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Abstract. By dynamical systems in the title we mean the objects,
called G-modules, of a category CG consisting of operator spaces with
a certain L1(G)-module structure and the complete contractions com-
muting with the module operation, where G is a fixed locally com-
pact group. By requiring additional properties we obtain the notion
of monotone complete C∗-G-modules, which is a monotone complete
C∗-algebra version of W ∗-dynamical systems. We show that when
injectivity is introduced in CG, every G-module has a unique injective
envelope of the form pAq, where A is a monotone complete C∗-G-
module and p, q are invariant projections in A. The G-modules such
that L1(G) · X = X are regarded as a counterpart of C∗-dynamical
systems. We relate such a G-module to two Morita equivalent C∗-
dynamical systems in the sense of Combes in such a way that the
corresponding dynamical systems are the smallest in a certain sense.
We formulate a crossed product of a G-module and investigate when
the Takesaki type duality holds. We also extend the flow built under
a function construction in ergodic theory to the setting of monotone
complete C∗-G-modules.

0. Introduction

This is the TeXed version of the preprint with the same title, dated April
1991 (the final draft), which was circulated among some people. Part of
Section 4 (the case without the group action) has appeared as the paper
[16], but the remaining part with full proofs appears for the first time (see
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also the remark at the end of this section).

A C∗-algebra A is called monotone complete if each bounded increas-
ing net in the self-adjoint part Asa of A has a supremum in the partially
ordered set Asa. The class of monotone complete C∗-algebras is strictly
larger than the class of W ∗-algebras, and is contained in the class of AW ∗-
algebras. Although the existence is known of some sporadic examples of
non-trivial monotone complete C∗-algebras (non-W ∗, AW ∗-factors) (see,
for example, [30], [33], [9], [12]), it seems that for a systematic study of
monotone complete C∗-algebras we need a generalization of such notions
as W ∗-dynamical systems, the resulting crossed products, et cetera, which
have played a fundamental rôle in the structure theory of W ∗-algebras.

In this paper we present such a generalization on the basis of Fubini prod-
ucts (a monotone complete version of W ∗-tensor products) of monotone
complete C∗-algebras and W ∗-algebras introduced in [12]. (Note that be-
sides Fubini products, monotone complete tensor products were treated in
[12] also as an extension of W ∗-tensor products. But we consider exclusively
the former here and use the notation like A ⊗̄M , which was used to denote
the latter, to denote the former.) Our generalization of a W ∗-dynamical
system with the acting group G (a locally compact group fixed through-
out), called a monotone complete C∗-G-module, is defined to be a monotone
complete C∗-algebra A together with a unital, normal ∗-monomorphism
π : A → A ⊗̄L∞(G) such that (π ⊗̄ idL∞(G)) ◦π = (idA ⊗̄αG) ◦π, called an
action of G on A, where A ⊗̄L∞(G) is the Fubini product of A and L∞(G),
id’s with some subscripts are the identity maps, and αG is the comultiplica-
tion of the Hopf-von Neumann algebra L∞(G) given by αG(a)(s, t) = a(st),
s, t ∈ G. The action in this sense is of course a simple modification in the
W ∗-case (see, for example, [23]). But the point here is that in the def-
inition of an action we avoid the use of any topology like the σ-weak or
σ-strong topology in the W ∗-case, which seems not to be available in our
case, since the existence of sufficiently many σ-weakly continuous function-
als characterizes W ∗-algebras among monotone complete C∗-algebras. We
see that monotone complete C∗-G-modules arise naturally through a sort of
completion of certain “dynamical systems”. More specifically, if injectivity
is introduced in a certain category CG, whose objects and morphisms are
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called G-modules and G-morphisms, respectively, then every G-module (in
particular, every C∗-dynamical system with the acting group G) X has a
unique injective envelope, IG(X), of the form pAq (A itself in the C∗-case),
where A is a monotone complete C∗-G-module and p, q are invariant pro-
jections in A. Thus IG(X), or the monotone closure of X in IG(X) in the
C∗-case, may be regarded as a completion of X. The latter is an analogue
of the regular monotone completion of a C∗-algebra, [11], and becomes
indeed a monotone complete C∗-G-module.

In Section 2 below we prove the existence of IG(X) in a more general
setting, that is, in a category CM associated with a certain Hopf-von Neu-
mann algebra M , and in Section 3 we consider the case CG in more detail.
In Section 4 we treat the G-modules which may be regarded as an abstrac-
tion of C∗-dynamical systems, but do not have any algebraic structure, and
we show that to each such G-module there correspond two C∗-dynamical
systems, which are Morita equivalent in the sense of Combes [5] and are
the smallest in a sense. In Section 5 we formulate a crossed product of a
G-module so that it becomes a monotone complete C∗-algebra when X is
a monotone complete C∗-algebra, and investigate the validity of the Take-
saki type duality for crossed products. In Section 6, to provide an example
of non-trivial monotone complete C∗-G-modules we extend the flow built
under a function construction in ergodic theory to the setting of monotone
complete G∗-G-modules. Such an extension was made by Phillips [25] in
the W ∗-case.

We conclude the introduction with the following remark. Part of the
work in this paper was presented at the second international conference on
operator algebras and their connection with topology and ergodic theory,
August-September, 1989, held at Craiova, Romania. The results in Sections
3-5 were intended to extend the author’s previous papers [9], [10], [15], and
were announced for the cases M = C and M = L∞(G) in 1985 at the
annual meeting of the mathematical society of Japan and at a symposium
held at Research Institute for Mathematical Sciences, Kyoto University
(Sûrikaisekikenkyûsho Kôkyûroku No. 560, pages 128-141, May 1985). In
September 1987 the author received a preprint of [28] by J.-Z. Ruan whose
main result is our Theorem 2.7 for M = C.



26 Masamichi Hamana

1. Fubini products of operator spaces

This preliminary section contains an extension of some results in [12]
on operator systems and completely positive maps to the case of operator
spaces and complete contractions, and related results. Most proofs are
omitted, since the corresponding proofs in [12] work quite similarly.

A linear space V is called an operator space if it is realized as a linear
subspace of some C∗-algebra A and the tensor products Mn ⊗ V (n =
1, 2, · · · ) with the C∗-algebra Mn of n × n complex matrices are endowed
with the norms induced from the C∗-tensor products Mn⊗A (n = 1, 2, · · · ).
We write simply V ⊂ A to denote this situation. (Note that we write Mn

on the left of operator spaces, contrary to the usual convention, since this is
relevant to our later considerations.) For operator spaces V and W a linear
map φ : V → W is called a complete contraction (respectively, complete
isometry, et cetera) if ∥φ∥cb := supn ∥idn ⊗ φ∥ ≤ 1 (respectively, idn ⊗ φ is
an isometry, et cetera) for all n, where idn⊗φ : Mn⊗V → Mn⊗W and idn

denotes the identity map on Mn. If V and W are completely isometric, we
write V ∼ W , and identify these spaces. An operator space V is called a C∗-
algebra (respectively, a monotone complete C∗-algebra, et cetra) if V ∼ A

for some C∗-algebra (respectively, some monotone complete C∗-algebra,
et cetera) A. Such a C∗-algebra, if it exists, is unique since completely
isometric C∗-algebras are *-isomorphic.

Throughout the paper, operator spaces are assumed to be norm closed,
the spaces to be considered have at least the structure of operator spaces,
and B(H) or B(K) denotes the W ∗-algebra of all bounded operators on a
Hilbert space H or K.

Our interest is in notions which are determined uniquely up to com-
plete isometry. We define the Fubini product of operator spaces V ⊂
B(H) and W ⊂ B(K) as the following subspace of the W ∗-tensor product
B(H) ⊗̄B(K):

V ⊗̄W = {x ∈ B(H) ⊗̄B(K) : (φ ⊗̄ idB(K))(x) ∈ W,

(idB(H) ⊗̄ψ)(x) ∈ V, ∀φ ∈ B(H)∗, ∀ψ ∈ B(K)∗},

where φ ⊗̄ idB(K) : B(H) ⊗̄B(K) → B(K) is the slice map (a unique σ-
weakly continuous extension of the map

∑
ai ⊗ bi 7→

∑
φ(ai)bi) and simi-



Injective envelopes of dynamical systems 27

larly for idB(H) ⊗̄ψ. The Fubini products behave well if one of the factors
V and W is σ-weakly closed. In what follows (except in 1.4) we assume
the second factors or the letters W (with some subscripts) to be σ-weakly
closed.

For j = 1, 2 let Vj ⊂ B(Hj) and Wj ⊂ B(Kj) be operator spaces and
let φ : V1 → V2, ψ : W1 → W2 be complete contractions with ψ σ-weakly
continuous. As in [12], 3.5, complete contractions

φ ⊗̄ idB(Kj) : V1 ⊗̄B(Kj) → V2 ⊗̄B(Kj),

idB(Hj) ⊗̄ψ : B(Hj) ⊗̄W1 → B(Hj) ⊗̄W2

are defined. In the sense of part (ii) below the Fubini products depend only
on the isomorphism classes of the factors.

Proposition 1.1 (cf. [12], 3.8, 3.9). Keep the above notation.
(i) The composites (idB(H2)⊗̄ψ)◦ (φ⊗̄ idB(K1))|V1⊗̄W1 and (φ ⊗̄ idB(K1))

◦(idB(H1) ⊗̄ψ)|V1 ⊗̄W1 coincide, and define a complete contraction into
V2 ⊗̄W2. We denote this map by φ ⊗̄ψ : V1 ⊗̄W1 → V2 ⊗̄W2, and call
it the Fubini product of φ and ψ.

(ii) If further φ and ψ are surjective complete isometries, then so is
φ ⊗̄ψ; that is, V1 ∼ V2 and W1 ∼ W2 imply V1 ⊗̄W1 ∼ V2 ⊗̄W2.

(iii) If V2 ⊂ V1, W2 ⊂ W1 and φ, ψ are idempotents onto V2, W2,
respectively, then φ ⊗̄ψ is an idempotent onto V2 ⊗̄W2.

Let V ⊂ B(H) and W ⊂ B(K) be as above. As in [12], 3.7, for f ∈ V ∗

and g ∈ W∗ := {ψ|W : ψ ∈ B(K)∗} we define the slice maps f ⊗̄ idW :
V ⊗̄W → W and idV ⊗̄ g : V ⊗̄W → V with g ◦ (f ⊗̄ idW ) = f ◦ (idV ⊗̄ g),
written f ⊗̄ g and called the product functional.

Proposition 1.2 (cf. [12], 4.6, 3.5(iii)). (i) With the notation as above the
sets {f⊗̄idW : f ∈ V ∗} and {idV ⊗̄ g : g ∈ W∗} are separating families
on V ⊗̄W , that is, x ∈ V ⊗̄W and (f ⊗̄ idW )(x) = 0 for all f ∈ V ∗ imply
x = 0, and similarly for the latter set.

(ii) If φ ⊗̄ψ : V1 ⊗̄W1 → V2 ⊗̄W2 is the Fubini products of φ : V1 → V2

and ψ : W1 → W2, then

(f ⊗̄ idW2) ◦ (φ ⊗̄ψ) = ψ ◦ (f ◦ φ ⊗̄ idW1),

(idV2 ⊗̄ g) ◦ (φ ⊗̄ψ) = φ ◦ (idV1 ⊗̄ g ◦ ψ),
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where f ∈ V ∗
2 , g ∈ (W2)∗ and f ⊗̄ idW2 : V2 ⊗̄W2 → W2, f ◦ φ ⊗̄ idW1 :

V1 ⊗̄W1 → V1 et cetera are slice maps.

Proposition 1.3 (cf.[12], 3.17, 3.1, 4.3). Let V be a monotone complete
C∗-algebra and W a W ∗-subalgebra of some B(K).

(i) V ⊗̄W is a monotone complete C∗-algebra.
(ii) V ⊗̄W is a W ∗-algebra if and only if V is a W ∗-algebra; in this case

V ⊗̄W is the W ∗-tensor product of V and W .
(iii) V ⊗̄W is an injective C∗-algebra if and only if V and W are both

injective.
(iv) If V1 is a monotone complete C∗-algebra, W1 is a W ∗-algebra, and

φ : V → V1 and ψ : W → W1 are normal completely positive maps, then
so is φ ⊗̄ψ : V ⊗̄W → V1 ⊗̄W1. In particular, the slice maps idV ⊗̄ g :
V ⊗̄W → V for g ∈ W∗ positive are normal, and if V ⊂ V1 is a monotone
closed C∗-subalgebra and W ⊂ W1 is a W ∗-subalgebra, then V ⊗̄W is a
monotone closed C∗-subalgebra of V1 ⊗̄W1.

(v) For an increasing net {xi} in V ⊗̄W we have x1 ↗ x in V ⊗̄W

(that is, supxi = x) if and only if (idV ⊗̄ g)(xi) ↗ (idV ⊗̄ g)(x) in V for
all g ∈ W+

∗ .

Proposition 1.4. Let V ⊂ B(H) and W ⊂ B(K) be operator spaces,
which are assumed only to be norm closed. For aj ∈ B(H), bj ∈ B(K),
j = 1, 2, we have

(a1 ⊗ b1)(V ⊗̄W )(a2 ⊗ b2) ⊂ (a1V b1) ⊗̄ cl(a2Wb2),

where the notation cl denotes the norm closure. In particular, if aj and bj

are all unitary, then the both sides coincide.

Proof. We note that for x ∈ B(H) ⊗̄B(K) we have x ∈ V ⊗̄B(K) if and
only if (f ⊗̄ idB(K))(x) = 0 for all f ∈ V ⊥ := {f ∈ B(H)∗ : f |V = 0}.
Indeed, x ∈ V ⊗̄B(K) if and only if (idB(H) ⊗̄ g)(x) ∈ V for all g ∈ B(K)∗,
that is,

0 = f ◦ (idB(H) ⊗̄ g)(x) = g ◦ (f ⊗̄ idB(K))(x)

for all f ∈ V ⊥ and g ∈ B(K)∗, if and only if (f ⊗̄ idB(K))(x) = 0 for all
f ∈ V ⊥. Hence, if x ∈ V ⊗̄B(K), then

(f ⊗̄ idB(K))((1 ⊗ b1)x(1 ⊗ b2)) = b1(f ⊗̄ idB(K))(x)b2 = 0
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for all f ∈ V ⊥ and so (1 ⊗ b1)x(1 ⊗ b2) ∈ V ⊗̄B(K). Namely (1 ⊗
b1)V ⊗̄B(K)(1 ⊗ b2) ⊂ V ⊗̄B(K). On the other hand,

(1 ⊗ b1)(B(H) ⊗̄W )(1 ⊗ b2) ⊂ B(H) ⊗̄ b1Wb2

since for x ∈ B(H) ⊗̄W and f ∈ B(H)∗,

(f ⊗̄ idB(K))((1 ⊗ b1)x(1 ⊗ b2)) = b1(f ⊗̄ idB(K))(x)b2 ∈ b1Wb2

as above. Thus

(1 ⊗ b1)(V ⊗̄W )(1 ⊗ b2) ⊂ V ⊗̄B(K) ∩ B(H) ⊗̄ b1Wb2 = V ⊗̄ b1Wb2.

Similarly it follows that

(a1 ⊗ 1)(V ⊗̄ b1Wb2)(a2 ⊗ 1) ⊂ a1V a2 ⊗̄ cl(b1Wb2),

hence that

(a1 ⊗ b1)(V ⊗̄W )(a2 ⊗ b2) ⊂ a1V a2 ⊗̄ cl(b1Wb2).

If aj and bj are unitary, then by replacing W, W, aj , bj in the above
argument by a1V a2, b1Wb2, a∗j , b∗j we obtain the reverse inclusion and
hence equality.

Each element x in the Fubini product V ⊗̄W defines a map g 7→
(idV ⊗̄ g)(x) in B(W∗, V ), the Banach space of bounded linear maps of
W∗ into V . When V and W are W ∗-algebras, Effros characterized the
image of V ⊗̄W in B(W∗, V ) under this correspondence (see [22], Theorem
2). Under a stronger hypothesis we obtain a stronger conclusion, which is
probably known. (Effros’ result and the following will both be used later.)

Proposition 1.5. Let V be an operator space and W a commutative W ∗-
algebra. Then the map l : V ⊗̄W → B(W∗, V ) defined by l(x)(g) =
(idV ⊗̄ g)(x) is a surjective isometry.

Proof. It suffices to consider the case V = B(H). Indeed, if V ⊂ B(H),
then it follows from the definition of V ⊗̄W that the map l defined above is
the restriction to V ⊗̄W of a similar map l : B(H) ⊗̄W → B(W∗, B(H)).
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If W = C(Ω) (Ω is the spectrum of W ) and δt, t ∈ Ω, is the evaluation
at t, that is, δt(x) = x(t), x ∈ W , then as in the proof of [13], 1.1, for
x ∈ B(H) ⊗̄W ,

∥x∥ = sup{|f ◦ (idB(H) ⊗̄ δt)(x)| : t ∈ Ω, f ∈ B(H)∗, ∥f∥ ≤ 1},

which imlpies that

∥x∥ = sup{|(f ⊗̄ g)(x)| : f ∈ B(H)∗, ∥f∥ ≤ 1, g ∈ W∗, ∥g∥ ≤ 1}

= ∥l(x)∥,

that is, l is isometric, since each δt is a σ(W ∗, W )-limit of some net {gi} ⊂
W∗, ∥gi∥ ≤ 1, and for each f ∈ B(H)∗,

(f ⊗̄ gi)(x) = gi ◦ (f ⊗̄ idW )(x) → δt ◦ (f ⊗̄ idW )(x) = f ◦ (idB(H) ⊗̄ δt)(x).

To see the surjectivity of l let {eij}i, j∈I be a family of matrix units in B(H)
so that x =

∑
i, j eij ⊗ xij (the strong limit of finite subsums), xij ∈ W , for

each x ∈ B(H) ⊗̄W and l(x)(g) =
∑

i, j g(xij)eij . If T ∈ B(W∗, B(H)),
then there are xij ∈ W , i, j ∈ I, such that eiiT (g)ejj = g(xij)eij for all
g ∈ W∗ and i, j. If J ⊂ I is finite, eJ :=

∑
i∈J eii, and xJ :=

∑
i, j∈J eij ⊗

xij ∈ B(H) ⊗̄W , then l(xJ) = eJT (·)eJ , and as l is isometric, ∥xJ∥ =
∥eJT (·)eJ∥ ≤ ∥T∥. This shows that x :=

∑
eij ⊗ xij defines an element in

B(H) ⊗̄W with l(x) = T (see [12], 2.1).

2. Category CM

In this section, for a fixed Hopf-von Neumann algebra M we define a
category CM , and under a mild condition on M we prove the existence
and uniqueness of an injective envelope of an object in CM . Here a Hopf-
von Neumann algebra is a W ∗-algebra M together with a unital normal
*-monomorphism Γ : M → M ⊗̄M , called the comultiplication of M , such
that (Γ ⊗̄ idM ) ◦ Γ = (idM ⊗̄Γ) ◦ Γ. The predual M∗ of M becomes then a
Banach algebra with the product defined by f · g = (f ⊗̄ g) ◦ Γ, f, g ∈ M∗

(see, for example, [29], Chapter IV).
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Definition 2.1. An M -comodule is an operator space X together with a
complete isometry πX : X → X ⊗̄M , called the action of M on X, such
that (πX ⊗̄ idM ) ◦πX = (idX ⊗̄Γ) ◦πX . A (norm closed) linear subspace Y

of an M -comodule X is called an M -subcomodule of X and written Y ≤ X

if πX(Y ) ⊂ Y ⊗̄M when regarded as Y ⊗̄M ⊂ X ⊗̄M . In this case Y

is indeed an M -comodule with the action πY = πX |Y . An M -comodule
morphism is a complete contraction φ : X → Y between M -comodules X

and Y such that πY ◦ φ = (idM ⊗̄φ) ◦ πX . An M -comodule morphism is
called an M -comodule monomorphism (respectively isomorphism) if it is
also a (respectively surjective) complete isometry. Two M -comodules X

and Y are called isomorphic and written X ∼= Y if there is an M -comodule
isomorphism of X onto Y . The Fubini product V ⊗̄M of any operator space
V and M is an M -comodule with action idV ⊗̄Γ : V ⊗̄M → V ⊗̄M ⊗̄M ,
which is called a canonical M -comodule. We write CM for the category of
M -comodules and M -comodule morphisms.

Remarks. (i) Every M -comodule is an M -subcomodule of some canonical
M -comodule, and the canonical M -comodule may be taken to be of the
form B(H) ⊗̄M . Indeed, for every M -comodule X the image πX(X) under
the action πX is an M -subcomodule of X ⊗̄M , since (idX ⊗̄Γ)(πX(X)) =
(πX ⊗̄ idM )◦πX(X) ⊂ πX(X) ⊗̄M , and πX is an M -comodule isomorphism
of X onto πX(X), that is, X ∼= πX(X) ≤ X ⊗̄M . Moreover, if X ⊂ B(H)
as an operator space for some B(H), then X ⊗̄M ≤ B(H) ⊗̄M .

(ii) For any M -comodule X the operator space Mn⊗X is an M -comodule
with action idn ⊗ πX : Mn ⊗ X → Mn ⊗ X ⊗̄M .

An M -comodule X is made into a left M∗-module by the operation
f · x = (idX ⊗̄ f) ◦ πX(x), f ∈ M∗, x ∈ X (see 3.3 (i) below). Note that if
X = V ⊗̄M is canonical, then f · (a⊗ b) = a⊗ f · b for f ∈ M∗, a ∈ V and
b ∈ M , where f ·b = (idM ⊗̄ f)◦Γ(b), and that f ·(a⊗1) = f(1)(a⊗1) since
f ·1 = (idM ⊗̄ f)(1⊗1) = f(1)1. This module operation can be used to give
an alternative description of M -comodules and M -comodule morphisms as
follows.

Proposition 2.2. Regard M -comodules as M∗-modules as above.
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(i) A complete contraction between M -comodules is an M -comodule mor-
phism if and only if it is an M∗-module homomorphism.

(ii) An operator space is an M -comodule if and only it is an M∗-submod-
ule of some canonical M -comodule.

Proof. (i) This follows from 2.3 (iii) below.
(ii) The action πX : X → X ⊗̄M of any M -comodule X is a completely

isometric M∗-module homomorphism (by 2.3 (iii)) onto the M∗-submodule
πX(X) of the canonical M -comodule X ⊗̄M . Conversely, if X is an M∗-
submodule of some canonical M -comodule V ⊗̄M , then (idX ⊗̄Γ)(X) ⊂
X ⊗̄M by 2.3 (ii), that is, X ≤ V ⊗̄M .

Lemma 2.3. (i) Let X be an operator space and φ : X → X ⊗̄M a com-
plete contraction. Putting f · x = (idX ⊗̄ f)(φ(x)) ∈ X, f ∈ M∗, x ∈ X,
we have f · (g · x) = (f · g) · x for all f, g ∈ M∗ and x ∈ X if and only if
(φ ⊗̄ idM ) ◦ φ = (idX ⊗̄Γ) ◦ φ.

(ii) Let X, φ and f ·x be as above. For a linear subspace Y of X we have
f · Y ⊂ Y for all f ∈ M∗ if and only if φ(Y ) ⊂ Y ⊗̄M .

(iii) For operator spaces X, Y and complete contractions π1 : X →
X ⊗̄M , π2 : Y → Y ⊗̄M and φ : X → Y we have (φ ⊗̄ idM ) ◦ π1 = π2 ◦ φ

if and only if

φ ◦ (idX ⊗̄ f) ◦ π1 = (idY ⊗̄ f) ◦ π2 ◦ φ

for all f ∈ M∗.

Proof. (i) The first equality is rewritten as

(id ⊗̄ f) ◦ φ ◦ (idX ⊗̄ g) ◦ φ = (idX ⊗̄ (f ⊗̄ g) ◦ Γ) ◦ φ

for all f, g ∈ M∗, and further as

(idX ⊗̄ (f ⊗̄ g)) ◦ (φ ⊗̄ idM ) ◦ φ = (idX ⊗̄ (f ⊗̄ g)) ◦ (idX ⊗̄Γ) ◦ φ,

since

(idX ⊗̄ f) ◦ φ ◦ (idX ⊗̄ g) = (idX ⊗̄ f) ◦ (idX ⊗̄M ⊗̄ g) ◦ (φ ⊗̄ idM ) (by 1.2(ii))

= (idX ⊗̄ f ◦ (idM ⊗̄ g)) ◦ (φ ⊗̄ idM )

= (idX ⊗̄ (f ⊗̄ g)) ◦ (φ ⊗̄ idM )
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and idX⊗̄ (f ⊗̄ g) ◦ Γ = (idX⊗̄ (f ⊗̄ g)) ◦ (idX⊗̄Γ). By 1.2 (i) this is equiv-
alent to the second equality.

(ii) This is obvious from the definition of Fubini products.
(iii) By 1.2 (ii) we have φ ◦ (idX ⊗̄ f) = (idY ⊗̄ f) ◦ (φ ⊗̄ idM ); hence the

assertion follows as in (i).

We adopt the following as a monotone complete version of a W ∗-dynami-
cal system.

Definition 2.4. A monotone complete C∗-M -comodule is an M -comodule
A such that the underlying operator space A is a monotone complete C∗-
algebra and the action πA : A → A ⊗̄M is a unital, normal *-monomor-
phism, where normality means that xi ↗ x in A ({xi} is an increasing net
in Asa with supremum x ∈ Asa) implies πA(xi) ↗ πA(x) in A ⊗̄M .

Remarks. (i) By 1.3 (i), A ⊗̄M is a monotone complete C∗-algebra
containing πA(A) as a monotone closed C∗-subalgebra.

(ii) By 1.2 (iv) the map x 7→ f · x = (idA ⊗̄ f) ◦ πA(x) on A for f ∈ M+
∗

is a normal completely positive map.
(iii) A W ∗-dynamical system with the acting group G is precisely a

monotone complete C∗-L∞(G)-comodule whose underlying operator space
is a W ∗-algebra (see [23]).

Definition 2.5. An M -comodule is called M -injective or injective in CM

if for any M -comodules Y ≤ Z every M -comodule morphism φ : Y → X

extends to an M -comodule morphism φ̂ : Z → X. An injective envelope of
an M -comodule X in CM is an M -injective M -comodule containing X as
an M -subcomodule, which is minimal under the relation ≤.

We show later that under a certain condition on M there are enough
injectives in CM and that each object in CM has a unique injective envelope.

For X ∈ CM we write XM = π−1
X (πX(X)∩ (X ⊗1)), where 1 denotes the

unit of M , and call it the fixed point subspace of X. As πX(X) ≤ X ⊗̄M ,
X ⊗̄ 1 ≤ X ⊗̄M and so πX(X) ∩ (X ⊗ 1) ≤ X ⊗̄M , we have XM ≤ X.
Note also that for an M -comodule morphism φ : X → Y we have φ(XM ) ⊂
Y M . If further X is a monotone complete C∗-M -comodule, then XM is
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a monotone closed C∗-subalgebra of X (that is, the suprema of increasing
nets in (XM )sa as calculated in (XM )sa and in Xsa coincide) since πX is
normal, and 1 ∈ XM since πX is unital.

Lemma 2.6. (i) For x ∈ X ∈ CM the following are equivalent:
(1) x ∈ XM ;
(2) πX(x) = x ⊗ 1;
(3) f · x = f(1)x for all f ∈ M∗.
(ii) If X ∈ CM is also a unital C∗-subalgebra of some monotone complete

C∗-algebra A and πX : X → X ⊗̄M ≤ A ⊗̄M is a unital *-monomorphism
into A ⊗̄M , then f ·(axb) = a(f ·x)b for all f ∈ M∗, a, b ∈ XM and x ∈ X.
Hence aXb with a, b ∈ XM is an M∗-submodule of X and its norm closure
is an M -subcomodule of X.

Proof. (i) Clearly (2) ⇒ (1), and (2) ⇐⇒ (3), since (2) ⇐⇒
(idX ⊗̄ f)(πX(x)) = (idX ⊗̄ f)(x ⊗ 1) for all f ∈ M∗, that is, f · x = f(1)x
for all f ∈ M∗. Finally (1) ⇒ (3) since πX is an M∗-module homomorphism
and so x ∈ XM , that is, πX(x) = y ⊗ 1 for some y ∈ X implies πX(f · x) =
f · πX(x) = f · (y ⊗ 1) = f(1)(y ⊗ 1) = πX(f(1)x) and f · x = f(1)x for all
f ∈ M∗.

(ii) With the notation as above we have

f · (axb) = (idX ⊗̄ f) ◦ πX(axb)

= (idX ⊗̄ f)((a ⊗ 1)πX(x)(b ⊗ 1))

= a(idX ⊗̄ f) ◦ πX(x)b (by [12], 4.6(ii))

= a(f · x)b,

and the final assertion follows from 2.2 (ii). Note that this follows also
from 1.4, since πX(aXb) = (a ⊗ 1)πX(X)(b ⊗ 1) ⊂ (a ⊗ 1)(X ⊗̄M)(b ⊗ 1)
⊂ aXb ⊗̄M .

Now we can state the main theorem of this section.

Theorem 2.7. Assume the following condition on M :

(∗)

{
The Banach algebra M∗ has an approximate unit {ui} such that
lim ∥ui∥ = 1.
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(i) Every X in CM has a unique injective envelope in CM , written IM (X);
that is, if Y is another injective envelope of X, then the identity map on
X extends to an M -comodule morphism of IM (X) onto Y .

(ii) The above IM (X) is of the form pAq, where A is an M -injective,
monotone complete C∗-M -comodule and p, q are projections in AM .

(iii) Assume further that X is a unital C∗-algebra satisfying the following
condition:

(∗∗)

{
There is a monotone complete C∗-algebra B such that X ≤ B ⊗̄M

and X is a C∗-subalgebra, containing the unit, of B ⊗̄M .

Then IM (X) is itself a monotone complete C∗-M -comodule containing X

as a C∗-subalgbra.
If X is a monotone complete C∗-M -comodule, then it is a monotone

closed C∗-subalgebra of IM (X).

Remarks. (i) The condition (∗) is satisfied for M = L∞(G) with co-
multiplication αG, since the Banach algebra M∗ is then L1(G) with the
convolution as the product. But (∗) need not be true for general M . In-
deed the Hopf-von Neumann algebra R(G) generated by the right regular
representation of G on L2(G) satisfies (∗) if and only if G is amenable (see
[21]).

(ii) If A, p and q are as in (ii), then M -injectivity of pAq is implied by
that of A, since the map x 7→ pxq is an idempotent M -comodule morphism
of A onto pAq by 2.6 (ii). Hence injective objects in CM are precisely
the M -comodules of the form pAq, where A are M -injcetive, monotone
complete C∗-M -comodules and p, q are projections in AM . The choice of
A, p and q in the expression pAq of IM (X) need not be unique, though we
may take q to be 1 − p (see the proof below). We see in 2.13 when the
M -comodule of the form pAq is itself (isomorphic to) a monotone complete
C∗-M -comodule.

The proof is preceded by several lemmas. We observe first (2.8 (ii) below)
that the condition (∗) assures the existence of enough injectives in CM . (In
the remaining arguments we do not need (∗).) We denote by C the category
CM for M = C; that is, it is the category of operator spaces and complete
contractions.
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Lemma 2.8. (i) Let B(H)⊗̄M and B(K)⊗̄M be canonical M -comodules.
If ρ : B(K) ⊗̄M → B(H) is a complete contraction, then there is a unique
complete contraction ω : B(K) ⊗̄M → B(H) ⊗̄M such that for all f ∈ M∗

and x ∈ B(K) ⊗̄M ,

(∗∗∗) (idB(H) ⊗̄ f)(ω(x)) = ρ(f · x).

If further ρ is completely positive (respectively unital), then so is ω.
(ii) If an operator space V is injective in C, then the canonical M -

comodule V ⊗̄M is M -injective. Hence every M -comodule is an M -subco-
module of some M -injective M -comodule.

Proof. (i) We use the following result of Effros [22], Theorem 2. As in
1.5, for a W ∗-algebra N and y ∈ N ⊗̄M define l(y) ∈ B(M∗, N) by
l(y)(f) = (idN ⊗̄ f)(y), f ∈ M∗. Then l gives an order-isomorphism be-
tween (N ⊗̄M)+1 , the set of positive elements of norm ≤ 1, and the set of
all completely positive maps τ : M∗ → N with τ ≤cp l(1 ⊗ 1), where ≤cp

denotes the partial order induced from complete positivity.
We assume first that ρ is completely positive, and take an x ∈

(B(K) ⊗̄M)+. Since f · x = (idB(K) ⊗̄M ⊗̄ f) ◦ (idB(K) ⊗̄Γ)(x),
(idB(K) ⊗̄Γ)(x) ≤ ∥x∥(1 ⊗ 1) (1 ⊗ 1 is the unit of (B(K) ⊗̄M) ⊗̄M), and
ρ(1) ≤ ∥ρ(1)∥1, Effros’ result (applied to N = B(K) ⊗̄M and then to
N = B(H)) implies that

[M∗ ∋ f 7→ f · x ∈ B(K) ⊗̄M ] ≤cp [M∗ ∋ f 7→ ∥x∥f(1)1 ∈ B(K) ⊗̄M ]

in B(M∗, B(K) ⊗̄M), and so

[M∗ ∋ f 7→ ρ(f · x) ∈ B(H)] ≤cp [M∗ ∋ f 7→ ∥x∥f(1)ρ(1) ∈ B(H)]

≤cp ∥x∥∥ρ(1)∥l(1 ⊗ 1)

in B(M∗, B(H)), which in turn implies that there is a unique y ∈ (B(H) ⊗̄M)+

such that
(idB(H) ⊗̄ f)(y) = l(y)(f) = ρ(f · x)

for all f ∈ M∗. Since B(K) ⊗̄M is the linear span of positive elements, this
equality defines a unique map ω : B(K) ⊗̄M → B(H) ⊗̄M satisfying (∗∗∗).
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The map ω is positive by construction, and its complete positivity follows
from the preceding argument applied to idn ⊗ ρ : Mn ⊗ (B(K) ⊗̄M) →
Mn ⊗ B(H) instead of ρ, where Mn ⊗ (B(K) ⊗̄M) is identified with the
canonical M -comodule (Mn ⊗ B(K)) ⊗̄M and so the map corresponding
to idn ⊗ ρ is idn ⊗ ω.

If further ρ is unital, then

(idB(H) ⊗̄ f)(ω(1B(K) ⊗ 1M )) = ρ(f · (1B(K) ⊗ 1M ))

= f(1M )ρ(1B(K)) = f(1M )1B(H)

= (idB(H) ⊗̄ f)(1B(H) ⊗ 1M )

for all f ∈ M∗; hence ω is unital.
If ρ is assumed only to be completely contractive, then by [24], 7.3, there

are unital completely positive maps ρ1, ρ2 : B(K) ⊗̄M → B(H) such that
the map

P =

[
ρ1 ρ

ρ∗ ρ2

]
: M2 ⊗ (B(K) ⊗̄M) → M2 ⊗ B(H)

is unital completely positive. Applying the above argument to P we ob-
tain a unital completely positive map Ω : M2 ⊗ (B(K) ⊗̄M) → M2 ⊗
(B(H) ⊗̄M) such that

(idM2⊗B(H) ⊗̄ f)(Ω([xij ])) = P (([f · xij ])

for f ∈ M∗ and [xij ] ∈ M2 ⊗ (B(K) ⊗̄M). That Ω

([
1 0
0 0

])
=

[
1 0
0 0

]

and Ω

([
0 0
0 1

])
=

[
0 0
0 1

]
follows from similar equalities for P , and this

implies (see the proof of [24], 7.3) that Ω is written in the form

Ω([xij ]) =

[
ω1(x11) ω(x12)
ω∗(x21) ω2(x22)

]
, [xij ] ∈ M2 ⊗ (B(K) ⊗̄M)

for some ω1, ω2, ω : B(K) ⊗̄M → B(H) ⊗̄M with ω1, ω2 unital. Then ω

is the desired complete contraction satisfying (∗∗∗).
(ii) We may assume that V is of the form B(H). Indeed, if V ⊂ B(H),

then V being injective, there is a completely contractive projection φ of
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B(H) onto V , and the map φ ⊗̄ idM : B(H) ⊗̄M → B(H) ⊗̄M is an idem-
potent M -comodule morphism onto V ⊗̄M by 1.1 (iii). Hence if B(H) ⊗̄M

is M -injective, then so is V ⊗̄M . We also note that every M -comodule X is
an M -subcomodule of an M -comodule of the form B(K) ⊗̄M (the remark
(i) after 2.1).

These facts show that all the assertions of (ii) follow from the proof of
the following: For any M -comodule Y ≤ Z = B(K) ⊗̄M an M -comodule
morphism φ : Y → B(H) ⊗̄M extends to an M -comodule morphism φ̂ :
Z → B(H) ⊗̄M .

For the approximate unit {ui} for M∗ satisfying (∗) the maps ψi :=
(idB(H) ⊗̄ui) ◦ φ : Y → B(H) are completely bounded, and so by the
Arveson-Paulsen-Wittstock theorem [24], 7.2, they extend to completely
bounded maps ψ̂i : Z → B(H) with ∥ψ̂i∥cb = ∥ψi∥cb ≤ ∥ui∥∥φ∥cb ≤ ∥ui∥.
Since the unit ball of B(Z, B(H)) is compact in the point-σ-weak topology,
we may assume by passing to a subnet that there is a completely bounded
map ψ0 : Z → B(H) such that ψi(x) → ψ0(x) σ-weakly for all x ∈ Z and
∥ψ0∥ ≤ lim inf∥ψ̂i∥cb ≤ lim ∥ui∥ = 1. By (i) there is a complete contraction
φ̂ : Z → B(H) ⊗̄M such that (idB(H) ⊗̄ f)(φ̂(x)) = ψ0(f ·x) for all f ∈ M∗

and x ∈ Z. This φ̂ is an M∗-module homomorphism and so an M -comodule
morphism by 2.2 (i). Indeed, for x ∈ Z and f, g ∈ M∗ we have

(idB(H) ⊗̄ f)(φ̂(g · x)) = ψ0(f · (g · x)) = ψ0((f · g) · x)

= (idB(H) ⊗̄ f · g)(ψ̂(x))

= (idB(H) ⊗̄ f)(g · ψ̂(x)),

where the last equality holds, since f ⊗̄ g = f ◦(idM ⊗̄ g) on M ⊗̄M implies

idB(H) ⊗̄ f · g = (idB(H) ⊗̄ f) ◦ (idB(H) ⊗̄M ⊗̄ g) ◦ (idB(H) ⊗̄Γ),

and further (idB(H) ⊗̄M ⊗̄ g) ◦ (idB(H) ⊗̄Γ)(φ̂(x)) = g · φ̂(x).
Finally we have φ̂|Y = φ since for f ∈ M∗ and x ∈ Y ,

ψ̂i(f · x) = ψi(f · x) = (idB(H) ⊗̄ui) ◦ φ(f · x)

= (idB(H) ⊗̄ui)(f · φ(x)) = (idB(H) ⊗̄ui · f)(φ(x))

→ (idB(H) ⊗̄ f)(φ(x)) in norm,
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and
ψ̂i(f · x) → ψ0(f · x) = (idB(H) ⊗̄ f)(φ̂(x)) σ-weakly.

Thus the proof is complete.

The following is an M -comodule version of Paulsen’s result [24], 7.3.

Lemma 2.9. Let B be both a unital C∗-algebra and an M -comodule with
1 ∈ BM and let φ : B → B(H) ⊗̄M be an M -comodule morphism. Then
there are completely positive M -comodule morphisms φi : B → B(H) ⊗̄M ,
φi(1) = 1 ⊗ 1, i = 1, 2, and Φ : M2 ⊗ B → M2 ⊗ (B(H) ⊗̄M) such that

Φ([xij ]) =

[
φ1(x11) φ(x12)
φ∗(x21) φ2(x22)

]
, [xij ] ∈ M2 ⊗ B.

Proof. We modify the argument in the proof of [24], 7.3 as follows. The
operator system

S :=

{[
λ1 a

b∗ µ1

]
: λ, µ ∈ C, a, b ∈ B

}
⊂ M2 ⊗ B

is an M -subcomodule of M2 ⊗ B since 1 ∈ BM , and the map

Φ : S → M2 ⊗ (B(H) ⊗̄M), Φ

([
λ1 a

b∗ µ1

])
=

[
λ1 φ(a)

φ(b)∗ µ1

]
,

being a unital M∗-module homomorphism, is a completely positive M -
comodule morphism, [24], 7.1. Since M2 ⊗ (B(H) ⊗̄M) is M -injective
by 2.8 (ii), Φ extends to an M -comodule morphism, written again, Φ :
M2 ⊗B → M2 ⊗ (B(H) ⊗̄M). Then Φ, being unital, is completely positive
and written in the form above.

To state the next lemma we need some notation and terminology. Let
X be any M -comodule and N an M -injective M -comodule with X ≤ N

(see 2.8). We say that an M -comodule morphism φ : N → N (respectively
a seminorm p on N) is an X-projection (respectively an X-seminorm)
on N if φ2 = φ and φ|X = idX (respectively p = ∥φ(·)∥ for some M -
comodule morphism φ : N → N with φ|X = idX). Define a partial order ≺
(respectively ≤) in the set of all X-projections (respectively X-seminorms)
on N by putting φ ≺ ψ (respectively p ≤ q) if φ◦ψ = ψ◦φ = φ (respectively
p(x) ≤ q(x) for all x ∈ N).
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Lemma 2.10. (i) Any decreasing net of X-seminorms on N has a lower
bound. Hence there is a minimal X-seminorm on N by Zorn’s lemma, and
each X-seminorm majorizes a minimal one.

(ii) If p is a minimal X-seminorm on N with p = ∥φ(·)∥, then φ is a
minimal X-projection.

(iii) Conversely to (ii), if φ is a minimal X-projection on N , then ∥φ(·)∥
is a minimal X-seminorm on N .

Proof. For (i) and (ii) confer [10], 3.4, 3.5. (As in 2.8 we have N ≤
B(H) ⊗̄M . In the proof of [10], 3.4, replace V, W, B(H) by X, N and
B(H) ⊗̄M ; the reasoning there works also here, since the point-σ-weak
limit of M -comodule morphisms in B(N, B(H) ⊗̄M) is also an M -comod-
ule morphism because of the σ-weak continuity of the module operation
x 7→ f · x in B(H) ⊗̄M .)

(iii) If φ is a minimal X-projection on N , then by (i), ∥φ(·)∥ majorizes
a minimal X-seminorm ∥φ′(·)∥. As ∥φ ◦ φ′(·)∥ ≤ ∥φ′(·)∥, the minimality
of ∥φ′(·)∥ implies that ∥φ ◦ φ′(·)∥ = ∥φ′(·)∥. Then by (ii), φ ◦ φ′ is a
minimal X-projection. Clearly Im φ ◦φ′ := φ ◦φ′(N) ⊂ Imφ = φ(N), and
Ker φ ◦ φ′ ⊃ Ker φ since ∥φ ◦ φ′(·)∥ = ∥φ′(·)∥ ≤ ∥φ(·)∥. These inclusions
mean that φ ◦ φ′ ≺ φ and so φ ◦ φ′ = φ by the minimality of φ. Hence the
X-seminorm ∥φ(·)∥ = ∥φ ◦ φ′(·)∥ = ∥φ′(·)∥ is minimal.

Let X be in CM . As in [10] we say that Y ∈ CM with X ≤ Y is an
essential (respectively rigid) extension of X in CM if for each Z ∈ CM any
M -comodule morphism φ : Y → Z is a monomorphism whenever φ|X is
(respectively if for each M -comodule morphism φ : Y → Y , φ|X = idX

implies φ = idY ).

Lemma 2.11. Let X ≤ Y and suppose that Y is M -injective. Then the
following are equivalent:

(i) Y is an injective envelope of X in CM .
(ii) Y is an essential extension of X in CM .
(iii) Y is a rigid extension of X in CM .

Proof. The same as the proof of [10], 3.6, 3.7.
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Lemma 2.12. If B is a monotone complete C∗-M -comodule and Φ : B →
B is a unital idempotent M -comodule morphism, then the image ImΦ is a
monotone complete C∗-M -comodule (with a product possibly different from
that of B).

Proof. Since Φ, being unital, is completely positive, the results of Choi-
Effros [4], 3.1 and Tomiyama [31], 7.1 (see also [12], 3.2) show that A :=
ImΦ is a monotone complete C∗-algebra with product x◦y := Φ(xy), where
xy is the product in B. Moreover A ≤ B. Similarly A ⊗̄M = Im(Φ ⊗̄ idM )
is a monotone complete C∗-algebra with product x ◦ y := (Φ ⊗̄ idM )(xy).

It remains to show that the action πA on A is a normal *-homomorphism.
We have πA ◦Φ = (Φ ⊗̄ idM )◦πB since Φ is an M -comodule morphism and
πA = πB|A. If x, y ∈ A, then

πA(x ◦ y) = πA(Φ(xy)) = (Φ ⊗̄ idM ) ◦ πB(xy)

= (Φ ⊗̄ idM )(πA(x)πA(y)) = πA(x) ◦ πA(y).

Further, if xi ↗ x in A, then xi ↗ x′ in B for some x′ ∈ Bsa and Φ(x′) = x

([31], 7.1 or [12], 3.2). As πB is normal, it follows that πA(xi) = πB(xi) ↗
πB(x′) in B ⊗̄M and so πA(xi) ↗ (Φ ⊗̄ idM )◦πB(x′) = πA ◦Φ(x′) = πA(x)
in A ⊗̄M , completing the proof.

Proof of Theorem 2.7. (i) Let X ≤ N be as in 2.10. Then the image Im φ

of a minimal X-projection φ on N is an injective envelope of X in CM ,
and its uniqueness follows from the equivalence of 2.11, (i) and (ii) (see the
proof of [10], 4.1).

(ii) The argument below is inspired from that of [32]. As in the proof of
2.9 consider the M -comodule

S :=

{[
λ1 a

b∗ µ1

]
: λ, µ ∈ C, a, b ∈ X

}
≤ M2 ⊗ N,

where 1 is the unit of N and note that 1 ∈ NM . Lemma 2.10 applied
to S ≤ M2 ⊗ N implies the existence of a minimal S-projection Φ on

M2 ⊗ N . Putting p =

[
1 0
0 0

]
, q =

[
0 0
0 1

]
∈ S we have Φ(p) = p and
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Φ(q) = q; hence as in the proof of 2.8 (i), Φ is written in the form Φ([xij ]) =
[Φij(xij)], where Φij : N → N are M -comodule morphisms. These maps
are idempotent since so is Φ, and φ := Φ12 is an X-projection on N .

We show that Im φ ≤ N is the injective envelope of X. To see this
it suffices by 2.11 to show that if ψ : Im φ → Im φ is an M -comodule
morphism with ψ|X = idX , then ψ = idIm φ. Lemma 2.9 applied to ψ ◦
φ : N → Im φ ≤ N yields a completely positive M -comodule morphism
Ψ : M2⊗N → M2⊗N , Ψ([xij ]) = [Ψij(xij)] with Ψ11, Ψ22 : N → N unital
completely positive M -comodule morphisms, Ψ12 = ψ ◦ φ, and Ψ21 =
(Ψ12)∗. Then Ψ|S = idS and so Φ ◦Ψ ◦Φ|S = idS . Hence ∥Φ ◦Ψ ◦Φ(·)∥ is
an S-seminorm on M2 ⊗N with ∥Φ ◦Ψ ◦Φ(·)∥ ≤ ∥Φ(·)∥. Lemma 2.10 (iii),
(ii) applied to S ≤ M2 ⊗N and Φ implies that ∥Φ ◦Ψ ◦Φ(·)∥ = ∥Φ(·)∥ and
Φ ◦Φ ◦Φ is a minimal S-projection on M2 ⊗N . Then Φ ◦Ψ ◦Φ = Φ as in
the proof of 3.10 (iii), and for each x ∈ N ,[

0 ψ ◦ φ(x)
0 0

]
= Φ ◦ Ψ ◦ Φ

([
0 x

0 0

])
= Φ

([
0 x

0 0

])
=

[
0 φ(x)
0 0

]
;

that is, ψ = idIm φ as desired.
By 2.12, A := ImΦ is a monotone complete C∗-M -comodule with prod-

uct x ◦ y = Φ(xy). As Φ(p) = p and Φ(q) = q, we have p ◦x ◦ q = Φ(pxq) =
pΦ(x)q = pxq for x ∈ A (see [3], 3.1), and further p, q ∈ A∩ (M2 ⊗N)M =
AM . Hence p ◦ A ◦ q = pAq ≤ A and

pAq =

[
1 0
0 0

]
[ImΦij ]

[
0 0
0 1

]
=

[
0 Im φ

0 0

]
∼= Im φ = IM (X).

(iii) Let X satisfy (∗∗). We may assume that B in (∗∗) is an injec-
tive C∗-algebra, since the monotone complete C∗-algebra B is a mono-
tone closed C∗-subalgebra of its injective envelope I(B) (see [11]) and
B ⊗̄M ≤ I(B) ⊗̄M is also a monotone closed C∗-subalgebra of I(B) ⊗̄M .
Then B ⊗̄M is M -injective and there is a minimal X-projection φ on
B ⊗̄M so that Im φ = IM (X). Since X is a C∗-subalgebra of B ⊗̄M

and the product in IM (X) is given by x ◦ y = φ(xy), X is a C∗-subalgebra
of IM (X).

Finally let X be a monotone complete C∗-M -comodule. Then, as above,
πX : X → X ⊗̄M ≤ I(X) ⊗̄M is a normal *-monomorphism, and we may



Injective envelopes of dynamical systems 43

take IM (X) so that πX(X) ≤ IM (X) ≤ I(X) ⊗̄M . Hence πX : X →
πX(X) ≤ IM (X) is a normal *-monomorphism.

Proposition 2.13. For a monotone complete C∗-M -comodule A and pro-
jections p, q in AM the M -comodule pAq is isomorphic to a monotone
complete C∗-M -comodule if and only if there are projections p1, q1 in AM

such that p1 ≤ p, q1 ≤ q, pAq = p1Aq1, and p1 and q1 are equivalent as
projections in AM , that is, p1 = uu∗ and q1 = u∗u for some partial isometry
u in AM .

Proof. We need the following facts (see Section 4 for the terminology and
proof). An operator space of the form pAq, where A is a C∗-algebra and p, q

are its projections, is a triple system with triple product [x, y, z] := xy∗z.
A surjective linear map between triple systems is a complete isometry if
and only if it is a triple isomorphism (see 4.1 (i)).

Necessity: If B is a monotone complete C∗-M -comodule and φ : B →
pAq is an M -comodule isomorphism, then it follows from the fact 1 ∈ BM

and the foregoing that u := φ(1) ∈ (pAq)M ⊂ AM and u = φ(1 · 1∗ ·
1) = φ(1)φ(1)∗φ(1) = uu∗u, that is, u is a partial isometry in AM . As
u ∈ pAq, p1 := uu∗ ≤ p and q1 := u∗u ≤ q; hence p1Aq1 ⊂ pAq. Further
pAq = φ(1 · B · 1) = φ(1)φ(B∗)∗φ(1) = uqApu = p1uqApuq1 ⊂ p1Aq1

and so pAq = p1Aq1. Note also that the map π : B → q1Aq1 given by
π(x) = u∗φ(x) is simultaneously an M -comodule isomorphism (by 2.2 (ii)
and 2.6 (ii)) and a *-isomorphism (since it is a unital complete isometry).

Sufficiency: Conversely, if there are p1, q1, u in AM as above, then the
map φ : q1Aq1 → p1Aq1 = pAq, φ(x) = ux, is clearly an M -comodule
isomorphism of the monotone complete C∗-M -comodule q1Aq1 onto pAq.

Remarks. The above proof shows also the following:
(i) If A is a C∗-algebra and p, q are projections in A, then pAq is com-

pletely isometric to a unital C∗-algebra if and only if there are projections
p1, q1 in A such that p1 ≤ p, q1 ≤ q, pAq = p1Aq1, and p1 and q1 are
equivalent in A.

(ii) If B and C are M -comodules which are also unital C∗-algebras with
1 ∈ BM and 1 ∈ CM , then B ∼= C (isomorphic as M -comodules) implies
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the existence of an M -comodule isomorphism between them which is also
a *-isomorphism.

3. Category CG

For the rest of the paper (except for part of Section 5) we consider the
case M = L∞(G) with comultiplication αG, where G is a fixed locally
compact group with left invariant Haar measure dt and αG : L∞(G) →
L∞(G) ⊗̄L∞(G) is given by αG(s, t) = x(st). In this case we write CG,
IG(X), XG et cetera for CM , IM (X), XM et cetera, and use the terminology
G-module, G-morphism, monotone complete C∗-G-module, G-injective,
et cetera, instead of M -comodule, M -comodule morphism, monotone com-
plete C∗-M -comodule, M -injective, et cetera. Namely, a G-module is an
operator space X together with a complete isometry πX : X → X ⊗̄L∞(G),
called the action of G on X for short (rather than the action of L∞(G) on
X), such that (πX ⊗̄ idL∞(G)) ◦ πX = (idX ⊗̄αG) ◦ πX ; a G-morphism is a
complete contraction φ : X → Y between G-modules X and Y such that
πY ◦φ = (φ ⊗̄ idL∞(G))◦πX ; a monotone complete C∗-G-module is a mono-
tone complete C∗-algebra A together with the action πA : A → A ⊗̄L∞(G),
which is also a unital normal *-monomorphism; et cetera.

A G-module X becomes a Banach L1(G)-module by the module oper-
ation f · x = (idX ⊗̄ f) ◦ πX(x), f ∈ L1(G) = L∞(G)∗, x ∈ X, such that
∥f · x∥ ≤ ∥f∥∥x∥, and by 2.2, G-modules and G-morphisms are charac-
terized as (norm closed) L1(G)-submodules of canonical G-modules and
completely contractive L1(G)-module homomorphisms, respectively.

Note also that Theorem 2.7 applies in CG by the remark (i) after it and
that a G-injective G-module is also injective in the category C (see 2.8),
since it is the image of a G-module of the form B(H) ⊗̄L∞(G) under a com-
pletely contractive projection (remark (i) after 2.1) and this B(H) ⊗̄L∞(G)
is injective in C by 1.3 (iii).

The following examples were the motivation for introducing CG and its
generalization CM . For more abstract characterizations of the situations
below, see 3.6 (ii), (iii), 3.4 (iii) and the remark (ii) after 3.7.

Examples 3.1. (i) A C∗- or W ∗-dynamical system (A, G, α) gives rise to



Injective envelopes of dynamical systems 45

a G-module, called a C∗- or W ∗-G-module, as follows. The map πα : A →
A ⊗̄L∞(G) given by πα(x)(t) = αt(x), x ∈ A, t ∈ G, defines an action of
G on A in the above sense, where the function πα(x) of G into A, which is
norm continuous in the C∗-case or is σ-weakly continuous in the W ∗-case,
is naturally viewed as an element of A ⊗̄L∞(G).

(ii) The C∗-case above is slightly generalized as follows. Let X be an
operator space and denote by AutX the group of all complete isometries
of X onto itself, called automorphisms of X from now on. If α : G →
Aut X is strongly continuous group homomorphism, that is, t 7→ αt(x) is
norm continuous for each x ∈ X, then the map πα as above defines a G-
module structure on X, and the resulting L1(G)-module operation is given
by f · x =

∫
f(t)αt(x)dt, f ∈ L1(G), x ∈ X.

(iii) If (u, H) is a strongly continuous unitary representation of G on a
Hilbert space H and H is regarded as an operator space canonically (iden-
tify H with the subspace B(H)p ⊂ B(H), where p is a rank-1 projection),
then we obtain the situation in (ii) and so a G-module H. (That a uni-
tary operator on H is a complete isometry follows from 4.1 (i) or a direct
computation.)

In these examples, the G-module structure of an operator space is in-
duced from an action of G as automorphisms. We now examine to what
extent this is true for general G-modules.

Definition 3.2. (i) By a (right) translation on a canonical G-module
V ⊗̄L∞(G) we mean an automorphism on it of the form ρt := idV ⊗̄ ρ(t),
t ∈ G, where ρ(t) : L∞(G) → L∞(G) is defined by (ρ(t)a)(s) = a(st). A
G-submodule Y of V ⊗̄L∞(G) is called translation invariant if ρt(Y ) = Y

for all t. A G-module X is called translation invariant if so is πX(X) ≤
X⊗̄L∞(G) in X⊗̄L∞(G). (As is easily seen, if X is already a G-submodule
of some V ⊗̄L∞(G), then the translation invariance of X in this sense
amounts to that of X as a G-submodule of V ⊗̄L∞(G).) In this case a
group homomorphism αX : G → Aut X is defined by αX

t = π−1
X ◦ ρ ◦ πX ,

t ∈ G. This αX is called the pointwise action of G on X to distinguish it
from the action πX .

(ii) For a G-module X we write Xc for the set L1(G) · X consisting of
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elements of the form f · x, f ∈ L1(G), x ∈ X, and call it the continuous
part of X. The G-module X itself is called continuous if Xc = X. The
continuous part Xc of X is indeed a (norm closed) G-submodule of X by
the Hewitt-Ross theorem [19], page 268, (32.22), since L1(G) has a bounded
approximate unit.

Remarks. (i) A general G-module need not be translation invariant.
Indeed, any (norm closed) linear subspace X of the canonical G-module
L∞(G) (∼= C ⊗̄L∞(G)) containing L∞(G)c = L1(G) · L∞(G) is a G-sub-

module of L∞(G). But, since L∞(G)c = Cblu(G), the space of all bounded
left uniformly continuous complex-valued functions on G (see 3.3), such an
X need not be translation invariant.

We see in 5.6 (iii), (vi) that every G-injective G-module is translation
invariant.

(ii) In 3.1 (ii), with πα and ρt = idX ⊗̄ ρ(t) as above we have πα ◦ αt =
ρt ◦ πα and the G-module X is translation invariant.

(iii) For two G-modules X ≤ Y we have Xc = X ∩ Y c. Indeed, if
x ∈ X ∩ Y c, then x = f · y for some f ∈ L1(G) and y ∈ Y , and for a
bounded approximate unit {ui} for L1(G), ui · x = (uif) · y → f · y = x in
norm. As Xc is norm closed and ui ·x ∈ Xc, this shows that X ∩Y c ⊂ Xc,
and the reverse inclusion is clear.

Now we identify the continuous part of a canonical G-module V ⊗̄L∞(G).
Let Cb(G, V ) (respectively Cblu(G, V )) denote the Banach space of all
bounded continuous (respectively bounded left uniformly continuous) func-
tions of G into V, where the left uniform continuity of a bounded function
x : G → V means that sup{∥x(sr) − x(s)∥ : s ∈ G, r ∈ U} → 0 as U

runs through the neighborhood system of the unit element of G (see, for
example, [26], page 11).

Proposition 3.3. (i) With the notation as above, the spaces Cblu(G, V )
and Cb(G, V ), viewed as subspaces of V ⊗̄L∞(G) canonically, are trans-
lation invariant G-submodules of V ⊗̄L∞(G): Cblu(G, V ) ≤ Cb(G, V ) ≤
V ⊗̄L∞(G), where the translation and the module operation in Cb(G, V )
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are given by

ρt(x)(s) = x(st), (3.1)

(f · x)(s) =
∫

f(t)x(st)dt. (3.2)

(ii) We have

(V ⊗̄L∞(G))c = Cblu(G, V )

= {x ∈ V ⊗̄L∞(G) : t 7→ ρt(x) is norm continuous},

and the value of x ∈ (V ⊗̄L∞(G))c at t as a function of G into V is given
by

x(t) = lim(idV ⊗̄λ(t)ui)(x) (norm convergent), (3.3)

where (λ(t)a)(s) = a(t−1s) and {ui} denotes henceforth a fixed bounded
approximate unit for L1(G).

Proof. (i) Let V ⊂ B(H) and L∞(G) ⊂ B(L2(G)) (let each element of
L∞(G) act on L2(G) by multiplication), and identify each x ∈ Cb(G, V )
with the operator x ∈ B(H) ⊗̄L∞(G) ⊂ B(L2(G, H)) (L2(G, H) is the
Hilbert space of H-valued, square-summable, measurable functions on G)
defined by (xξ)(s) = x(s)ξ(s). For f ∈ L1(G) and y ∈ B(H) ⊗̄L∞(G) we
have

f · y =
∫

f(t)ρt(y) dt, (3.4)

ρt(y) = σ-weak limit(λ(t)ui) · y, (3.5)

where ρt = idB(H) ⊗̄ ρ(t). Indeed, ρt is σ-weakly continuous, and these hold
for elementary tensors y = a ⊗ b, since

f · (a ⊗ b) = a ⊗ f · b,

f · b = (idL∞(G) ⊗̄ f)(αG(b)) =
∫

f(t)b(· t) dt =
∫

f(t)(ρ(t)b)(·) dt,

(λ(t)ui) · b = ρ(t)(ui · b),

and the σ-weak limit of ui · b is b. These imply (3.1), (3.2) and

(idB(H) ⊗̄ f)(x) =
∫

f(s)x(s) ds (3.6)
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for f ∈ L1(G) and x ∈ Cb(G, V ). Then (3.6) shows that (idB(H) ⊗̄ f)(x) ∈
V , hence that Cb(G, V ) ⊂ V ⊗̄L∞(G). Further (3.1) and (3.2) show
that Cblu(G, V ) and Cb(G, V ) are translation invariant G-submodules of
V ⊗̄L∞(G).

(ii) In view of (g ⊗̄ f) ◦ αG = gf =
∫

g(s)(λ(s)f)(·) ds for f, g ∈ L1(G)
and (3.5), it follows that for y ∈ B(H) ⊗̄L∞(G) and t ∈ G,

(idB(H) ⊗̄ g)(f · y) = (idB(H) ⊗̄ gf)(y)

=
∫

g(s)(idB(H) ⊗̄λ(s)f)(y) ds,
(3.7)

ρt(f · y) = (λ(t)f) · y. (3.8)

Here the function s 7→ (idB(H) ⊗̄λ(s)f)(y) of G into B(H) is left uniformly
continuous, as follows from the estimate

∥(idB(H) ⊗̄λ(sr))f)(y) − (idB(H) ⊗̄λ(s)f)(y)∥

≤ ∥λ(sr)f − λ(s)f∥∥y∥ = ∥λ(r)f − f∥∥y∥;

and by (3.8), similarly for the function t 7→ ρt(f ·y) of G into B(H)⊗̄L∞(G).
If x = f · y for f ∈ L1(G) and y ∈ V ⊗̄L∞(G), then the compari-

son of (3.7) and (3.6) shows that x is identified with the function s 7→
(idB(H) ⊗̄λ(s)f)(y) in Cblu(G, V ), that is, x(s) = (idB(H) ⊗̄λ(s)f)(y). Fur-
ther (3.3) follows, since

(idB(H) ⊗̄λ(s)ui)(f · y) = (idB(H) ⊗̄ (λ(s)ui)f)(y)

= (idB(H) ⊗̄λ(s)(uif))(y) → (idB(H) ⊗̄λ(s)f)(y) in norm.

Conversely, if x ∈ Cblu(G, V ), then the left uniform continuity of x and
(3.2) imply that ui · x → x in norm and so x ∈ (V ⊗̄L∞(G))c, since
(V ⊗̄L∞(G))c is norm closed as noted in 3.2. Hence (V ⊗̄L∞(G))c =
Cblu(G, V ).

For each x ∈ (V ⊗̄L∞(G))c the function t 7→ ρt(x) is norm continuous
by (3.8). Conversely, if x ∈ V ⊗̄L∞(G) and t 7→ ρt(x) is norm continuous,
then it follows from (3.4) that as above, ui · x → x in norm and x ∈
(V ⊗̄L∞(G))c.

As for general continuous G-modules we obtain the following:
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Proposition 3.4. (i) The continuous part Xc of any G-module X is a
translation invariant G-module with the strongly continuous pointwise ac-
tion α given by αt(x) = lim(λ(t)ui) · x (norm convergent) and the mod-
ule operation f · x =

∫
f(t)αt(x) dt. An x ∈ X is in Xc if and only if

π−1
X ◦ ρt ◦πX(x) ∈ X for all t and t 7→ π−1

X ◦ ρt ◦πX(x) is norm continuous.
(ii) The continuous part of a monotone complete C∗-G-module is a C∗-

G-module.
(iii) A G-module is continuous if and only if it arises as in 3.1 (ii) via

a strongly continuous group homomorphism α : G → AutX. In particular,
every C∗-G-module is continuous, and every continuous G-module is a G-
submodule of some C∗-G-module.

(iv) A (norm closed) linear subspace of a continuous G-module is a G-
submodule if and only if it is translation invariant.

Proof. (i) Applying (3.8) to X ⊗̄L∞(G) we have

ρt ◦ πX(f · x) = ρt(f · πX(x)) = (λ(t)f) · πX(x) = πX((λ(t)f) · x)

for f ∈ L1(G) and x ∈ X. Hence πX(Xc) and Xc also is translation
invariant, and the pointwise action α on Xc is given by

αt(f · x) = π−1
X ◦ ρt ◦ πX(f · x) = (λ(t)f) · x

= lim λ(t)(uif) · x = lim(λ(t)ui) · (f · x).

The action α is strongly continuous, since so is t 7→ ρt on (X ⊗̄L∞(G))c by
3.3 (ii), αt = π−1

X ◦ ρt ◦ πX , and πX(Xc) ≤ (X ⊗̄L∞(G))c. For f ∈ L1(G)
and x ∈ Xc it follows from (3.1) that

f · x = π−1
X (f · πX(x)) = π−1

X

(∫
f(t)ρt(πX(x))dt

)
=

∫
f(t)π−1

X ◦ ρt ◦ πX(x) dt =
∫

f(t)αt(x) dt,

since t 7→ ρt ◦ πX(x) is norm continuous. As πX(Xc) = πX(X)∩
(X⊗̄L∞(G))c (the remark (iii) after 3.2), the second assertion follows from
3.3 (ii).

Parts (iii) (except for the last assertion) and (iv) follow immediately from
(i).
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(ii) If X is a monotone complete C∗-G-module, then πX is a unital *-
monomorphism and so, by 3.3 (ii), Xc = π−1

X (πX(X) ∩ (X ⊗̄L∞(G))c) is
a C∗-subalgebra of X containing the unit. The pointwise action α on Xc

is strongly continuous, and each αt = π−1
X ◦ ρt ◦ πX , t ∈ G, is a unital

surjective complete isometry, hence a *-automorphism of Xc.
Finally, if X is a continuous G-module, then we have X ⊂ B(H) for some

B(H) and X ∼= πX(X) = πX(X)c ≤ (X ⊗̄L∞(G))c ≤ (B(H) ⊗̄L∞(G))c.
This and (ii) imply the last assertion of (iii).

We say that a complete contraction φ between translation invariant G-
modules Xj , j = 1, 2, is equivariant if φ ◦ α1

t = α2
t ◦ φ for all t ∈ G, where

αj is the pointwise action on Xj . The study of G-morphisms is reduced, to
some extent, to that of equivariant ones as follows.

Proposition 3.5. Let Xj, j = 1, 2, be any G-modules and denote by
HomG(X1, X2) the space of all G-morphisms from X1 into X2.

(i) The restriction to Xc
1 defines an injection of HomG(X1, X2) into

HomG(Xc
1, Xc

2). If further X2 is G-injective, then this map is also a bijec-
tion.

(ii) If Xj are also translation invariant, then every element of
HomG(X1, X2) is equivariant. In particular, HomG(Xc

1, Xc
2) for any G-

modules Xj is identified with the set of all equivariant complete contractions
of Xc

1 into Xc
2.

(iii) If X2 = V ⊗̄L∞(G) is canonical, then a bijection between
HomG(Xc

1, Xc
2) and the space of all complete contractions from Xc

1 into V ,
written CC(Xc

1, V ), is defined as follows. For φ ∈ HomG(Xc
1, Xc

2) define
ψ ∈ CC(Xc

1, V ) by ψ(x) = φ(x)(e), x ∈ Xc
1, where the right hand side is

the value of φ(x) ∈ Xc
2 = Cblu(G, V ) at e ∈ G.

Proof. We need the following fact. For a bounded approximate unit {ui}
for L1(G),

ui · x = 0 in any G-module for all i implies x = 0. (3.9)

Indeed, (3.5) shows the validity of (3.9) in a canonical G-module, but every
G-module is a G-submodule of some canonical one.
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(i) Each φ ∈ HomG(X1, X2), being an L1(G)-module homomorphism,
maps Xc

1 into Xc
2. If φ|Xc

1 = 0 for φ ∈ HomG(X1, X2), then for all x ∈ X

and i we have ui · φ(x) = φ(ui · x) = 0 and so φ(x) = 0 by (3.9). If X2 is
G-injective, then each element of HomG(Xc

1, Xc
2) extends to an element of

HomG(X1, X2), which is unique from the foregoing.
(ii) By (3.9), φ is equivariant if and only if ui ·(φ◦α1

t )(x) = ui ·(α2
t ◦φ)(x)

for all x ∈ X1, t ∈ G and i. Further, in a canonical G-module of the form
B(H) ⊗̄L∞(G),

f · ρt(x) = ∆(t)−1(ρ(t−1)f)) · x, (3.10)

where ∆ is the modular function of G, since for a ⊗ b in B(H) ⊗̄L∞(G),

f · ρt(a ⊗ b) = f · (a ⊗ ρ(t)b) = a ⊗ f · (ρ(t)b),

f · (ρ(t)b) =
∫

f(s)(ρ(t)b)(·s) ds =
∫

f(s)b(·st), ds

= ∆(t)−1

∫
f(st−1)b(·s) ds = ∆(t)−1(ρ(t−1)f) · b;

and every translation invariant G-module is embedded in a canonical one
as a ρ-invariant G-submodule. Hence, if φ is a G-morphism, then

ui · (φ ◦ α1
t )(x) = φ(ui · α1

t (x)) = φ(∆(t)−1(ρ(t−1ui) · x)

= ∆(t)−1(ρ(t−1)ui) · φ(x) = ui · (α2
t ◦ φ)(x),

and so φ is equivariant.
The second assertion is clear, since in a continuous G-module with point-

wise action α an element f · x =
∫

f(t)αt(x)dt is approximated in norm by
linear combinations of αt(x), t ∈ G.

(iii) By (ii) each element of HomG(Xc
1, Xc

2) is viewed as an equivariant
complete contraction of Xc

1 into Xc
2. With αj the pointwise actions of Xc

j

and φ, ψ as above, we have

φ(x)(t) = α2
t (φ(x))(e) = φ(α1

t (x))(e) = ψ(α1
t (x))

for all x ∈ Xc
1 and t ∈ G. This shows that the map φ 7→ ψ is injective.

Further, for ψ ∈ CC(Xc
1, V ) and x ∈ Xc

1 the function φ(x) : t 7→ ψ(α1
t (x))

belongs to Cblu(G, V ) = Xc
2 and φ : Xc

1 → Xc
2 is equivariant.
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Remark. The converse to the former assertion of (ii) is false. Indeed, let
X1 = L∞(G) be the canonical G-module (that is, the action is given by
(f · x)(s) =

∫
f(t)x(st)dt) and let X2 = C with the trivial action f · x =

(
∫

f(t)dt)x. For a unital (complete) contraction φ : X1 → X2, φ is a G-
morphism (respectively equivariant) if and only if it is a topologically right
invariant (respectively right invariant) mean on L∞(G). But, in general,
there is a right invariant mean on L∞(G) which is not topologically right
invariant (see [26], page 265, 22.3).

We characterize G-modules as abstract L1(G)-modules.

Proposition 3.6. Let X be an operator space with a left L1(G)-module
structure.

(i) Then X is a G-module if and only if

∥x∥ = sup{∥f · x∥ : f ∈ L1(G), ∥f∥ ≤ 1} (1)

for all x ∈ Mn ⊗ X, n = 1, 2, · · · , where f · x = [f · xij ] for x = [xij ].
(ii) If X is also a unital C∗-algebra, then X is a C∗-G-module if and

only if it satisfies (1) and the following

f · 1 =
(∫

f(t) dt

)
1, ∀ f ∈ L1(G), (2)

X = L1(G) · X. (3)

Moreover (1), (2) and (3) can be replaced by (2), (3) and the following:

∥f · x∥ ≤ ∥f∥∥x∥, ∀ f ∈ L1(G), ∀x ∈ Mn ⊗ X, n = 1, 2, · · · . (1′)

(iii) If X is also a monotone complete C∗-algebra such that

(∗)

{
L1(G) · X is a C∗-subalgebra of X and generates X as a monotone
complete C∗-algebra,

then X is a monotone complete C∗-G-module if and only if it satisfies (1),
(2) and the following:

the map x 7→ f · x in X is positive and normal for each f ∈ L1(G)+. (4)

In particular, a W ∗-G-module is characterized as a W ∗-algebra with the
L1(G)-module structure satisfying (1), (2) and (4).
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Proof. (i) If X is a G-module, then so is Mn⊗X with the action idn⊗πX :
Mn ⊗ X → Mn ⊗ X ⊗̄L∞(G). As f · x = (idMn⊗X ⊗̄ f) ◦ (idn ⊗ πX)(x)
for f ∈ L1(G) and x ∈ Mn ⊗ X and πX is completely isometric, the
validity of (1) follows from 1.5. Conversely, if X satisfies (1), then 1.5 again
implies that for each n = 1, 2, . . . there is an isometry πn : Mn ⊗ X →
(Mn⊗X) ⊗̄L∞(G) such that (idMn⊗X ⊗̄ f)◦πn(x) = f ·x for all f ∈ L1(G)
and x ∈ Mn ⊗ X. Then πn = idn ⊗ π1 since for x = [xij ],

(idMn⊗X ⊗̄ f) ◦ πn(x) = f · x = [f · xij ]

= [(idX ⊗̄ f) ◦ π1(xij)] = (idMn⊗X ⊗̄ f) ◦ (idn ⊗ π1)(x);

hence by 2.3 (i), π1 is an action of G on X.
(ii) The necessity is clear, since (2) follows, for example, from the identity

in 3.1 (ii).
Sufficiency: By (1) and (2), X is a continuous G-module and it has the

strongly continuous pointwise action α. Then, as in the proof of 3.4 (ii),
the condition (2) assures that each αt, t ∈ G, is a *-automorphism of X.

For the second assertion it suffices to show that (1′) and (3) imply (1).
But, if {ui} is an approximate unit for L1(G) with ∥ui∥ = 1, then ui ·x → x

in norm for each x ∈ X, since x = f · y for some f ∈ L1(G) and y ∈ X by
(3) and ∥ui · x− x∥ ≤ ∥uif − f∥∥y∥ → 0 by (1′). Hence ui · x → x in norm
for each x ∈ Mn ⊗ X and ∥ui · x∥ ≤ ∥x∥ by (1′).

(iii) The necessity follows from the preceding reasoning and the remark
(ii) after 2.4 (without the condition (∗)).

Sufficiency: By (i), X is a G-module and by (ii) and (∗), its continuos
part Xc is a C∗-G-module with 1 ∈ XG ≤ Xc. Hence the restriction
πX |Xc to Xc of the acton πX on X, being the action of Xc, is a unital
*-monomorphism and so πX(xy) = πX(x)πX(y) for all x ∈ Xc and y ∈ X

by [3], 3.1. By 1.3 (v), (4) shows that πX is normal, since f ·x = (idX ⊗̄ f)◦
πX(x), and hence by (∗) the above equality holds for all x, y ∈ X. Thus
πX is a unital normal *-monomorphism and X is a monotone complete
C∗-G-module.

Since a W ∗-G-module is a monotone complete C∗-G-module whose un-
derlying operator space is a W ∗-algebra, to see the last asseertion it suffices
to show that a W ∗-G-module satisfies (∗) and that for a W ∗-algebra X, (∗)
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follows from (1), (2) and (4). The first claim follows from 3.4 (ii) and the
fact that with the notation as in 3.1 (i) and 3.3, ui ·x = π−1

α (ui ·πα(x)) → x

σ-weakly for each x ∈ X by (3.5). (Take B(H) in the proof of 3.3 so that
X is a W ∗-subalgebra of B(H).) Further, if a left L1(G)-module X is a
W ∗-algebra satisfying (1), (2) and (4), then πX : X → X ⊗̄L∞(G), which
exists by (1), is normal and so σ-weakly continuous. As πX is also isomet-
ric, this together with [8], page 42, Theorem 1, (iv) implies that πX(X) is
σ-weakly closed in X ⊗̄L∞(G). Hence

ρt(πX(x)) = σ-weak lim(λ(t)ui) · πX(x)

= σ-weak lim πX((λ(t)ui) · x) ∈ πX(X)

for all t ∈ G and x ∈ X by (3.5), and X is translation invariant and it
has the pointwise action αX . Note that this shows also that L1(G) · X

is σ-weakly dense in X or it generates X as a monotone complete C∗-
algebra. Each αX

t = π−1
X ◦ ρt ◦ πX , being a unital complete isometry of

X onto itself, is a *-automorphism of X. Since Xc = {x ∈ X : t 7→
αt(x) is norm continuous} by 3.4 (i), Xc is a C∗-subalgebra of X.

Remarks. (i) “For all x ∈ Mn ⊗ X, n = 1, 2, . . . ” in the condition (1)
cannot be replaced by “for all x ∈ X”. Indeed, consider the case where G

is discrete. Then, as is readily seen, (1) is equivalent to the existence of
a group homomorphism α : G → Aut X with which the module operation
is given by f · x =

∑
f(t)αt(x) for f ∈ l1(G) and x ∈ X, and the weaker

condition is equivalent to the existence of a similar group homomorphism
α : G → Isom X, where Isom X is the group of all isometries of X onto
itself. In general, AutX ( Isom X and so an example of an l1(G)-module
satisfying the weaker condition, but not (1) can be constructed.

(ii) The author does not know whether every monotone complete C∗-G-
module satisfies (the latter half of) (∗) or not. (The former half holds by
3.4 (ii).) At any rate, in every monotone complete C∗-G-module X, the
monotone closure of Xc is an L1(G)-submodule of X (by (4)) and hence a
monotone complete C∗-G-module satisfying (∗) trivially.

We characterize the pointwise actions on translation invariant G-modules
as follows.
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Proposition 3.7. Let X be an operator space with a group homomorphism
α : G → Aut X. Then X is a translation invariant G-module with the
pointwise action α if and only if there is a linear subspace F of X∗ such
that

(1) when Mn⊗F is regarded as a subspace of (Mn⊗X)∗, ∥x∥ = sup{|φ(x)| :
φ ∈ Mn ⊗ F, ∥φ∥ ≤ 1} for all x ∈ Mn ⊗ X, n = 1, 2, . . . ;

(2) φ ◦ αt ∈ F for all φ ∈ F and t ∈ G;
(3) the function t 7→ φ(αt(x)) of G into C is continuous for all φ ∈ F

and x ∈ X;
(4) for all f ∈ L1(G) and x ∈ X there is an f · x ∈ X for which

φ(f · x) =
∫

f(t)φ(αt(x))dt for all φ ∈ F .
In this case the L1(G)-module structure of X is given by (4).

Proof. Necessity: If X is a translation invariant G-module, that is, X ≤
V ⊗̄L∞(G) for some canonical G-module V ⊗̄L∞(G), ρt(X) = X and αt =
ρt|X for all t, then we may take as the space F the linear span of the
restrictions to X of the product functionals ψ ⊗̄ g, ψ ∈ V ∗, g ∈ L1(G) =
L∞(G)∗, on V ⊗̄L∞(G) (see Section 1). To see this we may assume that
X = V ⊗̄L∞(G) = B(H) ⊗̄L∞(G). Then (1) is clear. For φ = ψ ⊗̄ g as
above, t ∈ G, f ∈ L1(G) and x ∈ X,

φ ◦ αt = (ψ ⊗̄ g) ◦ (idB(H) ⊗̄ ρ(t))

= ψ ⊗̄ g ◦ ρ(t) = ψ ⊗̄∆(t)−1(ρ(t−1)g) ∈ F,

as in the proof of (3.10); (ψ ⊗̄ idL∞(G))(x) ∈ L∞(G) and 1.2 (ii) imply

φ(αt(x)) = g ◦ (ψ ⊗̄ idL∞(G)) ◦ (idB(H) ⊗̄ ρ(t))(x)

= g ◦ ρ(t) ◦ (ψ ⊗̄ idL∞(G))(x)

=
∫

g(s)(ψ ⊗̄ idL∞(G))(x)(st)ds;

and further,∫
f(t)φ(αt(x))dt =

∫ ∫
g(s)f(t)(ψ ⊗̄ idL∞(G))(x)(st)dsdt

=
∫

(gf)(u)(ψ ⊗̄ idL∞(G))(x)(u)du

= (ψ ⊗̄ gf)(x) = (ψ ⊗̄ g)(f · x) = φ(f · x),
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showing respectively (2), (3) and (4).
Sufficency: By (1), f · x in (4) is uniquely determined by the equation

in (4), and with this operation X is an L1(G)-module. Indeed, for φ ∈ F ,
s ∈ G, f, g ∈ L1(G) and x ∈ X, φ ◦ αs ∈ F by (2), and so by (4),

φ(αs(g ·x)) =
∫

g(t)φ(αs(αt(x))dt =
∫

g(s−1t)φ(αt(x))dt = φ((λ(s)g) ·x).

Hence

φ(f · (g · x)) =
∫

f(s)φ(αs(g · x))ds =
∫

f(s)φ((λ(s)g) · x)ds

=
∫ ∫

f(s)(λ(s)g)(t)φ(αt(x))dsdt

=
∫

(fg)(t)φ(αt(x))dt = φ((fg) · x)

and f · (g · x) = (fg) · x by (1). Further, for x ∈ Mn ⊗X, n = 1, 2, . . . , we
have by (1), (2) and (4),

sup{∥f · x∥ : f ∈ L1(G), ∥f∥ ≤ 1}

= sup{|φ(f · x)| : f ∈ L1(G), ∥f∥ ≤ 1, φ ∈ Mn ⊗ F, ∥φ∥ ≤ 1}

= sup{
∣∣∣∣∫ f(t)φ((idn ⊗ αt)(x))dt

∣∣∣∣ : f ∈ L1(G), ∥f∥ ≤ 1,

φ ∈ Mn ⊗ F, ∥φ∥ ≤ 1}

= sup{|φ(x)| : φ ∈ Mn ⊗ F, ∥φ∥ ≤ 1} = ∥x∥.

It follows from 3.6 that X is a G-module.

Remarks. (i) For any (not necessarily translation invariant) G-module X

there is a linear subspace F of X∗ satisfying the above condition (1) and the
condition ui ·x → x σ(X, F ) for all x ∈ X. Indeed, if X ≤ B(H) ⊗̄L∞(G),
then the space F defined as above satisfies (1), and for ψ ⊗̄ g ∈ F with
ψ ∈ B(H)∗ and g ∈ L1(G), (ψ ⊗̄ g)(ui · x) = (ψ ⊗̄ gui)(x) → (ψ ⊗̄ g)(x).

(ii) If X is a G-module and is reflexive as a Banach space, then Xc =
X. In particular, G-modules whose underlying operator spaces are Hilbert
spaces are continuous, and so such G-modules are exactly the G-modules
considered in 3.1 (iii). Indeed, (1) shows that Xc is σ(X, F )-dense in X.
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Further (1) for n = 1 implies that the unit ball of F is σ(X∗, X)-dense
in that of X∗, which in turn implies that F is norm dense in X∗, since
X∗∗ = X and σ(X∗, X) = σ(X∗, X∗∗). Thus Xc, being norm closed,
coincides with X.

(iii) If a G-module X has a pointwise action α, then the fixed point
subspace XG equals Xα := {x ∈ X αt(x) = x, ∀ t ∈ G}. Indeed, by (4) we
have f · x = f(1)x for all f ∈ L1(G), where f(1) =

∫
f(t)dt, if and only if

αt(x) = x for all t ∈ G.

4. Triple envelopes of continuous G-modules

By 3.4 we may and shall think of continuous G-modules and G-mor-

phisms between them as operator spaces X together with strongly contin-
uous group homomorphisms αX : G → AutX and complete contractions
φ : X → Y such that φ ◦ αX

t = αY
t ◦ φ for all t ∈ G, respectively. In this

section we associate with each continuous G-module another continuous
G-module, called its triple envelope, which defines the Morita equivalence
in the sense of Combes [5], page 294, Definition 1, of two C∗-G-modules
minimally generated by the original G-module (see 4.3).

We establish some terminology and notation. For a while we treat the
case without the action of G. As in [32] an operator space is called a triple
system if it is realized as a (norm closed) linear subspace T of some C∗-
algebra A which is closed under the triple product [x, y, z] := xy∗z, that is,
[x, y, z] ∈ T for all x, y, z ∈ T . (A synonym of “triple system” is “ternary
ring of operators”, [35].) In this case T is called a triple subsystem of A. A
linear subspace I of a triple system T is called a two-sided triple ideal of
T if TT ∗I + IT ∗T ⊂ I. A linear map φ between triple systems is called
a triple homomorphism if φ([x, y, z]) = [φ(x), φ(y), φ(z)] for all x, y, z.
Clearly the kernel Ker φ of of φ is a two-sided triple ideal.

As is well known (see, for example, [2], [34], [6]), triple systems are
exactly the triple subsystems of C∗-algebras of the form pAq, where A is
a C∗-algebra and p, q are projections in the multiplier algebra M(A) of A,
and they are essentially the same as the inner product modules over C∗-
algebras. Indeed, the subspace pAq as above is clearly a triple subsystem
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of A. Moreover, with every triple subsystem T of a C∗-algebra A we can
associate the following C∗-algebras:

Kl(T ) := lin(TT ∗) ⊂ A, Kr(T ) := lin(T ∗T ) ⊂ A,

and

L(T ) :=

[
Kl(T ) T

T ∗ Kr(T )

]
⊂ M2 ⊗ A,

where lin denotes the closed linear span, which are C∗-subalgebras of the
right hand sides. These Kl(T ), Kr(T ) and L(T ) depend only on the triple
isomorphism class of T , and not on the choice of the C∗-algebras A con-
taining T as a triple subsystem (see 4.1 (iv)). Then the map τ : T → L(T )

given by τ(x) =

[
0 x

0 0

]
defines an isometric triple isomorphism (bijective

triple homomorphism) of T onto the triple subsystem eL(T )(1−e) of L(T ),

where e =

[
1 0
0 0

]
, 1 − e =

[
0 0
0 1

]
and the 1’s are the units of M(Kl(T ))

and M(Kr(T )). Hence T has the Kl(T )-Kr(T )-valued inner products ⟨·, ·⟩l
and ⟨·, ·⟩r given by ⟨x, y⟩l := xy∗ and ⟨x, y⟩r := x∗y, and it is an equiva-
lence bimodule which defines the strong Morita equivalence of Kl(T ) and
Kr(T ) in the sense of Rieffel.

We state the next, essentially known result (see [34]) in the form suitable
for later use. We deduce it from Harris’ result [17], [18] on J∗-algebras. Here
a J∗-algebra is a (norm closed) linear subspace T of a C∗-algebra such that
xx∗x ∈ T for all x ∈ T , and a linear map φ between J∗-algebras is called a
J∗-homomorphism if φ(xx∗x) = φ(x)φ(x)∗φ(x) for all x.

Proposition 4.1. (i) If T and U are triple systems and φ : T → U is a
surjective linear map, then the following are equivalent:

(1) φ is 2-isometry;

(2) φ is a triple isomorphism;

(3) φ is a complete isometry.

(ii) If T is a triple system and I is its closed two-sided triple ideal, then
the quotient space T/I is a triple system with the triple product induced from
T in the following sense. The C∗-algebra L(I) defined for I instead of T is
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a closed two-sided ideal of L(T ), and the composite of the triple homomor-
phism τ : T → L(T ) and the quotient *-homomorphism L(T ) → L(T )/L(I)
induces an isometric triple isomorphism of T/I onto the triple subsystem
ē(L(T )/L(I))(1 − ē) of L(T )/L(I), where ē = e + L(I) ∈ L(T )/L(I).

(iii) For a triple homomorphism φ : T → U between triple systems T and
U the image φ(T ) is a triple subsystem of U .

(iv) A triple homomorphism φ : T → U between triple systems T and U

induces a *-homomorphism φ̃ : L(T ) → L(U), where φ̃([xij ]) = [φij(xij)],
φ12 := φ, φ21 := φ∗ : T ∗ → U∗ is defined by φ∗(x) = φ(x∗)∗, and
φl := φ11 : Kl(T ) → Kl(U) and φr := φ22 : Kr(T ) → Kr(U) are
*-homomorphisms obtained as unique extensions of the maps

∑
xiy

∗
i 7→∑

φ(xi)φ(yi)∗ and
∑

x∗
i yi 7→

∑
φ(xi)∗φ(yi) on the linear spans lin(TT ∗) ⊂

Kl(T ) and lin(T ∗T ) ⊂ Kr(T ), respectively.

The proof is based on the following lemma.

Lemma 4.2. (i) Let T be a linear subspace of a C∗-algebra A. If T is a
triple subsystem of A, then Mn⊗T (n = 1, 2, . . . ) is also a triple subsystem
and hence a J∗-subalgebra of Mn⊗A (n = 1, 2, . . . ). Conversely, if M2⊗T

is a J∗-subalgebra of M2 ⊗ A, then T is a triple subsystem of A.

(ii) Let φ : T → U be a linear map between triple systems T and U . If φ

is a triple homomorphism, then idn⊗φ : Mn⊗T → Mn⊗U (n = 1, 2, . . . )
is also a triple homomorphism and hence a J∗-homomorphism. Conversely,
if id2 ⊗ φ is a J∗-homomorphism, then φ is a triple homomorphism.

(iii) If T is a triple system, then Kl(T )T = T = TKr(T ).

(iv) If T is a triple system, then

∥x∥ = sup{∥xy∥ : y ∈ T, ∥y∥ ≤ 1}

for all x ∈ Kl(T ), and similarly for elements of Kl(T ).

Proof. The first parts of (i) and (ii) are obvious. The second part of (i)
follows from the next identity:[

0 x

z y

][
0 x

z y

]∗ [
0 x

z y

]
=

[
xy∗z ∗
∗ ∗

]
.
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If id2 ⊗φ in (ii) is a J∗-homomorphism, then application of id2 ⊗φ to this
identity implies[

φ(xy∗z) ∗
∗ ∗

]
= (id2 ⊗ φ)

([
0 x

z y

])
(id2 ⊗ φ)

([
0 x

z y

])∗

× (id2 ⊗ φ)

([
0 x

z y

])
=

[
φ(x)φ(y)∗φ(z) ∗

∗ ∗

]
,

establishing (ii).
(iii) See, for example, [34], the proof of 2.4.
(iv) If T is regarded as an inner product module over Kr(T ) with in-

ner product ⟨·, ·⟩r, then the space, B(T ), of all bounded Kr(T )-module
endomorphisms with adjoint is a C∗-algebra, and the map sending each
x ∈ Kl(T ) to an element y 7→ yx in B(T ) defines a *-homomorphism,
which is 1 to 1 since xT = 0 implies xKl(T ) = 0.

Proof of Proposition 4.1. (i) By [17], page 19 and Theorem 4, a surjective
linear map between J∗-algebras is an isometry if and only if it is a J∗-
isomorphism.

(1) ⇒ (2): Hence if id2 ⊗ φ : M2 ⊗ T → M2 ⊗ U is an isometry, then by
4.2 (ii), φ is a triple isomorphism.

(2) ⇒ (3): If φ is a triple isomorphism, then idn⊗φ : Mn⊗T → Mn⊗U

(n = 1, 2, . . . ) is also a triple and hence J∗-homomorphism. Hence, again
by the foregoing, φ is a complete isometry.

That (3) ⇒ (1) is clear.
(ii) That L(T ) is a closed two-sided ideal of L(T ) follows from a direct

computation. For example,

L(T )L(I) =

[
Kl(T )Kl(I) + TI∗ Kl(T )I + TKr(I)

T ∗Kl(T ) + Kr(T )I∗ T ∗I + Kr(T )Kr(I)

]

and the (1, 1) entry Kl(T )Kl(I) + TI∗ is contained in Kl(I). Indeed,
TT ∗I ⊂ I implies TT ∗II∗ ⊂ II∗ and Kl(T )Kl(I) ⊂ Kl(I). As lin(II∗I) =
I by 4.2 (iii) and TI∗I ⊂ TT ∗I ⊂ I, we have

TI∗ = T lin(I∗II∗) ⊂ lin(TI∗I)I∗ ⊂ lin(II∗) = Kl(I).
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Reasoning similarly we see L(T )L(I) ⊂ L(I) and L(I)L(T ) ⊂ L(I). Now
the remaining assertions are clear.

(iii) First note that a J∗-homomorphism is contractive and it is isometric
if and only if it is one-to-one, [18], 3.4. Hence the kernel I = Ker φ is a
closed two-sided triple ideal of T , and in view of (ii), φ induces a one-to-
one, hence an isometric triple homomorphism φ̄ : T/I → U with the norm
closed image φ̄(T/I) = φ(T ) in U .

(iv) It suffices to show that the maps φl|lin(TT ∗) and φr|lin(T ∗T ) are
contractive (and hence well-defined), since they extend then to the whole of
Kl(T ) and Kr(T ), and further, φ being a triple homomorphism, it follows
that the extended maps and φ̃ are *-homomorphisms. But, by (iii), φ maps
the unit ball of T onto that of φ(T ). Since φ is contractive, by 4.2 (iv),

∥
∑

φ(xi)φ(yi)∗∥ = sup{∥
∑

φ(xi)φ(yi)∗φ(z)∥ : z ∈ T, ∥z∥ ≤ 1}

= sup{∥φ(
∑

xiy
∗
i z)∥ : z ∈ T, ∥z∥ ≤ 1}

≤ sup{∥
∑

xiy
∗
i z∥ : z ∈ T, ∥z∥ ≤ 1}

= ∥
∑

xiy
∗
i ∥,

so φl|lin(TT ∗) is contractive, and similarly for φr|lin(T ∗T ).

From now on we deal with continuous G-modules. We call a continuous
G-module (respectively a G-morphism) triple if it is also a triple system
(respectively a triple homomorphism). Let X be a continuous G-module.
Then we have X ≤ A for some C∗-G-module A by 3.4 (iii). (If X is triple,
then A can be taken to contain X as a triple subsystem.) As G acts on
A as *-automorphisms, the triple subsystem, written T = T (X; A), of A

generated by X (the smallest triple subsystem containing X) is a continuous
triple G-module, and the C∗-algebras Kl(X; A) := Kl(T ), Kr(X; A) :=
Kr(T ) and L(X; A) := L(T ) defined as before are C∗-G-modules with
Kl(X; A) and Kr(X; A) Morita equivalent in the sense of Combes. Further
a continuous G-module version of 4.1 can be formulated naturally.

These continuous triple G-modules T (X; A) obtained when X is fixed
and A varies are related as follows:

Theorem 4.3. Let X be a continuous G-module and consider continuous
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triple G-modules U such that

(∗) X ≤ U and U is generated by X as a triple system.

Then there is a unique continuous triple G-module, minimal with respect
to (∗), which is written T (X) and called the triple envelope of X. Namely,
T (X) satisfies (∗), and for each U satisfying (∗) there are surjective maps
(φl, φ, φr) : (Kl(U), U, Kr(U)) → (Kl(X), T (X), Kr(X)), where φ : U →
T (X) is a surjective triple G-morphism, Kj(X) := Kj(T (X)), and φj :
Kj(U) → Kj(X) (j = l, r) defined for φ as in 4.1 (iv) are both surjective
*-homomorphisms and G-morphisms.

Proof. If IG(X) = eBf , with B, e, f as in 2.7, is the G-injective envelope of
X, then the triple subsystem, T (X), of eBf generated by X is a continuous
triple G-module, since so is eBcf = (eBf)c and X = Xc ≤ eBcf . For U as
above there is a G-injective, monotone complete C∗-G-module N such that
X ≤ U ≤ N and U is the triple subsystem of N generated by X. Indeed,
U is identified with the continuous triple G-module eL(U)(1 − e), where
L(U) and e are defined as above and e is G-invariant. Then we may take
as N the G-injective envelope of L(U).

As in the proof of 2.7 (ii) define S ≤ M2 ⊗ N , Φ = [Φij ], p, q and
A := ImΦ. Then A is a G-injective, monotone complete C∗-G-module,
ImΦ12 = IG(X), and[

0 X

0 0

]
≤

[
0 IG(X)
0 0

]
≤ A = ImΦ ≤ M2 ⊗ N.

Further, the C∗-subalgebra, C∗(Ac), of M2 ⊗ N generated by Ac ≤ (M2 ⊗
N)c is a C∗-G-module with C∗(Ac) ≤ (M2 ⊗ N)c, since (M2 ⊗ N)c is
a C∗-G-module and Ac ≤ (M2 ⊗ N)c is translation invariant. Since the

map τ : N → M2 ⊗ N defined by τ(x) =

[
0 x

0 0

]
is a triple G-morphism,

τ(X) = τ(Xc) ≤ Ac ≤ C∗(Ac), and so τ(U) ≤ C∗(Ac). The restriction
Φ|C∗(Ac) : C∗(Ac) → Ac is both a surjective *-homomorphism and a G-
morphism, since by [9], 2.3, the restriction of Φ to the C∗-subalgebra of
M2⊗N generated by A is a *-homomorphism onto A and Φ maps (M2⊗N)c

into Ac. Hence the map φ : U → C∗(Ac) → Ac ≤ A → pAq = IG(X)
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defined by φ(x) = p Φ ◦ τ(x)q is a triple G-morphism with φ|X = idX and
so it maps U onto T (X).

Remark. This together with 2.7 is an extension of [10], 4.1, in which
operator systems (self-adjoint operator spaces containing the unit) are con-
sidered in place of continuous G-modules, and shows that triple systems
play in the category C the rôle of unital C∗-algebras in the category of
operator systems and unital complete contractions.

5. Crossed products and the Takesaki duality

Let G as before be a fixed locally compact group with left invariant
Haar measure dt and let us denote by R(G) the Hopf-von Neumann alge-
bra generated by the right regular representation ρ of G on L2(G) with
comultiplication δG given by δG(ρ(t)) = ρ(t) ⊗ ρ(t), t ∈ G (see [23]). We
call an R(G)-comodule and the action of R(G) on it in the sense of 2.1
a G-comodule and the coaction of G, respectively. In this section, for a
G-module X (G-comodule Z) we define a G-comodule X o G (G-module
Z n G), called the crossed product, so that the double crossed product
(X oG)nG makes sense, and we investigate when the Takesaki type dual-
ity (X oG)nG ∼= X ⊗̄B(L2(G)) (as G-modules) holds. If X is a monotone
complete C∗-G-module, then X o G becomes by construction a monotone
complete C∗-algebra and it is a generalization of the crossed product for a
W ∗-dynamical system and that for the case where G is discrete, [13].

Our construction of the crossed product is based on the monograph [23]
of Nakagami-Takesaki, and most notation is adopted from it, but, since we
are working with left invariant Haar measure rather than right one in [23],
a slight modification (for example, the definitions of VG, V ′

G, WG in [23],
page VII, et cetera) is needed. In accordance with the usage in [23], actions
and coactions are denoted by letters α, β, · · · and δ, ε, · · · , respectively; a
G-module X with action α is denoted as a pair (X, α) and the fixed point
subspace of X is denoted by Xα; and similarly for G-comodules.

Although we need the following definition in a very special case, we give
it in full generality.
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Definition 5.1 (Commutativity of actions). On the same operator
space X consider two actions αj of (possibly diffrent) Hopf-von Neumann
algebras Mj , j = 1, 2; that is, X becomes both an M1-comodule and an
M2-comodule. We say that α1 and α2 commute if

(α1 ⊗̄ idM2) ◦ α2 = (idX ⊗̄σ) ◦ (α2 ⊗̄ idM1) ◦ α1,

where (α1 ⊗̄ idM2) ◦ α2 : X → X ⊗̄M2 → X ⊗̄M1 ⊗̄M2 and (idX ⊗̄σ) ◦
(α2 ⊗̄ idM1) ◦ α1 : X → X ⊗̄M1 → X ⊗̄M2 ⊗̄M1 → X ⊗̄M1 ⊗̄M2. Here
and henceforth σ denotes a *-isomorphism between W ∗-tensor products
which sends x ⊗ y to y ⊗ x.

Lemma 5.2. With the notation as above the fixed point subspace Xα1 with
respect to α1 is an M2-subcomodule of (X, α2), and so α2|Xα1 becomes an
action of M2 on Xα1.

Proof. We must show that α2(Xα1) ⊂ Xα1 ⊗̄M2. For x ∈ Xα1 we have
α1(x) = x ⊗ 1 and it follows that

(α1 ⊗̄ idM2) ◦ α2(x) = (idX ⊗̄σ) ◦ (α2 ⊗̄ idM1)(x ⊗ 1)

= (idX ⊗̄σ) ◦ (α2(x) ⊗ 1).

Applying the slice map idX ⊗̄M1
⊗̄ f , f ∈ (M2)∗, to both sides and noting

that (idX⊗̄M1
⊗̄f) ◦(α1 ⊗̄ idM2) = α1◦(idX ⊗̄ f) (see 1.2 (ii)), it follows that

α1 ◦ (idX ⊗̄ f) ◦ α2(x) = (idX ⊗̄M1
⊗̄ f) ◦ (idX ⊗̄σ)(α2(x) ⊗ 1).

Denote the right hand side by y. Then for each g ∈ (M1)∗,

(idX ⊗̄ g)(y) = (idX ⊗̄ (g ⊗̄ f)) ◦ (idX ⊗̄σ)(α2(x) ⊗ 1)

= (idX ⊗̄ (f ⊗̄ g))(α2(x) ⊗ 1)

= ((idX ⊗̄ f) ⊗̄ g)(α2(x) ⊗ 1)

= g(1)(idX ⊗̄ f)(α2(x))

= (idX ⊗̄ g)((idX ⊗̄ f)(α2(x)) ⊗ 1),

and so y = (idX ⊗̄ f)(α2(x)) ⊗ 1. This shows (see 2.6 (i)) that (idX ⊗̄ f) ◦
α2(x) ∈ Xα1 for all f ∈ (M2)∗, that is, α2(x) ∈ Xα1 ⊗̄M2.
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As in [23], let us introduce unitary operators VG, V ′
G, WG on L2(G×G)

by

(VGξ)(s, t) = ∆(t)1/2ξ(st, t),

(V ′
Gξ)(s, t) = ξ(t−1s, t),

(WGξ)(s, t) = ∆(s)1/2ξ(s, ts), ξ ∈ L2(G × G), s, t ∈ G.

Then VG, V ′
G ∈ B(L2(G)) ⊗̄L∞(G) and WG ∈ B(L2(G)) ⊗̄R(G), and ac-

tions ρ, λ, λ′ and a coaction ε are defined on B(L2(G)) as follows:

ρ, λ, λ′ : B(L2(G)) → B(L2(G)) ⊗̄L∞(G),

ρ(x) = (Ad VG)(x ⊗ 1), λ(x) = (Ad V ′
G)(x ⊗ 1), λ′(x) = (Ad V ′

G
∗)(x ⊗ 1),

ε : B(L2(G)) → B(L2(G)) ⊗̄R(G), ε(x) = (Ad W ∗
G)(x ⊗ 1).

Note that ρ and ε are extensions of the action αG on L∞(G) to B(L2(G))
and the coaction δG on R(G) to B(L2(G)), respectively.

For any operator spaces V , actions idV ⊗̄ ρ, · · · and a coaction idV ⊗̄ ε

are defined on the Fubini product V ⊗̄B(L2(G)). Indeed, by 1.1 (i),

(idV ⊗̄ ρ)(V ⊗̄B(L2(G)) ⊂ V ⊗̄B(L2(G)) ⊗̄L∞(G),

and idV ⊗̄ ρ is an action on V ⊗̄B(L2(G)) since so is ρ on B(L2(G)), and
similarly for other maps. Here we used the associativity for Fubini products
of complete contractions, which follows, for example, from 1.2 (ii).

Lemma 5.3. (i) For a G-module (X, α) an action α̃ is defined on X ⊗̄
B(L2(G)) by

α̃ = (idX ⊗̄AdV ′
G) ◦ (idX ⊗̄σ) ◦ (α ⊗̄ idB(L2(G))).

This action α̃ commutes with the coaction idX ⊗̄ ε on X ⊗̄B(L2(G)).

(ii) For a G-comodule (Z, δ) a coaction δ̃ is defined on Z ⊗̄B(L2(G)) by

δ̃ = (idZ ⊗̄AdWG) ◦ (idZ ⊗̄σ) ◦ (δ ⊗̄ idB(L2(G))).

This coaction δ̃ commutes with the action idZ ⊗̄λ on Z ⊗̄B(L2(G)).
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Proof. We prove only (i) since the proof of (ii) is similar. By the re-
mark (i) after 2.1 we may assume that (X, α) ≤ (Y, β), where Y =
B(H) ⊗̄L∞(G) and β = idB(H) ⊗̄αG, that is, X ⊂ Y , β(X) ⊂ X ⊗̄L∞(G)
and β|X = α. If β̃ is defined for β as above, then β̃ is an action on
Y by [23] since β is the usual action of G on the W ∗-algebra Y . As
α̃ = β̃|X ⊗̄B(L2(G)), to see that α̃ is an action on X ⊗̄B(L2(G)) it suffices
to show that β̃(X ⊗̄B(L2(G)) ⊂ X ⊗̄B(L2(G)) ⊗̄L∞(G). But this is true
since by 1.1 (i) and 1.4,

(β ⊗̄ idB(L2(G)))(X ⊗̄B(L2(G)) ⊂ X ⊗̄L∞(G) ⊗̄B(L2(G)),

(idY ⊗̄σ) ◦ (β ⊗̄ idB(L2(G)))(X ⊗̄B(L2(G)) ⊂ X ⊗̄B(L2(G)) ⊗̄L∞(G),

and

(idY ⊗̄AdV ′
G) ◦ (idY ⊗̄σ) ◦ (β ⊗̄ idB(L2(G)))(X ⊗̄B(L2(G)))

⊂ X ⊗̄B(L2(G)) ⊗̄L∞(G).

Since α̃ = β̃|X ⊗̄B(L2(G)) and idX ⊗̄ ε = (idY ⊗̄ ε)|X ⊗̄B(L2(G)), the
commutativity of α̃ and idX ⊗̄ ε follows from that of β̃ and idY ⊗̄ ε. The lat-
ter fact, which seems to be well-known, is verified directly as follows. Since
β̃ and idY ⊗̄ ε act as identities on the first factor B(H) of Y ⊗̄B(L2(G)) =
B(H) ⊗̄L∞(G) ⊗̄B(L2(G)), it suffices to show the identity in 5.1 for α̃G,
the action on L∞(G) ⊗̄B(L2(G)) defined as above with α replaced by αG,
and idL∞(G) ⊗̄ ε, that is,

(α̃G ⊗̄ idR(G)) ◦ (idL∞(G) ⊗̄ ε)

= (idL∞(G) ⊗̄B(L2(G)) ⊗̄σ) ◦ (idL∞(G) ⊗̄ ε ⊗̄ idL∞(G)) ◦ α̃G

(∗)

on L∞(G) ⊗̄B(L2(G)). If S denotes the unitary S : L2(G) ⊗ L2(G) →
L2(G) ⊗ L2(G), S(ξ ⊗ η) = η ⊗ ξ, then σ : B(L2(G)) ⊗̄B(L2(G)) →
B(L2(G)) ⊗̄B(L2(G)), σ(a ⊗ b) = b ⊗ a, is written as σ = Ad S. Applica-
tions of the left and right hand sides of (∗) to a ⊗ b ∈ L∞(G) ⊗̄B(L2(G))
yield respectively

Ad[(1 ⊗ V ′
G ⊗ 1)(1 ⊗ S ⊗ 1)(VG ⊗ 1 ⊗ 1)(1 ⊗ S ⊗ 1)(1 ⊗ 1 ⊗ S)

× (1 ⊗ W ∗
G ⊗ 1)](a ⊗ b ⊗ 1 ⊗ 1) (∗∗)
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and

Ad[(1 ⊗ 1 ⊗ S)(1 ⊗ W ∗
G ⊗ 1)(1 ⊗ 1 ⊗ S)(1 ⊗ V ′

G ⊗ 1)(1 ⊗ S ⊗ 1)

× (VG ⊗ 1 ⊗ 1)(1 ⊗ S ⊗ 1)](a ⊗ b ⊗ 1 ⊗ 1). (∗∗∗)

Indeed,

α̃G(x ⊗ y) = Ad(1 ⊗ V ′
G) ◦ Ad(1 ⊗ S)[(AdVG)(x ⊗ 1) ⊗ y]

= [Ad((1 ⊗ V ′
G)(1 ⊗ S)(VG ⊗ 1)](x ⊗ 1 ⊗ y)

= [Ad((1 ⊗ V ′
G)(1 ⊗ S)(VG ⊗ 1)(1 ⊗ S)](x ⊗ y ⊗ 1),

(idL∞(G) ⊗̄ ε ⊗̄ idL∞(G))(x ⊗ y ⊗ z) = x ⊗ W ∗
G(y ⊗ 1)WG ⊗ z

= Ad(1 ⊗ W ∗
G ⊗ 1)(x ⊗ y ⊗ 1 ⊗ z)

= [Ad(1 ⊗ W ∗
G ⊗ 1)(1 ⊗ 1 ⊗ S)](x ⊗ y ⊗ z ⊗ 1),

x, z ∈ L∞(G), y ∈ B(L2(G)),

imply

α̃G(x) = [Ad((1 ⊗ V ′
G)(1 ⊗ S)(VG ⊗ 1)(1 ⊗ S)](x ⊗ 1),

x ∈ L∞(G) ⊗̄B(L2(G)),

(idL∞(G) ⊗̄ ε ⊗̄ idL∞(G))(x) = [Ad(1 ⊗ W ∗
G ⊗ 1)(1 ⊗ 1 ⊗ S)](x ⊗ 1),

x ∈ L∞(G) ⊗̄B(L2(G)) ⊗̄L∞(G),

which in turn imply the expression (∗∗∗). Similarly, the expression (∗∗)
follows, since

(idL∞(G) ⊗̄ ε)(x) = [Ad(1 ⊗ W ∗
G)](x ⊗ 1), x ∈ L∞(G) ⊗̄B(L2(G)),

(α̃G ⊗̄ idR(G))(x) = [Ad((1 ⊗ V ′
G ⊗ 1)(1 ⊗ S ⊗ 1)(VG ⊗ 1 ⊗ 1)

(1 ⊗ S ⊗ 1)(1 ⊗ 1 ⊗ S)](x ⊗ 1),

x ∈ L∞(G) ⊗̄B(L2(G)) ⊗̄R(G).

If X and Y denote the unitaries on L2(G × G × G × G) in the square
brackets in (∗∗) and (∗ ∗ ∗), respectively, then computation shows that
X∗Y = 1 ⊗ 1 ⊗ V ∗

GS, hence that (∗∗) and (∗∗∗) coincide, establishing
(∗).
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Definition 5.4 (Crossed products). (i) The crossed product of a G-module
(X, α) is the G-comodule (X oα G, α̂), where X oα G = (X ⊗̄
B(L2(G)))eα, α̂ = (idX ⊗̄ ε)|X oα G and (X oα G, α̂) ≤ (X ⊗̄B(L2(G)),

idX ⊗̄ ε) by 5.1, 5.3 (i).

(ii) The crossed product of a G-comodule (Z, δ) is the G-module

(Z nδ G, δ̂), where Z nδ G = (Z ⊗̄B(L2(G)))eδ, δ̂ = (idZ ⊗̄λ)|Z nδ G and
(Z nδ G, δ̂) ≤ (Z ⊗̄B(L2(G)), idZ ⊗̄λ) by 5.1, 5.3 (ii).

Remark. This definition was suggested by [23], page 23, Theorem 1.2,
which shows that these crossed products coincide with the usual ones in
the W ∗-case.

The following is relevant to the formulation of the Takesaki duality.

Definition 5.5 (G-completion). Given two G-modules X ≤ Y , X is said
to be G-closed in Y if y ∈ Y and f · y ∈ X for all f ∈ L1(G) imply
y ∈ X. For any G-modules X ≤ Y the smallest G-closed G-submodule of
Y containing X is called the G-closure of X in Y , and written G-clY X. A
G-module X is called G-complete if for any G-module Y with X ≤ Y , X is
G-closed in Y . The smallest G-complete G-module containing a G-module
X is called the G-completion of X, and written X̃; that is, X̃ is G-complete
and X ≤ X̃, and if X ≤ Y and Y is G-complete, then there are a G-module
Y1 with X ≤ Y1 ≤ Y and a G-isomorphism ψ : X̃ → Y1 with ψ|X = idX .
(Hence X̃ is unique, and its existence is shown below.)

These notions clarify the relation between a G-module and its continuous
part as follows.

Proposition 5.6. (i) For any G-modules X ≤ Y we have G-clY X = {y ∈
Y : f · y ∈ X, ∀ f ∈ L1(G)}, and this depends only on the continuous part
Xc of X in the sense that G-clY X is the largest G-submodule Z of Y such
that X ≤ Z and Xc = Zc.

(ii) For any G-module X the G-closure of X in its G-injective envelope
IG(X) is the G-completion X̃ of X. The G-completion X̃ is the largest
G-closure of X in the following sense. For any G-module Y with X ≤ Y

the identity map on X extends to a G-isomorphism of G-clY X onto a G-
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submodule of X̃. If Y is further G-complete, then this G-isomorphism is
onto X̃.

(iii) A G-injective G-module is G-complete.
(iv) A G-submodule X of a G-complete G-module Y is G-complete if and

only if X is G-closed in Y .
(v) A canonical G-module is G-complete.
(vi) A G-complete G-module is translation invariant (see 3.2 (i)) and so

it has the pointwise action of G.

Proof. (i) Denote by X1 the right hand side of the equality. Clearly X1

is a G-submodule of Y and X1 ≤ G-clY X. The G-closedness of X1 in Y

follows from the fact that L1(G) · L1(G) is norm dense in L1(G). Hence
X1 = G-clY X. If y ∈ G-clY X and f · y ∈ X ∩ Y c = Xc (the remark (iii)
after 3.2); hence (G-clY X)c ≤ Xc and (G-clY X)c = Xc. If X ≤ Z ≤ Y and
Xc = Zc, then for all z ∈ Z and f ∈ L1(G) we have f · z ∈ Zc = Xc ≤ X

and so Z ≤ G-clY X.
(ii) Let X1 be the G-closure of X in IG(X) and suppose X ≤ Y . Then

X ≤ Y ≤ Y1 for some G-injective Y1 (see the remark (i) after 2.1 and
note that B(H) ⊗̄L∞(G) is G-injective), and there are an idempotent G-
morphism φ : Y1 → Y1 and a G-isomorphism ψ : IG(X) → φ(Y1) such
that φ|X = idX = ψ|X (see the proof of 2.7). We have G-clY1X ≤ φ(Y1).
Indeed, if y ∈ G-clY1X, then f ·y ∈ X for all f and f ·y = φ(f ·y) = f ·φ(y)
in Y1 for all f ; hence y = φ(y) ∈ φ(Y1) by (3.9). Thus

G-clφ(Y1)X = (G-clY1X) ∩ φ(Y1)) = G-clY1X. (∗)

Further, since ψ is a G-isomorphism and ψ|X = idX , we have ψ(X1) =
G-clφ(Y1)X and so

ψ(X1) = G-clY1X. (∗∗)

Suppose first that X1 = X, that is, X is G-closed in IG(X). Then so
is X in φ(Y1), and X = G-clY1X by (∗). Hence X = G-clY X, that is, X

is G-closed in Y , since X ≤ Y ≤ Y1 and so G-clY X ≤ G-clY1X. As Y is
arbitrary, this means that X is G-complete.

Suppose next that X is arbitrary, but Y is G-complete. Since IG(X1) =
IG(X) and X1 is G-closed in IG(X), it follows from the foregoing that X1
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is G-complete. As Y is G-complete, G-clY1X ≤ G-clY1Y = Y , and by (∗∗),
ψ(X1) = G-clY X ≤ Y with ψ(X1) ∼= X1. Therefore X1 is the G-completion
of X.

Finally suppose only that X ≤ Y . Applying the above argument to X ≤
Y ≤ Ỹ (the G-completion of Y ) we see that there is a G-isomorphism ψ of
X1 onto G-cl

eY
X with ψ|X = idX , hence that as X ≤ G-clY X ≤ G-cl

eY
X,

G-clY X is isomorphic to the G-submodule ψ−1(G-clY X) of X1.
Parts (iii) and (iv) are clear from (ii).
(v) Let V ⊗̄L∞(G) be a canonical G-module. If V ⊂ B(H), then

V ⊗̄L∞(G) ≤ B(H) ⊗̄L∞(G), and so by (iii) and (iv) it suffices to show
that V ⊗̄L∞(G) is G-closed in B(H) ⊗̄L∞(G). Suppose that y ∈
B(H) ⊗̄L∞(G) and f · y ∈ V ⊗̄L∞(G) for all f ∈ L1(G). Hence (idB(H) ⊗̄
ui · f)(y) = (idB(H) ⊗̄ui)(f · y) ∈ V for a bounded approximate unit {ui}
for L1(G), and so (idB(H) ⊗̄ f)(y) ∈ V for all f ∈ L1(G). This shows by
the definition of Fubini products that y ∈ V ⊗̄L∞(G).

(vi) If X is G-complete, then we may assume by the remark (i) after 2.1
that X is a G-closed G-submodule of B(H) ⊗̄L∞(G). For x ∈ X and t ∈ G

we have by (3.10), f · ρt(x) = ∆(t)−1(ρ(t−1)f) · x ∈ X for all f ∈ L1(G),
and it follows that ρt(x) ∈ X.

Remark. Let M be a Hopf-von Neumann algebra satisfying the condition
(∗) in 2.7. Then we can extend Definitions 5.5 and 3.2 (ii) to the setting of
M -comodules, and prove the assertion corresponding to 5.6.

We formulate the Takesaki duality as follows.

Proposition 5.7 (The Takesaki duality). For any G-module (X, α)
let (X̃, α1) be its G-completion. Then the map π = (id

eX
⊗̄AdV ∗

G)◦
(α1 ⊗̄ idB(L2(G))) : X̃ ⊗̄B(L2(G)) → X̃ ⊗̄B(L2(G)) ⊗̄B(L2(G)) gives a G-
isomorphism of (X̃ ⊗̄B(L2(G)), α̃1) onto the double crossed product
((X oα G) n

bα G, ̂̂α), where α̃1 is defined for (X̃, α1) as in 5.3(i). Hence
the Takesaki duality holds if and only if X is G-complete.

Remark. If (X, α) is a W ∗-G-module (a W ∗-dynamical system with
the acting group G), then the Takesaki duality holds, and so (X, α) is G-
complete. (A direct proof of this fact follows from 5.6 (iv), (v).) By 5.6 (iii)
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the Takesaki duality holds for a G-injective G-module. But the author does
not know whether that is true for every monotone complete C∗-G-module,
that is, whether such a G-module is always G-complete or not.

Proof. As in the proof of 5.3 take a canonical G-module (Y, β) so that
Y = B(H) ⊗̄L∞(G), β = idB(H) ⊗̄αG, X ≤ Y and α = β|X, and
define β̃, idY ⊗̄ ε and Y oβ G = (Y ⊗̄B(L2(G)))eβ . Then

X oα G = (X ⊗̄B(L2(G)))eα = X ⊗̄B(L2(G)) ∩ (Y ⊗̄B(L2(G)))eβ

= X ⊗̄B(L2(G)) ∩ (Y oβ G),

β̂ = (idY ⊗̄ ε)|Y oβ G is a coaction on Y oβ G with β̂|X oα G = α̂, and
further by 5.6,

X̃ = G-clY X. (5.1)

For G-comodules (X oα G, α̂) ≤ (Y oβ G, β̂) define the coactions (α̂)e, (β̂) e

as in 5.3 (ii), and construct the double crossed products (X oα G) n
bα G =

[(X oα G) ⊗̄B(L2(G))](bα)e

and (Y oβ G)n
bβ
G = [(Y oβ G) ⊗̄B(L2(G))](bβ)e

.

Then (α̂)e= (β̂)e|(X oα G) ⊗̄B(L2(G)) and

(X oα G) ⊗̄B(L2(G)) = [(X ⊗̄B(L2(G)) ∩ (Y oβ G)] ⊗̄B(L2(G))

= X ⊗̄B(L2(G)) ⊗̄B(L2(G)) ∩ (Y oβ G) ⊗̄B(L2(G)),

(X oα G) n
bα G = [(X oα G) ⊗̄B(L2(G))](bα)e

= X ⊗̄B(L2(G)) ⊗̄B(L2(G)) ∩ [(Y oβ G) ⊗̄B(L2(G))](bβ)e

= X ⊗̄B(L2(G)) ⊗̄B(L2(G)) ∩ ((Y oβ G) n
bβ
G). (5.2)

Here and henceforth we use the following identity on Fubini products, which
is an immediate consequence of the definition:⋂

j, k

(Vj ⊗̄Wk) = (
⋂
j

Vj) ⊗̄ (
⋂
k

Wk).

Since the Takesaki duality holds for the W ∗-G-module (Y, β), the map
π1 = (idY ⊗̄AdV ∗

G) ◦(β ⊗̄ idB(L2(G))) is a G-isomorphism (an equivariant

*-isomorphism) of (Y ⊗̄B(L2(G)), β̃) onto ((Y oβG)n
bβ
G,

̂̂
β) (see [23], page

8), that is,
π1(Y ⊗̄B(L2(G))) = (Y oβ G) n

bβ
G. (5.3)
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Since π1|X̃ ⊗̄B(L2(G)) = π and ̂̂
β|(X oα G) n

bα G = ̂̂α, to prove the
proposition it suffices to show that π1 maps X̃ ⊗̄B(L2(G)) onto (X oα

G) n
bα G, that is,

π1(X̃ ⊗̄B(L2(G))) = (X oα G) n
bα G

= X ⊗̄B(L2(G)) ⊗̄B(L2(G)) ∩ (Y oβ G) n
bβ
G

= X ⊗̄B(L2(G)) ⊗̄B(L2(G)) ∩ π1(Y ⊗̄B(L2(G)))
(5.4)

by (5.2), (5.3). Since (β ⊗̄ idB(L2(G)))(Y ⊗̄B(L2(G))) = β(Y ) ⊗̄B(L2(G)),
we have

π1(Y ⊗̄B(L2(G))) = (1 ⊗ 1 ⊗ V ∗
G)(β(Y ) ⊗̄B(L2(G)))(1 ⊗ 1 ⊗ VG)

and similarly

π1(X̃ ⊗̄B(L2(G))) = (1 ⊗ 1 ⊗ V ∗
G)(β(X̃) ⊗̄B(L2(G)))(1 ⊗ 1 ⊗ VG).

Substituting these into (5.4) and then multiplying it by 1 ⊗ 1 ⊗ VG on the
left and by 1⊗ 1⊗V ∗

G on the right, we see by 1.4 that (5.4) is equivalent to

β(X̃) ⊗̄B(L2(G)) = X ⊗̄VG[B(L2(G)) ⊗̄B(L2(G))]V ∗
G ∩ β(Y ) ⊗̄B(L2(G))

= X ⊗̄B(L2(G)) ⊗̄B(L2(G)) ∩ β(Y ) ⊗̄B(L2(G))

= [X ⊗̄B(L2(G)) ∩ β(Y )] ⊗̄B(L2(G)),

which in turn is equivalent to

β(X̃) = X ⊗̄B(L2(G)) ∩ β(Y ). (5.5)

But the truth of (5.5) is seen as follows. For y ∈ Y we have β(y) ∈
X ⊗̄B(L2(G)) if and only if β(y) ∈ X ⊗̄L∞(G), since β(y) ∈ Y ⊗̄L∞(G)
and X ⊗̄B(L2(G)) ∩ Y ⊗̄L∞(G) = X ⊗̄L∞(G), or equivalently, by the
definition of Fubini products,

f · y = (idY ⊗̄ f) ◦ β(y) ∈ X, ∀ f ∈ L1(G),

that is, y ∈ G-clY X = X̃ by (5.1). This completes the proof.
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The following result provides a condition for a crossed product to be
injective. It is well known for the W ∗-case (see also [1], 4.2, [13], 3.1).

Proposition 5.8. If a G-module (X, α) is G-injective, then the crossed
product X o G is injective in C. The reverse implication is true if G is
discrete, but is not true in the general case.

Proof. As noted in Section 3, the G-injectivity of X implies the injectivity
of X in C and hence that of X ⊗̄B(L2(G)) (1.3 (iii)). Further X oα G =
(X ⊗̄B(L2(G)))eα ⊂ X ⊗̄B(L2(G)). Therefore X oα G is injective if and
only if there is a completely contractive projection of X ⊗̄B(L2(G)) onto
X oα G.

If X is G-injective, then the G-isomorphism α−1 : α(X)(≤ X ⊗̄L∞(G))
→ X extends to a G-morphism φ : X ⊗̄L∞(G) → X, and so φ ◦ α = idX .
We show that the complete contraction

ψ =(φ ⊗̄ idB(L2(G))) ◦ (idX ⊗̄σ) ◦ (idX ⊗̄λ′) : X ⊗̄B(L2(G)) →

X ⊗̄B(L2(G)) ⊗̄L∞(G) → X ⊗̄L∞(G) ⊗̄B(L2(G)) → X ⊗̄B(L2(G))

is a projection onto X oα G, where λ′ is as before. First, we see that if
x ∈ X oα G, that is, x ∈ X ⊗̄B(L2(G)) and α̃(x) = x ⊗ 1, then ψ(x) = x.
Indeed, it follows from

(idX ⊗̄AdV ′
G) ◦ (idX ⊗̄σ) ◦ (α ⊗̄ idB(L2(G)))(x) = α̃(x) = x ⊗ 1

that

(α ⊗̄ idB(L2(G)))(x) = (idX ⊗̄σ) ◦ (idX ⊗̄AdV ′
G
∗)(x ⊗ 1)

= (idX ⊗̄σ) ◦ (idX ⊗̄λ′)(x).

Hence, by applying φ ⊗̄ idB(L2(G)) to both sides and noting φ◦α = idX , we
have ψ(x) = x. Next, we show that for all x ∈ X ⊗̄B(L2(G)),

α̃(ψ(x)) = ψ(x) ⊗ 1,

that is, ψ(x) ∈ (X ⊗̄B(L2(G)))eα = X oα G. Applying (idX ⊗̄σ) ◦ (idX ⊗̄
AdV ′

G
∗) to both sides, this equality becomes

(α ⊗̄ idB(L2(G))) ◦ ψ(x) = (idX ⊗̄σ) ◦ (idX ⊗̄λ′) ◦ ψ(x). (5.6)
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Since φ : X ⊗̄L∞(G) → X is a G-morphism and so α ◦φ = (φ ⊗̄ idL∞(G))◦
(idX ⊗̄αG) (see 2.1), (5.6) is rewitten as

(φ ⊗̄ idL∞(G) ⊗̄ idB(L2(G))) ◦ (idX ⊗̄αG ⊗̄ idB(L2(G))) ◦ (idX ⊗̄σ)

◦ (idX ⊗̄λ′)(x)

= (idX ⊗̄σ) ◦ (idX ⊗̄λ′) ◦ (φ ⊗̄ idB(L2(G))) ◦ (idX ⊗̄σ) ◦ (idX ⊗̄λ′)(x).

Applying the slice map idX ⊗̄ (f ⊗̄ g) : X ⊗̄L∞(G) ⊗̄B(L2(G)) → X, f ∈
L1(G), g ∈ B(L2(G))∗, to both sides and using 1.2 (ii), the left hand side
becomes

φ([idX ⊗̄ (idL∞(G) ⊗̄ (f ⊗̄ g) ◦ (αG ⊗̄ idB(L2(G))) ◦ σ ◦ λ′](x))

and the right hand side becomes

φ([idX ⊗̄ ((g ⊗̄ f) ◦ λ′ ⊗̄ idL∞(G)) ◦ λ′](x)).

But we have

(idL∞(G) ⊗̄ (f ⊗̄ g)) ◦ (αG ⊗̄ idB(L2(G))) ◦ σ ◦ λ′

= ((g ⊗̄ f) ◦ λ′ ⊗̄ idL∞(G)) ◦ λ′ on B(L2(G)), (5.7)

and by 1.2 (i), (5.6) follows. To see (5.7) we need only show it on the
continuous part B(L2(G))c of the G-module (B(L2(G)), λ′), since both
sides of (5.7) is σ-weakly continuous and B(L2(G))c is σ-weakly dense in
B(L2(G)). If y ∈ B(L2(G))c, then

λ′(y) ∈ (B(L2(G)) ⊗̄L∞(G))c = Cblu(G, B(L2(G)))

is identified with the function

s 7→ (Adλ(s−1))y

from G to B(L2(G)), where λ is the left regular representation of G on
L2(G), and

(αG ⊗̄ idB(L2(G))) ◦ σ ◦ λ′(y)

is identified with the function

(s, t) 7→ (Ad λ(t−1s−1))y
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from G × G into B(L2(G)). Hence

(idL∞(G) ⊗̄ (f ⊗̄ g)) ◦ (αG ⊗̄ idB(L2(G))) ◦ σ ◦ λ′(y) ∈ L∞(G)

is the function

s 7→ g

(∫
f(t)(Adλ(t−1s−1))y dt

)
on G. On the other hand, the functional

(g ⊗̄ f) ◦ λ′ : B(L2(G)) → B(L2(G)) ⊗̄L∞(G) → C

is given by

(g ⊗̄ f) ◦ λ′(z) = g

(∫
f(t)(Adλ(t−1))z dt

)
, z ∈ B(L2(G)),

and so

((g ⊗̄ f) ◦ λ′ ⊗̄ idL∞(G)) ◦ λ′(y) ∈ L∞(G)

is the function

s 7→ g

(∫
f(t)(Adλ(t−1))Adλ(s−1))y dt

)
on G. Thus (5.7) holds, and consequently ψ is a completely contractive
projection onto X oα G.

Suppose now that G is discrete, and let us show that the injectivity of
X oα G implies the G-injectivity of X. The proof is essentially the same
as that of the only if part of [13], 3.1 (ii) except for the notation, and so
we only sketch it. The action α : X → X ⊗̄ l∞(G) = l∞(G, X) is given
by α(x)(t) = αt(x), x ∈ X, t ∈ G, where t 7→ αt ∈ AutX is the pointwise
action of G on X. The Fubini product X ⊗̄B(l2(G)) is regarded as a
space of matrices x = [xt, u] (t, u ∈ G) over X, and the crossed product
X oα G is its subspace consisting of x = [xt, u] such that αs(xt, u) = xst, su

for all s, t, u ∈ G. If X oα G is injective, then there is a completely
contractive projection ψ of X ⊗̄B(l2(G)) onto X oα G. If we define a
complete contraction τ : X ⊗̄ l∞(G) → X ⊗̄B(l2(G)) by τ(x) = [δt, ux(t)],
then φ : X ⊗̄ l∞(G) → X, φ(x) = (ψ ◦ τ(x))e, e (the (e, e) entry of ψ ◦ τ(x))
is shown to be a G-morphism with φ ◦ α = idX . Thus X is G-injective.



76 Masamichi Hamana

Finally we give an example of a G-module X for which XoG is injective,
but X is not G-injective. Let X = C with the trivial action ι of G, that
is, ι : C → L∞(G), ι(x) = x. Then, since a G-morphism (an L1(G)-
module homomorphism) φ : L∞(G) → C with φ ◦ ι = idC is precisely
a topologically right invariant mean on L∞(G), X is G-injective if and
only if G is amenable. Moreover X oι G = ρ(G)′′ is the von Neumann
algebra on L2(G) generated by the right regular representation ρ of G. If
we take SL(2, C) as G, then G is of type I, but non-amenable, and hence
X oι G = ρ(G)′′ is injective, but X is not G-injective. This example was
suggested by [1], 4.4.

6. Flow built under a function

In [25] Phillips extended the notion of a flow built under a function in
ergodic theory, which may be regarded as an action of R on a commutative
W ∗-algebra, to the case of noncommutative W ∗-algebras. In this section we
extend that notion further to the case of monotone complete C∗-algebras,
and we use it to give an example of a non-W ∗, ergodic, monotone complete
C∗-R-module. Note that the “flow” meant originally the action of R both
in ergodic theory and in [25], but the action of any locally compact group
arises in our case.

For a C∗-algebra X we denote by *-AutX the group of all *-autmor-

phisms of X. (Recall that AutX was used before to denote the group of all
complete isometries of X onto itself.) If further X is a G-module, we denote
by *-AutG(X) the subgroup of *-AutX consisting of elements which are
also G-morphisms.

Let B be a monotone complete C∗-algebra with center Z(B) = C(Ω) (Ω
is the spectrum of Z(B)) and consider the monotone complete C∗-G-module
(B ⊗̄L∞(G), idB ⊗̄αG). Define subgroups G0 ⊂ G of *-AutG(B ⊗̄L∞(G))
as

G = {γ ∈ *-AutG(B ⊗̄L∞(G)) : γ(B ⊗ 1) = B ⊗ 1},

G0 = {γ ∈ *-AutG(B ⊗̄L∞(G)) : γ|B ⊗ 1 = idB⊗1}.
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Clearly β ⊗̄ idL∞(G) ∈ G for all β ∈ *-Aut B and

G = {γ ◦ (β ⊗̄ id) : γ ∈ G0 and β ∈ *-AutB}. (6.1)

We construct another group F as follows. In the set of all continuous
functions f : Ωf → G with Ωf ⊂ Ω open dense in Ω depending on f , define
an equivalence relation ∼ by writing f ∼ g if and only if f and g coincide
on some open dense subset of Ω. If we denote by F the set of equivalence
classes [f ] of all such functions f , then we can make F into a group by
setting

[f ] · [g] = [f · g], [f ]−1 = [f̃ ],

where (f ·g)(ω) = f(ω)g(ω) for ω ∈ Ωf ∩Ωg and f̃(ω) = f(ω)−1 for ω ∈ Ωf .

Definition 6.1. The fixed point subspace (B ⊗̄L∞(G))γ for some γ ∈ G
is a monotone complete C∗-G-module with (B ⊗̄L∞(G))γ ≤ B ⊗̄L∞(G).
We call such a G-module a flow built under a function.

In view of (6.1) and the flow built under a function construction in er-
godic theory (see, for example, [25]), the following result justifies the term
flow built under a function and show that the “function” suggesting an
element of F corresponds to an element of G0.

Proposition 6.2. (i) With the notation as above, there corresponds to each
[f ] ∈ F a unique element ξ[f ] ∈ G0 such that

ξ[f ](c)(ω, t) = c(ω, f(ω)−1t) (6.2)

for all c ∈ C0(Ωf × G) ⊂ Z(B) ⊗̄L∞(G),and this correspondence is a
bijectition between F and G0.

(ii) If we denote by β′ the self-homeomorphism of Ω induced by β|Z(B)
for β ∈ *-AutB, that is, β(a) = a ◦ β′ for a ∈ Z(B) = C(Ω), then we have

(β ⊗̄ idL∞(G)) ◦ ξ[f ] = ξ[f◦β′] ◦ (β ⊗̄ idL∞(G)) (6.3)

for [f ] ∈ F and β ∈ *-Aut B, and G is isomorphic to the semidirect product
of F and *-AutB with the group operations given by

([f1], β1) · ([f2], β2) = ([f1 · (f2 · β′
1)], β1β2),

([f ], β)−1 = ([(f ◦ (β−1)′)e ], β−1)
(6.4)

for [f1], [f2], [f ] ∈ F and β1, β2, β ∈ *-AutB.
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We begin with two lemmas. The first one is probably well known.

Lemma 6.3. Let B and C be C∗-algebras with C commutative, and let
π : C → Z(B) be a *-homomorphism. Then there is a *-homomorphism
π̄ : B ⊗ C → B such that π̄(b ⊗ c) = bπ(c) for all b ∈ B and c ∈ C, where
B ⊗ C denotes the minimal C∗-tensor product.

Proof. Replacing B by its universal enveloping von Neumann algebra, we
may assume that B and Z(B) also is a W ∗-algebra. Further, since there is
a *-homomorphism idB ⊗π : B⊗C → B⊗Z(B), it suffices to consider the
case where C = Z(B) and π : Z(B) → B is the inclusion map, and show
that ∥

∑
bjcj∥ ≤ ∥

∑
bj ⊗ cj∥ for bj ∈ B and cj ∈ Z(B). Since the linear

combinations of projections are norm dense in Z(B), we may assume that
the cj ’s are all such elements. Then

∑
bjcj and

∑
bj ⊗ cj are rewritten as∑

b′kek and
∑

b′k⊗ek, where the ek’s are an orthogonal sequence of nonzero
projections in Z(B). Hence

∥
∑

b′kek∥ = max ∥b′kek∥ ≤ max ∥b′k∥ = ∥
∑

b′k ⊗ ek∥,

as desired.

Remark. The referee suggested the following, shorter, alternative proof
of Lemma 6.3. The *-homomorphism π̄ is well-defined on the maximal C∗-
tensor product of B and C by definition, and it suffices to note that the
maximal C∗-tensor product coincides with the minimal C∗-tensor product,
since C is commutative.

Lemma 6.4. For a monotone complete C∗-algebra B the restriction to the
continuous part (B ⊗̄L∞(G))c gives a bijection between *-AutG(B⊗̄L∞(G))
and *-AutG((B⊗̄L∞(G))c).

Proof. In view of 3.5 (i) it suffices to show the surjectivity of the restriction.
By the uniqueness of the G-injective envelope, C, of (B ⊗̄L∞(G))c each
element γ of *-AutG((B ⊗̄L∞(G))c) extends uniquely to an element γ̂ of
*-AutG(C). By 5.6 (v), B ⊗̄L∞(G) is the G-completion of (B ⊗̄L∞(G))c

and so, by 5.6 (ii), it is identified with the G-closure of (B ⊗̄L∞(G))c in C.
Hence the restriction of γ̂ to B ⊗̄L∞(G) gives an element of *-AutG(B ⊗̄
L∞(G)) extending γ.
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Proof of Proposition 6.2. (i) Each function f : Ωf → G as above induces
a *-homomorphism h : C0(G) → Cb(Ωf ) = C(Ω) = Z(B), h(b) = b◦ f̃ with
f̃ as above, where by [27], [20], Cb(Ωf ) is identified with C(Ω) since Cb(Ωf )
is the multiplier algebra of C0(Ωf ) and C0(Ωf ) is an essential ideal of the
commutative AW ∗-algebra C(Ω). By 6.3 there is a *-homomorphism π0 :
B⊗C0(G) → B such that π0(a⊗b) = a(b◦f̃) for a ∈ B and b ∈ C0(G). The
surjective *-homomorphism π0 : B ⊗C0(G) → π0(B ⊗C0(G)) extends to a
unital *-homomorphism between the multiplier algebras M(B⊗C0(G)) and
M(π0(B ⊗C0(G))). (The unique normal extension of π0 to the enveloping
von Neumann algebras of B ⊗ C0(G) and π0(B ⊗ C0(G)) maps M(B ⊗
C0(G)) into M(π0(B ⊗ C0(G))).) The subset π0(B ⊗ C0(G)) of B has
annilator {0} in B since so does h(C0(G)) in B. Hence, again by [27], [20],
M(π0(B⊗C0(G))) is identified with the set of multipliers of π0(B⊗C0(G))
in B. Moreover we have

(B ⊗̄L∞(G))c = Cblu(G, B) ⊂ Cb(G, B) = M(B ⊗ C0(G)).

Thus we obtain a *-homomorphism π : (B ⊗̄L∞(G))c → B extending
π0. Then the map ξ0 : Cblu(G, B) → Cblu(G, B) defined by ξ0(x)(t) =
π(ρt(x)), x ∈ Cblu(G, B), t ∈ G, is an equivariant *-homomorphism, where
ρt(x)(s) = x(st) as in 3.2. For a ∈ C0(Ωf ) and b ∈ C0(G) we have

ξ0(a ⊗ b)(t) = π(ρt(a ⊗ b)) = π0(a ⊗ ρ(t)b) = a(ρ(t)b) ◦ f̃ ,

and writing ξ0(a ⊗ b)(ω, t) for the value at ω ∈ Ωf of ξ0(a ⊗ b)(t) ∈
C0(Ωf ), we see that ξ0 satisfies the condition (6.2). This ξ0 is indeed a
*-automorphism, since if ξ̃0 is defined as above with f replaced by by f̃ ,
then ξ0 and ξ̃0 are shown to be the inverses to each other. Therefore, by
3.5 (ii), ξ0 is in *-AutG(Cblu(G, B)), and by 6.4, it extends uniquely to an
element, ξf , of *-AutG(B ⊗̄L∞(G)). By the construction another function
g gives the same *-homomorphism h defined for f (and hence ξf = ξg) if
and only if f ∼ g, and in view of (6.2) it follows that ξf ◦ ξg = ξf ·g for any
f and g. Hence we may write ξf as ξ[f ], and we obtain an injective group
homomorphism [f ] 7→ ξ[f ] of F into G0.

Now we show the surjectivity of the map [f ] 7→ ξ[f ]. We have 1 ⊗
Cblu(G) ⊂ the center of Cblu(G, B). Each ξ ∈ G0 restricted to Cblu(G, B)
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is an equivariant *-automorphism. Hence the unital *-homomorphism h :
x 7→ ξ(x)(e) from Cblu(G, B) into B maps 1 ⊗ Cblu(G) into Z(B). Since
C0(G) is an essential ideal of Cblu(G), the spectrum, G̃, of Cblu(G) contains
G as an open subset. The restriction h|1 ⊗ Cblu(G) : 1 ⊗ Cblu(G) = 1 ⊗
C(G̃) → C(Ω) is induced by a surjective continuous map g : Ω → G̃, that
is, ξ(1 ⊗ b)(e) = b ◦ g, b ∈ C(G̃). Then Ω0 := g−1(G) is open dense in Ω
and f := g̃|Ω0 : Ω0 → G is continuous. Here g̃(ω) = g(ω)−1 and so g = f̃

on Ω0. As ξ is equivariant in Cblu(G, B), for b ∈ C0(G) and t ∈ G we have
(ρ(t)b) ◦ f̃ ∈ Cb(Ω0) and

ξ(1 ⊗ b)(t) = ρt(ξ(1 ⊗ b))(e) = ξ(ρt(1 ⊗ b))(e)

= ξ(1 ⊗ ρ(t)b)(e) = (ρ(t)b) ◦ f̃ ,

where the last term is regarded as a function on Ω0. If ξ[f ] ∈ G0 is defined
for f as above, then this identity shows that ξ = ξ[f ] on 1 ⊗ C0(G), and
since ξ = idB⊗1 = ξ[f ] on B ⊗ 1, it follows that ξ = ξ[f ].

(ii) In view of (6.2) we easily check that both sides of (6.3) coincide on
B ⊗ 1 and 1 ⊗ L∞(G), and hence on the whole of B ⊗̄L∞(G). The other
assertions are immediate consequences of (6.3).

Remark. By 6.2 each γ ∈ G is written as γ = ξ[f ] ◦(β ⊗̄ idL∞(G)) for some
β ∈ *-AutB and some continuous function f : Ωf → G. Then the flow
built under a function A := (B ⊗̄L∞(G))γ with action α = (idB ⊗̄αG)|A
is ergodic, that is, Aα = C1 if and only if β is ergodic in B. Indeed, since
ξ[f ] commutes with the translations ρt, t ∈ G, on B ⊗̄L∞(G) and so does
γ, we have ρt(A) = A, t ∈ G, and since ρ : t 7→ ρt is the pointwise action of
G on the G-module (B ⊗̄L∞(G), idB ⊗̄αG) (see 3.2), the restriction ρ|A is
the pointwise action of the G-module (A, α). As (B ⊗̄L∞(G))ρ = B ⊗ 1,
it follows from the remark (iii) after 3.7 that

Aα = [(B ⊗̄L∞(G))γ ]ρ = [(B ⊗̄L∞(G))ρ]γ = (B ⊗ 1)γ = Bβ ⊗ 1,

and our assertion follows.

In the following we retain the above notation and consider the case G =
R.
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Proposition 6.5. Let B be a non-W ∗, monotone complete C∗-algebra with
an ergodic *-automorphism β and let γ = ξ[f ] ◦ (β ⊗̄ idL∞(R)) ∈ G, where
[f ] ∈ F and f : Ωf → R satisfies f(ω) > 0 for all ω ∈ Ωf . Then the flow
built under a function A := (B ⊗̄L∞(R))γ is a non-W ∗, ergodic, monotone
complete C∗-R-module.

The ergodicity of A follows from the above remark and the non-W ∗-ness
of A is a consequence of the following:

Lemma 6.6. (i) With the notation and assumption as above, there is a
central projection e of B ⊗̄L∞(R) such that {γn(e) : n ∈ Z} is an orthog-
onal sequence with

∑
n∈Z γn(e) = 1.

(ii) Let C be a monotone complete C∗-algebra and let γ be a *-automor-
phism of C for which there is a central projection e of C such that {γn(e) :
n ∈ Z} is an orthogonal sequence with

∑
n∈Z γn(e) = 1. Then C is *-

isomorphic to Cγ ⊗̄ l∞(Z), and so Cγ is non-W ∗ if and only if C is.

Proof. (i) Let F = 1⊗ χ(−∞, 0] ∈ B ⊗̄L∞(R), where χ(−∞, 0] is the charac-
teristic function of (−∞, 0]. Then γn(F ), n ∈ Z, is a central projection of
B ⊗̄L∞(R) and we have

γn(F )(ω, t) = χ(−∞, nf(ω)](t), ω ∈ Ωf , t ∈ R, (6.5)

since

γ(F )(ω, t) = ξ[f ](1 ⊗ χ(−∞, 0])(ω, t) = χ(−∞, 0](t − f(ω))

by (6.2). Hence {γn(F ) : n ∈ Z} is an increasing sequence.
Now we show that sup γn(F ) = 1 and inf γn(F ) = 0. Since Ω is stonean

and f is continuous and positive on the open dense subset Ωf of Ω, there are
pairwise disjoint closed and open subsets Ei, i ∈ I, of Ωf with

⋃
i Ei = Ω

and positive numbers εi, δi, i ∈ I, such that

εi ≤ f(ω) ≤ δi, ∀ω ∈ Ei, ∀ i ∈ I. (6.6)

By (6.5) and (6.6), γn(F )(ω, t) ≥ χ(−∞, nεi](t) for all ω ∈ Ei and t ∈ R,
and so

γn(F )(χEi ⊗ 1) ≥ χEi ⊗ χ(−∞, nεi].
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Hence

sup
n

γn(F ) = sup
n, i

γn(F )(χEi ⊗ 1) ≥ sup
i

[sup
n

(χEi ⊗ χ(−∞, nεi])]

= sup
i

(χEi ⊗ 1) = 1 ⊗ 1

and sup γn(F ) = 1⊗1. Similarly we have inf γn(F ) = 0. Thus e = γ(F )−F

is the desired central projection.
(ii) For x ∈ C set π0(x) =

∑
n∈Z γn(xe). By the assumption on e

the right hand side defines an element of C, which is also in Cγ , and
π0 : C → Cγ gives a *-homomorphism with π0|Cγ = id. We identify
the Fubini product Cγ ⊗̄ l∞(Z) with the C∗-algebra of all bounded func-
tions from Z to Cγ , and define a map π : C → Cγ ⊗̄ l∞(Z) by setting
π(x)(m) = π0(γm(x)) ∈ Cγ , m ∈ Z. Then π is clearly a *-homomorphism.
It is injective, since π(x) = 0, that is, π0(γm(x)) = 0 for all m implies
xγ−m(e) = 0 and so x = 0. It is surjective, since for y ∈ Cγ ⊗̄ l∞(Z),
x =

∑
n∈Z y(n)γ−n(e) ∈ C satisfies π(x) = y.

Remarks. (i) In the commutative case, the concrete examples of B and
β as in 6.5 are constructed from the following, probably well known ob-
servations. Let C = C(Ω) be a unital commutative C∗-algebra with Ω
any compact Hausdorff space and let γ ∈ *-AutC be induced by a self-
homeomorphism h of Ω so that γ(a) = a ◦h, a ∈ C. The regular monotone
completion, C̄, of C, [11], is a commutative AW ∗-algebra and γ extends
uniquely to β := γ̄ ∈ *-Aut C̄. (This C̄ is non-W ∗, for example, if Ω is
metric and perfect, and it is identified with the quotient C∗-algebra of all
bounded Borel functions on Ω by its ideal of Borel functions vanishing off
a meager set, which was used by Dixmier [7] to give the first example of
non-W ∗, commutative AW ∗-algebra.) Then β is ergodic if and only if h is
topologically ergodic, that is, each non-empty open subset of Ω invariant
under h is dense in Ω. Indeed, this follows from the fact that the projections
in C̄ correspond to regular open subsets (open sets which are the interiors
of their closures) of Ω bijectively (see, for exmple, [14]). Finally, note that if
we take as h an irrational rotation t+Z 7→ (t+θ)+Z on the 1-dimensional
torus R/Z with θ ∈ R irrational, then we obtain the situation considered
by Takenouchi [30].
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(ii) We note that an ergodic, non-W ∗, monotone complete C∗-G-module
as in 6.5 arises only when G is not compact. Indeed, let G be compact and
let (A, α) be an ergodic, monotone complete C∗-G-module. Then for the
constant function 1 ∈ L1(G) the map x 7→ 1 · x on A is positive, normal
(the remark (ii) after 2.4) and faithful, since 1 · x = (idA ⊗̄

∫
· dt) ◦ α(x)

and
∫
· dt : a 7→

∫
a(t)dt is faithful on L∞(G). Moreover 1 · x ∈ Aα = C1

since

f · (1 · x) = (f · 1) · x =
(∫

f(t)dt

)
· x =

(∫
f(t)dt

)
(1 · x)

for all f ∈ L1(G) (see 2.6 (i)). Thus the monotone complete C∗-algebra A

has a faithful normal state and so it is a W ∗-algebra.

Acknowledgement. The author thanks the referee for the careful read-
ing of the manuscript.
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