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Abstract

Linear problems associated with the derivative nonlinear Schridinger (DNLS) equation
are studied from the point of view of inverse scattering techniques. By means of the generalized
inverse method we find the solution of a linear homogeneous equation corresponding to the
first variational system of the DNLS equation. This solution is represented by the squared
eigenfunctions of the Kaup-Newell eigenvalue problem. A Green function is defined for that
linear equation and we obtain the solution of a nonhomogeneous linear equation which naturally
arises in the perturbation calculations of the DNLS equation. Giving explicit formulae of
Jost functions and potentials, we analyse a perturbation with such a background as pure one-
soliton state. This perturbation has “stational” and “transitional” parts excited by the forced
term and initial value, respectively. These both parts are classified into two components,
“continuous” and “discrete” componentsv. At the limit of large time, generally speaking, the
continuous component results in a decaying oscillation, while the discrete one yields secular
terms. The sufficient condition which suppressess the secular term is given by a simple formula.

§ |. Introduction

By means of inverse scattering method several workers had studied the perturbation method
for a class of nonlinear evolution equations,' ™ Korteweg de-Vries, nonlinear Schrédinger and
sine-Gordon equations, which are belonging to the AKNS class.”’ There is a discrete type of
perturbations® relating to the Toda Lattice. The above treatments are roughly classified into
two types, (1) a type by Kaup-Newll"?and Karpman-Maslov®’and (2) another type by Keener-
McLaughlin.*” For the first type (1) the effect of perturbations is obtained from a small
variation of spectrums, while the second (2) directly estimates the lowest correction of solution
' The method of Keener-MacLaughlin has a remarkable
similarity to the classical method for solving a linear partial differential equation. It is inter-
esting to develop the same technique for other types of equations. Recently Kaup and Newell
proposed a new type of eigenvalue problem and solved a new class of nonlinear equations;
a derivative nonliriear Schrodinger (DNLS) equation® and a two-dimensional massive Thirring

by constructing a Green function.”
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1.9 As shown in ref. 7 the squared eigenfunction® plays an important role in the construc-

mode
tion of a solution of the first variational system. The squared eigenfunction of the AKNS
equation was worked out by Kaup'® and he gave the completeness relation by which any
function could be expanded to a series of squared eigenfunctions. Using the completeness by
Kaup, Keener and McLaughlin constructed the Green function which gives the solution of a
nonhomogeneous linear equation.

 the Kaup-Newell equation was extensively analysed for the

In our previous paper,"
generalized inverse scattering theory and for the functional relations between variationals of
potentials and scattering data. We also obtained the completeness of squared eigenfunctions.
In this paper we study the linear problems associated with the DNLS equation. The solution
of a linear homogeneous partial-differential equation regarded as the first variational system
of the DNLS equation is given by using the squared eigenfunction. For that linear equation
we define a Green function by which the solution of a nonhomogeneous equation is constructed.
For actual applications of above discussion, it is necessary to give the squared eigenfunction
with scattering data. In Appendix-A, we solve the pure one-soliton state according to
Zakharov and Shabat'? and give the list of Jost functions and potentials. As a simple but
important case, we analyse the nonhomogeneous solution corresponding to the lowest correction
of the pure one-soliton state. Generally speaking, the solution has two kinds of components,
one is the continuous component decaying into linear oscillations while another is the discrete
one regarded as a resonant effect from the one-soliton’s background. We remark that the
discrete component may yield secular terms growing as large as possible under the limit of
sufficiently large time. The sufficient condition to suppress the secular term is given by a
simple formula.

§ 2. Integrable Conditions and Variational System
The DNLS equation,”
iq, + q,, — mi(lglq):=0 (M= F 1),  ceeverreeeeeemmin 2.1

is solved exactly with rapidly vanishing conditions (g§— 0 as x— + o) and the initial condition
q(x, 0) = go(x). The decoupling equations which give eq. (2. 1) are

0, q
u, = ADu, D= —iko; + Q, Q:( 0>, ¥ = mg", e (2. 2a)
7, _
0 b
u, = Fu, F= AU3 + B, B = B L LR YT R PP P T P P YL PPPPPPEPRTPD (2 Zb)
¢, 0

where A is an eigenvalue, o3 is one of Pauli spin matrices and

Y
A=a - <uwlojw> A\, o= —2i, w:< )
q
h = ¢ :ZawA3+a(lgw___l_<w|glw>w>/{ ....................................... (2 3)
b 2 3 x 4 3 . .
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The notation: < u| v> means an inner product between a column vector v=|v> and an
adjoint raw vector u’= <u|, and we also define an exterior product |u><wv|,

U1

<ulv> = (—ué, u,) < > = —uyv; + U 0y,

U2

Uy — U1V, U1V
lu><vl =1 X (—vy v1) = )
» Uz U Vg, U2 Uy

For an arbitrary matrix X, we note X|u> =|Xu> and < u|X = < X*u|, where X*is
an adjoint matrix of X defined by

[x11, %2\ A X3, —X12

(xzn x22> - <—x21, xu) '
The integrable condition of egs. (2. 2) is

AD, — F, + A(DF — FD) = (. «veeeerveeessveeaiieeannne SUTC R SR FEOUPRPPOURt 2. 4)
Substituting eq. (2. 3) into eq. (2. 4), we obtain a general expression of eq. (2. 1),

w, = iaa_a.ac{[%%a_a}c—%'w(x‘ t)>‘[dy<‘w(y, t)l%aﬁy] w} ...... s w2, 5)

once we get a solution of eq. (2. 1), it becomes important to examine the stability of that
solution. For this purpose we consider a function Ag (=g — ¢); where 7 is of course a solu-
tion ‘of the DNLS equation but: its initial value g (x, 0) is different from ¢ (x, 0). For § we
provide another decoupling equations,

i, = ADa, fl, = Fil, coooeeeereenenees e deegaeseaeseeenarrenrenssoneeriressenseesetarnes (2. 6)

where the superscript”™" is used for denoting all quantities relating to §. The generalized
inverse scattering theory is powerful to calculate the solution Ag with the knowledge of gq.
If the norm IIAq(x, ?) | is sufficiently small, the meaning of the generalized theory becomes
more clear. The mapping from g (x, 0) (=Aq(x, 0), | Agl<I) to 6q(x, £) may be linear
and the behaviour of 8¢ (x, f) can be described by the following inverse decoupling manner,

Su, = AD-8u+ A6D-u, Sl = FeOU+ OF-U. oooeevveeemminneeenniiiiien 2.7
Ffom eq. (2. 4) and the cross-differentiation éf eq. (2.7 we get
(A80D, = 0F,) + A(0D-F = 0F:D) + A(D-0F — F-8D) = 0. corereneeneeneees 2. 8
From egs. (2. 2) and (2. 3) we can reduce eq. (2. 8)' to
L (% £) SW (X, £) = 0. +eeeereeniemmeetee ettt 2. 9)

where L (x, {) is a linear partial differential operator,

L(x t)=0,— .g_gsai + AW 1) 9, + 1@Wi (5, ), oereeersseesssnin 2. 10)

#86—‘



T.Kawata, J.Sakai : Linear Problems and Green Function

Wi, t):%|w>< w|03+%<w|aslw>.

We remark that eq. (2. 9) is equivalent to the first variational system of the DNLS equation
(2. 1),

idq, + 6q,, — mi(2]q1P0g+ gP0g%), = 0. «orermrmiiiiii 2. 11)

§ 3. Jost Functions, S-Matrix and Squared Eigenfunctions

For the Kaup-Newell equation (2. 2a) we define Jost (matrix) functions ®*and a scattering

matrix S by
BE(L, %) = AD (A, x) DF (A, &),  coreererememsmmsemsems st 3. 1a)
®* (A, x) > J(A%x) = exp (—iA2X0;) @S X —> F00 wrerreireieniieniiiins e (3. 1b)
DT (A, %) = DT (A, 1) S(A),  weerreerreerreerieaieiie ittt 3. 2)

where f is omitted for simplicity and

b11, P (S$11, S
o= (4, ¢2):< 11 12)) S=<11 12>'
v Bo15 P22 S215 S22

Since the potential rapidly vanishies at infinity (x =+o00), we get the following analytical
property ; ‘@ set of functions |4, (A, x), ¢'{(/1, x), sSu(A)} s analytic as to A on the region
Im (A%) = 0, while|d, (A,x), #1 (A, x), S22 (X))} is analytic on Im (A) £ 0.” Since det®* =1
and (*T), = —A[®*]"' D, anjoint Jost functions @** are naturally defined by ¢"*=[¢*]™".
Using the bra-ket notation,

—<
= (14>, 14>) ¢A=< ¢2|>,
< 4l

for eq. (2. 2a), we get

d 0 .
a_x|¢ji > = /lD|¢ji >, Ec< ¢,-i1: A< ¢,-i| D (=1, 2), (30 3)

We introduce the squared eigenfunction as the element of an exterior product of Jost vectors,
|¢,-t >< ¢jt |. We specially define a scalar type .jS and a vector type <Z>j.i,

. b1, b1 - :
Q= —¢by, O = < S ) (3. 4
¢2j ¢2j '
The equation (3. 1a) is rewritten by these squared eigenfunctions,
3 + . +
an =A< @ lgyw>,
0 . . .
a(pf +21,1203(pji = 222 g (J= 1, 2) e (3. 5)

The boundary condition is given by Qf (A, x) > 0 as x— +oo and
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1 0
o (A, x)_.)<0>e—2i/\2x’ ; (A, x)_,<1>e2i/\2x AS X —> F 00,  eeeereeseeneeeneeins (3. 6)

A set of functions {27 (A, x), 25(A, o, & (A, x), @, (A, x)} is analytic as to A on the region
Im (A%) 2 0, while {27 (A, x), 2, (A, x), @] (A, x), @&, (A, »} is analytic on Im(A?) = 0.Con-
sidering egs. (2. 2b) and (3. 1b), we obtain the temporal behaviour of squared eigenfunctions,

29 =2(-1VA.QF 1 i< 0flq,w>,
0 .
3 ¢ji — 2| Ao, + (—l)JAml(Dji - —Z.jS Oy Ry eeeeee e 3.7

where A, =1lim A = —2iA%.

x>t o

The time evolution of S-matrix is given by-
S(/{’ t) = eA-taa S(,{’ O)e"A‘taal ........................................................................ (3 8)

Reflectional coefficients p, , are introduced by p, =s,,/s;; and p, = s,,/5,,, respectively, and
0,(A, ) = p; (A, 0)exp(2A.t), p,(A, t) = p,(A, 0)exp(—2A.t). For the generalized case the
function A,oj(:,?)j — pj) is used for defining the spectral function (see the next section),

Do, (A, 1) = Dp (R, 0) €%, Np,(A, t) = Dp,(A, 0) 72 covvrniiniiii (3.9

The Jost matrices and S-matrix have symmetries about A, ®* (A, x) = q,}(bzt (=A, x)o, and
S(A) = 0,S(—=A) g,. Furthermore, from r(x) = mq*(x) we get another type of symmetries,
dF (A, x) = o, [#* (A% x)]*0, and S(A) = 0,S* (A%) g, , where 0, means g, or g, according to
m= + 1 or — 1, respectively. We specially list

0, m
¢2i (A, x) = —oq, ¢2*(__,1’ x) = < 0) [¢li(,1‘, x)]%, e (3. 10a)
DOy(A) = —Dpy(—X) = mAPT(AT),  wreeesresesr e (3. 10b)
a)ji(,\, x) = ¢ji(_,\, x), @ (A, x) = o [@5 (A%, 2)]*. o, (3. 10¢)

§ 4. Generalized Gel’fand-Levitan Integral Equation

The solution of generalized inverse theory is obtained by solving a general type of Gel’
fand-Levitan equations,

H (% y) — My(% y) o, — iM, (% y) Q(x)
+ [1 M5 2) Hi (2 9) + M, (5 2) Hy (5 9} dz =0,
Hy(x y) — My(x, y) o,

+]{ M;(x% z) Hy(z y)+ M, (x, z) Hi (2 )l dz=0, (3> x) -oooeeeee 4. 1)
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where diagonal matrix M, and off-diagonal one M, are unknown kernels and H, (n = 0, 1,
2) is a spectral function defined by H, = H, — H, and

HY (5 ) = 5= [192 (4 1) > 8o, (1) < 4, (A, »)12%dA,

H (% y)= 21_7Tf|¢1 (A, %) > Apy (A) < gy (A, P)IATAAL weeeeemmemmiii, 4. 2)
J

The function ¢; of eq. (4.2) is the right-defined Jost vectors ¢;” and I"* (/™) is a large coun-
terclock circular path defined on the first and third (the second and fourth) quadrants of the
A-plane. The kernel M, is related to the potential,

2M, (% ) = M7 () Q(x) M(x) — Q(X), +rererrererremmmniemsiesesieenieieies e . 3)

M (x) = exp {%f[ci(y) 7(y) — q(¥) 7(y)]dy- o }

The time evolution is obtained from the replacement of Ap; with that of eq. (3. 9). The
kernels M, and M, are originally defined to give a mapping between two kinds of Jost
matrices, l

S, x) =M@ DM, x)+ [[My(x 9)+ AM, (5 9)] D (A, ) dyl. eeereerseenene 4. 4)
Considering the symmetry » = mq", we can set the kernels as
M, M,
M, + M, = T L L T T T PP (4. 5)
mM,, M;
On the other hand, from eqgs. (3. 10) we get a symmetry about spectral functions,
Hn (x, y) = —ng{: (x, y) g, Hn' (x’ y) — a-m[H:(x’ y)}* G, . reereensrsseian (4 6)

Both symmtries satisfy eq. (4. 1) self-consistently. There is another type of symmetry for
H (% ),

H (% y) = —(=1)"0,H] (x ) o, H® = —(—1)"g,HV g,, eereevemmeneneins (4. 8)

where H'= HY + H® and H" (k= 1, 3) is given by integrating along the path I", (I"*=
I, + ;) on the A-th quadrant. From egs. (4. 6) and (4. 8) we remark that H,, H, are off-
diagonal and H, is diagonal. Then we can reduce eq. (4. 1) to

fi (% y) — My (% y) — imM, (% y) q* (x)
+ [ 1M (% 2) f (3, y) — mM, (% 2) £ (2 y)| dz =0,
S y) + M, (% y)

+_[ IMy (% 2) (2, 9) — My (% 2) f¥ (2 y)} dz =0, -ooooveeeeennnnenns (4. 9)

where f is a reduced spectral function,
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f(x% y) = %J:sélz (A, %) $12 (A, ¥) Dpy (A1) A™dA
+ 2 224 %) 8224, 3) Doy (M) X"AAL?, (m= 02)
h(x y)= ——1,;£¢12(A, ) 22(4, ) Doy (A) AdA

_%1frl¢22(,1, %) Gra(A, 9) Doy (A) AdALT. woeeemmei (4. 10)

The relation (4. 3) becomes to

2M,(x, x) = g lx) exp{mif[|q(y)2|] — 1 @(P) 1] Ay} = G()aeeerreeeenenneieeeias 4. 11)

§ 5. Solutions of Associated Linear Problems

If | Ap; Il is sufficiently small, the Gel’fand-Levitan equation (4. 1) can be linearized and

we can get the variation dw (x),!"

1 dA
ow(x) = —Zrtfzfif 9., (A, x) 8p,(A)
rv+

1
+ Zro'z}[%azwl(l\' X) 80, (A), wreemrresssiniss 5. 1)

where @; is a squared (vector) eigenfunction without a superscript (+). From egs. (2. 7) and
(5. 1) we find that 0,0,@,0p, and 0,0,®,0p, satisfy eq. (2. 9). Using egs. (3. 5), (3. 7) and
(3. 9), we can really show

L(x ¢) [028,¢2e2‘4"”] =L(x t) [azax(ple—ZAmt] T T P P (5. 2)

Now we consider the following integral,

t 00
fdff< (% £) L (% £) 0% £) > Ao ceeereeemrreemeeenieaie e (5. 3)
i —e
Integrating by part, we get

t, oo
fdtf|< ulLv> — < Ltu|v>| dx
t —o ‘

~ t=t, a 23 >x=+°°
=f< ulv>t_|tdx+7f{< w00 > — < Ulogu,>| | dE, ceeeeeeeeeeeeeeenenns (5. 4)
—oc0 =4 i x=—00
where L' is an adjoint operator of L,
Lt(x t)=—8,+%0383— AWA (% 1) B, weeeeereresseereneei e, (5. 5)
If we substitute # = Ue, and v= V¢, (¢, are constants), equation (5. 4) is changed to
t oo
[at[1v* - Lv— (L' U)*- V) dx
1 —o
© - " ren
:f(UAV)t|'dx+ £f| UAG, V — UAg, V)Tt woeeeesenmmeseieieins 5. 6)
4 1=, 2y 87 e

We define a Green function G and its adjoint GY,
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Lx )G t;6 7) =0, LNz )Gl(x t;€ 7) =0, v RS 5. 72)
Gx t; & 7), Gtix L6 1) = 0,0 (X — £) @S £ eeeerrrrneeess (5. 7b)
G(x t;& 7)— 0 as x— +oo, GT(x, t;€ n)—0 as x.—> 00,  eeeeeeeesesscenins (5. 7c)

Substituting U(xt) = Gt(x ¢; &, t)and Vix f) = G(x, t; £, t) into eq. (5. 6), we get a
reciprocal relation of Green functions,

G(&, b &, 1) = o [GY(&, t; &, tz)]Agl. ...................................................... (5. 8)

We consider the following nonhomogeneous problem which naturally arises in perturbation
calculations for the DNLS equation,

L(x’ t)v(x’ t) — f(x, t), .............................................................................. (5_ 93.)
v(x, 0) =y (x), Uy (% 0) >0 as x—> 00, +oerrrrrmmmmmninnii (5. 9b)

From egs. (5. 4), (5. 7), (5. 8) and (5. 9) we obtain

alv(x, t) :/dﬁfalc(x, txé! U)Ulf(fy 7])d5

+_f01G(x, t; £ 0) 0,0, (E) dE  evvrrreereeiiinnnnns e, (5. 10)

For this derivation we assumed that v(x, #) vanishes as x — + oo for finite %
Now we assume the Green function as follows,

G(x t; € v):%razfla,d)z(/\;x t) > et < A, (X5 € 7)ldA
r+

+%Tazr[|ax¢1(,1;x, £) > e Mt A (A5 € p)IdA, e SUTTTT (5. 11)
where A, , are unknown vectors. To determine A,, , we impose the condition (5. 7b),

5 0(x — £) :-zl—nazflaz%(/\;x, t) > et A, (A € t)1dA
I.+

1 -
+ZT02}[13:¢1(,1;%”>€ At A (A5 & £)[AA. weveeeeeneesneininnns (5. 12)

On the other hand, the completeness relation of squared eigenfunctions is given by’

_ 1 . dA _o
70— 8) =50 [10.0,(Aix 0> 5555 < G A6 D)
_i02f|a¢l(,1,~x,t)> da KB (A& B)]. eeveeermreneenns (5. 13)
Z S S ' As3y ()
Comparing eq. (5. 12) with eq. (5. 13), we obtain
A QA e 24-(A)n - )
< 4, ( ,5,?])|——m<¢1(y5,77|,
4, (A = e e ) (5. 14)
< 1(’5’77)_»_m<¢2(’§’77|' .......................................... .

From egs. (5. 11) and (5.-14) the Green function is given by
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G(x -1 o, 0, @, (A —-62Am.“v”) <@ (A6 7)ldA
t; &, yx 1) > RSN/
( 5 77) 2 21\/‘:| x 2( X, ) /\s?l (/1) 1
1 o, ) Asx t)> i < @, (A; & n))da (5. 15)
[ — ¢ ;) X, S — ;& Lereeerreaeens .
2r 2,.[' -0 ( /1552(/\) 2 7

This formula surely satisfies eqs. (5. 7a) and (5. 7b), while the last condition (5. 7c) is also
satisfied because of eq. (3. 6).
We consider a perturbed DNLS equation,

10, + G — mE (117 G), = G (X, 1), wooremrrmrmrermesneess st (5. 16)

with an initial condition ¢ (x, 0) = g, (x). We want to get the variation &g (x, t) = §(x, ¢)
—q(x, t), where ¢ (x, t) is a solution of eq. (2. 1) with ¢g(x, 0) = g, (x). If | f(x ¢)I and
| 8¢ (x, t)|l are sufficiently small, its solution is obtained by solving the nonhomogeneous
problem,

flx t)
L(x, t)-0w(x, t) = f(x t), f(x, t)= < ,

SW (X, 0) = @ (X) — Wy ().  svrreeeeersmsseote et (5. 17)

There are some symmetries, L(x, ) = o/L" (x, t) 0, f(x, t) = mo,f*(x, t), OJw(x, t)
= mo, Sw* (x, t) and G(x, t; & 7n) = alG* (x, t;& n)o,. The Green function is reduced to

Gx, t;6 1) =G (x t;§ 1)+ 0,G" (x, t;& 7)oy,

ey 1 . NN
Gl(xytvgy 7])—_’—”‘0'2‘1[;[81¢2(A,x, t)>m<¢1 (/\’Sr ”)l AR (5 18)
From egs. (5. 9), (5. 10), (5. 17) and (5. 18), we can obtain
3W(x, t) = awl (x, t) —+ mo-l 5w1* (xY t), ...................................................... (5 19a)
t o
dw, (x, t) =/d77fGl (x, t;& 7)o f(€ n)dé
+/G1 (%, 136 0) 0,8, (£) AE. wrrrerermmemmsrieimicinne (5. 19b)

§ 6. Considerations for Soliton Perturbation

In this section we analyse the solution (5. 19) regarded as the first correction from a
perturbation effect. Our case is limited to the case of one-soliton state, that is, ¢ (x, t)
in the linear operator L (x, t) is constructed from only a discrete spectral point A = A,. In
Appendix-A such a case is analysed by the method of Zakharov and Shabat'? and Jost
functions and the potential are detailed with explicit forms. We prefer to study the existe-
nce of secular terms (proportional to the time) rather than to estimate the lowest term. If we
consider a stationary system, any secular term must not arise in that system. From this
nonsecularity condition we may expect that the soliton parameter would be specified.

In the same way as eq. (3. 4) we introduce modified squared vectors ¥,, from which
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we get
¥, (A, x) = @ (A, x)e¥¥, T, (A, x) = @, (A, x) e 2% 6. 1)

From egs. (3. 5) and (5. 18) we obtain

) ) 2% (Ax—2XAt)
o= [1=01 @, >+ oy (52 W) [0 (0) > | Sy < BIAL, e 6. 2)
I

S
where Ax=x— £ and At=t— n We may change the variable A (and A;) to ¢(and ¢;)
by £ = A% (and & = A%), where ¢(and &) is defined on the upper ¢-plane. In the following
all functions of A are regarded as the functions of ¢ and instead of /] we use an integral
path I} (C] = L} + I}) on the upper ¢-plane. Since s, () = & (8 — &)/ 6 (8 — &) ob-
tained from eq. (A. 6) and e :xETm exp [i8” (x)] = &'/ &, equation (6. 2) is arranged to

Qi (D x =20 1)

Glzl-(CI &) f 5 GL(E) AL, o (6. 3)

T (51*/51)2 r:(f‘ Cl)z(f‘ Cl*)
where Gl (o = él (&;x, t; & 7n) is an entire function of ¢,
G (&) = —a, ¥, (§) + iQ(t) W (x, 1) > < Wy (L], creerermmmmes (6. 4a)
The functions %, £and % must be taken as
72 . ~ ~
frci 0= (5 0) et 0= Fhuisic nduisicn,
bas (L3 %, 1)
i (536 77)>
Ghge )’

where ¢J~,~j is defined in eqs. (A. 15). Substituting eq. (6. 3) into eq. (5. 19b), we get dw, =
dw; + dw, and

T (&6 77)=<

1 G- ekt b — 2t
Sw;,,(x, t) = — - : - -
re TG/ k-0 -0
=0, B, (&%, 1) + 2 (L, 1) gy w (%, 1) Cp o (£) L, woervereresesesenens (6. 5)
where the order of integration was exchanged and expansion coefficients C;, are given by

t o
C, (L) :[d”f< T (56 D)o F(E p) > e HEZGE s 6. 6a)
G (&) = f < F(EE 0)10,0m, (£) > e 2EQE, v (6. 6b)

We remark that C, is dependent on the time. The integral (6. 6) is divided into a continuous
part and a discrete part which are contributed from the paths —L: , and C], respectively.
The lowest correction dw; is obtained as a sum of the transitional term dw, and the stationary

term Sw; which are excited by the initial variation Swyx) and the forced term f(x, ¢),

respectively.

To analyse the integral (6. 5), we introduce convenient variables (y, s) and (7, v),
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Y= @ (X — 0E),  S= B(X— UE), e 6. 7a)

= a(E— 0p), V=B (E— Up), coeeererererere s 6. 7b)
where & = 7e?(0< 7, 0 < < x) and

a =2ysinf, B =2ycosf, v=4ycos8, wu= 2YC0828/C0SG. --rrrrrrriiiiiiiiiiaiiiinn (6. 8)
The inverse relation of eq. (6. 7b) is

© — vtanf = —4y*tanf-y, 7 — vtan26 = — y(tan26/cosf) £. erreeeiiiiiiiiinninn. (6. 9)
From eqgs. (6. 7) we see

2if, (x — 26,t) = —y + is, 2ify (€ — 20,7) = —pt iy, eeeeeeeseneneneeennn(6. 10)
and

208 (X — 288) = D (£) Y + 1@ (£) S, +oreerererersesmmirmieneseserett et e tet et een e, 6. 11a)
where

x(8) = (g/7)%cotf — (&/7) cos26/sing,  ix (&) = —1,

w () =2(¢7) cosb — (¢/7)?, W (&) =1 o (6. 11b)

For above exchange of variables, we still use the same notations as <[,-j(§; x, t)= ¢7ij &y s)
and g(x, t) = g(y s) etc.. Considering eq. (A. 16), we obtain
2md_ blA)e”
&H— fl* A:(}’) '
G (£33) = A+1(y) + é:é} e B D) (6. 12b)
be(A)e™

7(3 ) :-4ie—i3*(y)_A_(_y_),_ 5 et (6. 12¢)
+

2mA b (A) e“”e_,-,,
h-&a  A-) ’

¢7“ (&;u) = A_l(#) + é : ?1* ei/T(u), ......................................................... (6. 13b)

+i8 (») b_(1;) e“e_,',,

by (&3 08) =

Gy (Esat, V) = — =0 e TP @7, i (6. 13a)

q(/l’ l/) = —4ie N (Iu) R P PP PP P PP PP PEPPTPRPREPD (6 ].SC)
where

A =1+ ?“—’—”%21 b, (A) /e, e*# 0 = A_(y)/ A% ().

17 61
From egs. (6. 7-9) the integral (6. 6a) is rewritten by
1 3 —ix 4 2 —iw() v

G t)= 87ssin0_'£e m"d,u_[< U (L V)i flu v)>e @vdy, oo (6. 14a)
where

v =y + 47, V) = MCOLB. eveeeeesmeeeemiie ittt (6. 14b)
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We consider the discrete component Jwy, (x, ¢) of stationary term. The contribution
from a double pole ¢ = ¢; is evaluated as

bwy, (5, o | —2 0 =8 =480 =1 Gy 6 (g, 1)

h-&
d - it (x—
+ = A(t;x, 1) C (& 1) e (X =258 (6. 15)
d: { 4 (Z {= 51*
where 4 = —o, ¥ + iQ0,w. By this relation we can examine the presence of secular terms.

For the briefness of discussions only consider a simple case that the forced term is equal to
the potential. We find that from eps. (6. 13) the integrand < ¥ | o f> e ¥ in eq. (6. 14a) is
a simple periodic function of v. If the average value of that integrand dose not vanish, the
function C; (&, ¢) results in a linear term of £ For eq. (6. 15) it is better to use a new
frame (y, t) where y is the same one defined in eq. (6. 7a). Under this frame we see
266 x — 4it2t = —y + i(ycotd + 47*¢) etc.. Along the direction y = const. there appear
two kinds of secular terms in eq; (6. 15) that is, one is linear about ¢ while another is square.
For the case of transitional term Sw,, there also appears a secular term which is linear about
t and propagates along y = const..

Since it is rather difficult to evaluate the continuous part exactly, we approximately

estimate it under the large ¢ limit. We take the stationary term,

ez i{)’/ a

Swy, (v, f)“-\[e"x‘f”m/f(;;y, 1) G (G 1) AL, wererereeeesses (6. 16)

where ¥ (¢) = 2¢(v — 2¢) and C; is still defined by eq. (6. 14). Since w (¢) [=+2cosd — 1]
is real and independent on ¢ from eq. (6. 11b), the integrand < @Ialf > e @ of eq. (6. 14a)
is always a periodic function. Clearly the function C; (¢ f) is periodic as to ¢{, that is,
nonsecular. From above considerations, equation (6. 16) is treated by the method of stationary
phase,
T\1/2 elitye i
ow,, (3, 1) (B) T Ay 0G5, 0 exp[f(ti n)], ............... 6. 17)

where ¢, (=v/4) is a stationary point. The case of transitional term is treated by the same
way and the result is obtained from the replacement of C; by (. Consequently we can say
that the continuous part results in a decaying oscillation.

§ 7. Concluding Remarks and Discussions

Linear problems associated with the DNLS equation are studied from the point of view
of inverse scattering technique. By the generalized Gel’fand-Levitan equation we found the
solution of a linear homogeneous equation corresponding to the first variational system of
DNLS equation. A certain integral formula as to the linear partial-differential operator
L (x, t) was derived for the treatment of a nonhomogeneous linear problem which naturally
arises in perturbations of the DNLS equation. This integral formula corresponds to the
classical Green formula. A Green function was defined self-consistently and was constructed
explicitly by using the completeness of squared eigenfunctions. The solution of nonhomogeneous
problem was obtained by this Green function.



Bulletin of Faculty of Engineering Toyama U niversity 1984

For actual applications of generalized inverse theory and Green function method for
perturbations, it is important to give Jost functions and potentials explicitly with specified
scattering data. For this purpose we used the method by Zakharov and Shabat and listed
these functions for the case of a discrete spectral point (corresponding to the pure one-soliton
state). As a simple but important case, we studied the nonhomogeneous solution which should
give the lowest correction of a soliton. This correction consists of “stationary” and “transi-
tional” parts excited. by the forced term and the initial value of correction, respectively.
These both parts are classified into “continuous” and “discrete” components. The transitional
term is interesting from another point of view, that is, the linear stability problem of soliton.
We note that the nonlinear stability problem should be analysed by the generalized Gel'fand-
Levitan equation.

For both cases of stationary and transitional terms, the continuous component results in
the decaying oscillation while the discrete one mostly yields secular terms. If the physical
system in question is considered in a sufficiently long time scale, we cannot ‘allow the existence
of any secular terms. Then we expect the presence of nonsecularity condition from which
the soliton parameter will be determined.

If the initial variation is absent, from egs. (6. 14) the non-secularity condition is given by

Cr (G, t) o fe+“d/zf< U (& u V) flp, v) > e Ay = (), eeeerrereeninneenn (7.‘1)

where @ (& ;u, v) = ¥ (&4 v). We remark that the transitional term also contains a
secular term as the partial contribution from the double pole ¢ = ¢; in eq. (6. 5). However
the non-soliton part of solutions has been usually regarded as the decaying oscillation. In
this paper we can not make clear this point, but we comment that the linearized solution (5. 1)
of generalized Gel'fand-Levitan equation is equivalent to the transitional term. Especially in
eq. (5. 13) of ref. 11 we had given an explicit representation by the scattering data. By this
point we may give a conclusion for the above problem.
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Appendix-A. Explicit Representations of Jost Functions by the Scattering Data

For actual applications of eq. (4. 9) or (5. 19), it becomes necessary to give the Jost
vectors ¢1i and ¢2i explicitly. In this Appendix we treat this problem according to Zakharov
and Shabat,'” because their method is more profitable for solving the Jost functions than the
usual method®'>!* using the Gel'fand-Levitan integral equation.

In the same way as used in ref. 13, we get the following relations between Jost vectors,

1 ,
. 1 , E Ve
plh <0 > e [ T e W) X e
r+

(Im(/lz) (), seeeeeeeeeeee (A. 1a)

0 ] 1
& (A %) = 1>e—zﬂ—(x) _Z_IA—/\'O (A) 97 (X, x) e —2iA%x

where p, = p;, = S51/$ and p_ = $;,/5,;. Modified Jost vectors ¢, ¢yand functions B* (x)
are defined by

gF (A x) = ¢ (A, %) ot it g (A, x) = 85 (A, x) e E (A. 2a)
B ) =t [am r()dy  Bo= B (1) = B (), e A 2b)
foo

By egs. (A. 1) Jost vectors are expanded to A-inverse series, with which we compare another
type of A-inverse expansions shown in eq. (2. 5 of ref. 11. Then we get
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0 . 1 2
<1> r(x)et¥® ) = —;fd/\p_,_(/\) G (A, x) et (A. 3a)
1 . 1 2
<0> g(x)e #® = _;fd,\p_ (A) &7 (A, x) e 2% o (A. 3b)
r+

We assume that s;,(A) has only simple zeros A;(;=1,.., N) on the first quadrant of A-
plane. Considering s, (A) = s;, (—A) = 5] (1%), we obtain the following expression,”
2
_ ,ud;u — A5
s;1(A) = exp ,/90 27”/‘ S (#)|} IW’ ........................ (A. 4)
where an integral path L, (G, =1 + Fl) is taken along the real and imaginary axes. Since
det [S(A)] = 1, we also get

Is;p ()12 £ mlsy, (u)? =1, (HELy) ++evrereessssssssissmssitt i (A. 5)

e

where the sign “—” (or “+”) is the case that u lies on the real (nr imaginary) axis. We
note that for m =1 (or —1) the zero of s;; may be on the real (or imaginary) axis. This
results in the algebraic soliton. In the following we only consider the case of discrete spectrums,
that is, p, () = 0 for ueL,. From egs. (A. 4) and (A. 5) we get

N AP A
S11 (A) = exp ZBO 1 /12 /1*2 ..................................................................... (A. 6)
Considering similar symmetries as eq. (3. 10a), we reduce egs. (A. 1) and (A. 3) to

N

¢y (A) = 2 /\jm/\ bt (A)¢22(/\)e_2“' (IM (A%) = 0) cevvvvrrrrreeennannnnnns (A. Ta)
oot N 2/1* %2

Poy (A) = e~ # () _2 /\7—}—/15 b:(/\j) ¢'1*2(/\,~) e U (A. Tb)

FL A

r(x) et# 0= 4,2 by (A)) @y (X)) €F3E, i (A. 7¢)
N

Gy (A) = +2A*2 b* (,1)¢,H(,\)e+2v\‘ (IM (A%) = () weevreeeerrrrrnnnnnannns (A. 8a)

— ot8 (%) 2/1* b* * +2iA%x
¢ Q) =e +2F‘2——/\_2 B2 (A)) o (A)) €FBAE e (A. 8b)
- N 2
q(x) e P () = —422 b_ (/\)) ¢ (/{]) e_zz/\].x’ ................................................... (A. 8¢)
71
where we used the following notations,
551 (A) _ s (A) s

b+(/\)“sji(/l); b—(/l)—sii(/{)y (sll—dsll/d/l)
¢ (A) &1, (A)

o (A, x)=< . ) o7 (A, x) = < 12 ) .................................... (A. 9)
$a1 () $ra (A)

If we substitute A = A, (2= 1.,,.N) into eqgs. (A. 7) and (A. 8), the resultant equations with
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eq. (A. 2b) are closed as to Jost functions and potentials. The. one-soliton case (A = A,) is
important and we list the results as follows,

1 __2mhy [be () ailx | e,
e ) = 5y () = 200 [ et |, (A. 10a)
it b (A g gt AL (%)
- B (x) S\ 2iA, x e i
r(x) 47e AL (x) ehE, e A (x)’ (A. 10b)
2 2
A+(x)=1+(/\24—mfﬂ)7|b (A 22 AT e, (A. 10¢)
_ 1 _ 2mA;  [b_(A)) _2,',1? *
¢ (Ay) = A (x)’ ¢y (A)) = - A () "] | eeeereeeeeeniaeees (A. 11a)
. i b (AY) g 8 A (x)
— _4jeti () 1 2iA % i (x) = 2= e
q(x) 47e A (1) e , e A ()’ (A. 11b)
2
A_ (x): 1+ WZl__”l;l*lZ—)lb (/\ )|2 21(/1‘ —/\)’-’ ............................................. (A 11C)
From egs. (A. 2a), (A. 10b) and (A. 10c) we find
eB = (A2/A))%. e (A. 12a)
Since s;; (A) = €% (A* — A2)/(A* — A#?) and det S = I, we get
. 2
511(,\1)_/12 _Al/l*z eh S1p (A)) 831 (A]) = — 1. ceevmmmeemmeiiii, (A. 12b)
Furthermore from egs. (3. 2) and (A. 2a) we obtain
s (A1) = =515 (A;) &y, (A)), Gag (A1) = —S51 (A1) gy (A). woevemeemmeremnnnn (A. 122)

Using egs. (A. 12), we can show that two sets of relations (A. 10) and (A. 11) are equivalent
each other. We note that the Jost vector is completely determined from the substitution of
egs. (A. 10) and (A. 11) into egs. (A. 7) and (A. 8),

2 "
Jia (A) = Ail 0 (A G () = o (A)) + ;2 AA*IZ T (A. 13)
i _A 7 A= e
¢21 (/1) = A—l ¢21 (/{1), ¢11 (/{) ¢11 (/1 ) —+ /12 — /1*2 e ,  eeeesseeseeseecans (A‘ 13b)

where we denoted ¢; (1) =[(A} — A1%)/(A* — AtH)] 4, (A)
To obtain the time dependence of Jost functions and the potential, we only replace
bi(/\l)eﬂ""f" of egs. (A. 10) and (A. 11) by

b, (A ) eX2R*= b, (1) eFBR (=200 i (A. 14)
For the briefness of notations it is convenient to use such a simplified quantity as ¢ = A%(¢, = A?),

then we get
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then we get

" . _2mA [b, (A Xm0 gk
G (Cx, 1) = — [ e ] ,

) ‘ B 1 =8 B
dlzz(:»x’ t)_A+(x, l‘)_‘_é’]?é’ll*e [’

’

b, : - & b_(/ll) e2iL (& = 2L m)q *
4]21 (gv ‘fr 7]) - §1 — é’l* [ A (5’ 77) ]

N . _ 1 é“‘{] +iﬂv(5v )
i (&€ n)—A,(S» 77)+§1_§1*e B

where A is still used for A = /¢ and

dmg,

ALz 8)=1+ —"732L—
s & - )

et (x 1) — Ay (% 1)/ A5 (% 8). e

We note ¢, (515x, t) = ¢ (&5 %, ).

— 100 —

by (A)) 2 et — e le=2 +gh )
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