Parameters in the Expression of Fatigue Crack Growth Rate (In the Light of Crack Energy Density)
Katsuhiko WATANABE* and Makoto ITO**

Previously, a general expression of fatigue crack growth rate was derived by one of the authors, based on the concept of crack energy density. In this paper, the meanings of that expression and the parameters of which that expression is composed are considered; and the meaning of conventional expression like the law of Paris is also made clear. Experiments of fatigue crack growth and finite element analyses corresponding to these experiments are carried out to influences of the differences of material, type of load and crack length or the like on the parameters and crack growth rate are discussed based on the results and it is verified that such influences can be evaluated by the general expression above. It is also pointed out that, if the constitutive relation of the material is given, it may be possible to evaluate the growth rate as well as the influences of various differences.

*Institute of Industrial Science, University of Tokyo, Minato-ku, Tokyo, Japan
**Technical Research and Development Institute, Defense Agency Japan, Setagaya-ku, Tokyo, Japan

Dependence of Threshold Stress Intensity Factor Range ΔK_{th} on Crack Size and Geometry and Material Properties
Yukitaka MURAKAMI* and Kenji MATSUDA**

The dependence of ΔK_{th} on crack size and geometry, and Vickers hardness H_V under stress ratio $R = -1$ was studied. The effects of crack size and geometry are unified with a geometrical parameter $\sqrt{\text{area}}$ which is the square root of the area occupied by projecting defects or cracks onto the plane normal to the maximum tensile stress. The dependence of ΔK_{th} on $\sqrt{\text{area}}$ is expressed by $\Delta K_{th} \propto (\sqrt{\text{area}})^{1/2}$ and that of ΔK_{th} on H_V is expressed by $\Delta K_{th} \propto (H_V + C)$. For small cracks and defects with $\sqrt{\text{area}} \leq 1.000 \mu m$, the following equation for predicting ΔK_{th} and the fatigue limit σ are available: $\Delta K_{th} = 3.3 \times 10^{-3}(H_V + 120)(\sqrt{\text{area}})^{1/2}$, $\sigma = 1.43(H_V + 120)(\sqrt{\text{area}})^{1/6}$ where the units in these equations are $\text{MPa}: \text{m}^{1/2}$, $\sigma: \text{MPa}$, $\sqrt{\text{area}}: \mu \text{m}$. For cracks and defects with $\sqrt{\text{area}} > 1000 \mu m$, the dependence of ΔK_{th} on crack size gradually changes from $(\sqrt{\text{area}})^{1/2}$ to $(\sqrt{\text{area}})^n$ and this causes the difference in the exponent n in the equation of the type $\sigma = C$ which was first obtained by N.E. Frost, and was confirmed later by other researchers. Although the tendency of many data indicates that there may be a linear correlation between ΔK_{th} for a large crack and H_V, more systematic studies are necessary to establish the exact relationship between ΔK_{th} and H_V.

*Faculty of Engineering, Kyushu University 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812 Japan

Dynamic Interaction between Penny-Shaped Cracks in an Infinite Solid
Sei UEDA*

This paper deals with the dynamic interaction between penny-shaped cracks in an infinite solid. Laplace and Hankel transforms are used to reduce the mixed boundary value problems to a set of dual integral equations. The solution is expressed in terms of a Fredholm integral equation of the second kind having a kernel with fast rate convergence. A numerical Laplace inversion technique is used to recover the time dependence of the solution. The dynamic stress intensity factor is determined and its dependence on time and the geometry parameter is discussed.

*Shizuoka University, 836-ohya, Shizuoka, 422 Japan

NII-Electronic Library Service