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Abstract 

Recent observations of solar prominences show that slow upward motions ( ""  1 kms-1 ) occur 

through quiescent prominences and a fast input of material with horizontal motions ( ""'  5 kms-1 ) 

occurs at both edges of prominences. A time-dependent dynamical model of solar prominences 

with current sheet is investigated. I t  is natural extension of the magnetostatic models proposed 

by Kippenhahn and Schluter ( KS )  and Kuperus and Raadu ( KR) . I t  i s  shown that horizontal 

nonlinear oscillations can exist in the prominences. The global structure of current sheet inclu­

ding solar wind plasmas is also simulated by means of full M HD equations. 

1. Introduction 

Solar prominences are thin condensed sheets of cold material located in the low corona. They 

are suspended against gravity and above magnetic neutral lines between two opposite magnetic 

polarities ( see Tandberg- Hanssen1 > ,  1974) . Recent observations ( Malherbe et al . 2 1 ,  1983; 

Schmieder et al . 3 1 , 1984) showed that slow upward motions ( 0 . 5  km s-1 in Ha and 5 . 6  kms-1 

in C 1v) occur in the prominences and a fast input of material with horizontal mo ( ""' 5  km 

s-1 ) occurs at both edges of prominences. 

Previous sol ar prominence models such as Kippenhahn and Schluter• > ( KS ) ( 1957) and Kuperus 

and Raadu ( KR) s> ( 197 4) are magnetostatic and do not take into account the plasma dynamics, 

except for eruptive prominence model ( see Sakai and Nishikawa6> , 1983) . Recently, Malherbe 

and Priest ( 1983) 7 >  proposed a qualitative dynamical model with magnetic configurations etiher 

of the KR or KS type to explain the observed upward motions. 

I n  the present paper we investigate a time-dependent dynamical model of solar prominences 

wi th current sheet . I t  is natural extension of the magnetostatic models proposed by the KS or 

KR. We pay particular attention on the l ocal solutions describing the dynamical accumulation of 

plasmas near the current sheet . Coupled basic equations with self-similar solutions are derived. 

I t  is recently shown that magnetic reconnection forced by external plasma flow induced by coa­

lescence of two current loops can be well described by the self-similar solutions ( Sakai et al . ,  

1984) B )  • 

I t  is shown that for nearly one-dimensional accumulation of plasmas horizontal nonlinear 

oscillations can exist in the prominences. Finally the global structure of current sheet inclu­

ding solar wind plasmas is simulated by means of full MHD equations. 
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2 .  Basi c equ ati ons for cu rrent sheet model 

We consider solar prominences as 

vertical thin current sheets supported 

by magnetic field in the low corona 

shown in Fig. 1 .  We consider a dyna­

mical condensation of plasmas in the 

current sheet only by j X B force, 

neglecting the effect of thermal inst­

ability. We assume the law of adia-

batic compression and that the sheet 

is homogenous in the z-direction. The 

MHD equation including gravity gives 

a p  . at + dz v( p v ) = O , ( 1 )  

Fig. 1 

p ( P v + v · 17 v ) = - 17  P +-
1

- rot B x B - p gex , 
p t 4 71" 

a B  c2 -- = rot( v x B )  +-- t1 B , 
a t  4 Jr a  
a P 

+ v · 17 P + r P di v v = o , 
a t  

where the gravity is given by g( x) = GM,. .R;2 ( 1 + x / R,. ) -2 = g,. ( 1 + x/ R;2 ) -2 
and g,. = GM,. R;2 • 

We assume that the input horizontal flows around the current sheet obey 

corona 

( 2 ) 

( 3 ) 

( 4 ) 

a 
Vy =- y , ( 5 )  

a 

where the dot means the time derivative and a( t )  is a scale factor characterizing continuous 

change of thickness of current sheet . The upward flow is taken as 

b 
Vx = vxo ( t) +z;- x , ( 6 )  

where Vxo and a scale factor b( t )  are determined self-consistently. The magnetic fields are ass­

umed that 

Bx = Bxo ( t) y /J.. , By = Bno  ( t) + Byo ( t) x!J.. , Bz = Bz o  ( t) 

From the continuity equation ( 1 )  we find 

( 7 ) 

/J /p + a / a + bl b = O  , ( 8 )  
where p is a function of time only. The equation ( 8 )  gives 

p = p o / ab , ( 9 ) 
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where p o is a constant . From the induction equation ( 3 )  we obtain 

Bxo (  t) = Bo I a2 

Buo ( t) = B o l b2 , 
B z o ( t) = B oo lab  , 
a B n o  
a t  

where Bo and Boo are constants. 

I f  we assume that the pressure P is given by 

x x2 y 2 
P( X, y, f } = Poo( f) - Po ( l) A- Pxo (  t) � - Puo (t ) � , 

we find fromthe equation ( 4 )  

Pxo ( t) = Po l a 1 b 1+2 

Puo ( t) = Po I a r+2 b r 

a Poo . · Po (t)  
-::.-- + rPoo ( al a + bl b) - Vxo - = 0 , 
u t  A 
1 a Po 

• ( • 

) 
Po(t) 

at + 2 vxo PoiPo ( t ) A a 1 bn2 + bl b + r  bl b + al a = 0 , 

where Po is a constant . 

( 1 0 )  
( 1 1 ) 

( 1 2 )  

( 13 )  

( 14 )  

( 1 5 )  

( 1 6 )  

( 17 )  

( 18 )  

Final! we obtain .  basic equations for scale factors a( t )  and b( t )  from the equation of moti� 

ons ( 2 )  
d 

a 
A 2 a r b r - 1 

. .  d 
b =  

A 2 a r- l b r 

a v xo b 

v� 
+-

A 2 

v� 
A 2 

( �  - !2 ) 
( :2 _!__) + 2

g0 b 
a Re ' 

ab Po (  t )  Bn o (  l) Bo -- + vxo � =  -
a t  b A 4 7rP o A  P o 

( 1 9 ) 

(20 ) 
( a2 - b2 ) 

( 2 1 ) - g® '  ab 

where we assumed tha.t the gravitational acceleration g( x) is approximated by g( x) = g0( 1 : 2 xl 
Re ) ,  when x�Re .  d = 2 Po I P o and � = m  14 1l"P o .  

I f  we neglect the pressure terms and the effect of gravity in  the above equations we obtain 

( 22 ) 

( 23 )  

which were first derived by I mshennik and Syrovatski i( 1967) 9 >  for the iiwestigation of plasma 

dynamics near X -type neutral point . 
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3. Sel f-si m i l ar sol uti ons 

We examine a few limiting cases for applications of solar prominence dynamics. 

( case 1 )  BY = 0 and g = 0 .  

I n  thi s case it is consistent to assume Vxo = 0  and Po = 0 .  The above basic equations are 

simplified to 

d Vi b 
a 

;,. 2 a r b r-1 ;,. 2 a2 ( 24 )  

b. d 
,?,. 2 a r- 1 b r ( 25 )  

( case 2 )  BY = constant and g= constant . 

I n  this case we can neglect the inhomogenous terms in Vx and By in E q. ( 6 )  and ( 7 )  . We 

find for a( t )  

d 
a =

;,. 2 ar 

and Vxo ( t )  is determined from 

a Vxo 
a t  

instead of Eq. ( 21 ) . 

V1 Bn 
A B o  a( t )  

( 26 )  

( 27 ) 

When the ratio of adiabatic capacity y is larger than 2 ( y > 2 ) , the equation ( 26) has the solu­

tions of nonlinear oscillation. The period T of the nonlinear oscillation when r = 3 is given by 

T = 2 ;r Vi I E3'2 ;,. 2 

where E is a constant which is related with the initi al conditions. 

The minimum period Tm1n is given by 

( 28 )  

Tmin = 2 ;r/3312 rA ( 29 )  

where /3 = 8 7r p 0 I m = d I Vi ' and r A = ),.  I VA . 

when r = 2  and VA > cs , there occur only compressional motions . When E is small , we find ( 9 ) 1 /3 
a( t) = 2 ( vx - d ) 1 '3 ;,. -213 ( t o - t ) 2 1 3  

By means of E q. ( 30) we obtain the upward flow Vxo ( 2 ) 1 13 VX Bn ( t o - f) 1 13 
V

x
o = 3 g ::fil3 Bo (VX - d )  1/ 3 

I f  we take to as the value when Vxo = 0 ,  we fi nd 

t 0 "" 0 .  84(V A I Cs ) 3 r A 
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The first termof E q. ( 31)  is always larger than the second term, so that we have upward flows. 

The time to is the life time of the solar prominence which is order of 3 .  4 days if we take V AI 

cz "" 33 . 3 an d ).. /VA "" 10 seconds. 

4. S imul ati on of gl obal structure with sol ar w i nd pl asmas 

We show the results of computer simulation by means of full MHD equations, which inClu­

des the expanding supersonic solar wind plasmas. The dipole magnetic field is taken at x = 0 .  9 

R B .  On the solar surface the flows are taken along the magnetic field. The other boundary 

conditions are free. Fig. 2 shows the global plasma flow and magnetic field- line pattern. Fig. 3 

shows the inflow velocity profile across y axis. Fig. 4 is the density profile and F ig. 5 is  the 

magnetic field Bx . As seen in Fig. 3 and 5 the inflow velocity and magnetic field produced by the 

sheet current are well described as self- similar solutions which space dependency is proportional 

to y. The more detail comparison between the theory and the results of simulations will be 

needed. 

Fig. 2 
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