Some implications of indivisibility of special values of zeta functions of real quadratic fields

Iwao KIMURA

Abstract. In this paper, we show some implications of Byeon’s result. For example, we prove that, for an odd prime number \(p \), there exist infinitely many real quadratic fields \(\mathbb{Q}(\sqrt{D}) \) which satisfy following properties: For each non-negative integer \(n \), let \(\mathbb{Q}(\sqrt{D})_n \) denote \(n \)-th layer of the cyclotomic \(\mathbb{Z}_p \)-extension over \(\mathbb{Q}(\sqrt{D}) \). Then, for each \(n \geq 0 \), there exist infinitely many CM-fields \(K \) whose maximal real subfield is \(\mathbb{Q}(\sqrt{D})_n \) and whose relative Iwasawa \(\lambda \)- and \(\mu \)-invariants for the cyclotomic \(\mathbb{Z}_p \)-extension over \(K \) are zero.

1. Introduction

We fix once and for all the algebraic closure \(\overline{\mathbb{Q}} \) of the field of rational numbers \(\mathbb{Q} \) in the field of complex numbers. All number fields of finite or infinite degree over \(\mathbb{Q} \) are assumed to be subfields of \(\overline{\mathbb{Q}} \). Let \(\zeta_n \) denote the primitive \(n \)-th root of unity for a natural number \(n \).

For any number field \(k \) of finite degree, let \(\zeta_k(s) \) denote the Dedekind zeta function for \(k \). For any rational prime \(p \), let \(\lambda_p(k), \mu_p(k) \) denote Iwasawa \(\lambda \)- and \(\mu \)-invariants for the cyclotomic \(\mathbb{Z}_p \)-extension \(k_\infty/k \). For each nonnegative integer \(n \), let \(k_n \) denote \(n \)-th layer of \(k_\infty/k \), that is, the unique

\[k_n := \left(\mathbb{Q}(\zeta_p) \cap k_\infty \right)^{1/p^n}. \]

2000 Mathematics Subject Classification. Primary 11R23; Secondary 11R11, 11R29.

Key words and phrases. Iwasawa invariant, CM-field.

*Partially supported by Grant-in-Aid for Young Scientists (B), 14740009, The Ministry of Education, Culture, Sports, Science and Technology, Japan.
intermediate field of k_{∞}/k of degree $[k_\infty : k] = p^n$. Let O_k denote the ring of integers of k.

Let F be a totally real number field. Let $w_F = 2^{n(2)+1} \prod_pp^{n(p)}$, where $n(p)$ is the maximal non-negative integer n such that the degree of extension $F(\wp^n)/F$ is at most 2. Serre [11] proved that $w_F\zeta_F(-1)$ is a rational integer.

Let K be a CM-field, that is, a totally imaginary quadratic extension over totally real subfield K^+. For any rational prime p, we define relative Iwasawa invariants for the cyclotomic \mathbb{Z}_p-extension of K as follows:

$$
\lambda_p^-(K) = \lambda_p(K) - \lambda_p(K^+), \\
\mu_p^-(K) = \mu_p(K) - \mu_p(K^+).
$$

For example, if K is an imaginary quadratic field, $\lambda_p^-(K) = \lambda_p(K)$ and $\mu_p^-(K) = \mu_p(K)$ since $\lambda_p(\mathbb{Q}) = \mu_p(\mathbb{Q}) = 0$ for any prime p.

For a totally real field F and a rational prime p, let $\Omega_p(F)$ denote the set

$$
\Omega_p(F) := \{K \mid K \text{ is a CM-field, } K^+ = F \text{ and } \lambda_p^-(K) = \mu_p^-(K) = 0\}.
$$

Horie [3] proved that, for each odd prime p, the set $\Omega_p(\mathbb{Q})$ is an infinite set (see also Horie [4, §3]). Naito [9] extended Horie’s argument and proved the following theorem:

Theorem 1.1 (Naito). Let k be a totally real number field. Let p be an odd prime and suppose $p \nmid w_k\zeta_k(-1)$. Then $\Omega_p(k)$ is an infinite set.

It is natural to consider about the hypothesis of theorem 1.1. Byeon [1] showed that infinitely many real quadratic fields satisfy the hypothesis:

Theorem 1.2 (Byeon). Let p be an odd prime. Then there exist infinitely many real quadratic fields $\mathbb{Q}(\sqrt{D})$ for which $p \nmid w_{\mathbb{Q}(\sqrt{D})}\zeta_{\mathbb{Q}(\sqrt{D})}(-1)$ hold. For each of these real quadratic fields $\mathbb{Q}(\sqrt{D})$, thus, $\Omega_p(\mathbb{Q}(\sqrt{D}))$ is an infinite set.

In this paper, we prove that, for each real quadratic field $F = \mathbb{Q}(\sqrt{D})$ which satisfies the hypothesis of theorem 1.1, and for an odd prime p (thus $\Omega_p(F)$ is an infinite set), all of the n-th layers F_n of the cyclotomic \mathbb{Z}_p-extension of F also satisfy the hypothesis:
Theorem 1.3. Let p be an odd prime. Then there exist infinitely many real quadratic fields $F = \mathbb{Q}(\sqrt{D})$ such that, for each n-th layer F_n ($n \geq 0$) of the cyclotomic \mathbb{Z}_p-extension over F, $\Omega_p(F_n)$ is an infinite set.

Remark 1.4. We note that, for any totally real field F, the condition $p \nmid w_F \zeta_F(-1)$ is a sufficient condition for $\Omega_p(F)$ to be an infinite set. For the case of $p = 3$, Horie and the author [5] proved that, for any totally real field F, $\Omega_3(F)$ is an infinite set for either case $w_F \zeta_F(-1)$ is divisible by 3 or not.

2. Proof of Theorem 1.3

Komatsu [7] proved the following theorem.

Theorem 2.1 (K. Komatsu). Let F be a totally real number field, p a prime and F'/F p-extension. Let ζ_p be a primitive p-th root of 1. We assume that the Iwasawa μ-invariant for $F(\zeta_p)$ is zero: $\mu_p(F(\zeta_p)) = 0$. Then the following assertion holds: If $[F(\zeta_p) : F] \neq 2$ and F'/F is unramified outside p, then $p|K_2(O_F)$ if and only if $p|w_2(F)$.

His proof is based on an interpretation of Quillen’s K-group $K_2(O_F)$ of O_F into certain ideal class group due to C. Soulé, and on the Riemann-Hurwitz type theorem in Iwasawa theory for \mathbb{Z}_p-extensions due to K. Iwasawa and Y. Kida. Of course for all but finitely many real quadratic field $F = \mathbb{Q}(\sqrt{D})$, $[F(\zeta_p) : F] \neq 2$ providing p is given. Since $F(\zeta_p) = \mathbb{Q}(\sqrt{D}, \zeta_p)$ is an Abelian field (number field which are Abelian extension of \mathbb{Q}), $\mu_p(F(\zeta_p)) = 0$ is known by Ferrero-Washington [2].

On the other hand, one of the consequences of the main conjecture in Iwasawa theory (proved by Mazur-Wiles [8, Theorem 5] for Abelian fields and by Wiles [13, Theorem 1.5] for any Abelian extensions over totally real number fields) is the following equality:

$$w_2(F) \approx_p K_2(O_F) \sim p\zeta_F(-1),$$

(1)

where for any integers a, b, let $a \approx_p b$ denote a/b is a p-adic unit.

Combining these results and theorem 1.2, we obtain the following proposition:
Proposition 2.2. Let p be an odd prime number. Then there exist infinitely many real quartic fields $\mathbb{Q}(\sqrt{D})$ such that for any p-extension $F/\mathbb{Q}(\sqrt{D})$ unramified outside p, $p \nmid w_F \zeta_F(-1)$, that is, $\Omega_p(F)$ is an infinite set.

For any number field k, if a prime p of k is ramified in any \mathbb{Z}_p-extension over k, p is lying above p, in other words, any \mathbb{Z}_p-extension over k is unramified outside p (see, e.g., Washington [12, Proposition 13.2]). Thus we are done.

For a totally real field F, let $B_p(F)$ denote the set of all CM-fields K such that K is bicyclic quartic extension of F and satisfies $\lambda_p^-(K) = \mu_p^-(K) = 0$.

Corollary 2.3. For an odd prime p, there exist infinitely many real quadratic fields $F = \mathbb{Q}(\sqrt{D})$ such that, for each n-th layer F_n ($n \geq 0$) of the cyclotomic \mathbb{Z}_p-extension over F, $B_p(F_n)$ is an infinite set.

Proof. As we showed in Horie and the author [5], the relative Iwasawa invariants behave additively for composition of two distinct CM-fields K, K' whose maximal real subfields are coincide and for an odd prime p:

$$\lambda_p^-(K \cdot K') = \lambda_p^-(K) + \lambda_p^-(K'),$$
$$\mu_p^-(K \cdot K') = \mu_p^-(K) + \mu_p^-(K').$$

For $K, K' \in \Omega_p(F_n)$, $K \cdot K' \in B_p(F_n)$ by these formulae. Therefore if $\Omega_p(F_n)$ is an infinite set, so is $B_p(F_n)$.

For small primes p, one can easily find a real quadratic field $F = \mathbb{Q}(\sqrt{D})$ such that $p | w_F \zeta_F(-1)$ via a formula $w_F \zeta_F(-1) = B_{2,\chi}$ for $F = \mathbb{Q}(\sqrt{D})$, $D > 5$, where $\chi(\cdot) = (D/\cdot)$ is the Kronecker symbol and $B_{2,\chi}$ is the generalized Bernoulli number. For example, if $p = 5$ and $F = \mathbb{Q}(\sqrt{37})$, then $w_F \zeta_F(-1) = 2^2 \cdot 5$, if $p = 7$ and $F = \mathbb{Q}(\sqrt{40})$, then $w_F \zeta_F(-1) = 2^2 \cdot 7$ and if $p = 11$ and $F = \mathbb{Q}(\sqrt{61})$, then $w_F \zeta_F(-1) = 2^2 \cdot 11$. But we can say nothing about $\Omega_p(F)$ (see also Naito [10]).

In view of these numerical computations, it seems probable that for each rational prime p, there exists a real quadratic field $F = \mathbb{Q}(\sqrt{D})$ satisfying $p | w_F \zeta_F(-1) = B_{2,\chi}$. We end this paper with the following proposition which gives an equivalent condition of $p | w_F \zeta_F(-1)$.
Indivisibility of special values of zeta functions

Put $F(\zeta_p^\infty) = \cup_{n\geq 1} F(\zeta_p^n)$, then $F(\zeta_p^\infty)/F(\zeta_p)$ is the cyclotomic \mathbb{Z}_p-extension. Let M_∞ be the maximal Abelian p-extension of $F(\zeta_p^\infty)$ unramified outside p, and $\mathcal{X}_\infty = \text{Gal}(M_\infty/F(\zeta_p^\infty))$. Put $\Delta = \text{Gal}(F(\zeta_p)/F)$. Since $\text{Gal}(F(\zeta_p^\infty)/F) = \text{Gal}(F(\zeta_p^\infty)/F(\zeta_p)) \times \Delta$ acts on \mathcal{X}_∞ via conjugation, so does Δ.

Let $\varepsilon_p := |\Delta|^{-1} \sum_{\delta \in \Delta} \omega^i(\delta)\delta^{-1}$ be an idempotent of $\mathbb{Z}_p[\Delta]$, where ω is the p-adic Teichmüller character.

Proposition 2.4. Let p be an odd prime, $F = \mathbb{Q}(\sqrt{D})$ a real quadratic field. Then, $p|\omega_2(\zeta_F(-1)) = B_2, \chi$ if and only if $\varepsilon_2\mathcal{X}_\infty \neq 0$.

Proof. Let A_∞ be the p-Sylow subgroup of the ideal class group of $F(\zeta_p^\infty)$, that is, $A_\infty = \lim_{\to} A_n$, where A_n is the p-Sylow subgroup of the ideal class group of $F(\zeta_p^n)$. By the action induced from that of $\text{Gal}(F(\zeta_p^\infty)/F)$, A_∞ becomes a $\mathbb{Z}_p[\Delta]$-module.

We can assume $F \cap \mathbb{Q}(\zeta_p) = \mathbb{Q}$. Then

$$\Delta \cong \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^\times.$$

As we saw in (1), $p|\omega_2(F)\zeta_F(-1)$ if and only if $p|\sharp K_2(O_F)$. On the other hand, lemma 3 of Komatsu [7] states that, $p|\sharp K_2(O_F)$ if and only if $\varepsilon_2A_\infty \neq 0$.

Let T be a projective limit of all p-power-th roots of unity (with respect to the p-power map) and put $\varepsilon_i\mathcal{X}_\infty(-1) := \varepsilon_i\mathcal{X}_\infty \otimes_{\mathbb{Z}_p} \text{Hom}_{\mathbb{Z}_p}(T, \mathbb{Z}_p)$. The standard argument in Iwasawa theory for \mathbb{Z}_p-extensions involving Kummer theory over $F(\zeta_p^\infty)$, one can show that, for $i + j \equiv 1 \pmod{|\Delta|}$, i being an odd integer,

$$\varepsilon_j\mathcal{X}_\infty(-1) \cong \text{Hom}_{\mathbb{Z}_p}(\varepsilon_iA_\infty, \mathbb{Q}_p/\mathbb{Z}_p)$$

as $\mathbb{Z}_p[[\text{Gal}(F(\zeta_p^\infty)/F(\zeta_p))]]$-modules (see, for example, [6], [12, Proposition 13.32]). Putting $i = p - 2$, we obtain our assertion since $\varepsilon_2\mathcal{X}_\infty(-1) = \varepsilon_2\mathcal{X}_\infty$ as Abelian groups.

References

Department of Mathematics
Faculty of Sciences
Toyama University
Gofuku, Toyama 930-8555, JAPAN
e-mail: iwao@sci.toyama-u.ac.jp

(Received September 2, 2003)