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A method is presented for the analysis of an ablation of'elastic 'solid with thermal
layer. The method is in part an application of Biot’s variational theory "of - thermoelas-
ticity. -An extension of heat balance integral introduced by Goodman for thermoelasticity
is tried. Both mathematical method together with a quadratic approximation of tempera-
ture, provide a system of differential equations of the position of melting line s(t), and
the thickness of thermal layer ¢(t). The solution of heat ‘conduction equation|provides
the initial condition of ¢(t). With the aid of Adams-Bashforth’s method, one can reach
the series solution of s(¢) and ¢(¢).

§1. Introduction
In the previous papers, the) au)ther analysed the melting elastic solid with the aid of
1)~7
Biot and Boley’s earlier works.

Biot introduced the variational invariants in his theory of thermoelasticity:

szffv <7CT~9’+w>dv. (1.1)
D:pfffv—z%TH’dv, with p =4 (1.2)

c......heat capacity per unit volume, T......absolute temperature, 6......temperature change,
W......strain energy function, A...... coefficient of heat conduction, A......quantity which
represents the rate of heat flow by H
And he derived the variational equation.
Boley investigated the ablation of solid by use of the heat conduction . equation, with
phase change(:) ‘ {
Goodman introduced the quantity I:fﬁdx, where the integral was}taken'over the
region he considered. He led thelheat balance integral and established 'his  theory of

8),9)

heat conduction.
10)

Duhamel-Neuman’s form of Hooke’s law is
gij — Cijkl er — IBij 6. (1- 3)
The energy equation of thermoelasticity is

- (hi)t = Cé + T By éz‘j- (1.4)
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Cijennns stress tensor, € ..... strain tensor, B, Cijk ..... numerical constants, h..... heat flow
rate for x; direction, ( )......differentiation with respect to x; direction.

The aim of this paper is to investigete the ablation of elastic solid by use of Biot’s
variational principle and other works mentioned above:
1. The variational invariants are introduced by virtue of the formulas (1.1) and (1.2),
and the variational equation is formulated.
2. If we take the origin of time as the time when the ablation begins, the initial condi-
tion of the thickness of thermal layer ¢(0) is calculated from the solution of heat con-
duction equation.
3. Reffering to Goodman’s work, the new extension of the heat balance integral for thermo-
elasticity is found.
4. The series solution of the position of melting line s(#) and the thickness -of thermal
layer ¢(t) are found from the variational equation and the heat balance integral.

§2. Initial Condition of Thermal Layer

The problem of melting slab may be concidered. Consider a slab occupying the
finite or infinite region of x axis, exposed to a prescribed heat input Q(t) at x=0. Let
T+ 6 denote the temperature of unit element, § being the temperature change. It will be
assumed here that the melted portion is immedeately removed. When the face x= Ois
suddenly exposed, at =0, to a heat input, a temperature change occures in a small regi-
on, called thermal layer. In this paper, we assume the heat input is constant before
melting begins.

The solution of heat conduction equation

9 . J6
% = ar (0<x < o) (2.1)
with the condition
A wae(ao,w = Q (2.2)
X

11)
1S
2

- X o1 S S
0 = R () ‘/{: =) eXP { (=2 } dr, (2.3)
where x* is % .

By transforming the variable as

%}cz (t— 1) - EZ’ (2.4)

we see from eq. (2. 3)

— Qo-r © 1 _ 2
49 )\\/; = Ef exp ( 6 > d{-'. (2. 5)
By use of integration by part and Taylor’s expansion, we see from eq. (2.5)
PO (_Z%_ _ x >
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This equation is almost nearly correct within the region
2x
0 -Vt .
< x< ‘/; t
We assume the thickness of thermal layer as

q(t) = 2x ./ — (2.7)

T .

The relation of the melting temperature 8. and the time t. when melting begins, is found
from eq. (2.6) as

Q,

On = X /— Vim . (2.8)

The equation (2.7) and (2.8) provide the thermal layer thickness when melting begins:
g (t) = 5 6 (2.9)
If we take the origin of time at t=t,, we see the initial condition of ¢(t) as
q(0) = @A; b, . (2.10)

§3. Quadratic Approximation
A region s < x < s+gq is now defined to be the thermal layer; for x > s+gq, the
slab is at an equilibrium temperature and there is no heat transfer beyond this point.
Let s=s(#) denote the thickness of the portion of the material which has melted and

8)9)

take the test function of &(x, t) as

6(x 1) = alt) + b(t) (x — s) + c(t) (x — ) (3.1)
From the assumption made above, we may set the condition:

0(s,t) = 6, 8(s + ¢, t) = 0, %’—Qza (3.2)
From the formula (3.1) and the condition (3.2), we find

QZQM{I—%(x—s)+qiz(x—s)z}. (3.3)

§4. Variational Principle

Refering to egs. (1.1) and (1.2), we define the variational invariants as

_fm ( +E>6’dx, (4.1)

+q
D:p‘-[ Z/\—Tde (4.2)

E......Young’s modulus, a..... coefficient of linear thermal expansion.
We consider the variations as the changes due to the virtual displacement of the
coordinate of the melting line s(#).

The variation of V is calculated as
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s+gq
oV = ;%< % +Ema;> g, os +[ <%+Ea2)969d¢, (4.3)
suffix m........ melting state.

The law of heat conduction and the law of thermal expansion are expressed as

_ .99 _ g _ _ o
A P H, cl e (4.4)
o = — % (4.5)
o
Eovernn displacement. o)
The boundary condition at x = s(t) is expressed as
H= Q(t) — pls.
olcece. latent heat per unit volume.
Therefore, we reach
H(s,t)zf Q(t) dt + A — pls. (4.6)
[
A ..., heat transported to the right across a unit cross-sectional area at x = 0,
before melting degins.
From eq. (4.6), we see
SH = — plds  at x= s(t). (4.7)

Using egs. (4.4), (4.5) and (4.7), we can transform the right side of eq. (4.3) as
follows:

s+gq a
f cﬁﬁﬁdx:—f —a—ﬁH)d

S st yq
_ {[eaH]” f g—eade

Il

s+gq 1
é\Hx-s-f —H O0H dx

I

— 0160 Os —f %H&de (4. 8a)

s+gq s+ q
Eabad0 dz = f Fa aax (5€) dx

= [Eatoe]) "= [ 2 (Ea0) ot dr

s+gq
= — EnanOn( 66 )+ *‘/‘ —aif ( Eaf) o€ dx. (4.8b)
Also, from eq. (4.2), we have
5D = p —meTHsz 5s+[ —Hb‘de]
=— L d vphes }5s+f Hb‘de (4.9)
2A.T dt ’ ’
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The equations (4.3), (4.8) and (4.9) provide the variational equation

oV + oD = — %(% T Ema’m)e’mss - i’iTQﬂ bs

stgq a
- Emamﬁm(é\f)x:s—f W(Eac’?) o0& dx

! d ’
T di {H(s,t)} Ss. (4.10)

This principle does not require the evaluation of temperature field, so we can insert the
test function (3.3).

For the sake of implicity, we take ¢, E, @ A etc. as constants.

Substitution of eq. (3.3) into eq. (4.1) provides

_ 1 . (_ 2
V=16 (7 + Ea) a0, (4.11)
This gives
-1 < :
oV = loﬁzm(T-FEa)&q. (4.12)
The definition of thermal layer provides
H(s+gq t) =0. (4.13)
Substituting eq. (3.3) into eq. (4.4,) and integrating by use of the condition (4.13), we
have
He— chf(z=s) =2 (2= sV + 3 (x—s7 =37} (410)
q - 3¢ 3

Substitution of eq. (4.14) into eq. (4.2) provides

_ 1 22 3
D=p [ 2ATX63 © 9“‘1] . (4.15)

The variation of D is calculated as follows:

_ 1 2 2 2
oD =p [2AT><21 ¢ fng 5‘7]
— 1 2622 . 6
AT x21 € 9ne99 99
. 1 2 2 N .
"SDZZI/\T c G, q¢ Oq. (4.16)

From egs. (3.3) and (4.5), we have

%qz(x—s)z—%q}. (4.17)

We assume that the virtual displacement of s(t) causes the increase of temperature and

Szaﬁm{ (x—s) —%(x—s)z-F

the increase of temperature causes the variation of ¢(#). From this assumption we see
from eq. (4.17) as
6‘52—(10,"{1—% (x—s)-i—q%(x—s)z}ﬁs, (4.18)

therefore, we have
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(0€)s=s = — ab, 6s. (4.19)
From egs. (3.3) and (4. 18), we have
*te 90 .
/ 5 06 dx —a b, Os. (4.20)
And from eq. (4.14), we have
H(s, ) = % cOnq(t). (4.21)

Substituting eqs. (4. 12), (4, 16), (4, 19), (4,20) and (4.21) into the variational equa-
tion (4.10), we have

1,
{106“< +E"> ZlAqu}é\q
E,

={-5 (5 +
1

2 2 ]. 2 N2 .
-7Eaﬁm chm qq}é\s. (4.22)

)0‘ /’ZT" + Enana 6,

§5. Heat Balance Integral

8 9)
We shall try to extend the heat balance integral to thermoelasticity. We define this

refering to eq. (1.4):

s+gq
IZf (¢+ TEQ) 6 dux (5.1)
Differentiation with respect to time provides
A~ — (ent TE.G) 0mé+fs " (c+ TEQ) 6 dx (5.2)

Using eq. (1.4) and the definition of thermal layer and the boundary condition at x = s

(1),

_ a8 ) _ e
Mo (B5) = Q= e, (5.3)
we can evaluate the second term of the right side of ep. (5.2) as follows:
ot : e 29
f (c+TEa)t9dx—f A —— ) dx
; s ax ox
Q(t) — pls.

Therefore eq. (5.2) becomes

dl
dt

Inserrting eq. (3.3) into eq. (5.4), we have

=—{(cm+ TEncn) 6n+ pl }é+ Q(1). (5.4)

% 6. (¢ + TEJ) q

Z*{ (cn+ TE.am) ﬁm—Fpl}é-F Q(e). (5.5)

Recalling s(0)=0, we have; by integrating eq. (5.5),
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On (c+ TEa) (g(2) — ¢(0))

wl.—\

= —{(cnt TEnch) 6n+ ol s+f’Q(z) dt. (5.6)

This equation provides the relation between ds and dg:
3 {(ent TEnan) On+ pl}
6. (¢ + TEQ)
Inserting eq. (5.7) into eq. (4.22), we have the equation of s(t) and q(2):

3 {(cnt TEnaw O+ pl} {igz (
6. (c+ TEa") 10 7"

oqg = —

Ss. (5.7)

L 2
T +Ea>

' N R S Ay 2\ o plOn
+21/\qu}_ 2<T+E'"""‘>5m T
+ Enana 92—%&1’%— 9/\1mT b q g (5.8)

We reached the simultaneous equation for s(t) and ¢(%) as egs.(5.5) and (5.8). In
the next paragraph, we shall calculate the series solution for s(t) and ¢(t) from these
equations.

§6. Series Solution

We can evaluate the series solutions

s(t) = 5(0)t +$'S'(0) Fod eeerrnnnnneenn
o) = q(0) + (0)t + 55 G(O)F + wevvennne
from eqs. (5.5) and (5.8), recalling s(0)=0, and eq. (2.10), i.e.
_ A
q(0) = 2 B ' (6.1)
with the aid of Adams-Bashforth’s method:
gy = 1 [ ¢ (cn+TEndh) Ont pl} _ c'6n ]’1
7 9(0) |7aT c+ TEQ 9T
_1_ Cm 2 7pl _
X{S < T +Emam> 9m+—10T m Qn @ On
+ - Ed ﬁm} (6.2)
. Q — 5 b (c+ TES) §(0)
s(0) = 2 (6.3)
(cm+ TEnam) 6.+ ol s )
q(0) = — {q(0)}* /4(0), (6.4)
i} Q0) — + 8.(c+ TE) §(0)
s(0) = (6.5)

(Cm+ TEmQ;) 6m+ ,Ol ,
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§7. Conclusion

The formulation of the ablation of elastic solid with thermal layer has been done by
the variational equation and the heat balance integral for the thermoelastic solid. By
use of the variational invariants (4.1) and (4.2), the variational equation has been for-
mulated. This equation has two parameters, s(#) and ¢(¢). With the aid of the heat
balance integral for thermoelasticity, this equation has been formulated as a varitional
equation with subsidary condition. This system of equations does not require the eva-
luation of temperature field, therefore the quadratic form of temperature field can be
used as a test function. By avoiding the need for highly ingenious guesses and the compli-
cated mathematical structure of differential equation, this formulation provides the series

solution, which reveal the feature of s(t) and q(t).
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