Distribution of C₃ and C₄ Plants and Changes in Plant and Soil Carbon Isotope Ratios with Altitude in the Kirigamine Grassland, Japan

Wenhong Mo*, Noboru Nishimura**, Yukiko Soga*, Kyoko Yamada* and Tadakatsu Yoneyama***

Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan

* At the time of the study: Institute for Basin Ecosystem Studies, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
** Department of Biosphere Science, Faculty of Science, Toyama University, Gofuku, Toyama 930-8555, Japan
*** Present address: 1-6-4 Komanyu, Utsunomiya 320-0066, Japan

Received: June 18, 2003/Accepted: February 4, 2004

Synopsis

The aim of this study was to clarify how temperature underlines the proportion of C₃ and C₄ grasses along an altitudinal gradient in the Kirigamine grassland of central Japan. We investigated the altitudinal patterns of C₃ and C₄ plants in the Kirigamine grassland (1,500 to 1,920 m a.s.l.), and analyzed its relationship to temperature, topography and soil carbon and nitrogen contents based on field survey data of 1992 to 1995. The C₃-grass percentage (measured as % of total grass coverage or biomass) decreased and the C₄-grass percentage increased with altitude, indicating the existence of a transition between C₃ and C₄ grasses in the grassland. Seasonal changes in the proportion of C₃ and C₄ grasses of the C₃-C₄ transition indicated that there was a shift of productive activities from C₃ to C₄ grasses with increasing temperature. The significant correlation between percentage of C₃ and C₄ grasses and temperature-related factors suggests that temperature is of primary importance in determining the proportions of C₃ and C₄ grasses along the altitudinal gradient. Precipitation, soil C and N contents, and topographical factors (slope inclination and aspect) showed less influence on the transition in the grassland. On the other hand, the C₃-C₄ balance point (C₃ and C₄ grasses each constituting 50% coverage) in the Kirigamine grassland had a mean August (the warmest month) minimum temperature of 13°C, which was in rough agreement with the balance point in other temperate regions but higher than that of tropical regions. This suggests that C₃ plants require warmer summer for distribution to higher latitudes.

We measured carbon isotope ratios (δ¹³C) of vegetation and found that the values decreased with increasing altitude, and indicating the transition from C₃ to C₄ grasses with increasing altitude as well. Moreover, we clarify the changes in altitudinal pattern of C₃ and C₄ plants in past vegetation of the Kirigamine grassland, based on the changes in carbon isotope ratios of present vegetation and soil organic matter with increasing altitude. The δ¹³C value of soil organic carbon at the 1660-m site was -18.2‰, while the present vegetation δ¹³C value was -18.6‰, suggesting a similar C₃/C₄ ratio in the past (recorded in soil δ¹³C value) as at the present at this site. However, at the 1715-m and 1830-m sites, the soil δ¹³C values were -19.5‰ and -21.2‰, whereas the present vegetation δ¹³C values were -22.3‰ and -26.1‰, respectively. These results strongly suggest that a greater proportion of C₃ plants occupied the communities at the higher altitudes in the past.

Key words: Altitudinal pattern, C₃ and C₄ plants, Carbon isotope ratio, Kirigamine grassland, Past vegetation, Temperature.

Introduction

Temperature is not only known to influence plant growth in numerous ways, but is also an important determinant in the natural distribution of plants. The role of temperature in determining species distribution is currently receiving renewed attention, because it is important in prediction of vegetation response to global climate change (Epstein et al. 1997). Since the 1970s numerous studies have been conducted on species distribution along temperature gradients at the latitudinal scale (Teeri and Stowe 1976, Hattersley 1983; Takeda et al. 1985; Okuda 1987) and at the altitudinal scale (Tieszen et al. 1979; Boutton et al. 1980; Rundel 1980; Cavagnaro 1988; Earnshaw et al. 1990). These studies have demonstrated the existence of a transition from C₃ to C₄ species along an increasing altitudinal or latitudinal gradient. The analyses often concentrate on the Poaceae, which contains nearly half of all known C₄ species. These studies all indicated that temperature is of primary importance in determining the distribution of C₃ and C₄ species regionally, although water...
availability was also important in a few studies (Tieszen et al. 1979; Hattersley 1983; Cavagnaro 1988). There were some common findings for the relationship between temperature and the proportion of C3 and C4 grasses regionally: (1) Mean minimum temperature for the warmest month often strongly correlated with the relative abundance of C4 grasses locally, which is suggested to reflect the warmer the nights and the greater success of C4 taxa (Teeri and Stowe 1976); (2) The C3-C4 balance point where C3 and C4 grasses each constitutes 50% of the total number, has a mean minimum temperature for the warmest month of 13-15°C in temperate regions (Teeri and Stowe 1976; Ehleringer 1978; Hattersley 1983; Cavagnaro 1988), and of 8°C in tropical regions (Tieszen et al. 1979; Rundel 1980); and (3) the absolute limit of C3 species distributions has a mean minimum of 8-10°C during the warmest month of the year either in temperate or in tropical regions (Teeri and Stowe 1976; Ehleringer 1978; Rundel 1980; Hattersley 1983; Cavagnaro 1988). However, most of these studies were conducted in tropical or temperate semi-arid to arid regions where a temperature (altitudinal or latitudinal) gradient is usually correlated with a soil moisture gradient. This makes it difficult to distinguish the effects of temperature and other environmental factors (e.g. soil moisture) on the transition of C3 and C4 species (Hattersley 1983; Paruelo and Lauenroth 1996). A few studies in Japan have reported that the distribution of C3 and C4 grasses is primarily dependent on temperature-related factors in grasslands at the latitudinal scale (Takeda et al. 1985; Okuda 1987; Okuda and Furukawa 1990). However, information still lacks on the distribution of C3 and C4 grasses along an altitudinal gradient in Japan.

It is widely accepted that carbon isotope ratios (δ13C) in soil or plant material can be an essential indicator of the proportion of C3 and C4 species at a given altitude (Tieszen et al. 1979; Bird et al. 1994). Tieszen et al. (1979) found that an increase in negative δ13C value paralleled the proportion of C4 species along an increasing altitudinal gradient. The overall processes of decomposition of plant organic materials cause only less than 2% changes in the δ13C values of the organic carbon remaining in soils, which are due to isotopic fractionation during mineralization and slower decomposition of lignins (Benner et al. 1987). The δ13C values of vegetation are largely determining soil δ13C values (Balesdent et al. 1987). Therefore, carbon-isotope analysis of soil organic matter is useful for detecting past vegetation changes (Dzurec et al. 1985; Wedin et al. 1995).

We previously demonstrated that in the Kirigamine grassland of central Japan, there exists a sharp transition from Miscanthus sinensis Anders. (C4 grass) dominance to Calamagrostis longiseta Hack. (C3 grass) dominance as the altitude increases from 1,650 to 1,850 m a.s.l. (Nishimura et al. 1997). Because of this sharp transition under a high annual precipitation (>1,665 mm), it suggests that temperature-related factors would principally underlie the transition of C3 and C4 grasses rather than soil moisture in Kirigamine grassland. However, even under a high annual precipitation, C3 and C4 grasses may be distributed differently depending on slope exposure, due to soil moisture condition expecting to be different with slope exposure according to main wind direction. We investigated the altitudinal pattern of the distribution of C3 and C4 grasses in the Kirigamine grassland (1,500 to 1,900 m) from 1992 to 1995, and analyzed its relationship to temperature and topographical factors such as slope inclination, slope aspect and soil nitrogen content. The main aim of this study was to clarify how temperature underlines the proportion of C3 and C4 grasses along an altitudinal gradient in the Kirigamine grassland, and comparing with the distribution pattern of C3 and C4 grasses in other regions. The aim was also to clarify past vegetation based on the changes in carbon isotope ratios of present vegetation and soil organic matter with increasing altitude.

Materials and Methods

1. Site description

The Kirigamine grassland is situated in Nagano Prefecture, central Japan (36°07′N, 138°10′E; see Nishimura et al. 1997 for details); the highest peak is Mt. Kuroyama (1,925 m). The semi-natural grassland ranges from 1,500 to 1,920 m a.s.l. and extends over 3,000 ha (Midorikawa et al. 1964). The grassland had been mown for animal husbandry since the early seventeenth century (about 370 years ago), but such utilization was stopped in the 1960s (Nishimura et al. 1997). Suzuki et al. (1981) supposed that the original forest vegetation of this area was dominated by Abies homolepis Sieb. et Zucc. and Abies veitchii Lindl., which are regarded as indicators of climax coniferous forest in the subalpine climatic zone of Japan (Maekawa 1974). Some A. homolepis forest is still present in some places. The annual mean air temperature is 2.5°C at the peak of Mt. Kuroyama and 4.7°C at 1,675 m a.s.l. (Midorikawa et al. 1964; Nishimura et al. 1997). The warmest index is 47.5°C month at 1,675 m and 35.1 at 1,925 m, and the annual precipitation ranges between 1,665 and 1,855 mm (Nishimura et al. 1997). Wind blows from the south mainly throughout the whole year, and during the winter wind direction from S-SSW results in a great amount of snowfall accumulated at north slope (max.
500 cm) than at south slope (around 50–100 cm) (Midori kawa et al., 1964; Nishiwaki, 1982). The soil type in this area is classified as Andosol, which originates mainly from volcanic ash and is very rich in organic matter (Midori kawa et al., 1964). The present grassland vegetation consists of perennial tall-grass communities dominated by M. sinensis (C₃) at lower altitudes and by C. long is c e t a (C₄) or partly by C. langsdorffii (Link) Trin. (C₃) at higher altitudes. A very slow succession of this grassland toward forest is occurring (Nishinura et al., 1997; Shimoda, 2001). The 8-year (1994–2000) vegetation data from 1,600-m site showed that current Miscanthus sinensis grassland in Kirigamine is in a stable situation (Shimoda, 2001). It suggested that the Miscanthus sinensis grassland in Japan could maintain for several tens years or more than hundreds years after abandonment (Sakanoue, 2001). We therefore have enough reasons to consider that current vegetation may be determined by environmental factors in a greater degree in the Kirigamine grassland after abandoned for more than 30 years.

2. Field surveys and data analysis

A general vegetation survey (floristic composition of 31 stands at different altitudes) was carried out in early July of 1992, 1993, and 1994 (see Nishinura et al., 1997; detailed data are also available from the first author of present paper). Eight plots (stands), which we regarded to have typical floristic composition at different altitudes of the grassland, were selected for biomass sampling and carbon isotope analysis: plots 1 (1,630 m), 2 (1,660 m), 18 (1,710 m), 25 (1,715 m), 20 (1,790 m), 15 (1,830 m), 5 (1,880 m), and 31 (1,920 m). The air temperature (at 1.0 m high) was measured at 1,672 m (site-a) and 1,805 m (site-b) from June 1995 to October 1997, by using two KADEC recorders (Kona System Co., Ltd., Tokyo, Japan). Each recorder was put in a hand-made woody box with four legs, and the temperature sensor was shaded by the box and set at a wind-draw well place for each site. The air temperature (annual mean, annual minimum, and minimum temperature for the warmest month (August)) of each plot was calculated from the local rate of change of temperature with altitude, around 0.60°C per 100 m of altitude, which was determined from the air temperature data for 1995–1997 at site-a and site-b. StatView version 5.0 J (Version 1998, SAS Institute Japan Ltd., Tokyo, Japan) was used for all statistical analyses.

We surveyed each stand in six 1-m² quadrats, since total surveyed area of 6-m² was large enough for the minimal area of the grassland (Numata, 1976). At each stand, slope inclination was recorded using a ranking scale of 0–4, where 0 was no inclination, 1 was very slight (<5°), 2 slight (5–10°), 3 moderate (10–15°), and 4 steep (>15°). Slope aspect was numbered as the following designations: 0=north facing, 90=east or west facing, and 180=south facing. Since the main wind direction blows from the south, the south slope is expected to have limited soil moisture comparing to the north slope. Therefore, the greater number of slope aspect indicated the relatively limited soil moisture of the site (we excluded the 4 sites with flat topography for the statistical analysis in order to make the relationship of vegetation and slope aspect more clearly, i.e. n=22). The % coverage of each species within each quadrat was estimated, and the mean of the six quadrats was calculated. Changes in the biomass of C₃ and C₄ grasses with altitude were measured from 1630 m to 1920 m in late August 1994, when the Kirigamine grassland maximized its standing biomass (Midori kawa et al., 1964). In plots 1, 24, 25, 20, 15, and 31, six 1-m² quadrats were laid out randomly, and the aboveground parts were cut and separated to grasses (each species), the dwarf bamboo Sasa chartacea Makino var. nana (Makino) S. Suzuki and others (non-grass species), and dried at 80°C for 48 hours.

Seasonal changes in standing biomass at different altitudes were measured from June to September in 1993 (plots 1, 18, 5 and 1994 (24, 25, 15). We sampled one 1-m² quadrat in each plot to measure the aboveground biomass of each grass species, Sasa chartacea, and other non-grass species, which were dried at 80°C for 48 hours. Plant samples collected in July 1993 were used for carbon isotope analysis.

3. Soil sampling

Soil samples (removed of roots) were collected from different altitudes (plots 24, 25, 15) on 19 June 1995. The soil was sampled every 5 cm from soil surface to 15 or 20 cm depth by soil core samplers (100 cm³), and two points (5-m distance with each other) were sampled for each plot. Soil samples were dried at 105°C for 48 hours and weighed. Soil carbon (C) and nitrogen (N) contents were measured with a NC-analyzer (Sumigraph Model NC-800, Shimazu Co. Ltd., Tokyo, Japan). The left soil samples were used for carbon isotope analysis.

4. Carbon isotope analysis

Dried samples (soil or plant materials) were ground into fine powder in a vibration mill (Heiko Co. Ltd., Tokyo, Japan). The carbon isotope ratios (δ¹³C) of the samples (each containing 300 to 800 µg C) were determined with an isotope ratio mass spectrometer (ANCA-SL, Europe Scientific Ltd., Crewe, UK). L-Alanine was used as the working standard with a δ¹³C value of −21.9% in reference to the PDB (belemnite from the Pee Dee Formation in South Carolina) standard. The δ¹³C of organic matter is expressed as per mil deviation, calculated with Eq. 1.

NII-Electronic Library Service
\[\delta^{13}C(\%o) = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \]

(1)

where \(R \) is \(^{13}C/^ {12}C \) (O'Leary 1981; Yoneyama et al. 2001). For each sample, the analytical error was within \(\pm 0.15\%o \) (detailed description for carbon isotope analysis has given in Yoneyama et al. 2001).

Plant samples collected in July 1993 from different altitudes (plots 1, 18, 5; each one 1-m² quadrat), which divided into each grass species, Sasa chartacea and other non-grass species, were used for the carbon isotopic analysis. For each plot, the grass \(\delta^{13}C \) value (\(\delta^{13}C \) value of total grass biomass) can be calculated by a mass-balance equation (Bird et al. 1994) (Eq. 2):

\[\text{grass-} \delta^{13}C = \sum_{i=1}^{n} (\delta^{13}C_{\text{grass}(i)} \times \alpha_{\text{grass}(i)}) \]

(2)

where \(\delta^{13}C_{\text{grass}(i)} \) is the carbon isotope ratio of grass species \((i)\), and \(\alpha_{\text{grass}(i)} \) is the % biomass of grass species \((i)\) to total grass biomass, \(i \) is the number of grasses for the plot \((i = 1, \ldots, n)\). Similarly, plant \(\delta^{13}C \) value (\(\delta^{13}C \) value of total plant biomass) of the plot can be calculated as the sum of \(\delta^{13}C \) value of each species multiplied by its % of biomass of total biomass. The calculated grass- or plant-\(\delta^{13}C \) value was theoretically equal to the value measured with the well-mixed sample of total grass biomass or total biomass, respectively (Earnshaw et al. 1990).

We can calculate the proportion of \(C_4 \) plant-derived C (X) or \(C_3 \) plant-derived C (1-X) for soil carbon using Eq. 3 as suggested by Yoneyama et al. (2001).

\[\delta^{13}C_{\text{soil}} = \delta^{13}C_{C_4} \times X + \delta^{13}C_{C_3} \times (1 - X) \]

(3)

where \(\delta^{13}C_{\text{soil}} \) is the \(\delta^{13}C \) value of soil carbon, \(\delta^{13}C_{C_4} \) is the \(\delta^{13}C \) value of \(C_4 \) plant-derived carbon \((-26.2 \sim -26.7\%o\), calculated from Table 2) and \(\delta^{13}C_{C_3} \) is the \(\delta^{13}C \) value of \(C_3 \) plant-derived carbon \((-10.2 \sim -12.5\%o\), calculated from Table 2) in the soil.

Results

1. **Altitudinal pattern of the distribution of \(C_3 \) and \(C_4 \) grasses in the Kirigamine grassland**

Out of 151 species found, eight \(C_3 \) and three \(C_4 \) grasses (excluding the \(C_3 \) dwarf bamboo Sasa chartacea) were found in this grassland (also see Nishimura et al. 1997, which gives detailed results of the general vegetation surveys). Briefly, in the Kirigamine grassland the \(C_4 \) grass M. sinensis dominates sites lower than 1,650 m, whereas the \(C_3 \) grass C. longiseta dominates sites higher than 1,750 m. C. langsdorffii communities usually occur at snowy sites above 1,800 m, and C. hakonensis Franch et Savat communities appear mainly at windswpt sites near mountaintops (around 1,900 m). The other \(C_3 \) and \(C_4 \) grasses exist as accompanying species in the plant communities. The studied area covered two main slopes: western and eastern. The transition from \(M. \) sinensis to \(C. \) longiseta communities on the western main slope (plots 1 to 25, 31) is about 100 m higher than the transition on the eastern main slope (plots 26 to 30). Such a difference between the two main slopes is more likely due to effects of a large-scale topography, such as varying in windswpt and accumulation of snow during winter (Nishimura et al. 1997). Therefore we used data from the western main slope (plots 1 to 25, 31) to analyze the effects of slope inclination and aspect on vegetation in a microclimate scale. Results and discussion below are referred to data from the western main slope only.

Figure 1 shows that the % coverage of \(C_3 \) grasses declined and that of \(C_4 \) grasses increased with increasing altitude in the Kirigamine grassland. The \(C_4 \) grass percentage (% of total grasses in coverage)
decreased sharply above 1,700 m, whereas the C₃-grass percentage increased with increasing altitude, to totally replace C₄ grasses above 1,800 m (Fig. 2a). This transition from C₄ to C₃ grasses occurred in a narrow altitude range between 1,570 and 1,770 m, with only 1°C difference in mean air temperature (1995–1997 KADEC data); i.e., annual mean temperature of 3.8°C to 4.8°C or mean minimum air temperature of 12°C to 13°C in the warmest month (August). In other words, the C₄-C₃ balance point (C₄ and C₃ grasses each constituting 50% coverage) in this grassland had a mean August minimum temperature of 13°C. Furthermore, in the Kirigamine grassland the C₄-C₃ transition mainly occurred between the C₄ grass *M. sinensis* and the C₃ grass *C. longiseta*, as measured with relative coverage of total grasses (Fig. 2b).

The August standing biomass (Fig. 3) of this grassland declined with increasing altitude from 695.8 ± 78.7 g DM m⁻² at low altitude (1,630 m) to 297.9 ± 39.9 g DM m⁻² at high altitude (1,920 m). The percentage of total grass biomass declined from 75% of the total plant biomass to 40% as the altitude increased from 1,630 m to 1,920 m (Fig. 3). However, the C₃-grass biomass decreased and the C₄-grass biomass increased with increasing altitude (Figs. 3, 4). Among all species, *M. sinensis* (C₄) and *C. longiseta* (C₃) were the most important contributors to the total standing biomass (Fig. 4). Similarly, there was a decrease in the *M. sinensis* biomass (% of total biomass) but an

![Fig. 2](image-url)
Fig. 2. Changes in relative coverage (% of total grasses) of (a) C₄ and C₃ grasses, and (b) dominant species with altitude in the Kirigamine grassland (July, 1992 to 1994). Arrows in (a) indicate the transition of C₄ to C₃ grasses from 1670 m to 1770 m. (b) indicates the transition of C₄ and C₃ grasses mainly occurred between *M. sinensis* (C₄) and *C. longiseta* (C₃) in the grassland. Regression equation for *M. sinensis* is $y = 1.048E - 5x^2 - 0.054x^2 + 92.607x - 51043.91$ ($R^2 = 0.885$, $P < 0.001$), and for *C. longiseta* is $y = -1.884E - 5x^2 - 0.097x^2 - 164.327x + 92722.55$ ($R^2 = 0.801$, $P < 0.001$).

![Fig. 3](image-url)
Fig. 3. Changes in standing biomass (total plants, C₄ and C₃ grasses) along the altitudinal gradient in the Kirigamine grassland (August 23 to September 6, 1994). Error bar for total plants represents the standard deviation ($n=6$).

![Fig. 4](image-url)
Fig. 4. Changes in percentage of dominant species, other C₄ and C₃ grasses, and non-grass species with increasing altitude in the Kirigamine grassland, as measured with biomass data collected from August 25 to September 6, 1994.
increase in the *C. longiseta* biomass with increasing altitude. Other *C*$_4$ grasses, such as *Arrundinella hirta* (Thunb.) C. Tabaka and *Eccolopous cotylifer* (Thunb.) A. Camas, were also found at higher altitudes (e.g. 1,830 m). At higher altitudes, *Sasa chartacea*, forbs, and woody plants occupied a relatively large proportion of the total standing biomass. Two other *Calamagrostis* species, *C. hakonensis* and *C. langsdorffii*, became dominant above 1,900 m (Fig. 4; also see Nishimura *et al.* 1997).

Table 1 shows the coefficients of correlation of the distribution of *C*$_4$ and *C*$_3$ grasses with climatic and topographical factors in the Kirigamine grassland. The *C*$_4$-grass percentage (measured as % of total grasses in coverage or biomass) showed a significantly negative correlation with altitude, and a positive correlation with temperature-related factors. Conversely, the *C*$_3$-grass percentage showed a significantly positive correlation with altitude, and a negative correlation with all temperature-related factors. Although calculation of temperature, i.e. from the local rate of temperature changing with altitude, would cause redundancy in the parameters between altitude and temperature, it will not change the fact that distribution of *C*$_4$ and *C*$_3$ grasses was significantly correlated to altitude which often strongly correlated with temperature-related factors. The proportions of *C*$_4$ and *C*$_3$ grasses, however, showed no significant correlation with slope inclination and aspect within the western main slope. Interestingly, the proportion of *C*$_3$ grasses showed a weak positive correlation with slope aspect ($r=0.329$, $P>0.05$, $n=22$), although the correlation was not statistically significant. It suggested that the proportion of *C*$_3$ grasses might be greater in the south, east and west slope than in the north slope.

Because there was a similar trend in the seasonal changes in biomass between 1993 and 1994, the

<table>
<thead>
<tr>
<th>Table 1. Correlation coefficients of the distribution of C$_4$ and C$_3$ grasses with climate and topography in the Kirigamine grassland (*** $P<0.001$, ** $P<0.01$, * $P<0.05$).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Number of samples (plots)</td>
</tr>
<tr>
<td>Sampling area (m2 per sample)</td>
</tr>
<tr>
<td>Climate</td>
</tr>
<tr>
<td>Annual mean air temp. (°C)</td>
</tr>
<tr>
<td>Annual minimum air temp. (°C)</td>
</tr>
<tr>
<td>August minimum air temp. (°C)</td>
</tr>
<tr>
<td>Topography</td>
</tr>
<tr>
<td>Altitude (m a.s.l.)</td>
</tr>
</tbody>
</table>

![Graph showing seasonal changes in percentage of *C*$_4$ and *C*$_3$ grasses and other species at three altitudes in the Kirigamine grassland (June to September, 1994).](image-url)
results of 1994 are illustrated in Figure 5 for explanation. At the low altitude of 1,660 m, C₃ grasses (mainly *M. sinensis*) were dominant throughout the growing period from June to September. The C₄-grass biomass was maximized in early September at 1,660 and 1,715 m. However, at 1,715 m (C₃-C₄ transition), the C₃ grasses (mainly *C. longiseta*) dominated the early growing season till early summer. The percentage of C₃ grasses (mainly *M. sinensis*), as a measure of % of total biomass, increased greatly in August and reached the maximum in early September. At the high altitude of 1,830 m, the C₃ grass *C. longiseta* dominated, and *Sasa chartacea* forbs, and other species occupied a relatively large proportion of the stand. However, the proportion of C₄ grasses (*A. hirta* and *E. cotulifer*) was extremely low at this site (1,830 m).

2. Carbon isotope ratios of present vegetation at different altitudes

Table 2 shows the δ¹³C values of plant materials from different altitudes. In the Kirigamine grassland, the C₃ grasses had less-negative carbon isotope ratios (−9.7% to −15.3%), whereas the C₄ species had more-negative values (−25.0% to −28.4%). On the other hand, both grass and plant δ¹³C values showed a decreasing tendency as altitude increased from 1,630 m to 1,850 m (Fig. 6). The grass δ¹³C values changed from −9.7% to −26.2% and showed a negative correlation with altitude (r = −0.877, P < 0.05, n = 6), and the plant δ¹³C changed from −16.6% to −26.4% and also showed a negative correlation with altitude (r = −0.903, P < 0.01, n = 6).

3. Soil C and N contents and soil δ¹³C values at different altitudes

Table 3 shows soil C and N contents at different altitudes. There was no difference in total N content (g N/100 cm³ soil volume) with either altitude or soil depth (P > 0.05), although there was an increasing trend in the percentage of soil N with increasing altitude (from 1.45% to 1.71% as the altitude increased from 1,660 to 1,830 m). The percentage of soil C was slightly higher at high altitude (1,830 m), but total C content (g C/100 cm³ soil volume) also showed no statistical difference with either altitude or soil depth (P > 0.05, Table 3). Yoneyama *et al.* (2001) analyzed carbon and nitrogen content of soils from all over Japan and found that if pH of the soils was

![Graph showing changes in carbon isotope ratios (δ¹³C) of plants and soils with altitude in the Kirigamine grassland.](image)
lower than 7.0, the form of the soil carbon was mostly organic. Since the pH (H2O) of our soil samples was between 4.3 and 4.5, it indicated that total soil carbon content was approximately equal to soil organic carbon content.

δ13C values of soil organic matter (excluding roots) at different altitudes are shown in Table 3 and Figure 6. The negative soil δ13C value decreased with increasing altitude, from −18.2±0.40% at 1660 m to −21.2±0.26% at 1850 m. This variation in soil δ13C values with altitude was highly significant (P<0.001). However, the soil δ13C values showed no significant difference with soil depth (P>0.05 at all sites).

The proportion of C1 plant-derived C for the soils from different altitudes decreased with increasing altitude, i.e. 51.4, 42.2 and 35.0% for 1660, 1715 and 1830 m respectively. In other words, the proportion of C1 plant-derived C for soil increased with increasing altitude (48.6, 57.8 and 65.0% for 1660, 1715 and 1830 m respectively).

Discussion

1. Transition of C1 and C3 grasses in the Kirigamine grassland

Intensive field studies conducted in the Kirigamine subalpine grassland especially between the 1960s and 1980s investigated vegetation types and succession in the grassland (Iwaki et al. 1964; Midorikawa et al. 1964; Tsuchida and Numata 1979; Nishiwaki 1982; Shimoda 2001). The early studies did not report the existence of Calamagrostis communities in this grassland (Iwaki et al. 1964; Midorikawa et al. 1964). Tsuchida and Numata (1979) reported that the M. sinensis community occurred below 1750 m and the Sasa chartacea-C. longiseta community above 1750 m or on wind-swept sites in the grassland. Later, Tsuchida (1982) described vegetation types of the Kirigamine grassland in details, in reference to the results of Tsuchida and Numata (1979). However, little information addresses the altitudinal pattern of the distribution of C3 and C1 grasses in the grassland.

Our results indicate that there is a sharp transition from C3 grasses (mainly M. sinensis) to C1 grasses (mainly C. longiseta) between 1670 m and 1770 m (Figs. 1, 2, 4) in the Kirigamine grassland. The C3-grass percentage (measured as % of total grasses in coverage or biomass) decreased and the C1-grass percentage increased with increasing altitude (Figs. 2, 4). The significant correlation between the proportion of C1 and C3 grasses and temperature-related factors (Table 1) suggests that temperature is an important factor in the proportion of C1 and C3 grasses along the altitudinal gradient in the grassland. Estimation of temperature from local rate of temperature changing with altitude would cause redundancy in

Table 3. Carbon and nitrogen contents and δ13C of the soils from different altitudes in the Kirigamine grassland. Values are shown as mean±standard deviation (n=2, except for 15-20 cm depth). The soil samples were collected in June 1996. Two-way ANOVA was used for the statistical analyses.

<table>
<thead>
<tr>
<th>Altitude (m a.s.l.)</th>
<th>Soil depth (cm)</th>
<th>Carbon content (%)</th>
<th>Nitrogen content (%)</th>
<th>C/N ratio</th>
<th>δ13C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(C) (g C/100 ml)</td>
<td>(N) (g N/100 ml)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,660 m (No. 24)</td>
<td>0-5</td>
<td>25.94±1.29</td>
<td>8.59±0.26</td>
<td>1.64±0.11</td>
<td>0.54±0.01</td>
</tr>
<tr>
<td></td>
<td>5-10</td>
<td>22.96±0.34</td>
<td>8.80±0.18</td>
<td>1.42±0.01</td>
<td>0.55±0.01</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>22.35±0.41</td>
<td>8.73±0.24</td>
<td>1.36±0.05</td>
<td>0.52±0.01</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>22.03</td>
<td>9.39</td>
<td>1.38</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>23.32±1.31</td>
<td>8.88±0.26</td>
<td>1.45±0.10</td>
<td>0.55±0.02</td>
</tr>
<tr>
<td></td>
<td>0-5</td>
<td>25.53±0.68</td>
<td>9.14±0.26</td>
<td>1.61±0.04</td>
<td>0.38±0.02</td>
</tr>
<tr>
<td></td>
<td>5-10</td>
<td>25.36±0.04</td>
<td>7.63±0.04</td>
<td>1.64±0.05</td>
<td>0.49±0.02</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>23.95±0.62</td>
<td>8.62±0.30</td>
<td>1.44±0.09</td>
<td>0.52±0.04</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>22.67</td>
<td>6.68</td>
<td>1.32</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>24.38±1.07</td>
<td>8.02±0.86</td>
<td>1.50±0.12</td>
<td>0.53±0.03</td>
</tr>
<tr>
<td></td>
<td>0-5</td>
<td>28.68±0.75</td>
<td>7.77±0.83</td>
<td>1.78±0.03</td>
<td>0.48±0.06</td>
</tr>
<tr>
<td></td>
<td>5-10</td>
<td>27.66±0.35</td>
<td>8.77±0.62</td>
<td>1.74±0.03</td>
<td>0.55±0.03</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>26.86±0.45</td>
<td>9.01±1.69</td>
<td>1.68±0.04</td>
<td>0.56±0.10</td>
</tr>
<tr>
<td></td>
<td>15-20</td>
<td>26.05</td>
<td>9.27</td>
<td>1.62</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>average</td>
<td>27.31±0.86</td>
<td>8.71±0.47</td>
<td>1.71±0.06</td>
<td>0.54±0.03</td>
</tr>
</tbody>
</table>

a1 Variation in C%, N% and δ13C are significant with altitude (P<0.01). Variation in all measurements are not significant with soil depth (P>0.05).
Mo et al.: Distribution of C₃ and C₄ Plants in Kirigamine

251

the parameters between altitude and temperature. However, it will not change the fact that temperature is principal control on the distribution of C₃ and C₄ grasses in the grassland, because it is reasonable to consider altitude highly correlated to temperature at a local scale. On the other hand, Table 3 shows that there was no statistical distinction between soil C and N contents (g/100 cm³ soil volume) and altitude, suggesting that N content or other soil nutrients may be less responsible for the transition of C₃ and C₄ grasses in the grassland. In the meanwhile, there was no significant correlation between the percentage of C₃ and C₄ grasses and topographical factors such as slope inclination and aspect in a microclimate scale within the western main slope (Table 1). It must be pointed out that there was a weak positive correlation between C₄-grass percentage and slope aspect (r = 0.329, P > 0.05), and indicating that the percentage of C₄ grasses might be greater in the south, east, and west slopes than in the north slope (Table 1). This suggests that C₄ grasses may be advantage at the habitats with relatively limited soil moisture even under a high annual precipitation. However, this tendency may be also explained partly by the great amount of snowfall during winter and the late snowmelt of spring in the north slope (Nishiwaki 1982). We therefore suggest that soil moisture may be less responsible for determining the proportions of C₃ and C₄ plants in the Kirigamine grassland, according to the two facts that (1) the proportion of C₃ and C₄ grasses was not significantly correlated to slope aspect which reflected soil moisture condition in a certain degree, and (2) the high annual precipitation (1,665 to 1,855 mm) of the grassland. Two studies support this suggestion (Takeda et al. 1985; Okuda 1987), demonstrating that temperature is the principle factor in determining the percentage of C₃ and C₄ grasses in Japan in regions with high annual rainfall and small seasonal changes in rainfall.

The transition from C₃ to C₄ grasses occurred in a narrow altitude range (1,650 to 1,770 m) in the Kirigamine grassland (Fig. 2), compared with the C₃-C₄ transition in other altitudinal gradients (Tieszen et al. 1979; Boutton et al. 1980; Rundel 1980; Cavagnaro 1988; Earnshaw et al. 1990). For instance, the transition occurred between 1,405 and 2,420 m in shortgrass prairie in North America (Boutron et al. 1980). Varied altitude ranges of the C₃-C₄ transitions may be explained by the dominant C₃ and C₄ species differing with investigated altitudinal gradients. The C₃-C₄ transition in shortgrass prairie (Boutron et al. 1980) occurred among short grasses such as Bouteloua gracilis (C₃) and Agropyron smithii (C₄). However, in the Kirigamine grassland, the transition occurred among tall grasses, which expected to have a keener competition for light resources than shortgrass communities. Such a sharp C₃-C₄ transition in Kirigamine grassland can be explained by the keener displacement between the two tall grasses, M. sinensis (C₃) and C. longigeta (C₄), as showed by Figure 2b. Evidence supports this explanation, such as seasonal changes in light intensity and productive structure of communities from different altitudes and net photosynthesis of dominant species, will give and discuss more detailed in the subsequent paper and data are also available from Mo (1997). Although the C₃-C₄ transition was sharper in the Kirigamine grassland, the C₃-C₄ balance point (C₃ and C₄ grasses each constituting 50% coverage) in Kirigamine had a mean August (the warmest month) minimum temperature of 15°C. This was in rough agreement with the balance point in other temperate regions (Ehleringer 1978; Hattersley 1983; Cavagnaro 1988), however, higher than that of tropical and subtropical regions such as Kenya (Tieszen et al. 1979) and Hawaii (Rundel 1980). It demonstrates that the altitudinal C₃-C₄ transition of higher latitudes seems to have a higher mean minimum temperature of the warmest month for the C₃-C₄ balance point. Conversely, in the tropical regions with little seasonal changes in temperature, the C₃-C₄ transition tends to have a lower mean minimum temperature of the warmest month for the balance point. That is, C₄ plants require a warmer summer for distribution to higher latitudes.

In the Kirigamine grassland the C₄ M. sinensis communities (Fig. 4) were restricted to altitudes lower than 1,800 m with a mean August minimum temperature around 12°C, which seemed to be higher than the absolute limit of C₄ species distributions in other temperate and tropical regions, i.e. a mean minimum temperature of 8–10°C for the warmest month (Teeri and Stowe 1976; Ehleringer 1978; Rundel 1980; Hattersley 1983; Cavagnaro 1988). However, small stands of M. sinensis were found even at the top of Mt. Kurumayama in rocky or bare sites, where M. sinensis may lack competition from neighbors. Other C₄ grasses, A. hirta and E. cotulifer, were also found higher than 1,800 m (Fig. 4; see also Nishimura et al. 1997). These facts suggest that the physiological limit for C₄ grasses in the grassland would occur above 1,920 m, the top of the grassland with a mean minimum temperature of 11°C for the warmest month.

Seasonal changes in the proportion of C₃ and C₄ grasses (Fig. 5) indicated that there was a decrease in C₄-grass percentage and an increase in C₃-grass percentage from June to September in the C₃-C₄ transition zone (e.g. 1,715 m). This suggests the occurrence of a seasonal shift of productive activities from C₄ to
C₄ grasses with increasing temperature there. Such a seasonal pattern of C₃ and C₄ species was also found in C₃-C₄ mixed prairies in North America (Ode et al. 1980; Monson and Williams 1982; Monson et al. 1983), where there was a shift from C₃-dominant to C₄-dominant from spring to midsummer, and back to C₃-dominant in the fall. Ode et al. (1980) pointed out that this seasonal displacement between C₃ and C₄ species resulted from the differential responses of C₁ and C₄ photosynthetic pathways to temperature. C₃ plants have physiological advantages over C₄ plants, in terms of high potential productivity and efficiencies of water and nitrogen use, especially at high light intensities, at high temperatures, and with limited soil moisture (Black 1973; Berry and Bjorkman 1980). However, low temperatures may minimize these advantages (Long 1983). Mo (1997) produced photosynthetic evidence to show that M. sinensis (C₃) differed from C. longiseta (C₄) in response to temperature under controlled conditions. Mo (1997) also measured the single-leaf photosynthetic rate with a portable photosynthetic system (Type LCA-4, ADC, UK) in the Kirigamine grassland, and found that in early summer C. longiseta had a similar photosynthetic rate as M. sinensis (12.0±1.63 μmol m⁻² s⁻¹ and 11.3±1.98 μmol m⁻² s⁻¹, respectively; 19 June 1995). However, the photosynthetic rate of M. sinensis (16.9±0.60 μmol m⁻² s⁻¹) was substantially greater than that of C. longiseta (9.04±2.20 μmol m⁻² s⁻¹) in late summer (25 July 1995). The differences between C₃ and C₄ plants in photosynthetic temperature responses have often been discussed in relation to altitudinal or latitudinal distribution patterns of C₃ and C₄ grasses (Teeri and Stowe 1976; Ehleringer 1978; Tieszen et al. 1979; Earnshaw et al. 1990). In the subsequent paper, we will give more information on the differentiation between the C₄-grass C. longiseta and the C₃-grass M. sinensis, in terms of productive structure and net photosynthesis, and discussing the regulating role of temperature on interspecific competition among the two species differing in photosynthetic pathways.

Overall, our results indicate that there is a transition of C₃ and C₄ grasses in the Kirigamine grassland, and that temperature is the principle factor determining the proportion of C₃ and C₄ grasses along the altitudinal gradient in the grassland. However, further information is still required to explain how temperature determines the distribution of C₃ and C₄ species locally. Mo et al. (1997) suggested that the restriction of C. longiseta communities to higher altitudes is not due to a physiological limit to their growth at lower altitudes and warmer temperatures, but because they may fail to compete with M. sinensis at lower altitudes. A direct test is needed to clarify the function of temperature in competition between the C₃ grass M. sinensis and the C₄ grass C. longiseta.

2. Isotopic evidence for changes in past vegetation in the Kirigamine grassland

Carbon isotope ratios (δ¹³C) in soil or plant materials can be used to measure the proportion of C₃ and C₄ species at a given altitude (Tieszen et al. 1979; Bird et al. 1994). In the Kirigamine grassland, C₃ plants had δ¹³C values ranging from −25.0‰ to −28.4‰ with a mean of −26.0‰, whereas C₄ plants had values ranging from −9.7‰ to −15.3‰ with a mean of −12.0‰ (Table 2). The large difference in δ¹³C values between C₃ and C₄ plants is mainly due to the larger ¹³C discrimination of RuBP carboxylase in C₃ plants than of PEP carboxylase in C₄ plants (O'Leary 1981). The increment of negative plant and grass δ¹³C values with increasing altitude (Fig. 6) indicated that C₃-percentage decreased but C₄-percentage increased with increasing altitude in the grassland. A similar change in plant δ¹³C values was observed in the transition from C₃ to C₄ grasses along an increasing altitudinal gradient in Kenya (Tieszen et al. 1979).

The average difference in δ¹³C between C₃ and C₄ plants is approximately 14‰ (−26‰ for C₃ plants and −12‰ for C₄ plants), however, biochemical fractions differ from whole plant values by only 1–3‰ in isotopic composition (Dzurec et al. 1985). We measured the carbon isotope ratios of cultivated plants and also found that root δ¹³C usually had a value of 1–2‰ greater than that of aboveground biomass, which was 1.0‰ greater in C. longiseta and 1.5‰ in M. sinensis respectively (data not shown). As plant materials are degraded and transformed into soil organic matter, their carbon isotope ratios are reflected in those of the soil organic matter (Dzurec et al. 1985; Balesdent et al. 1987; Benner et al. 1987). Thus, the δ¹³C values of soil organic matter are a historical record of the vegetation at a site (Wedin et al. 1995).

In the Kirigamine grassland, the proportion of C₃ plant-derived C for soil decreased (61.4% at 1,660 m to 35.0% at 1,830 m) and that of C₄ plant-derived C increased with increasing altitude (84.6% at 1,660 m to 65.0% at 1,830 m), indicated that historically the transition of C₃ and C₄ existed in the grassland. Moreover, the δ¹³C value of soil organic matter (−18.2‰) at 1,660 m (plot 24) was almost equal to that of the present vegetation (−18.6‰). This finding suggests that there was a similar C₃/C₄ ratio in the past at this site as at present. However, at 1,715 m and 1,830 m, the less-negative soil δ¹³C values (−19.4‰ and −21.1‰, respectively) and the more-negative plant δ¹³C values (−22.3‰ and −26.1‰), indicate that the proportion of C₃ plants could have been greater in
the past than at present at these sites. This suggestion is supported by the study of Midorikawa et al. (1964), in which a vegetation survey in August 1960 showed that the C₄ grasses *M. sinensis* and *A. hirta* dominated most of the Kirigamine grassland. At the same time, *A. hirta* communities were found above 1,800 m, around 1 km northwest of Mt. Kuru mayama (Midorikawa et al. 1964). It is highly probable from the soil δ¹³C data that in the past, probably when the grassland was mowed for animal husbandry, *A. hirta* and *M. sinensis* dominated more at high altitudes (e.g. plot 15, 1,830 m). In other words, the C₃-C₄ transition might occur at higher altitudes in the past than in the present, and the use of mown for animal husbandry may be advantage for the growth of C₃ plants (or disadvantage for the growth of C₄ plants) at the higher altitudes in the past. Analysis of buried phytoliths may give more details of which plant species were dominant in the past (Sase and Kato 1976).

Acknowledgement

This research was partly supported by a Sasakawa Scientific Research Grant from the Japan Science Society (No. 7–170). The first author is grateful for the financial support from a research fellowship for young scientists from the Japan Society for the Promotion of Science. We gratefully acknowledge the kindness of the Governor of Nagano Prefecture to permit our field surveys in their protected areas. We thank the staff at the Institute for Basin Ecosystem Studies, Gifu University: Associate Professor Y. Saijoh, Dr. S. Tsuda, Mr. K. Kurumado, and the students, especially Y. Matsui, H. Matsumoto, and N. Watanabe, for their great help in the field surveys.

References

Mo W (1997) Ecophysiological studies on factors limiting the distribution of a subalpine *Calamagrostis* grassland (PhD Thesis). The United Graduate School of Agricultural Science, Gifu University, p 54–58

Numata M (1976) An ecological view on the *Miscanthus* type grassland. In : Research on *Miscanthus sinensis*
(Ed Committee of Retire Commemoration for Prof. Hirayoshi I), Saino Publishers Ltd., Gifu, Japan, p 1-27**
Tsuchida K (1982) Types and structures of grassland in the subalpine zone, central Japan. Journal of Faculty of Liberal Arts, Shinshu University, Natural Science 16 : 107-138

*: In Japanese with English summary.
**: In Japanese only.

要 旨

本研究はC3とC4イネ科草本の構成割合の標高に伴う分布と温度要因との対応関係を明らかにすることを目的とし、霧ヶ峰草原 (1,500～1,920 m) におけるC3とC4植物の標高分布パターンと温度・地形・土壤要素および生長形態など環境要因との関係解析を行った。その結果、構成割合は標高が高くなるにつれてC4優占からC3優占へと変化することが明らかとなった。さらに、C3とC4植物の移行帯では、春から夏にかけてC4優占からC3優占に変化する一方で、温度上昇にともない構成割合が変化することも明らかになった。標高に伴う変化は環境要因との関係が明確であったが、土壌の変化は未だ探究がなされている。このことからC3とC4イネ科草本の構成割合の標高に伴う分布の違いは温度が第一の要因であると考えられる。また、標高に関連する現生のタイプの同定の変化 (8°C) および土壌要素変化の変化から霧ヶ峰草原における過去のC3とC4植物の標高分布に伴う構成割合の変化は現在と同なり、C3植物が現在よりも高標高まで分布していたことが示唆された。

キーワード：温度、過去植生、霧ヶ峰草原、C3とC4植物、霧ヶ峰草原