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Abstract

Recent observations of solar prominences show that slow upward motions( =1 kms™) ‘occur
through quiescent prominences and a fast input of material with horizontal motions (= 5 kms™)
occurs at both edges of prominences. A time-dependent dynamical model of solar prominences
with current sheet is investigated. It is natural extension of the magnetostatic models proposed
by Kippenhahn and Schliter (KS) and Kuperus and Raadu (KR). It is shown that horizontal
nonlinear oscillations can exist in the prominences. The global structure of curreht sheet inclu-
ding solar wind plasmas is also simulated by means of full MHD equations.

1. Introduction

Solar prominences are thin condensed sheets of cold material located in the low corona. They
are suspended against gravity and above magnetic neutral lines between two opposite magnetic
polarities (see Tandberg—Hanssen'!’, 1974). Recent observations ( Malherbe et al.?, 1983;
Schmieder et al.®, 1984) showed that slow upward motions(0.5 km s™! in He and 5.6 kms™
inCw) occur in the prominences and a fast input of material with horizontal mo (~5 km
s™') occurs at both edges of prominences.

Previous solar prominence models such as Kippenhahn and Schluter®’ (KS)(1957)and Kuperus
and Raadu (KR)® (1974) are magnetostatic and do not take into account the plasma dynamics,
except for eruptive prominence model. (see Sakai and Nishikawa®, 1983). Recently, Malherbe
and Priest (1983)” proposed a qualitative dynamical model with magnetic configurations etiher
of the KRor KS type to explain the observed upward motions.

In the present paper we investigate a time-dependent dynamical model of solar prominences
with current sheet. It is natural extension of the magnetostatic models proposed by the KS or
KR. We pay particular attention on the local solutions describing the dynamical accumulation of
plasmas near the current sheet. Coupled basic equations with self-—similar solutions are derived.
It is recently shown that magnetic reconnection forced by external plasma flow induced by coa-
lescence of two current loops can be well described by the self-similar solutions (Sakai et al.,
1984)% . ’

It is shown that for nearly one-dimensional accumulation of plasmas horizontal nonlinear
oscillations can exist in the prominences. Finally the global structure of current sheet inclu-
ding solar wind plasmas is simulated by means of full MHD equations.



Bulletin of Faculty of Engineering Toyama University 1985

2. Basic equations for current sheet model
We consider solar prominences as

corona

Omlnence

vertical thin current sheets supported
by magnetic field in the low corona
shown in Fig. 1. We consider a dyna-
mical condensation of plasmas in the
current sheet only by j X B force,

neglecting the effect of themmal inst-
ability. We assume the law of adia-
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batic compression and that the sheet y /
is homogenous in the z-direction. The photosphere
MHD equation including gravity gives Fig. 1
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8% +div(pv) (1)
p(—+v Vv>=—7P+—rotB><B—pgex, (2)
0B
=rot{v X B) + 4B, 3
at =rof{ v ) dro (3)
0P
aT+v-VP+7Pdivv=0, (4)

where the gravity is given by g(x) = GM. R2(1+x/R.) 2=g,(1+x/R:?)?
and g.=GM.R..
We assume that the input horizontal flows around the current sheet obey
a
Vy=——Y , ( 5 )
a
where the dot means the time derivative and a(t) is a scale factor characterizing continuous
change of thickness of current sheet. The upward flow is taken as
b
Vx=0x (1) +b—x , (6)

where vxo and a scale factor b(t) are determined self—consistently. The magnetic fields are ass-
umed that

Bx=DB«(t)y/A, By =Bno (#) +Byo(t) x/A, B: =B (t) . (7)
From the continuity equation (1) we find

plo+alatb/b=0 |, (8)
where o is a function of time only. The equation (8) gives

o=po/ab , (9)
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where oo is a constant. From the induction equation (3) we obtain

Bxo(t)=Bo/a* ‘ ‘ - (10)

Byo(t)=Bo/b* , v (11)

B.o(t)=Bo /ab , ' (12)

0Bno vxo Bo b '
=—| —— +Bno — ,

at ( A b B b) .

where Bo and Boo are constants.
If we assume that the pressure P is given by

x2

[N}

<

P(x, 4, )= Pool £) = Po( ) = Pro( )y —Puolt) 25, (14)
s A A A
we find fromthe equation (4)
Pxo (t)=Po/a’db"** (15)
Pyo(t)=Po/a’ b , (16)
aP ) ) P
" P (2 atb/b)— el = , . . (17)
at A
Lok Ly, R/PR(t)Aa’ b'** +b/ b+ (é/b+&/ )—0 ' (18)
Pt ot xolo/ fo " @)=

where P, is a constant. o
Finall we obtain.basic equations for scale factors a(#) and b( ¢) from the equation of moti-
ons (2) :

.. ct 1% 1 b
el b IR (19)
. Jor Vi ( a 1 ) . ge ' '
b A2a’ ' b7 A%\ b2 a Ro b, (20)
9 xo b _Po(t) ab  Bno(t)Bo (&*—0*) ,

+vxo—= —_ = — ,
at vxo b Oo A g® (21)

47poA ab

where we assumed that the gravitational acceleration g(x) is approximated by g(x) =g¢(1—2x/
Re), when x&KRo. ¢ =2P¢/00 and Vi =B} /4rpo.
I1f we neglect the pressure terms and the effect of gravity in the above equations we obtain

.. Vi 1 b v : . :
a:Ez— b7 ) (22)

a
.. %A 1 . - :
b:_/12 (% _;) , . . (23)

which were first derived by I mshennik and Syro{iatski i(1967)® for the investigation of plasma
dynamics near X-type neutral point.
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3. Self-similar solutions

We examine a few limiting cases for applications of solar prominence dynamics.
(case 1) By=0 and g=0. '

In this case it is consistent to assume Vxo=0 and Po=0. The above basic equations are
simplified to

.. Jor Vib

a:/12a7b7—1 - /12612 ’ (24)
.. c

el | (20)

(case 2) By=constant and g=constant.
In this case we can neglect the inhomogenous terms in vx and By in Eq.(6) and (7). We
find for a(t)

. Vi
a:AZaT _Azaz (26)
and vxo (t) is determined from
0 Vxo _ Vi Bn _ (27)
at ABoalt) go

instead of Eq.(21).
When the ratio of adiabatic capacity 7 is larger than 2 (7 >2), the equation (26) has the solu-
tions of nonlinear oscillation. The period T of the nonlinear oscillation when y =3 is given by

T=2rVA/E¥*7* | (28)

where E is a constant which is related with the initial conditions.
The minimum period Tmn is given by

T in =27l'33/2 Ta , . (29)

where S=87xPo/Bi=c3/Vi , and ta =A/Va
when =2 and va >cs , there occur only compressional motions. When E is small, we find

9

1/3
a(t):(_z_) (v%—c%)”a A—zla(to_t)zw . (30)

By means of Eq.(30) we obtain the upward flow vxo from eq.(27)

(z)usva Bn (te—1)'5
Uxo =3

\9) % B, i-c)

T —&elte—1). (31)

If we take to as the value when vxo =0, we find

to=0.84Va/cs)®Ta . (32)
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The first termof Eq.(31) is always larger than the second term, so that we have upward flows.
The time to is the life time of the solar prominence which is order of 3.4 days if we take Va/
cz =33.3and A/Va = 10 seconds.

4. Simulation of global structure with solar wind pl asmas

We show the results of computer simulation by means of full MHD equations, which inclu-
des the expanding supersonic solar wind plasmas. The dipole magnetic field is taken at x= 0.9
Re. On the solar surface the flows are taken along the magnetic field. The other boundary
conditions are free. Fig.2 shows the global plasma flowand magnetic field—line pattem. Fig. 3
shows the inflow velocity profile across y axis. Fig.4 is the density profile and Fig.5 is: the
magnetic field Bx. As seen in Fig. 3 and 5 the inflow velocity and magnetic field produced by the
sheet current are well described as self-similar solutions which space dependency is proportional
to y. The more detail comparison between the theory and the results of simulations will be
needed.
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