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Abstract

Bio-inspired meta-heuristics are the study of investigating biological mechanisms and there-

after modeling such living mechanisms and theories and their live by computer simulation-

s. A large number of papers have focused on the character is tics of the swarm behaviors,

such as birds, particles, fishes, human brains, as well as other insects including mosquitoes,

because of their incredible abilities to solve a lot of very practical engineering and opti-

mization problems. These problems are very difficult to be solved and some of those have

proved to be NP-hard or NP-complete. That is to say, no polynomial time algorithm can be

designed and used to solve such problems.

Based on the above research background, in this thesis, I am devoting to studying a

number of meta-heuristics and applying them to solve some important practical problems.

Some typical meta-heuristics involving the genetic algorithm, genetic programming, ant

colony optimization, particle swarm optimization, differential evolution algorithms, artifi-

cial immune algorithms, gravitational search algorithm, and some others which will not be

introduced in this thesis in details. Those who are interested in these algorithms may refer

to my cited literatures.

The thesis is organized as in the following.

In chapter 1, we first introduced some basic concepts and theories of the bio-inspired

meta-heuristics. The mechanisms of the biologically inspirations and the framework of

how to design such meta-heuristics are brief summarized and introduced. Moreover, it

studies the field consist of all their social behavior and the connections among their behav-

iors. Briefly the utilization of simulation by computers to model the living mechanisms

and for improve the usage effectiveness of such simulations is important. Bio-inspired

meta-heuristics is an interdiscipline which is composed by a lot of different research fields,
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including computer science, artificial intelligence, applied mathematics, biological theo-

ries, physical phenomena, genetics, and some others. The powerful learning abilities and

evolutionary capacities of biological systems are motivating us to design more robust and

strong computational intelligent systems to solve the practical problems. These problems

are becoming much harder to be revolved due to its dynamic environment, complex vari-

able dependent relationships and time-related factors. Thus, the fundamental concepts and

related researches of the background, together with the research purpose are summarized

in this chapter.

In chapter 2, we focus on bio-inspired meta-heuristics, especially its computational

framework. We introduced bio-inspired computations from the following three parts: the

most famous Evolutionary computation (EC), the recent developed Ant colony optimiza-

tion (ACO) and the novel introduced Artificial immune system (AIS). In this chapter, the

basic descriptions including their biological inspirations, algorithmic modelling, computa-

tional systems and typical applications of EC, ACO, and AIS are presented.

In chapter 3, a new hybrid method by incorporating EDA into IA is proposed in order to

solve the TSPs. In this method, EDA is used to realize the information exchanging during

different solutions generated by IA through the probabilistic model. Thus, EDA enables

IA to be quickly convergent to promising search areas. To refine the solutions sampled by

EDA, a heuristic local search operator is also proposed to repair the infeasible solutions,

and further facilitate the search by making use of the problem-dependent knowledge of

TSP.

In chapter 4, another computational algorithm using particle swarm optimization (P-

SO) and a probability model (PM was proposed and presented to solve the well-known

graph planarization problem (GPP). GPP is a traditional combinatorial optimization prob-

lem which is deeply related with circuit board layout problem, VLSI desing, automatic

graph drawing problem, and some other graph-based problems. Moreover, it has significant

theoretical importance related with networks design and analysis, computational geometry,

and some other topological problems. Generally speaking, GPP is required to carry out two

tasks involving a maximum planar subgraph acquisition and a plane embedding problem.

The former is to find a maximum planar subgraph with a minimum cardinality subset of
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edges which can be removed from the original graph, and the later is to draw the remaining

subgraph on a plane such that no two edges intersect with each other except a common end-

point. The proposed PMPSO has demonstrated to be effective to find near optimal solutions

for GPP than the previously proposed methods.

In chapter 5, Ant colony optimization (ACO) is one of the best heuristic algorithms for

combinatorial optimization problems. Due to its distinctive search mechanism, ACO can

perform successfully on the static traveling salesman problem(TSP). Nevertheless, ACO

has some trouble in solving the dynamic TSP (DTSP) since the pheromone of the previous

optimal trail attracts ants to follow even if the environment changes. Therefore, the qual-

ity of the solution is much inferior to that of the static TSP’s solution. In this paper, ant

colony algorithm with neighborhood search called NS-ACO is proposed to handle the DT-

SP composed by random traffic factors. ACO utilizes the short-term memory to increase

the diversity of solutions and three moving operations containing swap, insertion and 2-opt

optimize the solutions found by ants. The experiments are carried out to evaluate the per-

formance of NS-ACO comparing with the conventional ACS and the ACO with random

immigrants (RIACO) on the DTSPs of different scales. The experimental results demon-

strate our proposed algorithm outperforms the other algorithms and is a competitive and

promising approach to DTSP.

In chapter 6, there are conclusions and future Works. We proposed IA-EDA, PM-PSO

and NS-ACO. They can be concluded that these new models can produce better solutions

than traditional model before. And in the future, I will go a step further on various kinds

of algorithm of Bio-inspired computation. Then, improve the performance of the current

existent Bio-inspired computation and apply them to solve engineering problems in new

fields. Last but not least, Bio-inspired computation can combine with other computational

intelligence algorithms for solving much complex problems.
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Chapter 1

Introduction

Bio-inspired meta-heuristics are the study of investigating biological mechanisms and there-

after modeling such living mechanisms and theories and their live by computer simulation-

s. A large number of papers have focused on the character is tics of the swarm behaviors,

such as birds, particles, fishes, human brains, as well as other insects including mosquitoes,

because of their incredible abilities to solve a lot of very practical engineering and opti-

mization problems. These problems are very difficult to be solved and some of those have

proved to be NP-hard or NP-complete. That is to say, no polynomial time algorithm can be

designed and used to solve such problems.

The mechanisms of the biologically inspirations and the framework of how to design

such meta-heuristics are brief summarized and introduced. Moreover, it studies the field

consist of all their social behavior and the connections among their behaviors. Briefly the

utilization of simulation by computers to model the living mechanisms and for improve

the usage effectiveness of such simulations is important. Bio-inspired meta-heuristics is an

interdiscipline which is composed by a lot of different research fields, including computer

science, artificial intelligence, applied mathematics, biological theories, physical phenom-

ena, genetics, and some others.

The powerful learning abilities and evolutionary capacities of biological systems are

motivating us to design more robust and strong computational intelligent systems to solve

the practical problems. These problems are becoming much harder to be revolved due to its

dynamic environment, complex variable dependent relationships and time-related factors.

Thus, the fundamental concepts and related researches of the background, together with
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the research purpose are summarized in this chapter.

1.1 Bio-inspired meta-heuristics

Bio-inspired meta-heuristics is inspired by biological mechanisms and theories. The ob-

jective of bio-inspired meta-heuristics is to design and develop computational intelligent

systems by acquiring ideas from the biological phenomenons. It studies the field consist of

all their social behavior and the connections among their behaviors. Briefly the use of com-

puter simulation for modelling the living mechanisms and for improving the effectiveness

of the designed computational tools. Bio-inspired computation is inspired from many kind-

s of natural metophors, including evolutionary theories, swarm intelligence, gravitational

law, ants’s food seeding mechanisms, particle corporation rules, and so on. The develop-

ment of such meta-heuristics will help scientists and engineer design more powerful tools

for those problem arisen from practical life. The emergence of such computational mod-

els and optimizers will give potential application on machine learning, big data analysis,

Internet of Things (IoT), artificial intelligence, patter recognition, and other engineering

applications.

The most characteristics of meta-heuristics is its wide applications and its self-adaption

over various kinds of parameters in it. The properties of meta-heuristics is quite different

from the common artificial intelligence (AI). In the traditional AI, programmers are the

creators who design and write source code (i.e., programming) in advance to make the

machine with some intelligence. The rules in AI is still-unknown. However, bio-inspired

methodologies often include the method of specifying a set of simple rules which is used to

control the following actions of the programming. Such a set of simple agents which obey

those rules is available for generating intelligence. And usually there is a method which is

designed in advance by the scientists to iteratively utilize these rules. That is to say, bio-

inspired meta-heuristic is a specified bottom-up, decentralized approach, which can enable

the constructed simple system to be a more complex one.

Complexity is often completely counter-intuitive from what the original rules would

be expected to produce. Many optimization algorithms and models have been proposed
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and developed in the literature. The models simulate the amazing characteristics of the

nature, such as its collective behavior of decentralized, distributed population structure,

self-organized mechanisms, and others. The resultant models are thus named as swarm in-

telligence or bio-inspired computational algorithms from the perspective of the application.

On the one hand, the swarm intelligence generally indicates a kind of capacity of solv-

ing problems that arisen from the interactions among agents of the population. These single

agents are organized by following simple rules defined by the swarm intelligence. More-

over, the term swam, to be specific, indicates stochasticity, multiplicity, self-organization,

randomness and messiness. The term intelligence represents that the emerged problem

solving method is with intelligence to handle with problems on hand successfully.

On the other hand, the swarm behavior is regarded as in those natural phenomena like

fish schools, bird flocks, mosquitoes insects, and others. For example, when a boock of

birds try to change their direction of flight, they behave so neat and seem to be a single

coherent entity instead of many individuals. Each agent in the population are trying to

maintain a minimum and certain distance from other agents in the population during the

evolution or moving periods, thus to make the entire population have sufficient diversity

to keep elite genes to the next generation. The rule in such a population has the highest

priority, and in nature it is usually confirmed by a frequently appeared behavior which is

observed from animals, human beings, or insects. If an agent is not acting an avoidance

behavior, it might trend to align themselves with their neighbors to avoid being isolated

from others.

Furthermore, a swarm is generally considered as a collection of individuals which co-

operate with each other, aiming to achieve the common goals such as the resolving of

problems. This collective intelligence emerges as a large group, and such a group is com-

posed by many relatively simple single individuals. These single individuals are controlled

to or self-adaptively make use of simple local rules to control their own actions and move-

ment. Via using these single actions and thus the reaction to the environment, the swarm

achieves its objectives eventually. Most importantly, it is worth emphasizing that no central

controller or rules exist in the swarm, which indicates that non central manipulation in the

colony is performed. On the contrary, such high achievement of the whole swarm is real-
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ized by taking advantage of all single individuals, which has a simple and random behavior

of its perception in the nearby environment. It also should be noted that the local rules gen-

erated by single individuals are with no relations to the total global rules of the swarm. The

above mentioned complex behavior of the swarm is thus realized by the interaction among

these individuals and the emerged interaction network has a capacity of generating such

powerful behavior for the swarm. As a result, the complex behavior of the whole swarm

can deal with more complicated situations or problems to generate promising solutions.

Among all these characteristics, a so-called self-organization is the most attractive prop-

erties of the swarm. Self-organization is generally regarded as an essential feature for a

swarm, and it usually help generate global (or macroscopic) response, rather than a lo-

cal (or microscopic) one. In the previous research, Bonabeau et al. suggested that the

self-organized ability of a swam have four kinds of characteristics. These are (1) positive

feedback, (2) negative feedback, (3) fluctuations, and (4) multiple interactions. The distinct

four feature of a swarm can be interpreted as in the following.

1. The positive feedback is the most important feature of a swarm. It is usually a sim-

ple behavior or generation rule which can promote the creation of the population

structures via some feedback mechanisms. Lots of such feedback mechanisms are

investigated by scientists. Among them, the recruitment and reinforcement have at-

tracted much attentions. For example, the trail laying and trajectory tracking of some

species such as ants, or the dance behaviors of bees. These behaviors are some typical

examples of the positive feedback.

2. The negative feedback is also an essential feature for a swarm. In order to avoid the

saturation which might occur in terms of available foragers, food source exhaustion,

crowding, or competition at the food sources [1].

3. Not only the regular behaviors, but also the fluctuations are crucial for the innovation

and creation of systems. These fluctuations include systemic errors, random walks,

stochastic task switching rule among several agents.

4. It is widely accepted that the randomness if a key to the emergence of structure
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because such mechanism enables the systems to generate new solutions or patterns.

The randomness also come from the interaction among different individuals. Such

interactions take place in a swarm and thus make the swam utilize the information

of the whole interaction network. The data or information is spread in the whole

network via the interactions.

In the literature, Millonas [2] investigated the swarm and conclude five basic principles

which are essential to make a swarm be intelligent. The five principles include: (1) A

proximity principle which means that a swarm must be capable of performing computations

on not only the space but also the time; (2) A quality principle which shows that a swarm

must has an ability of generating satisfying solutions for problems and responding to all

quality factors arisen from the surrounding environment; (3) A diverse response principle

which presents such a rule that a swarm should not distribute all its resources to a single

place, such as along a excessively narrowed channel, but such a rule that it must allocate its

resources to as many as places; (4) A stability principle which suggests that a swarm should

keep stable during its implementation. It is not desired that a swarm change its common

behavior once the environment changes; and (5) A adaptability principle which guarantees

the effectiveness of the problem-solving performance of a swarm. It means that once the

investment of energy or money, or something else is worth the computational burden, the

swarm must be capable of making such a response of changing.

Moreover, the characteristics or principles of a swarm described above have been mod-

elled from two aspects: one is a low viewpoint and the other is a higher one. These

models also have attracted much attentions from many scientists to motivate them to pro-

pose more and more problem-solving method with the methodology of swarm intelligence.

Such problem-solving methods have been applied on very difficult real world problems,

including network security, pattern recognition, data mining, combinatorial optimization,

scheduling, planning, engineering designs, network routing, etc.
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1.2 Computational Intelligence

In recent years, many research has been done on applying the information processing per-

formance of living organisms to computer systems, which leads to the foundation of a

new academic subject called Artificial Intelligence. The artificial intelligence is named AI

briefly.

The study of artificial intelligence can be divided into two groups. One group is the

Good old fashioned AI which mainly consists of the expert system and the case-based

reasoning. The other one in artificial intelligence is the Computational Intelligence which

contains the artificial neural network, the fuzzy control, the evolutionary computation, the

artificial immune system, and so on.

The expression of computational intelligence is usually defined as the capacity of a

computer to learn a specific task or realize a particular objective from data and experi-

mental observations. However, the computational intelligence is generally regarded as a

synonym of machine learning in artificial intelligence community. They have its own dis-

tinct characteristics. Many definitions of computational intelligence have been introduced

in the literature. The most widely accepted one is described by Bezdek [3], who interprets

computational intelligence as follows.

“A system is called computationally intelligent if it deals with low-level data such as

numerical data, if it has a pattern-recognition component and if it does not use knowledge

as exact and complete as the Artificially Intelligent one [4]”.

Usually, computational intelligence is considered to be a set of problem-solving algo-

rithmic methods which are inspired by nature. These computational intelligent methods are

especially useful for those hard problems such as NP-hard problems, which the traditional

methods fail to solve. The reason seems to be two-fold: (1) The procedures seems to be too

complicated for traditional mathematic methods that needs rigorous interpretations. The

problem in hand may include uncertainties in itself, more worse, its implementation proce-

dure may inherent be random [4]. Such a problem is hard to be solved using a traditional

mathematic method. Moreover, as a matter of fact, most of real world problem is hard to be

transformed into a binary encoded problem which the computer system is usually dealing
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with. For those multiple-valued or continuous valued encoding problems, computational

intelligence thus provide promising alternative methods for effectively solving them.

But generally, computational intelligence is a set of natural inspined computational

methodologies and approaches to solve complex real-world problems which mathematical

or traditional model can be useless for a few reasons: the processes might be too complex

for mathematics, it might contain some uncertainties during the process, or the process

might simply be stochastic in nature. In fact, many real-life problems cannot be translated

into binary language (unique values of 0 and 1) for computers to deal with it [5]. Compu-

tational Intelligence therefore provides solutions for such problems [4].

There are many kinds of computational intelligent models which have been proposed

in the literature, including evolutionary computation, artificial immune system, swarm in-

telligence, and other bio-inspired meta-heuristics. Nevertheless, the main principles and

implementation procedures of these variants of computational intelligence are similar. For

example, all of these methods are based on a population, and needs a number of evolution-

ary iterations (i.e. generations) to gradually improve the obtained solutions for a problem.

And all these methods can solve many kinds of real world problems, such as image pro-

cessing, natural language processing, optimization, computer security, IoT, and so on. In

a word, it is hard to clearly distinct these different computational intelligent methods [6].

In addition, computational intelligence is expected to perform as natural animals includ-

ing human beings. As a fact, the term of intelligence is generally related to human being.

Recently, many sale products and items are also named as “intelligent”, which is directly

linked to the decision making or decisions [7]. Moreover, a good news is that, accord-

ing to the No-Free-Lunch theory, it is evident that more different computational intelligent

methods are needed to be designed and further developed.
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Chapter 2

Bio-inspired Computational Algorithms

Bio-inspired computational algorithms are usually shortly called as bio-inspired computa-

tion, and it generally include the evolutionary computation, ant colony optimization, parti-

cle swarm optimization, and artificial immune systems. As a result, the bio-inspired com-

putation is generally considered as a total field of investigation which loosely knits the

above mentioned subfields together. Moreover, the bio-inspired computational algorithm-

s are tightly related with the community of artificial intelligence, especially the machine

learning research field. Both of the bio-inspired computational algorithms and machine

learning are based on some concepts and mechanisms of biology, mathematic theories and

models, and computer science. To make it more specific, the bio-inspired computational al-

gorithms are motivated from living phenomena, and thereafter modelled as computational

methods. The bio-inspired computational algorithms are no doubt a major research subject

in the natural computation [8].

2.1 Evolutionary computation

The most famous bio-inspired computational algorithm is the evolutionary computation

(EC) which includes genetic algorithms, genetic programming, evolutionary strategies, and

differential evolution. Without distinguishing the specific differences among those variants

of EC, the general concepts and mechanisms of EC are introduced.

Generally, EC follows the main principle in nature which is called “survival of the fit-

ness”. Such a principle demonstrates that the weak one in a population must be eliminated
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to save the energy investment. The typical evolution can be described as in the following.

First, a survival is realized via gene reproduction in the natural evolution process. Two

parents can reproduce one or more offspring. The offspring are thus survived into the next

generation by carrying their parents’ promising features. On the other hand, those agents

whose gene is not so good to be survive into the next generation will be delete from the

population. Not only our human being, the animals in nature are also obeying such “sur-

vival of the fitness”. For example, some bird species will kick all their siblings out from

its nest to make all resources under manipulated by only one. The one thus is able to get

more food and become more stronger, and eventually produce offspring to enter into the

next generation [9].

From a computational perspective, EC makes use of a set of individuals, which is usu-

ally called a population. Thus, EC is one of the population based meta-heuristics. Each

individual in the population is called a chromosome which displays all the features of the

individuals during the evolution. The gene in the chromosome can represent the feature (or

characteristic) of a chromosome which can be reserved by reproducing offspring. Mathe-

matically, the values of these genes are defined as alleles. In each generation (or iteration,

from a algorithmic viewpoint), the parents are scheduled to generate offspring. Such a

competitive schedule is called selection in EC. The most famous selection scheme is elite

selection [10]. The elite selection means that the individual with the best fitness in the

environment will have a largest probability of being selected to produce offspring. In the

traditional EC, two individuals (i.e. parents) are selected and exchange genes with each

other. This procedure is called crossover. In addition, to simulate the learning capacity

of human beings, each individual is also undergo a process called mutation. The muta-

tion (or learning, from some machine learning techniques’ viewpoint) can alter the gene of

chromosome and thus change the corresponding allele. Such an allele is calculated using

a fitness evaluation function. The fitness is used to evaluate the degree that a chromosome

is fitting the problem in hand to be solved, and also it can be used to measure the survival

strength of an individual. After a generation of evolution, individuals will be manipulated

to undergo pruning, then some elite individuals are able to survive to enter into the next

generation [11].
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In addition, the behavioral features sealed in the phenotypes are also capable of affect-

ing the evolutionary directions from two aspects. One is that phenotypes can affect the

genetic modifications, and the other is that the behavioral features can grow up indepen-

dently.

EC have some different kinds of developed models [12–14]:

1. Genetic algorithms are used to simulate genetic evolution mechanisms. The genetic

algorithms is summarized by Holland in 1975, and they are the most famous ECs

and have been used in a large number of applications. The generic procedures of a

genetic algorithm include encoding, fitness evaluation, initialization, selection, and

reproduction. It needs to be noted that there are various selection methods for genetic

algorithm. Some typical ones are: random selection, proportional selection, tourna-

ment selection, rank-based selection, Boltzmann selection and (µ + λ)- selection.

Also several stopping conditions of the algorithms are also found in the literature,

including: (1) The algorithm will be terminated when no improvement of the fitness

can be obtained over a number of consecutive iterations. (2) The algorithm will stop

when no changes occur in the entire population. (3) The algorithm will terminate if

a previously defined solution can be obtained. (4) The algorithm is scheduled to stop

once the global optimal solution is found.

There are a number of updating methods of individuals for genetic algorithms, in-

volving (1) the replacement of the worst individual in the population; (2) the re-

placement of a random individual in the population; (3) a kill tournament scheme;

(4) the replacement of the oldest individual; (5) conservative selection; (6) the elitist

selection; and (7) a parent and offspring competition strategy.

Several variants of genetic algorithms have been proposed in the literature, including

(1) a messy genetic algorithm; (2) an interactive evolution; (3) an island genetic

algorithm; and (4) niching genetic algorithms.

2. Genetic programming makes use of the tree-based data structure to represent a chro-

mosome and it is very similar to the genetic algorithm. Genetic programming was
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designed to evolve executable computer programs. The tree representations have dis-

tinct characteristics including: (1) adaptive individuals which indicate that the size

and shape of a chromosome can be changed if necessary, and (2) Domain-specific

grammar which means that the grammar can be accurately defined.

3. Evolutionary programming comes from the simulation of phenotypic evolution to

utilize its most promising feature, i.e., the adaptive behavior. It originated from the

study result of L. Fogel in 1962. The basic evolution programming makes use of four

components, i.e., the initialization, the mutation, the evaluation, and the selection.

The most distinct feature of evolutionary programming is its mutation strategies,

including (1) an uniform mutation, (2) a gaussian mutation, (3) a cauchy mutation,

(4) a Levy mutation, (5) an exponential mutation, (6) chaotic mutations, and (7) their

combined mutations.

A number of variants of evolutionary programming are also proposed in the liter-

ature. Some of them can be listed in the following: (1) the classical evolutionary

programming, (2) a fast evolutionary programming, (3) an exponential evolution-

ary programming, (4) an accelerated evolutionary programming, (5) a momentum

evolutionary programming, (6) evolutionary programming with a local search, (7)

evolutionary programming with extinction, (8) a hybridization with particle swarm

optimization.

It also has been applied on a number of fields, such as Bayesian network training,

controller design, robotics, games, image processing, power systems, scheduling and

routing, model selection, and design.

4. Evolution strategies are geared to generate various crossover, selection, mutation

strategies in the evolutionary progress. The first (1+1) evolution strategy was devel-

oped for experimental optimization in hydrodynamical problems. A typical differ-

ence between evolution strategy and other EC is that the changes derived from the

mutation are only accepted when a successful improvement of fitness is achieved.

The components of initialization, recombination, mutation, evaluation, and selection
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are the main procedures in evolution strategies.

Evolution strategies are also applied on various problems, including parameter opti-

mization, controller design, induction motor design, neural network training, trans-

former design, computer security, and power systems.

5. Differential evolution is similar to genetic algorithm, and is a random, population

based evolutionary strategy. It differs from the genetic algorithm in terms of the

reproduction strategy. The differential evolution utilizes a “one-to-one” selection

scheme. It has been applied on the following problems: clustering, controllers, fil-

ter design, image analysis, integer programming, model selection, neural network

training, scheduling, and system design.

6. Cultural algorithms make use of the cumulative deposit of knowledge to model the

evolution of culture. It was designed by Reynolds in the early 1990s. The belief

space is a distinct characteristics of the cultural algorithms which means the knowl-

edge repository. The collective patterns of the agents in the cultural algorithms are

maintained and memorized in such a knowledge repository. The knowledge at least

contains two main components, i.e., a situational and a normative knowledge compo-

nent, respectively. More kinds of knowledge such as domain, history, topographical

ones can be incorporated into the algorithm as well.

7. Coevolution refer to two different agents (or individuals) evolve together via competi-

tion or cooperation. Such competition and cooperation can help both agents acquire

more diverse features to survive and eventually get better performance for solving

problems.

There are many types of coevolution, such as competition, amensalism, mutualism,

commensalism, parasitism, etc. The competitive fitness plays important roles in the

algorithm, where there are many kinds of fitness samplings, including (1) all ver-

sus all sampling strategy, (2) random sampling scheme, (3) tournament sampling

method, (4) all versus best sampling strategy, and (5) shared sampling method. In

addition, the fitness evaluation involves (1) a simple fitness evaluation method, (2)
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a fitness sharing method, (3) a competitive fitness sharing method, and (4) a tourna-

ment fitness method.

Coevolution algorithm also has been applied on many problems, including game

learning, iterated prisoners dilemma, military tactical planning, drug design, con-

troller design, scheduling, neural network training, robot control, autonomous vehi-

cles, evolving marketing strategies, constrained optimization, and rule generation for

fuzzy logical controllers.

2.1.1 Genetic Algorithms (GA)

GA is a well-known intelligent meta-heuristics that originated from machine learning. Its

evolutionary behavior is simulating those rules and theories in the natural evolutions and

makes use that as a metaphor. The genetic algorithm’s most important component is a

population of chromosomes. It is realized by creating a colony of chromosome (also called

individuals from an algorithmic perspective). The data structure of genetic algorithm is

generally using a set of genes which is used to represent the characteristic or feature of each

chromosome. Each chromosome will be manipulated to undergo a number of generations,

where in each generation the chromosome will be selected, mutated, under crossover, and

updated before entering into the next generation. Such a cycle is to simulate the natural

evolution mechanism.

Till now, genetic algorithm has been successfully applied on an amount of different

applications. It is not the objective of this thesis that making a comprehensive summary

of the description and applications of introduced algorithms. Alternatively, some typical

one will be emphasized to make readers clearly understanding an algorithm. Based on

this consideration, the multi-modal optimization problems which are solved by genetic

algorithms are used as a good example [15]. Such a multi-modal optimization problem

contain more than one bits which are needed to be optimized. To successfully optimize all

those bits, it is a usual method to encode each parameter in the problem via a string of the

chromosome. Then the string of chromosome will be optimized generation by generation.

Although there are many investigation results which suggest that variable length of
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chromosome might give some advantages over the problem solving, it is more general that

the utilization of a fixed length of chromosome, especially for the optimization problems

because the number of parameters in the problem is fixed and known in advanced. After

determining the date structure for genetic algorithm, the algorithm will be carried out in a

cyclic manner, and it will continue until a termination condition is fulfilled.

The overall framework of Algorithm of GA is shown in Fig. 2.1.

The general implementation of a genetic algorithm can be summarized as follows:

First, the fitness is calculated for all the chromosomes in the population, the fitter a

chromosome, the better a solution. Second, the current chromosomes are evaluated and

compared. According to the used selection strategy, parent chromosomes are selected to

generate offspring. Meanwhile some of these chromosomes are undergone mutation op-

erators. Then the offspring and the parent chromosomes are compared. Better ones are

survived to enter into the next iteration. Such an iteration is called a generation for evolu-

tion. As a matter of fact, each single chromosome might fail to be an optimal solution for

the problem needs to be solved. But the elite selection scheme of genetic algorithm makes

sure that the average fitness of a following generation is better than that of the former gen-

eration. It is important for genetic algorithm to be able to find the global optimal solutions

eventually [15].

2.1.2 Genetic Programming (GP)

Genetic programming was developed to be applied on automatic programming and pro-

gram induction. Genetic programming has deeply relationship with the former introduced

genetic algorithms, and it usually can be regarded as a specialized GA by the modifications

of selection strategies, crossover and mutation operators, and updating schemes. However,

the most biggest difference between a genetic programming and a genetic algorithm is the

data representation method.

The genetic programming makes use of a tree-based representation for the problem

and it does not make distinguishment for the solution search space and the chromosome

representation space, which is quite different from other ECs. In other evolutionary com-
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Figure 2.1: The overall framework of Algorithm of GA.
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putational algorithms, the solution search space and the chromosome representation space

are generally distinguished by using the concepts of genotype and phenotype, respectively.

It is very easy in other evolutionary computational algorithms to make such a difference,

e.g., by the utilization of a kind of simplest form, the one-to-one mapping scheme [16].

As a result, the representation of the genetic programming include not only the solu-

tion search space, but also the the chromosome representation space. In other words, it

is possible in the genetic programming to synchronously evolve both representations. By

doing so, the computational effectiveness of genetic programming can be improved. To be

specific, the theoretical search space in GP is composed by the all possible compositions of

the solution search space and the primitive set of all symbols used in the programs. These

symbols in the programs are expressed using either a tree or a linear array, according to the

needs of the problem.

In a classic genetic programming, the crossover operator is the most important operator

using implementation. Compared with the mutation operator which just select some sub-

trees to make random changes using another randomly generated subtree, the crossover is

capable of exchange information among different individuals. Such interchanges of sub-

trees among different individuals have an advantage of no disruption of the programs’ syn-

tax [17].

Generally speaking, the genetic programming can evolve symbolic representation for a

functional language, such as the LISP [18]. The structure behind the search of the genetic

programming is crucial for the final performance of the algorithm. It can be described as

follows:

1. An evolved program contains several code segments. These code segments will not

effect the final performance generated by the whole program if they are deleted from

the whole one. These codes are also called semantically redundant ones, and the

related segments above can be considered as introns.

2. The growth of the evolution in genetic programming will not stop until a user-defined

maximum tree depth is reached or the evaluated fitness for the problem remains un-

changed for several iterations. In other words, such evolved process is able to in-



17

crease indiscriminately. This process is also called bloat.

3. In genetic programming, the biggest serious limitation is the bloat. As the bloat not

only influence the fitness evaluation, but also case a reduction of effective search

operators and meanwhile needs much time to be implemented. That is to say, the

bloat is very time-consuming. The values of the fitness almost always stagnates once

the bloat occurs.

4. Within the implementation of the programming language, i.e. LISP [19], the pro-

grams are constituted by using parse trees based data structure, rather than the linear

array of codes. It thus makes the distinct characteristics for LISP. As a result, a

number of genetic programming users tend to utilize the LISP.

5. Nevertheless, there is an implementation problem in details. As noticed by many

researchers, it is more simple and straightforward to run genetic programming in a

programming environment without using the LISP. The programs consist of many

elements which are taken from the functional sets together with the terminal sets.

The functional sets and terminal sets are those typically sets fixed for the symbols,

which are selected to be an appropriate solution for the problem on hand (or, the

problem under the area of interest).

In the following, more details of the crossover operations in genetic programming are

going to be elaborated. In a genetic programming, the crossover operator is implemented

via selecting randomly generated subtrees among other chromosomes (or, individuals) to

be exchanged with each other. The selection probabilities are determined based on a fitness

evaluation function. The fitter the subtree, the higher it will be selected. Moreover, it should

be emphasizing that the genetic programming does not make use of any mutation operator

in its evaluation, not like the genetic algorithms do. However, genetic programming still

utilize various developed genetic operators, which are mostly problem-related, or based on

some problem inherent knowledge. As an example, the automatically defined functions

usually accept those definitions of the subtrees (i.e. part of the programs) that should be

named as from the remainder of the program. Thereafter the genetic evolution’s objective
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is to get optimal solutions for the problem and their decompositions into the automatically

defined functions together [20]. For a given environment, it can be easily determined the

fitness function for the genetic programming, either by using a specific application evalu-

ation method, or by utilizing a form of a symbolic regression strategy. No matter which

method will be implemented, the final evolved program is scheduled to be implemented,

for all cases, to find out the objective which it might be carried out. Then the outputs of

such objective functions will be used to compared with a given desired results, determining

the output errors which are used to evaluated the tree-based chromosome’s fitness. Final-

ly, a termination condition which is utilized to stop the implementation of the algorithm

should be utilized, e.g., the condition that the maximum number of evolving iterations has

been reached is widely used [21].

2.1.3 Evolutionary Programming (EP)

EP is very similar to genetic algorithms, and it comes from the simulation of phenotypic

evolution to utilize its most promising feature, i.e., the adaptive behavior. It originated from

the study result of L. Fogel in 1962. The basic evolution programming makes use of four

components, i.e., the initialization, the mutation, the evaluation, and the selection. The most

distinct feature of evolutionary programming is its mutation strategies, including seven

different kinds of strategies as mentioned above. A number of variants of evolutionary

programming are also proposed in the literature. Some of them can be listed as in the

above introduced eight variants. It also has been applied on a number of fields, such as

Bayesian network training, controller design, robotics, games, image processing, power

systems, scheduling and routing, model selection, and design.

Genetic speaking, EP is a population-based random optimization method, which em-

phasizes the placement of the behavioral relationship between the parent individuals and the

offspring individuals. Compared with genetic algorithm which generally trying to emulate

some knowledge-domain specifically obtained genetic operators, evolutionary program-

ming does not make use of such operator which can be observed from natural mechanisms.

Instead, it is quite similar to the evolution strategies even though both the evolution
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strategies and the evolutionary programming are designed and developed by different sci-

entists independently. The common features between evolution strategies and the evolu-

tionary programming are that (1) they are useful optimization methodologies which can be

applied on a lot of problems; and (2) they are population-based evolutionary methods, in-

dicating that the analytical discovery for them are almost impossible, which is the distinct

features of the traditional optimization mathematical methods. Like many other evolution-

ary computational algorithms, evolutionary programming also has an inherent problem that

it is usually trapped into local optimal solutions. Finding the global optimal solutions is

not a trivial task for it. As an alternate, real-valued function combinatorial optimization

problems where the solution search space or the fitness search surface is very rugged [22].

To run an evolutionary programming, it should be firstly pointed out that an underly-

ing assumption should be utilized. The assumption is that the solution landscape should

be featured in terms of a number of variables, just like genetic algorithms do. As a re-

sult, optimal solutions, either local or global one, exist in the fitness space, and can be

expressed in terms of these variable. As an example, for the famous traveling salesman

problem, the objective is to find the shortest routing path for the salesman when the cities

and their locations are given. Thus each solution for the traveling salesman problem should

be an Hamilton routing, or path. The length of such an Hamilton routing can be regarded

as the solutions’ fitness. Consequently, the fitness landscape can be characterized via a

hyper-surface whose Hamilton routing lengths are proportional to those under one-to-one

mapping in the surface.

The overall framework of Algorithm of EP is shown in Fig. 2.2. Each procedure can

be introduced in details as following [23].

1. An initialization procedure is carried out the initialize a population of candidate so-

lutions for the problem. Generally, the solutions in the population will be generated

based on a randomly distributed model. If some prior problem-related knowledge

can be acquired, some other distribution models based initialization can also be de-

signed and utilized. Most importantly, the number of the initial population is quite

influencing the computational complexity of the algorithm. However, it is very hard
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to determined a trade-off between the population size and the computational com-

plexity. Usually, it is set according the problem.

2. The initialized population will be manipulated under a number of iterations (i.e.,

generations). Each solution in the population will be selected and mutated according

to some mutation operators. If there are search boundaries for these mutated vari-

ables, once the mutated one located out of such scope, it will be re-initialized into

the feasible scope.

3. Selection and mutation operators strongly influence the search performance of evo-

lutionary programming. In the literature, many variants of selection and mutation

operators have been proposed. After mutation, the offspring will be evaluated by

using a fitness evaluation procedure. It should be noted that there is no crossover

operator in the evolutionary programming.

4. The algorithm continues until a termination condition will be fulfilled.

2.2 Ant Colony Optimization (ACO)

2.2.1 Introduction

The Ant Colony Optimization (ACO) is inspired by the real ant behaviour (Fig. 2.3) in

finding the shortest path between the nest and the food [24]. This is achieved by a substance

called pheromone that makes ants can keep the trace of the others. In its search the ant uses

heuristic information which itself knows where the smell of the food comes from and the

other ants pheromone information of the path toward the food.

In fact the algorithm uses a set of artificial ants as individuals to solve a problem by

exchanging information via pheromone deposited on graph edges. The overall framework

of algorithm of ant colony optimization is shown in Fig. 2.4.
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2.2.2 State transition

The conventional TSP is one of the most ordinary and popular NP-hard problems. A large

number of algorithms mentioned in references resolving TSP and enhacing the solution’s

quality are divided two categories: the exact and the approximation algorithms [25–27].

But this kind of TSP that is static and ideal does not accord with the realistic applica-

tions. Nowadays, DTSP, the variant of TSP, possesses the dynamic environments such as

replacing the cities with time [28, 29], changing the cost of the cities’ arcs [30] and so on.

Addressing the DTSP is not to obtain the global optimal solution completely anymore, but

to track the new ones with the changing environments. Therefore, the efficiency and effect

of the algorithms are the key factors of solving DTSP.

In this paper, we utilize the DTSP comprised by random traffic factors. This model

introduces the cost of the edge between cities i and j. The cost is Di j × Ti j, where Di j is

the travelled distance between cities i and j, and Ti j is the traffic factor indicating the traffic

jam between cities i and j. After every f iterations, Ti j changes randomly according to a

probability value m whose changing range is limited in [TL,TH], where TL and TH denote

the lower and upper bounds of traffic factor respectively. The value of Ti j determines the

degree of the traffic jam. The larger the Ti j is, the severer traffic jam the corresponding

edge indicates. Furthermore, Ti j = 1 represents no traffic jam. In this way, dynamic

environments are generated randomly by the frequency f and the magnitude of the change

m.

2.2.3 Solving the TSP using ACO

ACO is a typical swarm intelligence and it has been used in a wide areas of applications.

In this section, a typical and initial application of the ant search will be illustrated. The

ant optimization search algorithm has good potential for problem solving NP-Hard prob-

lems and recently has attracted a lot of attentions. The Ant Colony System (ACS) is the

best method of the earliest ones on solving the TSP problem. It is claimed that the ACS

outperforms other nature-inspired algorithms such as simulated annealing and evolutionary

computation. Moreover, they compared with a hybridization method which combined the
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ant search algorithm with the famous local search method 3-opt. As a result, a version of

the ACS improved with a local search procedure is proposed with the advantages of some

of the best performing algorithms for symmetric and asymmetric TSPs.

In recent years, many variants of ACO have been proposed for solve TSP, aiming to

improve its search performance [31]. In [31], the authors used two kinds of pheromone to

guide the search. The two kinds of pheromone are combined using a new evaluation during

the process of the ant tacking the routing of the TSP for the next visiting city. It is realized

as by changing the sizes of ants’ population during the implementation of the algorithm.

All variants of ACOs are investigated by using a number of TSP benchmark instances.

Another promising research was carried out by M. Dorigo in [32], where three kinds of

novel models including ant-cycle, ant-quantity and ant-density models were proposed. The

difference among three models is the updating method of the pheromone, either ant cycled

based, or ant quantity based, or ant density based. The three models are also derived from

the research [31]. The important three kinds of variants of ant models can be introduced in

details as shown in the following.

1. In the ant cycle based ACO model, the pheromone updating procedure is implement-

ed after all the ants have finished their tracking. In other words, these pheromone are

updated at the same time which is quite different in the other two models. On the

contrary, ant will lay out its pheromone once it visit a city in the routing, and do not

wait for any other ants in the ant quantity based and ant density based models.

2. Moreover, M. Dorigo claimed that the solution convergence is much faster by using

the ant density based model by comparing it with the other two models, especially

in the early stage of the iteration. As a result, it is strongly suggested that the ant

density based model should be applied at the earlier search stage of the algorithm.

3. Due to distinct characteristics of ant cycle based model, it is recommended by M.

Dorigo that the utilization of the ant cycle based model should be used in the rest of

the search stage of the algorithm. It is because the ant cycle based model has utilized

the global information of the pheromone.
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4. Last but not least, a local mutation method which is almost the same as those pro-

posed in evolutionary computational algorithms is also utilized in improved ant colony

optimization models. The local mutation method is used to avoid the search algorith-

m not to be trapped into the local solution optima.

2.3 Artificial Immune System (AIS)

This part covers a term, AIS and its whole expression is Artificial Immune Systems. This

system is a good system used as metaphor for solving engineering problems. As for AIS,

it just comes into being, but it still draws a lot of experts. There are experts like Jerne [33],

[34] and Bersini and Varela [35]. Why so many people are interested in this system. The

reason is to get some useful technology and knowledge and thus people can solve many

problems. It is quite common to find out gross simplifications of the way the immune

system works. However, this is not a particular question. In order to update the system,

some of the experts try to turn to nature rather than computer or other manmade machines.

As a result, this system will not become a hard question for people to answer.

Attempts have been made to apply AIS to many different problems. For example, there

are some people who are trying their best to make the system applicable [36]. Here the

authors attempted to apply simple immune metaphors to the domain of fault diagnosis by

using a sensor network. Afterward, people focus on the immune system and try to solve

make use it to solve some problems like the safety of computer and the check of some

unknown virus [37]. More people began to discover earlier work by theoretical immunolo-

gists such as work by Perelson [34] and work by Bersini and Varela [35] who attempted to

create models of the immune system that could provided inspiration for biologically mo-

tivated computing. The range of application of AIS is growing, but in Computer Science

terms, the discipline is still young.
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2.3.1 Introduction

There is another system IS, whose whole expression is immune system. As for this system,

it is very strange and it draws a lot of people’s interest because it is as complicated as our

brain. With the science and technology developing by leaps and bounds, the development

of immune system is very fast, too. What’s more, it has drawn great interest of experts.

According to our knowledge about the IS system, we come to know it is the most important

in the immune system family. It has a lot of useful features, and they are useful not only in

the biology field but also in the protection of the computer. There is another system that has

something in common with the IS system. It is ANN whose whole expression is artificial

neural networks. Owing to this network, people begin to generate the AIS. Besides, it

appears very quickly and has already become a new intelligence system in the computer

field.

As for AIS, people usually think it has something to do with new ideas, some novel

concepts and even the parts of the computer itself. What’s more, this system cannot be

seen and felt, so it is very abstract. Most AIS can solve many problems that are very

complicated. And these problems can be about the computer and the engineer like the

recognition of the pattern and the other problems. According to this problem, we can see

some clear difference between AIS and other systems. As for AIS, it mainly focuses on the

computer field and other immune systems like IS and other systems, they will pay attention

to the principle of the IS in order to know the behavior of the systems. As a result, people

can understand the science of biology. But, this system also has some relation with other

systems. For example, people usually use one method to achieve other results. For instance,

people use the model of the IS to stimulate the appearance of AIS. As a result, we come to

know that there is a relationship among different systems.

This part provides a comprehensive overview of the field of Artificial Immune Sys-

tem (AIS) which is the application of immune system metaphors to computing problems.

This paper will at first pay attention to the usage of the immune system. That is because

this is most relevant to this thesis, examining in-depth how other works have extracted the

metaphor and applied it to their particular domain. No real attempt is made at explaining



25

the domain application in depth, as this would require too much additional background

knowledge rather, this work focuses on the metaphors employed. A summary is then pro-

vided that highlights the strengths and weaknesses of related research, and indicates the

direction for research contained within this thesis.

2.3.2 Artificial Immune System (AIS)

The field of AIS is new and rapidly expanding. In the last few years, the Computer Science

and Engineering communities have started to use the immune system as a metaphor to

solve a myriad of different problems. As for this part, we will try to understand the survey

that is made in applying the immune system metaphor to various applications. There are

a number of reasons why the artificial immune system is of interest to many researches,

based on the basic principles given in the previous chapter. These can be summarized and

we can see the summery from the following part:

• Recognition: The first function of the immune system is to recognize the difference

of many things. And thus, it can recognize a lot of different things and make response

according to the difference. What’s more, the immune system can know whether the

cells belong to itself or not. As a result, it can help protect its own cells and keep

other cells away from the body.

• Feature Extraction: If we want to extract the characteristics of the system, we will use

APC, which stands for Antigen Presenting Cells. By using this method, we can not

only extract the features of the system but also try to understand its characteristics.

• Diversity: If we want to have a huge variety of elements, we will have to use the

hyper mutation of the cells. And thus, there will be other forms of cells in the body.

In order to make it safer, we have to make sure that the good cells can be protected

and some bad cells will be kept away from the body itself. As a result, we will reach

the purpose of diversity.

• Learning: The immune system can be updated very quickly. As a result, we can say

that the immune system is a studying system because it can improve itself according
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to that knowledge.

• Memory: As for the immune system, it can remember what it has done.

• Distributed detection: We usually can see the distribution function of the immune

system. Generally speaking, one will take control of other element.

• Self-regulation: owing to the diversity of the immune systems, there are a lot of

regulations about the control of the population under this system. As a result, this

system can reach self-regulation.

Thus, we can see the advantages of the immune system from the above knowledge.

Thus, people want to use this system in fields like computer and science. What’s more,

people show great interest in those applications. So, we will give some examples about

these applications.

2.3.3 Use of the Immune Network Metaphor

This section gives an overview of the current techniques that use the immune network

as a metaphor for different domains. The purpose of this section is to highlight different

approaches taken and to show the way in which they have applied the metaphor to particular

problems.

2.3.3.1 Learning with Artificial Immune System

Since we can gain some knowledge about the immune system, we will think that the im-

mune system can be seen as a very important method of learning. What’s more, we will

accept that the AIS can understand the different elements and make response according

to the findings. Many experts once said there were a lot of factors or elements that can

be used [34, 38]. This thesis can be taken as inspiration previous work this will be exam-

ined in detail. We know that the first work that has been done was made by Cooke and

Hunt [39–41]. There are three passages talking about the learning method of the system.

According to the clarification, we know that the DNA can be updated or not. What’s more,
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in order to achieve this goal, we will obtain the learning method of the system. By us-

ing some important methods like C4.5 [42] and other methods, we can make our work

done [43]. As a result, we can use some good network or just obtain a better system to

fulfill our purpose. According to the author’s words, we can know that the error rate of the

classification. The rate is only 3%. This is quite different from that of other technologies

and they have better behavior than this system. In order to have a better understanding of

the system, we will create a lot of elements that can be used in the clarification. These

elements may include B cells and the concept of the immune network. What’s more, we

can know that this assortment can be very complicated.

The core of the work was how to use the Immune Network theory [44]. As a result,

people can have a better understanding of this system. As for the B-cell, we usually think

that this has something to do with the body and can be seen as the DNA elements. What’s

more, there will be some other factors that can change the genes. Besides, we can learn

a lot from the DNA sequence. What’s more, we can know that they usually symbolize

the components of B-cells. Generally speaking, people will choose the data of the survey

without purpose to create a B-cell network. Therefore, the rest will be left to make other

things. As for Antigen, it is made out of the B-cell network and it is chosen without clear

purpose. As a result, the surrounding B cells are up to a certain distance away in the

network. To be specific, if the bind was successful, then the B cell was cloned and mutated.

They may include choosing the gene and making the mutation out of the genes. This was

an attempt by the system to generate a series of virus that can help to simplify the process

of the assortment. Thus, so long as people generate a new kind of cell, they will add it to

the network of the family of B-cells. If the new B-cell could not be integrated, it would not

be included in the B-cell family. If people cannot succeed in getting a good relationship

between the new virus and the B-cell family, they will get rid of the new gene.

This work was a very encouraging first step however, and attempts were made to make

it applicable to some areas that are about ration and reason [43], and thus people can easily

tell whether it is fake or not. This kind of work is more important [40] because it attempts

to gain more from the B-cell family. As a result, people who write this paper will try to

find the relationship between the new cell and other immune system. In the system, each
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case is represented by a B-cell object and the case memory was created by using a network

of B cells. They will have a link with other similar cases. The memory was self-organizing

was involved, as it was stated by the authors that case base reasoning does not support the

concept of mutation. The idea behind creating a case base is that, given a new case or

situation, it is possible to query the case base for similar past situations. With the immune

based CBR system, a new case could be presented to the immune network and the best

cases that matched the new cases would be retrieved. The authors argued that one benefit

of using this approach is that the case memory is able to create its own organization without

the need for input from the user. This can be a great benefit since it is difficult for the user

to identify and create possible structures for the case base. However, the authors do point

out difficulties with their approach, the principal one being that of determinism. With the

immune base approach, there was no guarantee that the same result would be returned twice

from my particular search. This is to do with the stochastic nature of the search mechanism

in the case base; as a consequence, there was never a guarantee that the same match would

be found twice.

Later, people begin to use this learning method to avoid some fake works and so on.

According to the works in [41], we can get the idea that the AIS system can help with

the loan and mortgage system because it can watch for the real information about the two

behaviors. Owing to this kind of pursuit, people will try their best to advocate the use of

B-cell objects. Thus, they will try to find out the loan application. In order to have a better

result, people apply a lot of good elements to this system and try to get the desirable result.

And they even have set the good example for the later research (defining how good a match

had to be before a bind between B-cell and antigen could occur). Whatfs more, people can

have a good relationship with the immune system because they will try their best to find

out it.

This work has not been the only work addressing the problem of creating a learning

system. Research made by [45] the experts aims to get some knowledge about computation

from the immune system. According to their survey, they usually reach to their results

based on the immune system. These experts have already got some good results by using

the behavior of the system and thus they can generate something that is about diversity
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and efficiency. In order to get the desirable results, they will obtain a lot of solutions.

When people have to make a comparison between their research and Gas which is more

traditional, they will apply many useful elements.

2.3.3.2 Controlling Robot Behaviour

People once made some attempts to use the immune system to fight with those robots

and tried to narrow down the number of them. As a result, they have some form of self-

organizing group behavior, work by [46] attempts to create a group of robots which behave

in a self-organizing manner, to search for food with no help of those international elements.

The core of their research is how to improve the link between people and the robots. In

order to reach their goals, these experts use three major features of the immune system.

The first one is B-cells. In this feature, they use one cell to stand for a robot and every

robot has totally different characteristics. The next one is immune web. Owing to it, the

robots can have a conversation with each other. The last one is the data of the B-cells. More

robots there are better performance they will have. To gain the data of the number of the

robots, people will use some formula which is presented in the [47]. As a result, people

come to know that these robots are insulted by the near robots and they are affected by the

environment, too. Every robot has his ability to calculate food and when robots compare

their capacities together, they will find the difference. We can say that if a robot cannot

calculate the food accurately, it will be seen as very weak. Thus, it is likely to be replaced

by others. However, if a robot can calculate the data very accurately, it will be seen as a

good robot. Later, it will become a very good calculating tool. According to their data, we

can see that they have very good, they also point out that if they want to have better results,

they will need more survey and tests.

In very similar work by [48], the immune network metaphor is applied to generating

the wasp method for robots that belong to mobiles. Yet, this is quite similar with those

things mentioned above. The authors do extend the concept in Lee [49] who introduce

the metaphor of the T-cell to the system. Besides, they use some good formula to perfect

the system [47]. However, the authors fail to get good results from the formula. Besides,

people will try to include the desirable results and some other outcome with the help of the
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data. Without the help of T-cell conversation, people won’t have good results.

2.3.3.3 Robot Control

Moving away from the field do generation behavior for robots, work has been done on

creation a simple system that can allow for a decentralized adaptive control mechanism.

The authors propose this in the context of controlling the walking behavior of a 6 legged

robot [50]. When we make this illustration, we usually think that the b-cell system is the

leg of the robot and the immune system is the heart of the robot. Thus, the B-cell and the

immune system have very close relationship. Due to the two systems, the robot can walk

very well. Without one of the two elements, the robot cannot walk, let alone develop fast.

As for the B-cells, we can say every B-cell is an antibody. And again it is calculated based

on the equation given in [47]. As we all know that this antibody is the leg of the robot, and

so the robot can move forward. This is only a proposal paper and therefore no simulation

results were available.

2.3.3.4 Associative Memory

Robotics is not the only research field that has been attempting to use the immune network

idea and has been applied to create an associative memory model [51]. Associative memory

is used to remember patterns and enable fast and effective recall of those patterns. Rather

than strictly using an immune network as a basis the author’s abstract two mechanisms

defined [35] that enable them to create a system that can create an associative memory.

These two mechanisms are the immune system meta-dynamics and the immune recruitment

mechanism. A population of points in space is defined. Thus, we can have some knowledge

about the competition and try to make it better. As a result, we will have a better pattern

of the robot. These patterns can then be recalled, and indeed the authors report significant

improvements in both time and effectiveness of their algorithm when compared to other

associative memory techniques.
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2.3.3.5 Fault Diagnosis

As for the field of diagnosis, we usually say that it is the prediction and the recovery of

the plant. One approach to detect abnormal sensors within a system [52], has been to use

the combination of Learning Vector Quantization (LVQ) [53] and the immune network

metaphor. The core idea about the system is using LVQ to have detection in the system

and try to find the relationship between the two sensors. When this sensor is used, people

will try to find the other sensor. Different sensors will work together. That means every

B-cell will watch out for a sensor, and when it is not good, we can say it is not normal.

Every sensor has a value and we can see the formula in [47]. According to the formula,

we know that the characteristics of this sensor are similar to the other sensor rather than its

neighbor. When we see a sensor that has a low value, we usually say that it is a fake sensor

and they can generate their function in a fault situation. What’s more, we have seen some

cases where the results of the test are not the real purpose of the plant.

There are many kinds of diagnosis and a very normal one is active diagnosis. In this sit-

uation, people will try to find out the relationship between the current state and the ordinary

sate. As for those experts, they think that this immune system can be seen as a good idea

because it can generate a desirable diagnostic system. What’s more, the immune system

is also important to the immune network. Besides, we can see the relationship very easi-

ly [52]. These different sensors can be linked together through a web that is the immune

system. Each sensor can keep its information and data although they can change very fast.

Though science and technology can change by leaps and bounds, each sensor can have its

own information. However, the work differs from the above is the away in which the reli-

ability if each sensor is calculated. This will not be explored here. The key features of the

immune systems are about the agents which can be seen as different from each other. They

can have a parallel interaction with each other too. That means they can only rely on their

knowledge and information to work. And there is not a central controller. Besides, people

will use a network to create better memory of them.
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2.3.3.6 Augmenting Genetic Algorithms

In order to address the issue of designing a Genetic Algorithm (GA) with improved con-

vergence characteristics, especially in the design field, we will give some examples about

the immune system based on the GA system [54]. The motivation for their work focuses

on the fact that if we want to make a good design element, we will have to make some

choice and never try to neglect the relationship among the designs. In order to have a better

solution, people will try their best to use some antibodies like DNA to make the definition

of the similarity among those complicated solutions. We can see this from work found

in [47] and is simply a bit by bit match for continuous regions. As for this model, people

can generate and remove some novel solutions. People can use this model to clarify a lot

of questions. Thus, we can get a result that some ways are very good and specific but some

ways are very abstract.

Yet, there are many experts who just point out that there are a lot of structural designs.

They are very important because all of them can introduce a system of control into this

design. Besides, these people can make a contextual solution to this problem. What’s

more, by using these solutions, people can understand that all the experts and other good

people can have a better understanding of the problem.

The main difference of their approach to more traditional GA solutions is the way in

which the fitness of a solution is computed. Using this approach, people can find a very

suitable way to solve this problem. As a result, this solution is not only about the function

of the object but also is about the design as it would be in a traditional GA, but also on how

well the solution matches the best solution. Then they will choose some ways that may

help them with the problem. For example, they may come to a conclusion that these ways

are very useful. Whatfs more, when we use a method that is different from the traditional

one, we will have to adjust to a better situation. Yet, although many experts think that

this has something to do with the immune system, we cannot deny that other systems also

contribute to it.

We can see the above researches that pay much attention to the problem. We can see

this specific problem from the work in [55]. Besides, we can adjust to the situation where
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people will use the immune network to solve many problems. And experts hold the view

that these people represent the use of an immune system and can do a lot to solve the

problem. As for the immune system, we usually think that it include B-cells, T-cells and

some other important genes. As for the agents of the paper, we will try our best to figure out

the ways to answer the questions. Later, when we want to know more about the problem,

we will try to understand the problem. Besides, we can get better results if we can have

a better understanding of the problem. What’s more, we can say that if we want to find

out the reason why the immune system has so many elements. I can tell you that these

problems are everywhere. Besides, they may include B-cells, T-cells and other important

genes. Besides, we can have similar researching experiences too. Also, these systems

can have very different functions. And we can find those functions from work in [56–58].

At this time, the experts can use methods like calculation, clarification and other possible

solutions to solve the problem. What’s more, if we want to have more knowledge about

the immune system, we can adapt some ways to solve this problem. There are two features

about this. The first one is the capability to generate a series of solutions. The second one

is about the efficient survey. When we include the mutation, we can say that this is very

important and can stand for some standard situation. In order to solve the problem, people

will try their best to gain more about the mutation. In doing so, we can apply a lot of good

ways to solve those problems. Besides, they even argue that the functions of this system are

better than that of the traditional functions. What’s more, they even think that this system

can maintain a lot of good features that can solve this problem. As a result, people can get

better solution.

2.3.3.7 Scheduling

It is quite difficult to generate some important ways to deal with a fast changing problem.

There are many authors who have written some good books like Mori [59], Chun [60],

and Mori and Makotot [61]. They have generated some important ways to adapt to the

metaphors of somatic hyper mutation and the immune network theory. There are also

works in [59–61] that stress the importance of the building work. What’s more, we can

understand the sequence of the problem and the functions of the object. As a result, we
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can say that these problems can be solved easily if we can understand each other quickly.

Thus, we can be optimistic about the work. In order to control the immune network, we

have to stimulate and perfect the system. Owing to this, we can say that this can help to

take control of the production of many antibodies. If we do so, we will ignore the effect of

T-cell. However, those experts still hold the view that their ways are efficient and thus can

solve the problem very quickly. As a result, we can say these scheduling is very optimistic.

In order to have a better result, we have to obtain more work to adapt to the changing

surroundings.

2.3.3.8 The Use of Other Immune System Metaphors

The use of other ISM is attracting growing interest with Computer Scientists. This section

will briefly outline current areas of research where immune system metaphors, other than

the immune network idea, are being employed.

The first area to examine is the safety of computers. Thus, we may consider it as

the safety system of computers [62].Although there are a lot of different aspects between

the living organism and the computer system, we can say they still have many things in

common. And we can do a lot to improve the safety. To establish a good immune system

of computer [63–66], we have to make a lot of researches. What’s more, we have to use

some modern technology to improve the safety. We can see a lot from the current work

in the example of [67]. At the same time, we can draw people’s interest to help with the

further development. As a result, we can gain much from the immune system, too.

We can use so many ways to generate the safety system of the computers. What’s

more, we can use some basic methods [68, 69] to update the development of the computer

system. Besides, we can improve the statement of the computers or other elements. And

all the software can help to improve the specific feature of the element. Thus, we can have

a database of the researches and thus we can make our behaviors checked too.

In order to build up a pattern of normal behavior for a particular information bank of

the software, we have to watch out for the systems all the time. But, sometimes we may

forget the old information bank and as a result, we may leave much information out of date.

According to the explanation of the author, we can say this system is not very dear because
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we can use it in our daily life. And thus, it will not be wasted. Besides, we can say they are

very important because this information may be very good too.

There is another method that can replace this system. It is the instruction of the lately

information. Besides, we can say they can be used as the networks of computers rather

than some personal computers. This technology can be used in the field of network service

and other kinds of services. We can see the works in [70, 71]. From the two systems, we

can easily see the possibilities of the possible buildings. This work was advanced in Kim

and Bentley [72]. The two people have made great contribution to the development of the

intrusion detection. In this paper, they can improve the quality of the buildings. From the

very beginning, we can see it in [63]. What’s more, we have made some efforts for the

development of the system, too. But, there are still many negative things that we have to

deal with. According to [73, 74], we can see the harmful aspects of the system. So, we

have to handle them. As for the [63], we can see three aspects of the system. The first one

is definition of the system. The second one is the detection of the system. And the last one

is the observation of the system. But, in this thesis, we will stress the computer viruses of

the system.

In order to apply that information, we have to make great contribution to the problem.

We can see the work in [63]. According to the information, we can use the method to

improve the safety of the computers. What we can learn is that we can tell the ordinary

computers from those abnormal computers. We can see separate ways in [75–77]. But,

they have something in common. That is they all use the metaphor to improve the immune

system. As a result, people can adapt to other situations like COM and .EXE files. If an

unknown virus is detected, a sample is captured. From this sample, we can see some useful

information about the virus. What’s more, we will know about the processing system of it.

This is analogous to how the innate immune system works, as the first line of defense. From

the processing system, we can see that much of the virus is stimulated or discouraged one

way or another. But, they all happen in the controlled surrounding. As for this situation, we

can say that they are more about the development of the virus system. Thus, we can see a lot

from the virus. The signature extraction mechanism is based on immune system metaphors.

For example, we usually think that when we duplicate a product, we will produce a lot of
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possible code of signatures. Thus, we can have many samples to choose and we are likely

to choose the best sample. This is achieved by generating large numbers of samples that are

chosen at random. As a result, we can see the potential virus easily. But, sometimes we can

see that some virus has been found. If we want to get rid of the bad virus, we have to make

efforts to identify them at first. Then, we can try to remove them. There are many ways

to make this definition and we can try our best to watch out for those bad virus. However,

if there are virus that is difficult to identify, we have to obtain other ways to improve the

situation.

We can see many books in [78–80]. Those books mainly talk about how to choose the

most useful information. As a result, we can also see a large number of experiments, too.

Thus, if we want to apply the algorithm to the Mackey Glass series [81] and was used to

create suitable test date and some simulated dates. The authors claim that the algorithm

is successful in detecting any shift from the normal pattern effectively without any prior

knowledge of the anomaly.

Work in [37] looks at applying immune system metaphors to extended genetic algo-

rithms for search optimization problems. Here, the authors propose an extension to a stan-

dard GA by the inclusion of immune system metaphors of B cells, using a combination of

memory cells and suppression cells. This augmentation to the algorithm creates a memo-

ry of best case for searching, allowing for the reinforcement of good solutions within the

search space and to use those good solutions to further exploration.

Work proposed in [37, 82] suggest a framework for creating a production line control

system based on immune system metaphors. In order to realize this, the authors use the im-

munological metaphors of: (i) B cells, which present detector agents a monitor for changes

in the environment (for example a malfunction); (ii) T cells, these are implemented as a

mediator agent to help activate the B-cell (or detector agent to create a specific response to

a change (iii) an inhibitor agent, which corresponds to antigens that can kill specific B cells

(this helps also to control the production of possible changes), and (iv) a restoration agent

which corresponds to help T cells and assists in detecting malfunctions etc. The authors

suggest that their framework offers decision making in real time and tolerance to changing

environments.
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Krishna Kumar and Neidhoefer [82, 83] create an adaptive intelligent control mecha-

nism that is applied to the problem of aircraft control. Rather than using explicit immune

system metaphors, the authors employ immune system notation to explain their system,

and a GA to produce the adaptation required to changing environments.

McCoy and Devarajan [84] applies an artificial immune system to extract features from

aerial images. Here the authors propose that, rather than generating a single optimum

detector via a GA, generating a random set of detectors and applying those detectors to

an image. If any detectors fail to classify correctly, then they are deleted otherwise the

detectors remain on the image. The authors applied their algorithm to extracting a road

from an image and found the results to be encouraging whereas [62] used immune system

metaphors for the recognizing of spectra for chemical analysis.
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Figure 2.3: Real ant behaviour of obtaining the shortest path between the nest and the food.
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Chapter 3

Immune Algorithm combined with
Estimation of Distribution

3.1 Introduction

The traveling salesman problem (TSP) is a classical problem of combinatorial optimization

which has been extensively studies over the past few decades [85]. The objective of the

generalized TSP is to find a minimum total cost Hamiltonian cycle. Formally, consider

a graph G = {N, E}, where N is a set of nodes representing cities and E is a set of arcs

connecting these nodes. The distance between the city i and the city j is denoted by d(i, j).

Therefore, a generalized TSP consists of finding a permutation π of cities in the graph G

that minimizes the total tour length D(π):

D(π) =
N−1∑
i=1

d(πi, πi+1) + d(πN , π1) (3.1)

There are several practical uses of TSP, such as vehicle routing, drilling, logistic, trans-

portation, planning, gene sequencing problems, etc. Over the years, TSP has been the

testing ground for numerous techniques inspired from a variety of sources.

Traditional mathematical exact techniques had been employed to solve TSPs, such as

linear programming [86], dynamic programming [87], and branch and cut algorithm [88].

Although exact algorithms can find optimal solutions for TSP, their performance are limited

due to the scale of instances, i.e., only small scale instances of TSP can be well solved by

these exact algorithms.
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Nowadays, attempts are being made to solve the optimization problems by using meta-

heuristics, which are mostly nature inspired, like genetic algorithms (GA), simulated an-

nealing (SA), artificial neural networks (ANN), artificial immune systems (AIS), particle

swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC),

estimation of distribution algorithms (EDA), tabu search (TS), greedy randomized adaptive

search procedure (GRASP), and so on. All these metaheuristics can be applied to a wide

variety of problems. Some algorithms give a better solution for some particular problems

than others. However, there is no specific algorithm to achieve the best solution for all

optimization problems [89]. Thus, it is further required to have an effective hybridization

of metaheuristics with other types of algorithms for solving complex problems, which can

lead to more efficient behavior and greater flexibility in application. The growing interest

in this scenario of hybrid metaheuristics and some of the typical application to the variants

of TSP can be summarized in Table 3.1.

It is worth emphasizing that Table 3.1 is aiming to give some insights into the research

community of the hybrid metaheuristics, rather than to give a comprehensive survey or a

taxonomy (readers may refer to [132] for an example) of it. It is observed from Table 3.1

that continuous research is been carried out to hybridize different algorithms to achieve

high performances for TSPs. Experimental results in these research works consistently

demonstrate that pure algorithms almost always inferior to hybridizations.

To contribute more in this research area, this work investigates the effect of hybridizing

AIS with EDA as rare investigation is reported for such hybridization. A novel immune

algorithm (IA) based on the clonal selection principle is utilized to performance the search,

while EDA is used to construct a probability model for further sampling new solutions.

Two different probability updating models, i.e., the univariate marginal distribution algo-

rithm (UMDA) and the population-based incremental learning (PBIL) are introduced based

on the permutation representation of TSP. In addition, a refinement local heuristic is also

designed for those sampled new solutions to guarantee their feasibilities. The hybridization

of IA with EDA, namely, IA-EDA, is validated based on a number of TSP instances with

size up to 100 thousand cities. The simulation results indicate that IA-EDA is superior to

the original IA, and some other state-of-art algorithms.
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The remaining sections of the paper is organized as follows. Section 2 gives a brief

description of immune algorithms, while Section 3 describes the related background of

EDA and its algorithmic framework. The proposed IA-EDA is described in detail in Section

4. In Section 5, extensive simulations results are presented. Finally, we give some general

remarks and further works to conclude this paper.

3.2 Immune Algorithm

Artificial immune system (AIS) [133] is one of the nature-inspired algorithms. It is a

population based problem-solving technique and mimics the mechanisms of the biological

immune response, which depicts the procedures of responses when a biological immune

system is exposed to an antigen. The most commonly used mechanisms of the biologi-

cal immune system are clonal selection proliferation, negative selection, immune network,

danger theory, and dendritic cell model [134,135]. Among them, the clonal selection algo-

rithm is a special class of AIS, and it is inspired by the clonal selection principle. Recently,

clonal selection algorithm is very popular in the AIS community and brings about larg-

er number of applications, such as optimization, learning, clustering and so on [136]. For

solving optimization problems, clonal selection algorithm utilizes a collective learning pro-

cess of a population of antibodies, and undergoes a cycle process of clonal proliferation,

maturation and antibody selection. Based on a fitness function, the clonal proliferation fa-

vors better antibodies to reproduce more often than those are relatively worse. During the

period of maturation, descendants of antibodies are generated using randomized learning

operators. Thereafter, fitter antibodies are selected to be reserved to enter into the next

generation. The general clonal selection principle can be illustrated in Fig. 3.1.

To date, several variants of the clonal selection algorithm have been developed for solv-

ing TSP. The first one is CLONALG [137] which is inspired by the two most important

features of the affinity maturation in cells. One is that the proliferation of each antibody

is proportional to its affinity, while the other is that the mutation suffered of an antibody

is inversely proportional to its affinity. These two features make the clonal selection al-

gorithm distinct from other evolutionary-like algorithms, such as GA. By introducing the
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Figure 3.1: The clonal selection principle.

immune memory strategy, Liu et al. [138] proposed a MCSA for TSP, and further devel-

oped in [139]. After realizing the information exchange during different antibodies through

receptor editing [140], idiotypic network mechanism [141], and the feedback interaction

between B and T cells [142], the performance of the clonal selection algorithm are greatly

improved. Moreover, attempts are made by incorporating other search algorithms such as

ACO [120], chaotic search [122], greedy search [121], self-organizing map [119], quan-

tum search [117, 118] into the conventional clonal selection algorithm to achieve high-

performing hybrid algorithms.

In this paper, we adopt the simple receptor editing embedded clonal selection algorith-

m [140] as the immune algorithm (IA) to be combined with EDA. The reason to choose this

variant is twofold. First, compared with CLONALG which can simultaneously solve con-

tinuous and discrete optimization problems, the receptor editing embedded clonal selection

algorithm is a specialized immune algorithm for solving TSP where the receptor editing

operator is proposed specially for permutation encoding based problems. Second, no so-

phisticated (but generally time-consuming or needing complex data structure) mutation

operators (such as Lin-Kernighan [143], edge assembly crossover [144], etc.) are utilized

in the hybrid algorithm, suggesting that 1) the effect of hybridization of two algorithms can

be clearly observed through comparing the hybrid one with the single component algorith-

m respectively, and 2) potential improvement can be further achieve by incorporating such
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sophisticated mutation operators if adequate computational time burden can be afforded in

the actual application.

3.3 Estimation of Distribution Algorithm

Estimation of distribution algorithm (EDA) is a new area of evolutionary computation, sig-

naling a paradigm shift in genetic and evolutionary computation research [145]. Incorpo-

rating (automated) linkage learning techniques into a graphical probabilistic model, EDA

exploits a feasible probabilistic model built around superior solutions found thus far while

efficiently traversing the search space [146–149]. Thus, it has a theoretical foundation in

probability theory and serves as a population-based search tool. An algorithmic framework

of most EDAs can be described as:

Framework of EDA

Pop = Initialize Population(); /*Initialization*/

while Stopping criteria are not satisfied do

Popsel = Select(Pop); /*Selection*/

Prob = Estimate(Popsel); /*Estimation*/

Pop = Sample(Prob); /*Sampling*/

end-while

At the beginning of the EDA search, a solution population Pop and a solution distri-

bution model Prob is initialized, and this is followed by a main search loop, consisting of

three principal stages. The first stage is to select some best individuals from Pop, according

to the fitness criteria. These individuals are used in the second stage in which the solution

distribution model Prob is updated or recreated. The third stage consists of sampling the

updated solution distribution model to generate new solution offspring. These new solu-

tions are evaluated and incorporated into the original population, replacing some or all of

the old ones. This process is repeated until the termination criterion is met.
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3.4 Hybridization of IA and EDA

It is observed from the description of IA and EDA that the two algorithms have different

tendency to search the optimum solution. It is expected that the hybridization of two dis-

tinct algorithms can take advantage of the characteristics of both algorithms and thus has the

ability to overcome the inherent disadvantages of each component algorithm. The overall

framework of the hybrid IA-EDA is shown in Fig. 3.2, where initialization, affinity eval-

uation, clone operator, hyper-mutation, receptor editing, probabilistic modeling, sampling,

refinement operator, and apoptosis are iterated until a pre-specified termination criterion is

fulfilled.

3.4.1 Permutation Representation

Various data structure can be used to code the tour for TSP, such as the Permutation rep-

resentation, the Matrix representation which is usually adopted in the ANN [150] and

the Tree representation (involving Splay Tree [151], Two-Level Tree [152] and Segment

Tree [153]) whose implementation is efficient but programming is more complex. Consid-

ering the simplicity of programming and the analogy with the gene representation in the

immune system, the Permutation π = (π1, π2, ..., πi, ..., πN) is utilized in this paper, where

πi = k denotes that the city k is in the position i in the tour. Thus this permutation represents

a feasible solution for TSP that the first city to be visited is the value of π1 and the ith city

to be visited is the value of πi. The last city to be visited before going back to the city π1 is

the city πN .

3.4.2 Modeling and Sampling of EDA

This section describes the two different types of EDA including the univariate marginal dis-

tribution algorithm (UMDA) and the population-based incremental learning (PBIL). The

original versions of the EDAs are in binary representation [145] which is not suitable for

the permutation representation of TSP. Thus, the probabilistic modeling and sampling ap-

proaches are altered to manipulate the permutation representation for dealing with TSP.
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Figure 3.2: The overall framework of the proposed IA-EDA.

UMDA makes use of univariate modeling for the learning of the probability distribution

of the cities in each position of the permutation without consideration of the linkage depen-

dencies between the cities [148]. The modeling is constructed based on a N×N probability

matrix Pt(πi) which models the probability of the cities in TSP:
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Pt(πi) =



pt(π1 = c1) ... pt(πN = c1)

pt(π1 = c2) ... pt(πN = c2)

...

pt(π1 = cN) ... pt(πN = cN)


(3.2)

where Pt(πi) is the probability distribution of the cities at iteration t of the algorithm. pt(πi =

c j) is the probability of city j to be located at the i-th position of the permutation in an

antibody. c j denotes the city j (c j = j), and N is the number of cities. The modeling

considers the frequency of existence of the cities in each location of the antibody.

The probability of the cities in each position of the antibody is calculated according to

the following equations.

pt(πi = c j) =

N∑
k=1
∆k(πi = c j) + 1/N

m + m/N
(3.3)

∆k(πi = c j) =

 1 i f πi = c j

0 otherwise
(3.4)

where m is the population size of antibodies. It should be noted that the term 1/N is added

to set the upper and lower bounds to the probability of each city. This is important as the

probability of 0.0 and 1.0 will make no progress in latter evolutions since a probability of

0.0 indicates that there will never be an iteration of this particular city in the position of

the antibody, and this will generate infeasible solutions for TSP. Likewise, a probability of

1.0 suggests that there will always be the iteration the same city in the same position of

the antibody, which will drastically decrease the diversity of the population, and thus bring

down the search performance of the algorithm.

On the other hand, PBIL [146] is another version of EDA which uses the same modeling

approach as UMDA. The primary difference of the PBIL with the UMDA is in terms of its

probability updating rule. To be specific, in PBIL, the probability of the cities in each
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position of the antibody is calculated by considering the probability of the cities in current

and previous iterations of the evolution. The updating rule of PBIL can be shown as:

prt(πi = c j) = αpt(πi = c j) + (1 − α)pt−1(πi = c j) (3.5)

where α ∈ [0, 1] is the learning parameter of PBIL. prt(πi = c j) is the eventual probability

of the city j at the i-th population of the antibody at the iteration t. pt(πi = c j) is obtained

according to Eqs. (3.3) and (3.4). α is set to 1.0 initially because there is no prior probability

distribution from any previous iteration of evolution. In this situation, PBIL is similar to

UMDA. To differentiate PBIL from UMDA, α would never be set to 1.0 over course of the

evolution process.

In addition, a roulette wheel selection based sampling method is used for both UMDA

and PBIL. New antibodies are generated by sampling the computed probability distribution,

according to the following equation.

π j =



c1 i f r ≤ pt(π j = c1)

c2 i f pt(π j = c1) ≤ r ≤
2∑

i=1
pt(π j = ci)

· · ·

cn i f
n−1∑
i=1

pt(π j = ci) ≤ r ≤
n∑

i=1
pt(π j = ci)

(3.6)

where π j is a newly generated city at the j-th position of an antibody, r is a uniformly

generated random number between 0 and 1.

3.4.3 Refinement operator

It is important to point out that the new antibodies generated by EDA cannot guarantee the

feasibility. In other words, circumstances that some cities may not be visited at all or be

visited more than once exist in the solutions sampled by EDA. Thus, a simple refinement

local search operator is proposed not only to fix the feasibility of antibodies, but also to im-

prove the quality of these antibodies in a local search manner. The pseudo code is described

in Algorithm 1.



50

Algorithm 1– Refinement operator

For i = 1 : Q

input an antibody πi sampled by EDA.

identify the location of the repeated cities in the antibody πi, L = {L1, ..., L j, ..., LR}.

identify the unvisited cities in πi, V = {V1, ...,Vk, ...,VR}.

For k = 1 : R

calculate the probability for all unvisited cities Vk to be located at the position L j according

to the following equation:

p jk =
d(πL j−1,Vk)

R∑
l=1

d(πL j−1,Vl)
(3.7)

insert the unvisited city Vk to the L j
th position of the antibody and discard that city from

V .

End-For k

End-For i

For example, given a TSP instance with N = 7 and an antibody π = {3, 2, 2, 4, 3, 1, 5}

generated by EDA. The antibody is clearly an infeasible solution for TSP. Using Algorithm

1, we got L = {3, 5} and V = {6, 7}. If the distance between cities 2 and 6 is smaller than

that between 2 and 7 (i.e. d(2, 6) < d(2, 7)), then it is more possible to generate a refined

solution {3, 2, 6, 4, 7, 1, 5} than the other one {3, 2, 7, 4, 6, 1, 5}, and vice versa.

3.4.4 Structure of IA-EDA

IA-EDA works as follows.

Step 1) First, m antibodies are randomly generated to create an initial population, which

can be represented as (A1, A2, ..., Am). Initialize the probability distribution model in Eq. (2)

with all element in the matrix has the same value 1/N, revealing that the probability model

has no guiding information for initial search.

Step 2) Calculate the affinity of all antibodies (D(A1), D(A2),...,D(Am))) according to
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Eq. (1).

Step 3) Select the n (< m) fittest antibodies based on their affinities.

Step 4) Clone all antibodies with a rate proportional to its affinity. The amount of clone

generated for these antibodies is given by (n− i)×Q/n, where Q denotes the clone size and

i represents the rank of the antibody in the population.

Step 5) Mutate all antibodies under either hyper-mutation operator or receptor editing.

The hyper-mutation performs a randomly point mutation, while receptor editing carries out

an inverse operator of gene fragment [140].

Step 6) Update the population using mutated clones. Replace the parent antibody if its

offspring antibody has a higher affinity.

Step 7) Update the probability distribution model using UMDA described by Eqs.

(3)(4) and PBIL by Eq. (5) respectively.

Step 8) Sample new antibodies based on Eq. (6).

Step 9) Perform the refinement operator introduced in Algorithm 1.

Step 10) Insert all newly sampled antibodies by EDA into the population and select the

n best ones from it. The rest antibodies are removed from the population (i.e. apoptosis

process).

Step 11) Replace the worst nc (generally nc = ⌈0.1 × n⌉) with new randomly generated

antibodies to maintain the diversity of the population.

Step 12) Repeat Step 4)-11) until the maximum number of generation Gmax to evolve is

reached.

3.5 Experiment Results and Discussions

In this section, the performance of the proposed IA-EDA is investigated by applying the

proposed algorithm to solve TSP benchmark instances taken from the standard TSPLIB

library [154]. There are three types of the selected instances involving EUC 2D, GEO

and ATT. The meanings of them are euclidean distance, geographical distance and pseudo-

euclidean distance respectively. A detailed description can be found in TSPLIB. Then we

listed these instances in Table 3.4 and indicated their corresponding maximum numbers
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of generation used in our implementation. The tested benchmark instances are with sizes

ranging from 51 to 100000 cities. Moreover, each instance is run for 30 independent repli-

cations to make a statistical analysis.

The proposed IA-EDA was implemented in C++ language under Visual Studio 2010

and run on a PC with an Intel 1.70 GHz CPU. In addition to the maximum generation

number, the other parameters of IA-EDA are fixed on the following values: the number

of initial antibodies m is set to 100, the population size n is set to 50, the clonal size

of proliferation Q is set to 50, the complementary intensity between hyper-mutation and

receptor editing is set to 0.5, i.e., two mutation operators have the same probability to

be performed, and the learning parameter α of PBIL is set to 0.9. These parameter are

experimentally obtained by testing the IA-EDA on the different instances.

To investigate the effects of EDA on IA, two variants of IA-EDA and the original IA

[140] are implemented on all tested instances. The IA-EDA using UMDA is denoted as IA-

UMDA, while the other one using PBIL is named as IA-PBIL. The characteristic difference

between IA-UMDA and IA-PBIL is the updating mechanism of the probability distribution

model. IA-UMDA only utilizes the current information of antibodies generated by IA

to update the probability model, while IA-PBIL further makes use of the accumulative

information of the probability model. For the sake of perspicuity, two assessment criteria

of performance are used to analyze the experimental results. The optimum tour length that

listed in Table 3.4 are labeled as Dopt. The PDM and PDB which indicates the percentage

deviation from the Dopt of the mean distance Dm and best distance Db respectively were

defined as follows:

PDM =
Dm − Dopt

Dopt
× 100 (3.8)

PDB =
Db − Dopt

Dopt
× 100 (3.9)

Table 3.5 summarizes the experimental results for all tested TSP instances based on

IA, IA-UMDA, and IA-PBIL, where the best solution obtained by the algorithm for each

instance is highlighted in boldface. From Table 3.5, it is apparent that IA-UMDA and
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IA-PBIL performs much better than the original IA on all test 19 instances, suggesting

that the EDA technique (either UMDA or PBIL) is capable of enabling IA to find much

better solutions. Furthermore, IA-PBIL can obtain the global optimal solution in 30 runs

for eight (out of nineteen) instances, and performs better than its two competitors for 16

instances expect gr96, rat195, and kroA200. It indicates that, in most cases, it is better to

utilize the accumulative information of the probability model to sample solutions in EDA.

The averaged PDM and PDB for 19 instances is 1.43 and 0.88 respectively. Thus, it can

be concluded that IA-PBIL can produce better solutions than IA and IA-UMDA within

reasonable computational times.

To further analyze the search dynamic of algorithms and the obtained solutions, Fig.

3.3 depicts the comparative results by means of convergence graphs and box-and-whisker

diagrams of solutions during IA, IA-UMDA and IA-PBIL over 30 replication runs for in-

stances st70, pr136 and att532. Similar results can be also acquired for the other instances.

The algorithms’ behaviors on the selected three instances are quite illuminating to further

elaborate the effects of EDA on the search dynamics of the algorithm. To be specific,

IA-UMDA and IA-PBIL can produce significantly better solutions than IA after the first

generation although all of them use randomly generated initial populations. In other word-

s, the EDA together with the heuristic refinement local search operator can greatly improve

the qualities of the initial solutions. The reason seems to be twofold: 1) since there is no

information exchange procedure in IA, EDA can realize the information exchange through

the probability model during different antibodies, thus being able to sample promising so-

lutions for IA, and 2) the refinement local search operator utilizes the problem-depended

knowledge (at least the distance matrix of the TSP instance) which can also facilitate the

search to some extent. Generally, IA-UMDA and IA-PBIL have faster convergence speed

than IA. Although the convergence graphs of IA-UMDA and IA-PBIL exhibit almost the

same search dynamics, IA-PBIL can produce better solutions than IA-UMDA.

Further considerations deal with the significant differences during the behavior of IA,

IA-UMDA and IA-PBIL. Table 3.6 summarizes the results of the Wilcoxon signed ranks

test [33] and the average rankings of the algorithms obtained by Friedman test [155, 156]

on all tested TSP instances. In Table 3.6, R+ denotes the sum of ranks for the problems in
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which the base algorithm (i.e. the one before “vs”) outperformed the competitive one (i.e.

the latter), and R− the sum of ranks for the opposite. The associated asymptotic p-values

are also computed to identify whether a statistical hypothesis test is significant or not. It is

worth pointing out that, from the statistical point of view, the Wilcoxon signed ranks test is

more sensitive and safer than the t-test, because it does not assume normal distributions and

meanwhile the outliers have less effect on the Wilcoxon test than on the t-test [33]. More-

over, the Friedman test applying the post hoc method of Iman-Davenport [156] is another

nonparametric statistical test which can rank the algorithms for each problem separately;

the best performing algorithm should have the rank of 1, the second best rank 2, etc. The

values in the last three columns record the average ranking of the three algorithms for each

TSP instance. As Table 3.6 states, IA-PBIL and IA-UMDA show significant improvement

over IA at a level significance α = 0.05 for all 19 TSP instances. IA-PBIL performs sig-

nificantly better than IA-UMDA on pr107, pr124, pr152, ja9847, and mona-lisa. Friedman

test shows that IA performs the worst during three algorithms, and IA-PBIL acquires a to-

tal averaged rank of 1.41 which is a bit smaller than that of 1.58 obtained by IA-UMDA,

indicating that IA-PBIL performs statistically better than IA-UMDA.

To make a clear illustration of the solutions obtained by IA-EDA (either IA-UMDA or

IA-PBIL), Fig. 3.7 shows the best routes found by IA-EDAs (three obtained by IA-UMDA

and the others obtained by IA-PBIL) and their corresponding total tour length.

Finally, an intensive comparison with existing six state-of-art hybrid metaheuristics in

the literature is carried out to further validate the performance of the proposed IA-EDAs.

Table 3.8 summarizes the computational results of the two variants of IA-EDA and its

six competitors in terms of the average tour length (Avg.), the standard deviation of the

obtained tour lengths and the PDM defined in Eq. (8) which is used to reflect the percentage

relative error. As can be seen from Table 3.8, the proposed IA-EDAs perform better than

its competitors on st70, rd100 and bier127, and can generate very competitive solutions for

the rest instances, suggesting that the proposed hybrid metaheuristic search algorithm by

combining IA with EDA is a promising alternative method for solving TSP. In addition,

it is worth pointing out that the complexity of algorithmic construction of IA-EDAs is

significantly simpler than the two algorithms in [107, 129] since there are more than two
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partial components in the latter hybrid algorithms, although two algorithms in [107, 129]

can produce a bit better solutions than IA-EDAs.

3.6 Conclusions

This study proposed combining EDA and IA to create a new hybrid that can efficiently

solve TSPs. In this method, EDA is used to realize the information exchange during differ-

ent solutions generated by IA through the probabilistic model. EDA enables IA to quickly

converge on promising search areas. To refine the solutions sampled by EDA, a heuris-

tic local search operator is also proposed to repair the infeasible solutions, and further

facilitate the search by making use of the problem-dependent knowledge of TSP. The ef-

fects of two kinds of EDAs including the univariate marginal distribution algorithm and the

population-based incremental learning are investigated by taking into consideration average

tour length, best tour length, convergence performance and the distribution of solutions on

19 different TSP instances with size up to 100,000 cities. A non-parametric statistical test

based on the Wilcoxon signed ranks test and the Friedman test consistently demonstrates

the effects of EDA on IA. Intensive comparative results of other six hybrid metaheuristics

reported recently in the literature verify the superiority of IA-EDA, and show that IA-EDA

can produce better or competitive solutions than other hybrid algorithms within reasonable

computational times.

Finally, it is important to remark that the proposed algorithm assessed in this work

did not make use of “strong” operators, in the sense that no efficient route improvement

heuristics available to date, such as Lin-Kerninghan [143], edge assembly crossover [144]

or quantum interference crossover [117] were incorporated to perform the search. In spite

of that, the proposed algorithm was capable of finding solutions that are on average less than

one percentage worse than the best known results for all tested instances, thus showing the

strength of the hybrid strategy.

In the future we plan to apply the proposed IA-EDA in solving more optimization prob-

lems such as the vehicle routing problem and the sequential ordering problem.
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Table 3.4: Problem instances used in our simulation and the maximum number of genera-
tion for each instance.

Instance Size Type Optimum Gmax

eil51 51 EUC 2D 426 1000
st70 70 EUC 2D 675 1000
eil76 76 EUC 2D 538 1000
gr96 96 GEO 55209 1000

rd100 100 EUC 2D 7910 1000
eil101 101 EUC 2D 629 1000
lin105 105 EUC 2D 14379 1000
pr107 107 EUC 2D 44303 1000
pr124 124 EUC 2D 59030 1000

bier127 127 EUC 2D 118282 2000
pr136 136 EUC 2D 96772 2000
pr152 152 EUC 2D 73682 2000
rat195 195 EUC 2D 2323 2000

kroA200 200 EUC 2D 29368 5000
lin318 318 EUC 2D 42029 10000
pcb442 442 EUC 2D 50778 10000
att532 532 ATT 27686 20000
ja9847 9874 EUC 2D 491924 20000

mona-lisa 100000 EUC 2D 5757191 20000
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Chapter 4

A Near-Optimal Graph Planarization
Algorithm using Probability Model
based Particle Swarm Optimization

4.1 Introduction

Graph planarization problem (GPP) arises from practical applications of circuit board lay-

out, facility layout, automatic graph drawing, VLSI circuit design [157]. It has significant

theoretical importance related with networks design and analysis, computational geometry,

and other topological problems. Generally, GPP needs to carry out two tasks including the

maximum planar subgraph acquisition and the plane embedding. For a given graph G, the

objective of the graph planarization problem is composed by two sub-problems: one is to

find a plane which can embed the edges into it, and the other is to make the cardinality of

the planar sub-graph as large as possible.

GPP has been demonstrated to belong to NP-hard problems [158] and several algo-

rithms have been proposed to solve it with low computational complexity. A triple-valued

gravitational search algorithm [159] was presented with the novelty of finding multiple op-

timal solutions for GPP simultaneously. In this study, we propose a novel particle swarm

optimization (PSO) to solve the GPP. PSO is originally developed by Kennedy and E-

berhart [160] for optimization. The technique was inspired by bird flocking and animal

social behaviors. In PSO, the particles operate like a swarm that flies through the hyper-

dimensional space to search for possible optimal solutions. The behavior of the particles
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is influenced by their tendency to learn from their past personal experience and from the

success of their peers to adjust the flying speed and direction. Recent works [161–163]

showed the superiority of PSO when solving various difficult problems. Surprisingly, PSO

has not been applied on solving GPP. The potential applicability of PSO on GPP is first

verified in this work, and thereafter a powerful probability model based PSO named PMP-

SO is proposed to further improve the performance of the algorithm. Experimental results

based on 19 benchmark GPP instances with size up to 150 vertices and 1064 edges demon-

strated the effectiveness of the proposed algorithm. The rest of the paper is organized as

follows: Section II presents a brief description of the proposed PMPSO. Experimental re-

sults and discussions are given in Section III. Finally, some general remarks are presented

to conclude the paper.

4.2 Probability Model based PSO

As an alternative to genetic algorithms, the PSO technique has ever since turned out to be

a competitor in the field of numerical optimization [163]. A PSO consists of a population

refining its knowledge of the given search space. Each individual (i.e. particle) in PSO

has its own position which represents the solution for the optimization problem at hand,

and its velocity which is the resultant attraction results from its personal previous best

particle (pbest) and the global best particle in the whole population (gbest). During each

iteration each particle accelerated in the direction of pbest as well as gbest, indicating that

if a particle discovers a promising new solution, all the other particles are tended to move

closer to it and thus explore the search space more thoroughly in the process. The position

and velocity of the ith dimension is defined as

Vi = ωVi + c1r1(gbesti − Xi) + c2r2(pbesti − Xi) (4.1)

where ω is the inertia weight, and c1 and c2 are acceleration coefficients. r1 and r2 are

randomly generated values between 0 and 1. The new position of a particle is calculated
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using

Xi = Xi + Vi (4.2)

To solve GPP, the single-row routing representation that is originally proposed in Take-

fuji and Lee’s algorithm [164] are adopted in this research. According to this The existence

of a crossing between two upper edges (vi, v j) and (vp, vq) (or two lower edges) is deter-

mined by the following conditions as shown in Fig. 4.1(d):

if vi < vp < v j < vq or vp < vi < vq < v j (4.3)

Consequently, under this representation, each of the edge has three possible states accord-

ing to whether, in accordance with a determined vertex sequence the edge is a lower edge,

is not considered or is an upper edge.

Based on the single-row routing representation method, the position of each particle

X j ( j = 1, 2, ...,N) in PSO can be expressed as X j = (x j
1, x

j
2, ..., x

j
n), where N denotes the

population size and n = |E| is the number of edges in the graph. As can be seen from Fig.

4.1(c), the edge in a planar graph is either an upper or a lower edge. Here, we define that

x j
i=1 means an edge to be drawn as an upper one, and x j

i=0 to be a lower one. The velocity

Vi will determine a probability threshold. If Vi is higher, the particle is more likely to choose

1, and lower values favor the 0 choice. The sigmoid function which is a straightforward

function in neural networks can accomplish this as:

s(Vi) =
1

1 + exp(−Vi)
(4.4)

The sigmoid function squashes its input into the requisite range and has properties that

make it agreeable to be used as a probability threshold. Then the original position update

rule in Eq. (2) is thus tuned to as in the following.

Xi =

 1 i f rand() < s(Vi)

0 otherwise
(4.5)
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Figure 4.1: Single-row routing representation used in GPP: (a) A graph with four vertices
and six edges, (b) A planar graph, (c) A possible planar graph, (d) Violation conditions.

It should be pointed out that the position of a particle obtained by Eq. (5) might not

result in a feasible solution for GPP. It is important to eliminate the crossing edges which

satisfies the conditions shown in Eq. (3). By realizing this, all solutions generated by PSO

can be guaranteed to be feasible. Furthermore, the vertex sequence is generated based on a

Hamiltonian cycle generation method [165].

Preliminary experimental results as shown in Section III shows that PSO can solve

GPP with limited effectiveness. To further improve the problem-solving capacity of PSO,

we incorporated a probability model into it, and therein put forward a probability mod-
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el based particle swarm optimization (PMPSO). The inspiration of the probability model

arises from the estimation of distribution algorithm [145] which is a new area of evolu-

tionary computation, signaling a paradigm shift in genetic and evolutionary computation

research. Incorporating linkage learning techniques into a graphical probabilistic model,

a feasible probabilistic model is built around superior solutions found thus far while effi-

ciently traversing the search space. Therefore, it has a theoretical foundation in probability

theory and serves as a population-based search tool.

In this study, we used the univariate marginal distribution to construct the probability

model. The probability vector which characterizes the distribution of promising solutions

in the search space is defined as P = (p1, p2, ..., pk, ..., pn) where pk (k = 1, 2, ..., n) the

probability that the value of the kth position of a promising solution is 1. Then the current

solution obtained by PSO is mutated based on the probability vector P. It can be expected

that the mutated offspring falls in or close to a promising area in the search space. Such

mutation perturbs the current solution X and guides PSO to search in binary solution space

in the following way.

Probability Model based Mutation

Mutate the current solution X based on probability model P

For i = 1 to n do

If rand()< α

if rand()< pk, set Xi(t + 1) = 1, otherwise set Xi(t + 1) = 0;

Otherwise Xi(t + 1) = Xi(t)

End-for
where rand() produces a random number distributed uniformly in the interval of [0,

1]. In the mutation procedure, a bit is sampled from the probability vector P randomly

or directly copied from the current solution X(t), which is controlled or balanced by the

parameter α. The larger the α, the more elements of the new starting point are sampled

from the vector P.

As there are a lot of information of elements are sampled based on the probability

matrix P, it can be expected that they fall in or close to the promising area. As a result, the

random sampling mechanism can also provide diversity for the search afterward. Initially,



69

the probability vector P is set as P = (0.5, ..., 0.5, ..., 0.5). The probability vector can be

learned and updated at each iteration of PSO for modeling the distribution of promising

solutions using

pk(t + 1) = (1 − λ)pk(t) + λXi(t) (4.6)

where the parameter λ is a learning rate.

The PMPSO works as follows.

Input: a given non-planar graph G = (V, E) with |V | = m, |E| = n

01: initialize user-specified parameters, and randomly generate N positions for the

particles in PSO

02: do:

03: For each particle i = 1 to N

04: generate a vertices sequence πi for particle i using Hamiltonian cycle generation

method

05: move and update particles using Eqs. (1)(4)(5)

06: refine the solution by eliminating the edges satisfying Eq. (3)

07: evaluate the number of edges in the resultant planar sub-graph

08: update the probability vector using Eq. (6)

09: carry out the probability model based mutation procedures

10: End-for

11: While: the maximum iteration number achieves Tmax

Output: an optimal particle and the corresponding planar sub-graph G′ = (V, E′)

4.3 Experimental Results

In order to evaluate the performance of PMPSO when applied it on the GPP, a set of nin-

teen benchmark problems described in literature [165] was used in the experiments. The

problem instances are summarized in Table 4.1, where the information data we record for

each instance are the name of the input graph, the number of vertices (|V |), the number of

edges (|E|), the Euler upper bound (3|V | − 6) on the number of edges in a maximum planar
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Table 4.1: Problem instances used in the experiments.

Graph No. Vertices No. Edges Upper bound Best-known pre. (Ref.)
G1 10 22 20∗ 20 ( [159, 164–166])
G2 45 85 82∗ 82 ( [165–167])
G3 10 24 24∗ 24 ( [165–167])
G4 10 25 24∗ 24 ( [165–167])
G5 10 26 24∗ 24 ( [165–167])
G6 10 27 24∗ 24 ( [165–167])
G7 10 34 24∗ 24 ( [165–167])
G8 25 69 69∗ 69 ( [166, 167])
G9 25 70 69∗ 69 ( [166, 167])

G10 25 71 69∗ 69 ( [166, 167])
G11 25 72 69∗ 69 ( [167])
G12 25 90 69∗ 67 ( [165, 167])
G13 50 367 144 135 ( [167])
G14 50 491 144 143 ( [166, 167])
G15 50 582 144 144 ( [167])
G16 100 451 294 196 ( [167])
G17 100 742 294 236 ( [167])
G18 100 922 294 246 ( [165, 167])
G19 150 1064 444 311 ( [166, 167])
∗ Actual known optimal size of the planar subgraph.

subgraph, and the number of edges in the best-known solution for the GPP. The algorith-

m is coded using C++ under the Visual Studio 2010 platform running on a personal PC

(Intel(R) Core i5, 1.70GHz with 4GB RAM).

First analysis deals with the parameter sensitivities of the algorithm. The user-defined

parameters in PMPSO are N, Tmax, w, c1, c2, L, α and λ. The population size N direct-

ly influences the trade-off tween the search performance and the computational times. In

order to make the subsequent comparison fair with other population-based algorithms, the

reasonable same value of N = 20 was utilized in the experiments. The maximum itera-

tion number Tmax determines the termination condition of the algorithm. The bigger the

value of Tmax, the more computational times the algorithm needs to cost. In preliminary

experiments, we found that both PSO and PMPSO had been convergent to global or local

optimal solutions for all instances within 1000 iterations. Thus, Tmax = 1000 was sufficient

to evaluate the performance of proposed algorithms in all experiments. The inertia weight
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Table 4.2: Parameter sensitivity analysis for w, c1 and c2 on G9.

w c1 = 1.0 c1 = 1.5 c1 = 2.0 c1 = 2.5 c1 = 3.0
c1 = 3.0 c1 = 2.5 c1 = 2.0 c1 = 1.5 c1 = 1.0

0.1 66 67 67 67 67
0.3 67 67 67 67 69
0.5 67 67 67 68 68
0.7 67 68 69 67 67
0.9 67 67 69 69 68

Table 4.3: Parameter sensitivity analysis for α and λ on G9.

α λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9
0.1 69 69 68 67 67
0.3 69 69 67 67 67
0.5 69 69 67 68 67
0.7 68 68 67 67 67
0.9 67 67 69 69 67

w together with acceleration coefficients c1 and c2 are PSO related parameters. The con-

stant inertia weight w set from 0.1 to 0.9 with increment of 0.2. The different w is tested

with a set of c1 and c2 which fulfills the condition of c1 + c2 = 4 as suggested in [170].

The simulation results are summarized in Table 4.2. The results in this table suggested

that w = 0.9, c1 = 2.0 and c2 = 2.0 is an acceptable choice for these parameters. Similar

observation can be obtained based on other benchmark instances. By incorporating the

parameter L into the Hamiltonian cycle generation method, more diversity of the vertex

sequence can be obtained, thus enabling the algorithm to search more different areas in the

search space. Following the suggestion in [159, 165], L = 3 is verified to be effective on

the performance of the algorithm. In addition, the probability model related parameters

α and λ are analyzed. α and λ are defined to take values within the following discrete

range {0.1, 0.3, 0.5, 0.7, 0.9} respectively. Experimental results in Table 4.3 show that the

parameter combinations α ∈ {0.1, 0.2, 0.3} and λ ∈ {0.1} can obtain good results.

Further considerations address the performance of PSO and PMPSO. Table 4.4 sum-

marized the comparative simulation results during all tested algorithms based on nineteen
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benchmark graph with size up to 150 vertices and 1064 edges. The results are the number

of edges in the obtained planar subgraph from the best solution based on 30 independent

runs. From this table, it is clear that PSO can obtain acceptable solutions for GPP, while

PMPSO can perform much better than PSO and is able to find competitive solutions when

compared with other state-of-art algorithms. The typical solutions found by PMPSO on

G2, G7 and G13 are illustrated in Fig. 4.5.

4.4 Conclusions

In this research, a novel probability model based particle swarm optimization is proposed

to solve the graph planarization problems. The particle swarm optimization is for the first

time used to handle the binary solutions based on the singlerow routing representation

where the value 1 represents an edge can be drawn as an upper edge in the planar subgraph,

while 0 denotes an lower edge. To further improve the search performance of PSO and

alleviate its inherent local minimum trapping problem, a probability vector based on the

univariate marginal distribution is incorporated. By doing so, the solutions generated by

PSO are manipulated as accumulative information to construct the probability vector, and

a random sampling mutation procedure is used to guide the search to promising areas.

Experimental results based on nineteen GPP benchmark instances show that the proposed

PMPSO can find competitive solutions for GPP when compared it with other algorithms.

In the future, we plan to apply the PMPSO to other combinatorial optimization problems,

such as maximum independent set problems, graph coloring problems, maximum diversity

problems, and so on.
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Chapter 5

Ant Colony Optimization with
Neighborhood Search for Dynamic TSP

5.1 Introduction

Ant colony optimization (ACO) proposed by Marco Dorigo et al. was first used to handle

the static TSP and performed well [171, 172]. The ACO algorithm simulates the foraging

behavior of ant colony to search for a optimal route, and ants communicate with each other

via the pheromone they deposit on the trail. The pheromone guides ants to find a feasible

solution. The more the previous ants release the pheromone on the trail, the higher the

probability of the following ants choosing this trail will be. After several iterations, ants

will acquire the best route finally. Although ACO has been applied successfully to several

combinatorial optimization problems [173–175], most of the realistic applications are sub-

ject to dynamic optimization problems. It means the objective function, the constraints or

the problem instances can change with time and the purpose is not to find a static optimal

solution but to track the new one to the dynamic problems.

The conventional ACO may not be fit for solving the dynamic problems since the

pheromone of the previous route can force ants to follow when the environment changes.

This will cause inefficient response to environmental change. Therefore, several strategies

were proposed to enhance the ability to adapt to the changing environment [176]. The sim-

plest assumption is to reset the pheromone on all the trails once the environment changes,

which is expensive on computing time and not reasonable. In [177], local and global restar
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strategy was proposed to reinitialize the pheromone to response to dynamic environments.

In [30], a generating or increasing diversity approach was used to resolve dynamic TSP

(DTSP). A memory-based method was introduced to store several solutions to match the

previous environments [29, 178]. The P-ACO algorithm used the population-list to store

the iteration-best ants for updating the pheromone on the trails [179]. The ACO algorithm

with immigrants schemes was verified to be a good approach to DTSP [178], and the ran-

dom immigrants ACO (RIACO) performed well in the environment changing quickly and

significantly. These approaches can solve the different DTSPs according to the strategies

respectively.

In this paper, the ACO with neighborhood search (NS-ACO) is proposed to handle the

DTSP composed by random traffic factors. Three moving operations are introduced to

adjust the solutions constructed by ants to adapt to the new environments. The experiments

implement the comparison among NS-ACO, the conventional ACS and RIACO on the

DTSPs of different scales. The experimental results demonstrate the superiority of our

proposed algorithm which can track the optimal solution effectively and efficiently.

This paper is organized as follows. Section 2 describes the structure of DTSP. Section

3 presents our proposed NS-ACO algorithm. Section 4 shows the comparative experiments

and analyzes the experimental results. Section 5 draws a conclusion.

5.2 Brief Introduction to DTSP

The conventional TSP is one of the most ordinary and popular NP-hard problems. A large

number of algorithms mentioned in references resolving TSP and enhacing the solution’s

quality are divided two categories: the exact and the approximation algorithms [25–27].

But this kind of TSP that is static and ideal does not accord with the realistic applica-

tions. Nowadays, DTSP, the variant of TSP, possesses the dynamic environments such as

replacing the cities with time [28, 29], changing the cost of the cities’ arcs [30] and so on.

Addressing the DTSP is not to obtain the global optimal solution completely anymore, but

to track the new ones with the changing environments. Therefore, the efficiency and effect

of the algorithms are the key factors of solving DTSP.
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In this paper, we utilize the DTSP comprised by random traffic factors. This model

introduces the cost of the edge between cities i and j. The cost is Di j × Ti j, where Di j is

the travelled distance between cities i and j, and Ti j is the traffic factor indicating the traffic

jam between cities i and j. After every f iterations, Ti j changes randomly according to a

probability value m whose changing range is limited in [TL,TH], where TL and TH denote

the lower and upper bounds of traffic factor respectively. The value of Ti j determines the

degree of the traffic jam. The larger the Ti j is, the severer traffic jam the corresponding

edge indicates. Furthermore, Ti j = 1 represents no traffic jam. In this way, dynamic

environments are generated randomly by the frequency f and the magnitude of the change

m.

5.3 Proposed ACO Algorithm

Our NS-ACO algorithm adopts a short-term memory proposed by Michalis Mavrovounio-

tis et al [178]. The short-term memory stores K iteration-best ants in the current iteration

which are used to update the pheromone in the next iteration, and the corresponding previ-

ous ants and pheromone are removed. So no ant can exist more than one iteration in case

the current environment changes. The solution construction of our proposed algorithm is

the same as the conventional ACO algorithm’s. The possibility pk
i j of ant k moving from

city i to city j is described as follow:

pk
i j =


ταi j·η

β
i j∑

l∈Nk
i
ταil ·η

β
il

if j ∈ Nk
i

0 otherwise
(5.1)

where Nk
i indicates the set of the cities which can be visited by ant k at the city i. τi j

denotes the pheromone between city i and city j. ηi j = 1/di j is the heuristic information,

where di j is the distance between cities i and j. The parameters α and β determine the

relative importance of pheromone τ and heuristic information η respectively.

After executing the solution construction, the neighborhood search is added into the

ACO algorithm to optimize the solution. The neighborhood search contains three local



78

search processes: swap operation, insertion operation and 2-opt operation. Each operation

is implemented with 1/3 probability to generate a new solution which may be better than

the current solution. The swap operation indicates the positions i and j of a solution are

chosen randomly and exchanged each other. The insertion operation is to select randomly

position i and position j of a solution (i , j) firstly. Then if i < j, move position i+1

to position i, and move position i+2 to position i+1, go on until position j, that is to say,

move the positions from i+ 1 to j to the left one step distance respectively. Finally position

i replaces position j. Otherwise, move the positions from i − 1 to j to the right one step

distance respectively and position i replaces position j. Likely, after choosing the positions

i and j of a solution randomly the 2-opt operation reverse the segment between i and j. The

neighborhood search can effectively optimize the solutions ants construct. Whereafter the

pheromone update is implemented by the short-term memory which stores K iteration-best

ants in iteration t, which is described as follow:

τi j = τi j + ∆τ
k
i j (5.2)

where ∆τk
i j = (τmax − τ0)/K, τmax and τ0 indicate the maximum and initial values of

pheromone respectively and K is the size of the short-term memory. In this paper, τmax =

τ0 +
∑K

k=1 ∆τ
k
i j. Then in the next iteration t + 1, the short-term memory needs to remove

the previous ants to make space for the new K iteration-best ants, and accordingly the

pheromone deposited previously is subtracted, described as follow:

τi j = τi j − ∆τk
i j (5.3)

It should be noted that there is no pheromone evaporation. NS-ACO algorithm is depicted

in Algorithm 1, where Ks indicates the short-term memory, N is the number of cities, t is

the iteration times and M denotes the number of ants.
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Algorithm 1 NS-ACO Algorithm
01: Initialize the parameters α, β,Ks,N,M, t
02: Initialize pheromone matrix
03: while termination criteria not be satisfied do
04: Construct dynamic environments
05: Clear solutions and Ks

06: Construct solutions by ants
07: for k = 1 to M do
08: Execute neighborhood search:
09: r= generate random number
10: if (r=swap operation) then
11: Generate a swap solution
12: end if
13: if (r=insertion operation) then
14: Generate an insertion solution
15: end if
16: if (r=2-opt operation) then
17: Generate a 2-opt solution
18: end if
19: Compare and select the best solution
20: end for
21: Find K iteration-best solutions and add it into Ks

22: Update Ks using Eq. (5.2) and Eq. (5.3)
23: Compare and record the global optimal solution
24: t=t+1
25: end while
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5.4 Experiment and Analysis

5.4.1 Experimental settings

In order to demonstrate the performance of our proposed NS-ACO algorithm on the DTSP,

we evaluate NS-ACO, the conventional ACS [171] and RIACO [178] on several DTSPs

composed by benchmark TSP instances from TSPLIB. eil51 and pr76 indicate small-scale

DTSP. kroB100 and pr124 denote medium-scale DTSP. kroB150 and kroB200 represent

large-scale DTSP. The ACS is one of the best ACO algorithms for the static TSP since the

pheromone evaporation ρ and the pheromone decay coefficient φ change the pheromone

of the trails to guide ants to find the optimal solution. RIACO enhances the diversity

of population due to its random immigrant scheme, and the short-term memory with the

replacement rate r shows efficient performance for DTSP.

In the experiments, all the DTSPs are constructed by random traffic factors set in [1, 5],

i.e., TL = 1 and TH = 5, respectively. The changing frequency f is set to 10 and 100,

which represents the environment changes quickly and slowly respectively. The changing

magnitude m is set to 0.1 and 0.9, indicating the small and large degree of environmental

changes respectively. Consequently, for each DTSP, 4 dynamic instances are generated to

test and analyze the property of three algorithms. Furthermore, for each algorithm on each

dynamic instance, the experiment is independently run 30 times and 1000 iterations each

time. The experimental data is calculated in terms of the following expression [178]:

Fbs =
1
T

T∑
t=1

(
1
N

N∑
i=1

f bs
ti ) (5.4)

where T is the iteration times, N is the number of running and f bs
ti is the value of the best

solution found in the the i-th running of the t-th iteration. The parameter settings of three

algorithms are shown in Table 5.1. Some parameters are referred in [171, 178], where Cnn

is the length of the tour obtained by the nearest-neighborhood heuristic and q0 determines

the probability of search.
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Figure 5.1: The convergence graph of the best solution obtained by NS-ACO, ACS and
RIACO.
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Table 5.1: Parameter settings for three algorithms in the experiment.

Algorithm τ0 α β ρ φ q0 K r M
NS-ACO 1/Cnn 1 5 − − 0 6 − 30

ACS 1/Cnn 1 5 0.5 0.5 0.9 − − 30
RIACO 1/Cnn 1 5 − − 0 6 0.4 30

5.4.2 Experimental analysis

Table 5.2 shows the experimental results based on the Eq. (5.4) among NS-ACO, ACS

and RIACO to reveal the average performance of the solutions to each DTSP. The cor-

responding statistical results of the Wilcoxon signed ranks test at a level of significance

α = 0.05 are displayed in Table 5.3, where the comparison among three algorithms is

implemented by the symbols +, − and ∼ which represent the performance of the former

algorithm is better, worse and no significance than that of the latter algorithm respectively.

From Table 5.2 and Table 5.3, several conclusions can be observed. Firstly, our proposed

NS-ACO algorithm generally outperforms ACS and RIACO on all the DTSPs, which de-

clares the neighborhood search is proper and effective for optimizing solutions to find the

optimal solution and three operations randomly selected matching the random changing

environments well. The framework of NS-ACO not only maintains the diversity of the so-

lutions but also improves the quality of the optimal solution. The results verify NS-ACO

has strong robustness and self-adaptability on DTSP and its ability of tracking the optimal

solution is significant. Secondly, except NS-ACO, RIACO performs better on small-scale

DTSP such as eil51 and pr76, due to its random immigrant scheme. Nevertheless, on the

quickly changing environments of the medium and large scale DTSP, the performance of

RIACO declines and is inferior to that of ACS. The reason is that the random immigrants

enhance the diversity of the population and destroy the pheromone of the current optimal

trail but RIACO has insufficient time to find the optimal solution. On the contrary, ACS

can obtain the optimal solution since it utilizes the pheromone evaporation to quickly locate

in the optimal trail. Thirdly, when addressing the slowly changing DTSP, RIACO always

outperforms ACS since its random immigrants expand the search space to acquire a better
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Table 5.2: Comparison of the experimental results among NS-ACO, ACS and RIACO.

Algorithm NS-ACO ACS RIACO

f = 10 f = 10 f = 10

m 0.1 0.9 0.1 0.9 0.1 0.9

eil51 476.6 1179.7 491.8 1249.2 481.1 1190.9
pr76 130376.5 321490.3 136592.0 336443.9 133712.0 334157.8

kroB100 26704.9 66891.2 26777.2 69894.8 27531.1 69750.6
pr124 71915.8 182928.4 72212.2 190884.8 75817.7 198052.5

kroB150 32553.6 81293.5 32556.3 83854.5 34181.2 85702.8
kroB200 37119.4 93944.6 37127.9 96157.3 39539.5 99797.8

f = 100 f = 100 f = 100

m 0.1 0.9 0.1 0.9 0.1 0.9

eil51 452.4 1107.7 477.4 1179.8 454.1 1112.7
pr76 123818.7 299372.9 133243.4 328153.8 125356.0 304831.6

kroB100 25155.0 61748.0 26229.8 67462.6 25438.2 63048.4
pr124 68090.5 168722.2 70658.7 184965.0 69098.0 174331.6

kroB150 30607.7 73670.1 31700.7 79693.8 31436.0 76062.7
kroB200 34628.4 86780.4 36195.1 92780.8 35664.6 89619.6

solution within enough time whereas ACS is prone to converge to a local optimum due to

the slow pheromone evaporation.

To illustrate the convergence characteristics of three algorithms for DTSP intuitively,

Fig. 5.1 is plotted to show the performance of each iteration during three algorithms. Fig.

5.1 depicts the small and medium scale DTSP with m = 0.1, f = 10 or 100 and the large-

scale DTSP with m = 0.9, f = 10 or 100. The horizontal axis and the vertical axis indicate

the iteration times and the best-so-far solution respectively. In Fig. 5.1, each DTSP has 10

environmental changes where Fig. 5.1(a)(c)(e) and Fig. 5.1(b)(d)(f) describe 100 and 1000

iterations respectively. From Fig. 5.1, we can observe that our proposed NS-ACO performs

best on each DTSP and RIACO outperforms ACS on slowly changing environments and

the small-scale DTSP, and ACS is superior to RIACO on the medium and large scale DTSP

whose environment changes quickly. Therefore, our conclusion is demonstrated by Fig.

5.1 again.
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Table 5.3: Statistical results of the Wilcoxon signed ranks test at a level of significance
α = 0.05 among NS-ACO, ACS and RIACO.

Algorithm NS-ACO:ACS NS-ACO:RIACO RIACO:ACS

f = 10 f = 100 f = 10 f = 100 f = 10 f = 100

m 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9

eil51 + + + + + + + + + + + +

pr76 + + + + + + + + + + + +

kroB100 + + + + + + + + − + + +

pr124 + + + + + + + + − − + +

kroB150 ∼ + + + + + + + − − + +

kroB200 ∼ + + + + + + + − − + +

5.5 Conclusion

In this paper, we proposed NS-ACO algorithm which adopts neighborhood search to deal

with the DTSP comprised by random traffic factors. Swap, insertion and 2-opt operations

are randomly utilized to optimize the solutions constructed by ants for tracking the opti-

mal solution efficiently and effectively. The short-term memory is used to store several

current iteration-best solutions to enhance the diversity of solutions. To demonstrate the

superiority of the proposed algorithm, we compare NS-ACO with the conventional ACS

and RIACO on different scales DTSP. The experimental results declare that NS-ACO per-

forms significantly on both convergence and solution quality well. It has the proper ability

of convergence that is different from the premature phenomenon of ACS , and it increases

the diversity of solutions instead of adding random immigrants which have a high risk in

destroying the pheromone of the optimal trail. Therefore, it can be concluded that our pro-

posed NS-ACO is superior to the other two algorithms and shows the promising property

for solving the DTSPs.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions of the Dissertation

In this dissertation, we introduced three hybrid metaheuristics. They are summarized as

follows.

In chapter 3, we proposed combining EDA and IA to create a new hybrid that can

efficiently solve TSPs. In this method, EDA is used to realize the information exchange

during different solutions generated by IA through the probabilistic model. EDA enables IA

to quickly converge on promising search areas. To refine the solutions sampled by EDA, a

heuristic local search operator is also proposed to repair the infeasible solutions, and further

facilitate the search by making use of the problem dependent knowledge of TSP. The effects

of two kinds of EDAs including the univariate marginal distribution algorithm and the

population-based incremental learning are investigated by taking into consideration average

tour length, best tour length, convergence performance and the distribution of solutions on

19 different TSP instances with size up to 100,000 cities. A non-parametric statistical test

based on the Wilcoxon signed ranks test and the Friedman test consistently demonstrates

the effects of EDA on IA. Intensive comparative results of other six hybrid metaheuristics

reported recently in the literature verify the superiority of IA-EDA, and show that IA-EDA

can produce better or competitive solutions than other hybrid algorithms within reasonable

computational times.

In chapter 4, a novel probability model based particle swarm optimization is proposed to

solve the graph planarization problems. The particle swarm optimization is for the first time
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used to handle the binary solutions based on the singlerow routing representation where the

value 1 represents an edge can be drawn as an upper edge in the planar subgraph, while 0

denotes an lower edge. To further improve the search performance of PSO and alleviate

its inherent local minimum trapping problem, a probability vector based on the univariate

marginal distribution is incorporated. By doing so, the solutions generated by PSO are

manipulated as accumulative information to construct the probability vector, and a random

sampling mutation procedure is used to guide the search to promising areas. Experimental

results based on nineteen GPP benchmark instances show that the proposed PMPSO can

find competitive solutions for GPP when compared it with other algorithms.

In chapter 5, we proposed NS-ACO algorithm which adopts neighborhood search to

copy with the DTSP comprised by random traffic factors. Swap, insertion and 2-opt op-

erations are randomly utilized to optimize solutions constructed by ants for tracking the

optimal solution efficiently and effectively. The short-term memory is used to store several

current iteration-best solutions to enhance the diversity of solutions. To demonstrate the

superiority of our proposed algorithm, we compare NS-ACO with the conventional ACS

and RIACO on different scale of DTSP. The experimental results suggest that NS-ACO

performs significantly on both convergence and solution quality under the whole DTSP. It

not only implements fast convergence unlike the premature phenomenon of ACS but also

increases the diversity of solutions instead of adding random immigrants which have a high

risk to destroy the pheromone of the optimal trail. Therefore, it can be concluded that our

proposed NS-ACO is superior to other algorithms and shows the promising property for

addressing the DTSP.

6.2 Suggestion for Future Research

Based on the work I have done, I will focus on the following points in my future research.

First of all, go a step further on various kinds of algorithm mechanisms of Bio-inspired

computation. That is because only with deeper understanding of Bio-inspired computa-

tion, it could be possible to keep digging in the study of the construction (or architecture)

of new algorithm. Then, improve the performance of the current existent Bio-inspired com-
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putation and apply them to solve engineering problems in new fields. Last but not least,

Bio-inspired computation can combine with other computational intelligence algorithms

for solving much complex problems.
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