑛
𝑚(𝜃, 𝜑)|𝛷𝑘⟩ with n > 6 will be vanish. 

Furthermore, n cannot be odd number owing to inversion symmetry of the crystal-field 

potential, which means that n = 2, 4, 6 for the f electrons. 

The CEF Hamiltonian can be expressed by using Stevens Operator Equivalents 

method [102]. 

 ℋ𝐶𝐸𝐹 = ∑ 𝐴𝑛
𝑚〈𝑟𝑛〉𝑛,𝑚 𝜃𝑛𝑂𝑛

𝑚 = ∑ 𝐵𝑛
𝑚

𝑛,𝑚 𝑂𝑛
𝑚, (2.19) 

where 𝑂𝑛
𝑚 are Stevens equivalent operators, 〈𝑟𝑛〉 is the expectation of the 4f radius, 𝐵𝑛

𝑚 =

 𝐴𝑛
𝑚〈𝑟𝑛〉𝜃𝑛, the reduced matrix elements 𝜃𝑛 are often called  𝛼𝐽, 𝛽𝐽, and 𝛾𝐽 for n = 2, 4, and 

6 respectively. For magnetic ions with given J values, the operator equivalents 𝑂𝑛
𝑚 are known. 

A complete list of values of 𝑂𝑛
𝑚 , 𝛼𝐽, 𝛽𝐽, and 𝛾𝐽 can be found in Hutchings’ paper [103]. The 

eigenvalues of the CEF states can be calculated by diagonalization of the matrix elements. 

2.2.2. Crystalline electric field in cubic symmetry 

The CEF Hamiltonian in cubic symmetry have been investigated by Lea at el. [104] The 

CEF Hamilton can be written as 

 ℋCEF = 𝐵4(𝑂4
0 + 5𝑂4

4) +  𝐵6(𝑂6
0 − 21𝑂6

4) , (2.20) 

where the quantization axis is chosen along the fourfold axis of symmetry in the cubic. The 

coefficients 𝐵4  and 𝐵6 determine the scale of the CEF splitting, and they are in proportion 

to 〈𝑟4〉 and 〈𝑟6〉 of the 4f electrons. In principle, the CEF parameters can be calculated by 
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using the point charge model. However, the calculated results sometimes can be of one order 

of magnitude difference compared with the experimental results, due to the surrounding 

charge density and shielding effects of conduction electrons on the CEF, which are hard to 

estimate. Therefore, the crystal field parameters 𝐵𝑛
𝑚(𝐵4 and 𝐵6) are usually determined by 

experimental results. 

In order to keep the eigenvalues in the same numerical range and cover all possible values 

of the ratio between the fourth and sixth degree terms, the Hamiltonian is written as  

 ℋCEF = 𝑊 (𝑥
𝑂4

𝐹(4)
+ (1 − |𝑥|)

𝑂6

𝐹(6)
) . (2.21) 

Here, 𝑊𝑥 = 𝐵4𝐹(4) , 𝑊(1 − |𝑥|) = 𝐵6𝐹(6) ; 𝑂4 = [𝑂4
0 + 5𝑂4

4] , 𝑂6 = [𝑂6
0 − 21𝑂6

4] ; F(4) 

and F(6) are normalizing parameters of the total angular moment J; W and x (-1< x< +1) are 

two parameters of the CEF effect energy scale and the relative importance of the fourth and 

sixth degree terms, respectively. [104] 

In the cubic RT2X20 system, the Hamiltonian for local moment of R3+ ion can be written as 

 ℋ = ℋCEF + ℋZ + ℋexch , (2.22) 

where ℋCEF is the crystalline-electric-field Hamiltonian, ℋZ is the Zeeman Hamiltonian of 

magnetic field, and  ℋexch is the exchange interaction Hamiltonian between R3+ ions. 

Based on the work of Lea et al [104], we reproduced the CEF schemes of trivalent rare 

earth ions Nd3+ and Tm3+ in cubic symmetry when W = 1 K, which will be frequently used 

for the analyses of CEF effects in subsequent chapters, as shown in Figure 2.3 and Figure 

2.4, respectively. 
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Figure 2.3: Energy schemes of Nd3+ ion when W = 1 K. 
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Figure 2.4: Energy schemes of Tm3+ ion when W = 1 K. 
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3. Experimental methods 

3.1. Sample preparation 

All the single crystal samples used in this study were prepared by arc-melting method 

under an argon atmosphere followed by a subsequent Al self-flux method. The structures of 

the as-prepared samples were determined by X-ray powder diffraction using pulverized 

single crystals. The crystallographic orientations of the single crystals were done by Laue 

back reflection of X-rays. Well oriented single crystals are used for further anisotropic 

measurements of magnetic and transport properties. 

3.1.1. Growth of single crystal 

Intermetallic compounds comprise exclusively of different metals or metalloids. Arc-

melting and induction heating are often used to melt the elemental components at very high 

temperatures to get polycrystalline samples of intermetallic compounds. Polycrystalline 

samples can be used for some measurements, but they cannot provide anisotropic information 

and impurities are easy to form at the grain boundaries. The growth of high quality single 

crystal is important for detailed studies of the anisotropic properties and the crystalline-

electric-field (CEF) effects. 

Single crystals can be made by many techniques, such as Czochralski method [105], 

Bridgeman method [106], and Zone Melting [107], all with their advantages and 

disadvantages. These methods can be used to grow large single crystals, but usually they are 
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not suitable for incongruently melting compounds and a seed crystal is needed. What’s more, 

the starting components must be heated up to the melting temperatures of the target 

compound at which the vapor pressures of the constituent elements might be fairly large. 

The flux method in which molten solids are used as solvents (i.e. fluxes) is one of the most 

versatile methods for single crystal growth free from many of the problems mentioned 

above [108,109]. The flux method has been widely used for growing intermetallic single 

crystals, and the main advantages of this method are the enhanced diffusion of the component 

elements in metal solvents and relatively lower reaction temperatures. A metal has some 

typical features to be a flux: 1) the metal should form a flux (i.e. a melt) at low temperatures 

that the heating equipment and containers can bear, 2) a large difference between the melting 

and boiling point, 3) the metal can be separate from the products, 4) the metal flux should 

not form highly stable binary compounds with any of the reactants. [108] The metal fluxes 

vary greatly, including but not limited to aluminum (Al), gallium (Ga), indium (In), tin (Sn), 

lead (Pb), bismuth (Bi), zinc (Zn), cadmium (Cd), mercury (Hg), lithium (Li), sodium(Na), 

calcium (Ca) and some miscellaneous metallic fluxes (Cu-Al fluxes and Ti/Al/Sn 

fluxes). [108–113] 

The elemental components are dissolved in the flux at high temperatures. As the 

temperature decreases, the target compounds will crystallize from the solution because of the 

decreases of the solubility. In many cases, the fluxes act as both solvents and reactants, 

providing atoms to the target compounds. In our case, the ternary aluminides RT2Al20 were 

prepared using excessive aluminum as reactive fluxes (i.e. Al self-flux). 
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Figure 3.1: Temperature profile for the growth of single crystals from Al flux. 

In a typical Al self- flux method, a polycrystalline sample with the stoichiometric ratio of 

R: T: Al = 1:2:20 is preliminarily prepared by arc-melting using a tungsten electrode under 

an argon atmosphere. The sample is turned and melt more than six times for homogeneity on 

a water-cooled copper hearth. Then the sample is put into alumina crucible with some Al 

ingots / shots to reach a mole ratio of R: T: Al = 1:2:50 (the content of Al may differ in some 

cases), and is sealed into a vacuum silica tube. The sample sealed in the silica tube was heated 

up to 1050 ℃ in 5 hours, kept for 4 – 24 hours at 1050℃, and then slowly cooled down to 

750 ℃ within 80 – 160 hours. The heat treatment process for the growth of single crystals 

from Al flux is illustrated in Figure 3.1. 
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Single crystals with typical dimensions of several millimeters are obtained by centrifuging 

out the excess Al flux at 750 ℃ before cooling down. Small amount of residual Al flux on 

the single crystal surface is removed by dilute hydrochloric acid (HCl) in an ultrasonic bath. 

Figure 3.2 shows the obtained single crystals of TmV2Al20 with the typical shape and 

dimensions. 

 

Figure 3.2: Single crystals of TmV2Al20 with the typical shape and dimensions. 

3.1.2. Powder X-ray diffraction 

X-ray diffraction experiments were performed on pulverized single crystals in a Rigaku 

RINT 2200 diffractometer with monochrome Cu-K radiation (λ = 1.5405 Å) at room 

temperature. In typical measurements, the working voltage and current were 40 kV and 20 

mA, respectively. The diffraction data were collected for 10º ≤ 2θ ≤ 90º with a scanning step 

of 0.02° and a scan speed of 2º / min.  
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Figure 3.3: XRD patterns of RT2Al20 (R = La, Nd, Tm, Lu, T =Ti, V). 

The XRD patterns are displayed in Figure 3.3, in which no impurity phases were found 

and all the peaks can be indexed as the CeCr2Al20-type cubic structure (space group 𝐹𝑑3𝑚). 

The diffraction patterns were refined to obtain the lattice parameters. The observed lattice 
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parameters of RT2Al20 (R = Ti, V) of the as-prepared samples and those in the previous reports 

are shown Figure 3.4. [1,55] All the experimental lattice parameters are close to the reported 

ones. Lanthanide contraction effect was observed, and the lattice parameters of RV2Al20 are 

smaller than their Ti counterparts. 
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Figure 3.4: Lattice parameters of RT2Al20 (R = rare earth, T  = Ti, V). 

3.1.3. Single crystal orientation  

Orientation of the crystals were determined by Laue back-reflection of X-rays. In a typical 

measurement, the distance between the oriented crystal and the film was set D = 3.0 cm. The 

symmetry of the single crystals and directions of the crystal axes can be determined by the 

Laue pattern, since the symmetry of the singe crystal observed along the X-ray direction is 

the same as that of the Laue pattern. 
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Figure 3.5: The Laue pattern of NdV2Al20 single crystal with the [100] direction perpendicular to the film 

is shown on the left-hand side, and the calculated Laue pattern is shown on the right-hand side. 

Laue patterns for [100], [110], and [111] axes are of four-, two-, and three-fold symmetry 

respectively for the cubic structure single crystals in our case. The Laue pattern of NdV2Al20 

single crystal with the [100] direction perpendicular to the film as well as the calculated Laue 

pattern is displayed in Figure 3.5, which shows a four-fold symmetry. We use [100], [110], 

and [111] axes for <100>, <110>, and <111> axes, respectively throughout this thesis, since 

theoretically the measurable proprieties along these directions are the same, respectively, in 

the cubic-structure compounds. 

3.2. Measurements of physical properties 

3.2.1. Magnetization measurement 

The magnetization measurements were carried out in a commercial superconducting 

quantum interference device (SQUID) magnetometer, the magnetic properties measurement 
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system (MPMS) from Quantum Design, in the temperature range of 0.5 – 300 K and DC 

external magnetic fields up to 7 T. 

3.2.2. Specific heat measurement 

The specific heat measurements were performed in a physical property measurement 

system (Quantum Design, PPMS-9) with the heat capacity option by the thermal relaxation 

method down to 0.5 K and up to 9 T. 

3.2.3. Electrical resistivity measurement 

The electrical resistivity measurements were carried out in the temperature range of 1.9 – 

300 K by the standard DC four-probe method with alternative current in order to eliminate 

the thermoelectric voltage in the sample using the resistivity option of the physical property 

measurement system (PPMS) from Quantum Design. 
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4. Antiferromagnetic ordering in NdTi2Al20 single crystals 

4.1. Experimental results 

4.1.1. Magnetic properties 

Figure 4.1(a) shows temperature dependence of the magnetic susceptibility for NdTi2Al20 

in an applied field of 0.1 T along the [110] direction on a logarithmic temperature scale, in 

which an antiferromagnetic (AFM) phase transition was observed at the Néel temperature TN 

= 1.4 K. Figure 4.1(b) shows the corresponding H / M plot, and the high temperature data are 

almost linear and follow the Curie-Weiss law 𝜒 =
𝑀

𝐻
= 𝑁𝜇𝑒𝑓𝑓

2 /3𝑘𝐵(𝑇 − 𝜃𝑝). The effective 

magnetic moment eff = 3.56 B and the Curie-Weiss temperature P = − 28.50 K were 

obtained by a linear fitting to the Curie-Weiss law in the temperature range from 100 to 300 

K. The experimental value of the effective moment 3.56 B is close to that of the free ion 

Nd3+ (3.64 B), which indicates the localized nature of Nd3+ ion in NdTi2Al20. The negative 

value of Curie-Weiss temperature corresponds to the antiferromagnetic interactions between 

Nd moments. As shown in Figure 4.1(b), the inverse susceptibility H / M deviates from the 

linear fitting at low temperatures, which can be ascribed to the magnetic interactions and 

CEF effects. 
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Figure 4.1: Temperature dependences of (a) the magnetic susceptibility M / H on a logarithmic temperature 

scale, and (b) the inverse magnetic susceptibility H / M  in an applied field of 0.1T along the [110] direction 

for NdTi2Al20. 

Figure 4.2(a) and Figure 4.2(b) display field dependences of magnetization for the three 

principal crystallographic axes [100], [110], and [111] at 0.5 K, in which neither magnetic 

anisotropy nor hysteresis was found within experimental errors. The magnetizations at 7 T 

are about 1.4 B/Nd, which are only 40% of the saturation moment of Nd3+ ion, sat = 3.28 

B. The reduction of moment can be attributed to the CEF effects. The field dependences of 

magnetization at constant temperatures of 0.5, 1.9, 5.0, and 10.0 K in applied magnetic fields 

along [110] are shown in Figure 4.2(c) and Figure 4.2(d). Metamagnetic transitions were 

observed at 0.5 K in applied field around 0.16 T along all the three principal axes, as can be 

seen from Figure 4.2(b) and Figure 4.2(d). 
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Figure 4.2: Field dependences of magnetization along the three principal crystallographic axes [100], [110], 

and [111] at T = 0.5 K in applied fields (a) up to 7 T, (b) from 0 to 0.3 T for NdTi2Al20. Field dependences 

of magnetization at various temperatures in applied magnetic fields along [110] (c) up to 7 T, and (d) from 

0 to 0.5 T for NdTi2Al20. 
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4.1.2. Specific heat and magnetic entropy 

The specific heats C of NdTi2Al20 in applied fields of 0, 1, 3, 6, and 9 T along the [110] 

direction and the specific heat of and the nonmagnetic reference compound LaTi2Al20 were 

plotted on a logarithmic temperature scale, as shown in Figure 4.3(a). In applied fields above 

1 T, the peak of specific heat shifts to higher temperature region and become broader with 

increasing applied field, corresponding to the Schottky anomaly. 

Specific heats of the single crystals of NdTi2Al20 were measured at temperatures from 0.5 

to 300 K in applied fields up to 9 T. Figure 4.3(b) shows temperature dependences of specific 

heat C for single crystal of NdTi2Al20 in small applied fields below 1 T along the [110] 

direction on a linear temperature scale. A sharp peak of the specific heat was observed near 

1.4 K in zero field, confirming the AFM transition that has been observed in the temperature 

dependence of magnetic susceptibility as shown in Figure 4.1(a). The peak of the specific 

heat for NdTi2Al20 shifts to lower temperature region with increasing applied field below 1 

T, which is a typical behavior of the AFM ordering materials. The peak of C splits into two 

peaks in applied field of 0.4 T and 0.6 T. 

The specific heat of LaTi2Al20 in zero field is much smaller than that of NdTi2Al20 at low 

temperatures as shown in Figure 4.3(a). With a C / T vs T 2 plot using the data in the 

temperature range from 1.9 to 4 K, the electronic specific heat coefficient  and the Debye 

temperature ΘD are estimated to be 21 mJ/(mol∙K2) and 537 K for LaTi2Al20, respectively, 

which are close to the reported ones. [53] The magnetic part of specific heat for NdTi2Al20 

Cmag is estimated using Cmag = C (NdTi2Al20) – C (LaTi2Al20). 
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Figure 4.3: Temperature dependences of (a) specific heat C in applied fields of 0, 1, 3, 6, and 9 T on a 

logarithmic temperature scale, (b) specific heat C for single crystal of NdTi2Al20 in small applied fields 

below 1 T on a linear temperature scale, (c) specific heat divided by temperature C / T, and (d) magnetic 

specific heat divided by temperature Cmag / T in applied fields of 0, 1, 3, 6, and 9 T on a logarithmic 

temperature scale for single crystal of NdTi2Al20. The applied fields are along the [110] direction, and the 

dashed lines denote the specific heat of the nonmagnetic reference compound LaTi2Al20 in zero field. 
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The C / T plots and Cmag / T plots were displayed in Figure 4.3(c) and Figure 4.3(d) on a 

logarithmic temperature scale, respectively. The peaks become broader and the peak position 

shifts to higher temperature region with increasing applied fields above 1 T. 

Based on the specific heat data in Figure 4.1(b), the corresponding magnetic phase 

diagram for single crystal of NdTi2Al20 in applied fields along the [110] direction was plotted, 

as shown in Figure 4.4. 
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Figure 4.4: Magnetic phase diagram for single crystal of NdTi2Al20 in applied fields along the [110] 

direction. 
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Figure 4.5 shows the magnetic entropy Smag of NdTi2Al20 in various applied fields along 

the [110] direction, which were derived from the experimental data of the specific heats by 

𝑆𝑚𝑎𝑔 = ∫
𝐶𝑚𝑎𝑔

𝑇
𝑑𝑇

𝑇

0
, where Cmag is the magnetic part of the specific heat for NdTi2Al20. The 
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Figure 4.5: Temperature dependences of the magnetic entropy Smag for NdTi2Al20 in various applied 

magnetic fields along the [110] direction.  

entropy below 0.5 K was obtained by 𝑆𝑚𝑎𝑔 = ∫
𝐶𝑚𝑎𝑔

𝑇
𝑑𝑇

0.5

0
, where the values of Cmag / T 

below 0.5 K were estimated by linearly extrapolating the data between 0.5 and 1.0 K to 0 K. 

The estimated magnetic entropy below 0.5 K for zero field was about 0.7 J/(mol∙K), while 
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the Smag values below 0.5 K for 1 – 9 T are negligible. In zero field, the magnetic entropy 

Smag grows rapidly with increasing temperature and reaches the value of R ln 2 [5.76 J/mol∙K] 

around 5 K where it manifests a noticeable change of slope. The specific heat measurements 

for [100] and [111] directions were also carried out (data not shown), and no anisotropy was 

observed at low temperatures and small fields. These results as well as the field dependences 

of magnetization along the three principal crystallographic axes suggest an isotropic 6 

doublet rather than an anisotropic 8 ground state for NdTi2Al20. 

4.1.3. Electrical resistivity 
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Figure 4.6: Temperature dependences of (a) electrical resistivities for NdTi2Al20 and LaTi2Al20 single 

crystals, (b) magnetic part of electrical resistivity for NdTi2Al20 with the current J along the [110] direction 

in zero field. 

Figure 4.6(a) displays the resistivities for single crystals of NdTi2Al20 and LaTi2Al20 with 

the current J along the [110] direction in zero field. The residual resistivity ratios, defined as 
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RRR = (300 K) / (1.9 K), for NdTi2Al20 and LaTi2Al20 are about 17 and 26, respectively, 

indicating good qualities of the as-prepared single crystals. The resistivities of NdTi2Al20 and 

LaTi2Al20 increase with increasing temperature, and no anomaly was found in the 

temperature range from 1.9 to 300 K. The magnetic part of the resistivity mag for NdTi2Al20 

was obtained by mag = NdTi2Al20) – LaTi2Al20), as shown in Figure 4.6(b). mag is 

almost a constant below 10 K and increases with increasing temperature above 10 K. The 

curvature of mag (T) curve changes with increasing temperature, suggesting the presence of 

CEF effect. 

4.2. Analyses and discussion 

Since Nd3+ (4f 3) is a Kramers ion with an odd number of electrons, the doublet degeneracy 

is protected and cannot be lifted in each level without applied field. As can be seen from 

Figure 2.3, there are only doublet and  quartet for Nd3+ in the cubic symmetry. In this 

section, CEF effects are discussed based on the experimental results of magnetizations and 

specific heats. 

The change of slope in magnetic entropy around 5 K where Smag (T) = R ln 2 suggests a 

doublet ground state in NdTi2Al20. The doublet is magnetically isotropic and  quartet is 

anisotropic in fields. The almost isotropic behavior in magnetizations and specific heats at 

low temperatures origin in the isotropic doublet ground state. The magnetic and thermal 

properties are discussed using the following Hamiltonian including a CEF term, a Zeeman 

term, and an exchange term: 
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 ℋ𝑖 = 𝑊 (𝑥
𝑂4

𝐹(4)
+ (1 − |𝑥|)

𝑂6

𝐹(6)
) + 𝑔𝐽𝜇𝐵𝑱𝑖𝑯ext + 𝑔𝐽𝜇𝐵𝑱𝑖𝑯mol(𝑖), (4.1) 

where i is for sublattices A with up magnetic moments or sublattices B with down magnetic 

moments in antiferromagnetic structure, 𝑯ext  and 𝑯mol  are external magnetic field and 

molecular field, respectively. The second and third terms of Equation (4.1) are the Zeeman 

energy and the exchange energy. The molecular field 𝑯mol(𝑖) at the i sublattice can be 

written as 𝑛𝐵𝐴(𝑔𝐽𝜇𝐵)〈𝑱𝑗〉, where 〈𝑱𝑗〉 is the thermal average in the other sublattices j, 𝑛𝐵𝐴is 

the exchange parameter between atoms in A and B sublattices. The magnetization for each 

sublattice is 

 𝑴𝑖 = −𝑔𝐽𝜇𝐵〈𝑱𝑖〉 = −𝑔𝐽𝜇𝐵
𝑇𝑟𝑱𝑖exp (−𝛽ℋ𝑖)

𝑇𝑟exp (−𝛽ℋ𝑖)
 , (4.2) 

where 𝛽 = 1/𝑘𝐵𝑇The average magnetization 𝑴 = (𝑴A + 𝑴B)/2. Since 𝑯ext, 𝑯mol and 

𝑱𝑖 are three-dimensional vectors, Equation (4.2) is a set of six equations about the x-, y-, z-

components of 𝑴A and 𝑴B, and is solved by the iteration method. The molar specific heat 

 𝐶 = (
𝑁𝐴

2
)

𝜕

𝜕𝑇
(〈ℋA〉 + 〈ℋB〉 −

1

2
〈ℋexch〉) (4.3) 

We have three parameters, i.e., the energy scale W, x, and the exchange parameters 𝑛𝐵𝐴 

for numerical calculations to fit the experimental results in the previous section. According 

to the energy scheme of Nd3+ ion, as shown in Figure 2.3, the ground state is 6 is W > 0 and 

− 1 ≤ x ≤ 0.37, or W < 0 and 0.83 ≤ x ≤ 1. With the experimental results of magnetizations 

M(T, H) and specific heats C (T, H), W and x were determined to be 6 K and 0.3 respectively. 

W and x were scanned during this process over large scale without considering the exchange 

interactions. The parameter x was chosen between − 1 and 1 with a step of 0.05 and additional 
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values of x were also used when necessary. Then the values of 𝑛𝐵𝐴 were adjusted in a step a 

0.01 to fit the experimental results of magnetizations and specific heats, and the appropriate 

values of 𝑛𝐵𝐴 were determined to be − 0.4, respectively. 

The calculated temperature dependences of M / H, and the inverse susceptibility H / M are 

displayed in Figure 4.7(a) and Figure 4.7(b), respectively. The overall temperature dependent 

behaviors were reproduced qualitative: the Néel temperature TN = 1.4 K and a deviation from 

the linear fitting at low temperatures. However, the M / H value at TN is only 40% that of the 

experimental one. 
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Figure 4.7: Calculated temperature dependences of (a) the magnetic susceptibility M / H on a logarithmic 

temperature scale, and (b) the inverse magnetic susceptibility H / M for NdTi2Al20 in an applied field of 

0.1T along the [110] direction. 

Figure 4.8(a) shows the calculated field dependences of magnetization at various constant 

temperatures in applied magnetic fields along [110]. The value of magnetization at 7 T for 
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each temperature agrees well with the experimental results. However, the magnetization at 

0.5 K shows saturation tendency in an applied field of about 3 T rather than 1 T as observed 

in experimental result. A metamagnetic transition was also observed at 0.5 K, as shown in 

Figure 4.8(b). 
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Figure 4.8: Calculated field dependences of magnetization at various constant temperatures (a) in applied 

magnetic fields along [110] up to 7 T, and (b) below 0.5 T. 

Figure 4.9(a) and Figure 4.9(b) display the calculated temperature dependences of the 

magnetic specific heat in the form of Cmag / T and magnetic entropy Smag for NdTi2Al20 in 

various applied magnetic fields along the [110] direction, respectively. The calculated 

specific heat in zero field was reproduced qualitatively with the peak near TN, although the 

peak value is almost twice that of the experimental one. The calculated magnetic specific 

heat in the form of Cmag / T at 1 T almost overlaps that at zero field and the peak position and 

value of Cmag / T at 3 T show great difference with the experimental results.  
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As can be seen, the inconsistences between the calculated and experimental results occur 

at low temperature near TN rather than much higher temperature, which might be attributed 

to the fact that the calculations is based on the molecular-field approximation without 

considering the magnetic fluctuation(𝐽𝐴 − 〈𝐽𝐴〉)(𝐽𝐵 − 〈𝐽𝐵〉). The magnetic fluctuation plays 

a more important role near TN than at temperatures far away from TN. The interaction between 

the A sublattices was not taken into consideration, which might also lead to the differences 

between calculated and experimental results. Extensive calculations considering the 

interaction between the A sublattices were carried out, but no satisfactory results have been 

obtained for the moment. 
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Figure 4.9: Calculated temperature dependences of (a) the magnetic specific heat in the form of Cmag / T, 

and (b) magnetic entropy Smag for NdTi2Al20 in various applied magnetic fields along the [110] direction. 

The magnetic entropies Smag for NdTi2Al20 in fields along the [110] direction were well 

produced with the parameters W = 6, x = 0.3, and 𝑛𝐵𝐴= − 0.4. The corresponding CEF scheme 
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is 6 – (0 K, doublet) – 8
(1) (53 K, quartet) – 8

(2) (443 K, quartet). The CEF splitting of 53 

K between the ground state and the first excited state is in good agreement with the 

experimental result of temperature dependent magnetization as shown in Figure 4.1(b). 

4.3. Conclusion 

Single crystals of NdTi2Al20 and LaTi2Al20 were grown with the Al self-flux method. 

NdTi2Al20 was found to be antiferromagnetic with the Néel temperature TN = 1.4 K, the 

effective magnetic moment eff = 3.56 B (Nd3+: 3.64 B), and the Curie-Weiss temperature 

P = –28.50 K. The effective magnetic moment eff = 3.56 B is close to that of the free Nd3+, 

indicating the localized nature of 4f electrons in NdTi2Al20. Metamagnetic transitions were 

observed at 0.5 K in applied field around 0.16 T along the principal axes [100], [110], and 

[111]. 

Specific heats of the single crystals of NdTi2Al20 were measured in applied fields up to 9 

T in the temperature range from 0.5 to 300 K with the isostructural single crystals of 

LaTi2Al20 as the nonmagnetic reference. The peak of the specific heat for NdTi2Al20 shifts to 

lower temperature region with increasing applied field below 1 T, which is a typical behavior 

of the AFM ordering compounds. While in applied fields above 1 T, the peak of specific heat 

shifts to higher temperature region and becomes broader with increasing applied field, 

showing the Schottky-like anomaly. The magnetic entropy Smag grows rapidly with 

increasing temperature and reaches the value of R ln 2 around 5 K in zero field. The resistivity 

of NdTi2Al20 increases with increasing temperature, and no anomaly was found in the 
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temperature range 1.9 – 300 K. A 6 doublet ground state of the Nd3+ ion is suggested by 

these results. 

The experimental results of magnetizations M (T, H) and specific heats C(T, H) were 

analyzed by theoretical calculations, and a CEF scheme 6 – (0 K, doublet) – 8
(1) (53 K, 

quartet) – 8
(2) (443 K, quartet) was proposed with the CEF parameters W = 6 K, x = 0.3, and 

𝑛𝐵𝐴= − 0.4. The inconsistences between the calculation results and experimental results of 

magnetizations and specific heats were observed near TN, which might be attributed to the 

fact that the magnetic fluctuation (𝐽𝐴 − 〈𝐽𝐴〉)(𝐽𝐵 − 〈𝐽𝐵〉) and exchange interaction between A 

sublattices was not taken into account.
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5. Possible heavy fermion state of the caged cubic compound 

NdV2Al20 

5.1. Experimental results 

5.1.1. Magnetic properties 

The temperature dependences of magnetization M along the three principal axes [100], 

[110], and [111] in an applied field of 0.1 T and in a smaller field of 0.01 T along the [100] 

direction are shown in Figure 5.1(a). The rapid increase of magnetization in 0.01 T indicates 

a ferromagnetic (FM) phase transition with a Curie temperature around 1.8 K. Figure 5.1(b) 

shows the temperature dependence of inverse susceptibility H / M, manifesting considerable 

curvature at high temperatures which is different from that of NdRu2Zn20 with a linear 

behavior [6]. The Pauli paramagnetic-like contribution is not negligible and it does not obey 

the simple Curie-Weiss law 𝜒 =
𝑀

𝐻
=

𝑁𝜇𝑒𝑓𝑓
2

3𝑘𝐵(𝑇−𝜃𝑝)
. But it could be well fitted to the modified 

Curie-Weiss law, which is in the form 𝜒 =
𝑀

𝐻
=

𝑁𝜇𝑒𝑓𝑓
2

3𝑘𝐵(𝑇−𝜃𝑝)
+ 𝜒0, above 50 K. The effective 

moment eff, the Curie-Weiss temperature P and the temperature-independent part of the 

magnetic susceptibility 0 for NdV2Al20 are estimated to be 2.95B, 3.3 K and 1.1 × 10−3 

emu/mol, respectively. The observed value of effective magnetic moment eff is much 

smaller compared to that of the free Nd3+ ion (3.62 µB), which might due to the CEF effect 

and the strong c-f hybridization. The positive sign of P suggests a ferromagnetic correlation 
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between the Nd3+ ions. The obtained 0 is about an order of magnitude larger than the 

experimental value of LaV2Al20 with the opposite sign. [12,114] 
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Figure 5.1: (a) Temperature dependences of magnetization M of NdV2Al20 in an applied magnetic field of 

0.1 T along the three principal axes and in a field of 0.01 T along the [100] direction. (b) The temperature 

dependence of the inverse magnetic susceptibility H / M in a field of 0.1 T along the [100] direction. 

Figure 5.2(a) shows the field dependences of magnetization M along the [100] direction 

up to 7 T at some constant temperatures. At low temperature of 0.5 K, M increases sharply 

with increasing applied field below 0.5 T, then shows a saturation tendency in high fields. At 

temperatures above 2 K, the magnetizations increase gradually with increase in applied fields. 

Figure 5.2(b) shows the field dependences of M in the magnetic fields along the three 

principal axes up to 7 T at 0.5 K. A clear anisotropy was observed above 2 T. The [110] and 

[111] axes are easy and hard axes of magnetization, respectively. The ferromagnetic 

moments at 0.5 K obtained by extrapolating the high field data to 0 T, are approximately 1.4 
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Figure 5.2: (a) Magnetization curves of NdV2Al20 in magnetic fields along the [100] direction. (b) 

Magnetization curves of NdV2Al20 in magnetic fields along the three principal crystallographic axes at 0.5 

K. (c) Magnetization curves below 0.4 T. 

B/Nd for all the three principal axes, which is less than half that of the Nd3+ (3.28 µB). This 

considerable reduction of the moments can be attributed to the CEF effect. Figure 5.2(c) 
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shows the field dependences of M at 0.5 K in low fields below 0.4 T. It is evident from Figure 

5.2(c) that the easy axis of magnetization changes from the [110] axis above 2 T to the [100] 

axis in low fields. In the [100] and [110] directions, M increases steeply near zero fields, and 

tends to saturate at around 0.2 T. In the [111] direction, M increases steeply near zero field, 

then increases linearly up to about 0.15 T and shows a saturation tendency. Similar behaviors 

were also observed in NdRu2Zn20. [6] In low fields, the easy axis of magnetization is [100]. 

There is little hysteresis in the observed M (H) curves. The M values obtained by 

extrapolating high field data smoothly to 0 T (M0) are approximately 1.2, 0.9, and 0.7 B/Nd 

for the [100], [110], and [111] directions, respectively. The ratio of these values is about 

1: √1 2⁄ : √1 3⁄ , which indicates that the M0 values for the [110] and [111] directions are the 

projections of the M0 value of the [100] direction. 

5.1.2. Specific heat and magnetic entropy 

Figure 5.3(a) shows the temperature dependences of specific heat for NdV2Al20 in various 

fields along the [100] direction. The specific heat of the nonmagnetic isostructural single 

crystal LaV2Al20 was also measured to estimate the electron and phonon contributions to the 

specific heat. As can be seen from Figure 5.3(a), specific heat C for LaV2Al20 decreases 

monotonically with decreasing temperature from 20 to 1.9 K. With a C / T vs T 2 plot, the 

electronic specific heat coefficient  and the Debye temperature ΘD were estimated to be 21 

mJ/(mol∙K2) and 527 K, respectively, which are close to the values in a previous report. [114] 

A sharp λ-type anomaly was observed near 1.8 K in the zero field specific heat of NdV2Al20, 

which indicates a magnetic phase transition and is in good agreement with the Curie 
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temperature observed in the magnetization measurement as shown in Figure 5.1(a) and our 

previous report [7]. The λ-type peak changes to round peaks when external fields are applied 

and shifts to higher temperature with increasing fields. 
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Figure 5.3: (a) Temperature dependences of the specific heat C for NdV2Al20 in various fields along the 

[100] direction. The dashed line is the temperature dependence of C for LaV2Al20. (b) The temperature 

dependences of the specific heat divided by temperature C / T for NdV2Al20 and LaV2Al20. 

Figure 5.3 (b) shows the temperature dependences of the specific heat divided by 

temperature C / T in low temperature region below 3 K. The C / T of NdV2Al20 in zero field 

below TC decreases with decreasing temperature, and an extremely large value of about 4 

J/(mol∙K2) remains at 0.5 K. The  value of NdV2Al20, which is estimated from an 

extrapolation of the C / T data in zero field to 0 K, is about 2 J/(mol∙K2). This  value is large 

even compared to the possible Nd-based heavy fermion compound NdOs4Sb12. [92,115] The 
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large C / T remains in high magnetic fields, and the observed C / T is more than 1J/(mol∙K2) 

in 9 T below 3 K. These results imply that NdV2Al20 is a possible heavy fermion compound. 
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Figure 5.4: Temperature dependences of the magnetic part of the entropy Smag for NdV2Al20 in various 

fields along the [100] direction. 

Figure 5.4 shows the magnetic part of the entropy Smag of NdV2Al20 in various fields. The 

obtained Smag in zero field increases sharply with increasing temperature up to R ln 4 near TC 

and the gradually increases up to R ln 6 near 20 K. In external magnetic fields up to 9 T, Smag 

show similar behaviors with lower increasing rates. The results suggest that the ground state 
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of Nd3+ ion is a quartet state and the first excited state of a doublet locates about 20 K above 

the ground state. 

5.1.3. Electrical resistivity 
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Figure 5.5: (a) Temperature dependences of electrical resistivity  for single crystals of NdV2Al20 and 

polycrystalline LaV2Al20 with the current J along the [110] direction in zero field. (b) The temperature 

dependence of electrical resistivity  for NdV2Al20 on a logarithmic temperature scale. 

Figure 5.5(a) shows the temperature dependences of electrical resistivity  for single 

crystals of NdV2Al20 and polycrystalline LaV2Al20 with the current J along the [110] 

direction in zero field. The electrical resistivity for NdV2Al20 and LaV2Al20 monotonically 

increase above 20 K and 2 K, respectively, with no observable anomaly. The residual 

resistivity ratios RRR, defined as (300 K)/(2 K), for NdV2Al20 and LaV2Al20 are about 3 

and 25, respectively. Figure 5.5(b) shows the electrical resistivity  for NdV2Al20 on a 
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logarithmic temperature. It is evident from Figure 5.5(b) that  for NdV2Al20 takes a 

minimum near 20 K, then shows a − log T increase with decreasing temperature and makes 

a peak at around 5 K, which is a typical behavior in Kondo compounds. 

5.2. Analyses and discussion 

We attempted to explain the experimental results of magnetization and specific heat of 

NdV2Al20 by taking into account the CEF effect with the same procedures in the 

literature [6,116], using the CEF parameters of W and x given by Lea et al. for the CEF energy 

schemes (LLW) [104]. Theoretically the energy levels of Nd3+ in CEF are determined by the 

parameters W and x. [104] In the calculation process we referred to the LLW energy scheme 

of the Nd3+ ion as a function of x when W = 1 in cubic symmetry CEF which is shown in 

Figure 2.3. 

The easy direction and the calculated M are shown in Figure 5.6(a) and Figure 5.6 (b). If 

we take a priority on the observed magnetic entropy of R ln 4 near TC, i.e., the energy scheme 

of quartet ground state and doublet excited state, possible regions of W and x are (1) W > 0, 

0.4 < x < 0.8, and (2) W < 0, 0.4 < x < 0.8. The calculated magnetizations of Nd in these 

regions, however, are more than 2 B as seen in the figures, which is inconsistent with the 

observed magnetization, 1.4B, as shown in Figure 5.2(a). If we take a priority on the 

magnetization and magnetic anisotropy, i.e., 1.3 B/Nd and the easy direction of [100] at 0.5 

K, possible regions for the fitting parameters W and x are (1) W > 0, − 1 ≤ x < − 0.4, (2) W < 

0, 0.8 < x ≤ 1, and (3) W < 0, x ≃ − 0.45. However, the energy scheme of the ground state and 
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Figure 5.6: Calculated magnetizations of Nd3+ ion in a cubic symmetry site as functions of the CEF 

parameters W and x, when (a) W > 0, − 1 ≤ x ≤ 1, (b) W < 0,  − 1 ≤ x ≤ 1. The calculated magnetizations 

are independent of W. The regions of the x parameter with larger magnetizations (solid lines), are selected. 

the first excited state in the former two cases are doublet-quartet state and in the third case is 

the quartet-quartet. These energy schemes conflict with the deduced energy scheme from the 

magnetic entropies. Consequently, it is concluded that the present experimental results 
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cannot be consistently explained by the present calculations. Further extensive CEF 

calculations were made taking the Zeeman effect and the exchange interaction into 

consideration, but no appropriate W and x values could be obtained for the moment. 

The filled skutterudite compound NdOs4Sb12 [19,91,92,115], which is also in a FM state 

has revealed a large  value and possible heavy-fermion behavior based on the specific heat 

measurements. The logarithmic temperature dependence of  and a large C / T were observed 

in the heavy fermion compound PrV2Al20 and PrFe4P14 above the quadrupolar ordered 

temperature. [2,117] The behaviors of logarithmic temperature dependence of  and large 

values of C/T are similar to those observed in NdV2Al20. The observed physical properties 

for magnetizations, specific heats, and electrical resistivities indicate a possible heavy 

fermion state of NdV2Al20. 

5.3. Conclusion 

Single crystals of NdV2Al20 were made by Al self-flux method. Physical properties of 

NdV2Al20 single crystals were investigated by means of magnetization, specific heat and 

electrical resistivity measurements in wide temperature range in applied magnetic fields 

along the principal axes. Polycrystalline LaV2Al20 were used as the nonmagnetic reference. 

A ferromagnetic (FM) phase transition was observed at the Curie temperature TC = 1.8 K in 

both magnetization and specific heat measurements. The field dependence of M shows an 

anisotropy at 0.5 K with the easy direction of magnetization along [100] below 0.2 T. And 

the easy direction changes from the [100] direction in low fields to the [110] direction above 

2 T. 
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On cooling below 2 K in zero field, the specific heat divided by temperature C / T shows 

an enhanced value with a large electronic specific heat coefficient  of about 2 J/(mol∙K2). 

The large C / T value of more than 1 J/(mol∙K2) remains in a high field of 9 T below TC.The 

electrical resistivity for NdV2Al20 shows a logarithmic temperature dependence at around 10 

K. The magnetic entropies Smag are R ln 4 near the Curie temperature TC and reach R ln 6 

near 20 K, suggesting a quartet ground state and a doublet first excited state. 

The CEF calculations for energy scheme were carried out, which were found to be unable 

to explain the observed M and Smag consistently for the moment. These results suggest a 

heavy fermion state for NdV2Al20. 
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6. Magnetic and thermal properties of TmV2Al20 

6.1. Experimental results 

6.1.1. Magnetic properties 
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Figure 6.1: (a) Temperature dependence of the susceptibility M / H for TmV2Al20 measured in an applied 

magnetic field of 0.1 T along [100] axis on a logarithmic temperature scale. (b) Temperature dependence 

of the inverse susceptibility H / M for TmV2Al20 in a field of 0.1 T along [100] axis, the solid line represents 

the Curie-Weiss fitting between 50 and 300 K. 

The temperature dependence of magnetization (M) for TmV2Al20 was measured in an 

external magnetic field (H) of 0.1 T along the [100] direction down to 0.5 K. Figure 6.1(a) 

shows the temperature dependence of the M / H for TmV2Al20 measured in an applied 

magnetic field of 0.1 T along [100] axis on a logarithmic temperature scale, the susceptibility 
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M / H shows a –log T dependence increase with decreasing temperature below 5 K. The 

obtained H / M data are shown in Figure 6.1(b). A linear fit of the H / M data above 50 K 

yields the paramagnetic Curie temperature, P = − 5 K, and the effective magnetic moment, 

eff = 7.0 B, which is close to that of the free Tm3+ ion (7.57B). As shown in Figure 6.1(a), 

there is no noticeable magnetic phase transition in the M / H curve. TmV2Al20 is paramagnetic 

above 0.5 K, which implies that the ground state is the nonmagnetic singlet (1, 2) or doublet 

(3) state. 

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

M
 (


B
 /
 T

m
)

H // [100]

TmV2Al20

    T = 0.5 K

[111]

[110]

(a)

0H (T)

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

M
 (


B
 /
 T

m
)

0H (T)

0.5 K

2.5 K

5.0 K

10.0 K
TmV2Al20

      H // [100]

(b)

 

Figure 6.2: Magnetization curves of TmV2Al20 in the magnetic field up to 7 T (a) along the principal 

crystallographic axes [100], [110] and [111] at 0.5 K, (b) along the [100] direction at various temperatures. 

The field dependences of magnetization M (H) were measured in external fields up to 7 

T.  Figure 6.2(a) shows M (H) curves in the field along the principle axes, [100], [110], and 

[111] at 0.5 K. The M values were found to be zero at 0H = 0 T, and gradually increased 

with increasing field. No magnetic hysteresis was noticed on the M (H) curves. It is clear that 
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the magnetically easy axis is along the [100] direction, and the hard axis is along the [111] 

direction. Sets of the M (H) data were acquired in the field along the easy [100] direction at 

constant temperatures of 0.5, 2.5, 5.0 and 10 K, as shown in Figure 6.2(b). The M value at 

0H = 7 T and T = 0.5 K is 5.2 B/Tm, which is approximately three-fourths of the saturation 

magnetization for the free Tm3+ ion (7.0B). The similar result has been reported in the case 

of TmTi2Al20 that the magnetization at 0H = 7 T and T = 2 K is 5 B/Tm in Ref. [90]. The 

reduction of magnetization is most likely due to the CEF effect, which will be discussed in 

the next section. 

6.1.2. Specific heat and magnetic entropy 

The temperature dependences of the specific heat were measured with external fields 

along the [100] direction down to 0.5 K (0H = 0 – 6 T) or 2.0 K (0H = 9 T). Figure 6.3(a) 

shows low-temperature part of the observed specific heats, in which the peaks become 

broadened and shift to higher temperatures with increasing external field, indicating the 

Schottky anomaly. The electron and phonon contributions to the specific heat were estimated 

using the observed specific heat of LuV2Al20 (dashed line in Figure 6.3(a)). The magnetic 

part of the specific heat of TmV2Al20 were evaluated by subtracting the specific heat data of 

LuV2Al20 from those of TmV2Al20, i.e., Cmag = C (TmV2Al20) – C (LuV2Al20). The resultant 

Cmag / T vs T curves were plotted in Figure 6.3(b) on a logarithmic temperature scale and in 

Figure 6.3(c) on a linear temperature scale.  

The observed Cmag / T at 0 T show the –log T dependence at low temperatures, which is 

similar to the M / H curve. Furthermore, the Cmag/T value at 0 T and 0.6 K is approximately  
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Figure 6.3: (a) Temperature dependences of the specific heat C for TmV2Al20 at various H along the [100] 

direction, the dashed line is the temperature dependence of the specific heat for LuV2Al20. Temperature 

dependences of Cmag / T for TmV2Al20 in various magnetic fields along the [100] direction (b) on a 

logarithmic temperature scale, and (c) on a linear temperature scale, the solid line is a linear extrapolation 

of the data between 0.5 and 1.0 K to 0 K. (d) Temperature dependences of the magnetic entropies Smag for 

TmV2Al20 in various magnetic fields along the [100] direction. 
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6 J/(mol K2), which is surprisingly large, compared with values for normal metallic 

compounds. This result suggests that the ground state for TmV2Al20 is a doublet (3) rather 

than a singlet (1, 2). 

The magnetic entropy Smag vs T curves in various external fields along the [100] direction 

were plotted in Figure 6.3(d). The magnetic entropies below 0.5 K were obtained by 

integrating Cmag / T from 0 to 0.5 K, in which the Cmag / T values below 0.5 K were estimated 

by the linear extrapolations of the data below 1.0 K to 0 K. The Smag (0H = 0 T) value reaches 

R ln 5 near 10 K, which implies that a magnetic triplet state locates near above the 3 doublet 

ground state (pseudo-fivefold ground state). Smag values and their increasing rates with 

respect to temperature in nonzero field is suppressed with increasing applied fields, taking 

smaller values. 

6.1.3. Electrical resistivity 

Figure 6.4(a) shows temperature dependences of electrical resistivities for TmV2Al20 

single crystal and polycrystalline LaV2Al20. The same polycrystalline LaV2Al20 sample as in 

the previous chapter was used to get the magnetic part of resistivity for TmV2Al20. The 

residual resistivity ratios RRR = (300 K)/(2 K) for TmV2Al20 and LaV2Al20 are about 3 

and 25, respectively. The resistivity of TmV2Al20 increase rapidly from 2 K with increasing 

temperature and shows a broad shoulder near 30 K. As shown in Figure 6.4(b), the broad 

shoulder near 30 K can also be observed in the magnetic part of resistivity mag for TmV2Al20, 

mag increases gradually from 30 K to about 90 K, and then increases rapidly with increasing 
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temperature. This behavior can be attributed to the CEF effect, suggesting an overall CEF 

splitting of about 90 K. 
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Figure 6.4: (a) Temperature dependences of electrical resistivities for TmV2Al20 single crystal and 

polycrystalline LaV2Al20. (b) Magnetic part of electrical resistivity for TmV2Al20 on a logarithmic 

temperature scale with the current J along the [110] direction in zero field. 

6.2. Analyses and discussion 

We adopt the following Hamiltonian to analyze the magnetic and thermal properties of 

TmV2Al20, 

 ℋ = ℋCEF + ℋZ + ℋexch , (6.1) 

where ℋCEF  is the crystalline-electric-field Hamiltonian, ℋZ  is the Zeeman Hamiltonian, 

and  ℋexch  is the exchange Hamiltonian between Tm atoms. We treated the exchange 

interaction in the frame of the molecular-field approximation. ℋCEF is written as 
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 ℋCEF = 𝑊 (𝑥
𝑂4

𝐹(4)
+ (1 − |𝑥|)

𝑂6

𝐹(6)
) , (6.2) 

where 𝑂4 = 𝑂4
0 + 5𝑂4

4 and 𝑂6 = 𝑂6
0 − 21𝑂6

4. ℋZ  and ℋexch are expressed as 

 ℋZ = 𝑔𝐽𝜇B𝑱𝑯ext , (6.3) 

 ℋexch =  𝑔𝐽𝜇B𝑱𝑯mol , (6.4) 

where Hext is the external magnetic field, and Hmol is the molecular field at Tm site caused 

by the surrounding Tm atoms. Hmol is defined as 𝑛(𝑔𝐽𝜇B)〈𝑱〉  where n is the exchange 

coupling parameter between Tm atoms. The physical quantities of J, Hext, and Hmol are three-

dimensional vectors. The magnetization M is calculated by 

 𝑴 = −𝑔𝐽𝜇B⟨ 𝑱 ⟩ = −𝑔𝐽𝜇B
Tr 𝑱 exp(−𝛽ℋ)

Tr exp(−𝛽ℋ)
 , (6.5) 

where ⟨ 𝑱 ⟩ is the thermal average of the total angular momentum and β = 1/kB T. Equation 

(6.5) is solved by the iteration method. The specific heat C is calculated by 

 𝐶 = 𝑁A
𝜕

𝜕𝑇
(⟨ℋ⟩ −

1

2
〈ℋexch〉) , (6.6) 

We have three fitting parameters, i.e., W, x, and n to calculate M (T, H) and C (T, H) using 

the above Hamiltonian. However, at the beginning, we ignored the effect of exchange 

interaction by setting n = 0 because of the small value of the experimental p. First, we tuned 

the parameters W and x to appropriate values to reproduce the experimental results of M (H,T) 

and Cmag (H, T), considering the pseudo-fivefold degeneracy and the observed magnetic 

anisotropies. Then, the parameter n was adjusted to fit the experimental results. 

In the iteration process, we referred the previous work by Lea et al. [104] for the CEF 

energy scheme of the Tm3+ ions in the cubic site symmetry. According to their diagram, the 
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doublet ground state-triplet first excited state is realized in the regions of –1 ≤ x ≤ − 0.55 for 

the positive W (we name this region as region I) and 0.8 ≤ x ≤ 1 for the negative W (region 

II). The triplet ground state-doublet first excited state is realized in the region − 0.55 ≤ x ≤ 

0.2 for the positive W (region III). The energy separation between the two lowest energy 

levels is speculated to be several Kelvin because the entropy reaches R ln 5 at approximately 

10 K. Concerning the easy direction of magnetization, the calculations using Equation (6.5) 

with various W and x values reveal that [100] easy direction is realized in the regions I, II, 

and in the narrow region near x = 0.4 for W ≥ 1 K. From the iteration of W and x values, we 

concluded that the most appropriate W and x are 0.5 K and − 0.6, respectively. The 

nonmagnetic ground state was realized when – 0.9 ≤ n ≤ 0.2, and the best fit to the 

experimental results of magnetizations and specific heats was obtained when n = 0. 
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Figure 6.5: (a) Calculated temperature dependence of the susceptibility M / H for TmV2Al20 measured in 

an applied magnetic field of 0.1 T along [100] axis on a logarithmic temperature scale. (b) Calculated 

temperature dependence of H / M for TmV2Al20 in a field of 0.1 T along [100] axis. 
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Figure 6.5(a) shows the calculated temperature dependence of the susceptibility M / H for 

TmV2Al20 measured in an applied magnetic field of 0.1 T along [100] axis on a logarithmic 

temperature scale. In the low temperature region below 0.5 K, the susceptibility M /H  value 

tends to saturate, indicating a nonmagnetic doublet ground state. The calculated temperature 

dependence of H / M for TmV2Al20 in a field of 0.1 T along [100] axis was displayed in 

Figure 6.5(b). 
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Figure 6.6: Calculated magnetization curves of TmV2Al20 in H (a) along the [100], [110], and [111] 

directions at 0.5 K, (b) along the [100] direction at various temperatures. 

Figure 6.6(a) shows the calculated M (H) curves at 0.5 K in the fields along the [100], 

[110], and [111] directions. The easy and the hard directions of magnetization are 

satisfactorily reproduced by the calculations. Figure 6.6(b) shows the calculated M (H) curves 

at 0.5, 2.5, 5.0, and 10 K in the fields along the [100] direction, in which the profile of 

experimental curves at each temperature is well reproduced by the calculations. The energy 
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level scheme derived by using the parameters W = 0.5 K, x = − 0.6, and n = 0 is: Γ3 (0 K, 

doublet), Γ5
(1) (2 K, triplet), Γ2 (59 K, singlet), Γ5

(2) (65 K, triplet), Γ4 (74 K, triplet) and Γ1 

(85 K, singlet). The ground state Γ3 is a nonmagnetic doublet, and thus the expectation of J 

in this state is zero. The magnetization must originate from the mixing between the ground 

state and the nearby magnetic triplet Γ5
(1). This pseudo-fivefold energy level induces the 

anisotropic magnetizations as shown in Figure 6.6(a). These calculated M values are similar 

to the experimental ones, thus the reduction of magnetization from the saturation 

magnetization of free Tm3+ ion (7.0 B) is most likely ascribed to the CEF effect. 
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Figure 6.7: (a) Temperature dependences of the calculated Cmag / T in various magnetic fields along [100], 

the dashed line is the Cmag / T curve in zero external field considering the splitting of the doublet ground 

state. (b) Calculated magnetic entropy Smag of TmV2Al20 in various magnetic fields along [100]. 

Figure 6.7(a) shows the temperature dependences of the calculated Cmag / T in the external 

fields of 0, 1, 3, 6, 9 T along the [100] direction on a logarithmic temperature scale (solid 
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lines). The calculations reproduced the experimental Cmag / T vs T curves when the external 

fields are nonzero. The calculated Cmag / T vs T curve in zero field, however, makes a peak 

at approximately 0.7 K, which is originated from the small energy gap between the ground 

state and the first excited state. This behavior of Cmag / T contradicts the fact that the 

experimental Cmag / T values increase with decreasing temperature in the lowest temperature 

region. We tentatively employed a model that Tm3+ ions are in a doublet ground state split 

by small various energy widths y, ranging from 0 to d: 

 𝐸(𝑦) =
𝑦𝑒−𝑦𝛽+𝜀3𝑒−𝜀3𝛽+⋯

1+𝑒−𝑦𝛽+𝑒−𝜀3𝛽+⋯
 , (6.7) 

 ⟨𝐸⟩ =
1

𝑑
∫ 𝐸(𝑦)𝑑𝑦

𝑑

0
. (6.8) 

where 3, ...are eigen energies above the doublet ground states. Setting d to be 1 K, the 

specific heat is numerically calculated by 𝐶 = 𝑑⟨𝐸⟩/𝑑𝑇. The dashed line in Figure 6.7 (a) 

shows the calculation result. The experimental Cmag / T vs T curve in zero field in Figure 

6.3(b) was reproduced by the calculation. 

Figure 6.7(b) shows the temperature dependences of the calculated Smag, of which the 

values above 0.8 K are quantitatively in good agreement with the experimental ones. The 

Smag near 10 K in zero field is R ln 5 [13.4 J/(mol K)], corresponding to the pseudo-fivefold 

degeneracy of the low lying energy levels. In the above model, Smag (0H = 0 T) goes to zero 

at 0 K, as shown by the dashed line in Figure 6.7(b). The mechanism splitting the energy 

level of the doublet ground state is not clear for the moment, but a small lattice distortion 

around Tm ions and the quadrupole ordering could result in the energy splitting of the non-
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Kramers 3 doublet. Further study is needed to clarify the possible presence of quadrupole 

ordered state that has been observed in the isostructural Pr-based compounds. 

6.3. Conclusion 

The magnetization and specific heat of TmV2Al20 single crystals were measured in the 

temperature range from 0.5 to 300 K in external magnetic fields up to 7 T. TmV2Al20 was 

found to be paramagnetic above 0.5 K. Clear magnetic anisotropy was observed along the 

three principal crystallographic axes in the field above 1 T at 0.5 K. The magnetically easy 

axis is along the [100] direction, and the hard axis is along the [111] direction. 

On cooling below 2 K in zero external field, the magnetic part of specific heat divided by 

temperature, Cmag / T, increases up to 6 J/(mol K2) near 0.6 K. The magnetic entropy in zero 

field reaches R ln 5 near 10 K, suggesting that the ground state of Tm3+ ions is a nonmagnetic 

doublet state with the first excited state of a magnetic triplet state nearby (a pseudo-fivefold 

degenerate state).The electrical resistivities for TmV2Al20 single crystal and polycrystalline 

LaV2Al20 were measured down to 2 K, an overall CEF splitting of about 90 K was suggested 

by the observed magnetic part of resistivity for TmV2Al20, which is in good agreement with 

the proposed CEF scheme. 

The experimental results were reproduced by the crystalline electric field calculations, and 

an energy level scheme was proposed: Γ3 (0 K, doublet) – Γ5
(1) (2 K, triplet) – Γ2 (59 K, 

singlet) – Γ5
(2) (65 K, triplet) – Γ4 (74 K, triplet) – Γ1 (85 K, singlet). The enhanced value of 

Cmag / T in the lowest temperature region in zero field was explained by assuming an energy 

splitting of the doublet ground state. 
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