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ELLIPTIC DIFFERENTIAL OPERATORS WITH RESPECT TO
A SUBBUNDLE OF THE TANGENT BUNDLE

Yukitaka ABE

In the present paper we extend the well-~known theory of
elliptic differential operators on compact differentiable
manifolds. We define the ellipticity of differential oper-
ators with respect to a completely integrable subbundle of
the tangent bundle and show that the standard argument is
valid for this generalized elliptic differential operators.

1. NOTATIONS AND DEFINITIONS. Let X be a

compact differentiable manifold of dimension n and let T(X)
be the tangent bundle of X. Let S(X) be a subbundle of
T(X). We say that S(X) is completely integrable if any
local frame {Xl,...,Xm} of S(X) on U satisfies

m

k
[X.,X,] = Z c.. .
i’ k=1 1JXk

where ci? is a C function on U and m = rank S(X).

If S(X) 1is a completely integrable subbundle of T(X),
we can choose a coordinate system (Xls-.-,Xm,yl,.--syg)
such that SP(X) is spanned by {(8/8x1)p,...,(8/3xm)p}
for all peU (Frobenius' theorem, see [1]). Throughout
this paper, we assume that a subbundle S(X) of T(X) is

completely integrable and that a coordinate chart U is
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always taken as the above.

Let E be a vector bundle over X with a hermitian
metric < , >E. Let & (X,E) be the c” sections of E
over X. We write g(X) = Q(X,E) when E is the trivial
line bundle. That is, EAX) is the space of Coo functions
on X. We define an inner product ( , ) on E(X,E) by

(E,n) = J<€(p),n(p)>Edu,
X
where dpy 1is a volume element on X. Let WS(E) be the
completion of ¢ (X,E) with respect to the Sobolev s-norm
.

Let E and F be vector bundles over X with rank p

and q respectively. Let

L : ¢X,E) — Q(X,F)
be a linear mapping. We say that L is a differential op-
erator with respect to S(X) if for any choice of local
coordinates and local trivializations there exists a linear

. . . '\I
partial differential operator L such that the diagram

L
gWP == £y
R R
QU,uxcP) — ¢(u,uxcd)

Y
LB |y — EE,P) |

commutes, where
v ij  Jot o1 o .
L = oo =1,...
(£, % G R
T

R o

!
for f = (fl,...,fp)GLS(U)p. L is said to be of order r
if derivatives of order z r+l do not appear in any local
representation. We denote by Difff(E,F) the space of all
differential operators of order r with respect to S(X).

We define OPr(E,F) as the space of linear mappings
T : ¢ (X,E) — ¢(X,F)
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such that there exists a continuous extension of T
T W(E) — W)
for all s ¢R. An element of OPr(E,F) is called an ope-
rator of order r mapping E to F.
Let L : ¢(X,E) — @(X,F) be a linear mapping. We de-
note by L* the adjoint of L. For any LeOPr(E,F)
there exists Iﬂ=60Pr(F,E), and the extension
%) 2 WX, F) — W (X,E)
is given by the adjoint mapping
(L__)* = W (X,F) — W (X,E).
Let. m : S'(X) —> X be the bundle of nonzero cotangent
vectors. T7*E and Tw*F are the pull-backs of E and F

over S'(X) respectively. For any reZ we set

Smbli(E,F) = { 0 € Hom(T*E,T*F) ; o(p,av) = arO(p,vw
for (p,v)e S'(X) and a > 0 }.
We have a linear mapping
Or : Diffi(E,F) — Smbli(E,F).
We call Or(L) the r-symbol of L with respect to S(X).

2. PROPERTIES OF DIFFERENTIAL OPERATORS. We summarize

some properties of differential operators with respect to
S(X). All of them are proved in the same manner as usual

differential operators (cf. [2]).

PROPOSITION 2.1. Diffi(E,F)C;OPr(E,F).

PROPOSITION 2.2. The symbol mapping . gives an

exact sequence

A (6]
o —>viffs (&, F) b piredEr) 5 swb1>(E,F),

where j is the natural inclusion.
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PROPOSITION 2.3. Let E, F and G be vector bundles
over X. If L Diff (E,F) and L,&Diff>(F,G), then

eSS
L2° L1 e D1ffk+r(E,G) and

Oty Lo Ly) = 0 (L) -0 ().

PROPOSITION 2.4. Let LeDiff
L*eDiffi(F,E) such that o_(L*)

(E,F). Then there exists

* *
Or(L) , Wwhere Or(L)

N $w

is given by the adjoint mapping of the linear mapping

Gr(L)(p,v) : Ep ———»Fp.

3. PSEUDODIFFERENTIAL OPERATORS WITH RESPECT TO A SUB-

BUNDLE. We take a coordinate system (x,y) = (xl,...,xm,
yl,...,yz) of R“ such that x = (xl,...,xm) and y =
(yl,...,yg) are coordinate systems of R™ and IR2 respec-

tively, m + £ = n.

DEFINITION 3.1. Let U be an open set in R® and

let r be an integer.

(a) Let g;(U) be the class of Coo functions p(x,y,&)
on U X Rm with the following properties. For any compact
set K in U and for any multiindices o, B, there exists

a constant C depending on o, B, K and p such

a,B,K
that
B _
|DX’yDgp(x,y,€)l $Cy g gl leh® o
for (x,y)€K and £e€R™, where
Dﬁ,y = (—i)|BlalBllaxfl...axim8y§m+d...8y§m+2

and
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D‘é‘ - (-i)'o"alo‘l/ag‘fl...agzm )

(b) S;(U) is the set of all peréJ;(U) with the fol-

lowing properties. For any & # 0, the limit

0, () (x,y,E) = lim BLLYE)
A > A

exists and

1

P(x,y,E) ~ V(E)o, () (x,y,8)e 85 (V),

where Y idis a c” function on R with Y(€) = 0 near

€ =0 and Y(&) = 1 outside the unit ball.

o
(c) Let :Sv; 0(U) denote the set of pe S;(U) with

s
the following properties. There exists a compact set K

in U such that for any Ee¢ Rm, the function pg(x,y)
p(x,y,&) has compact support in K. We set st 0(U) =
sfyASt (U i

m N m,0 ).

Let DP(U) be the space of C” functions with compact
support in U. For uePWU) we set

4(g,y) = 2m™ fe-i<x’€>u(x,y)dx.

This is the Fourier transform in the x-variable. Let P&

%;(U). We define

L(p)u(x,y) = J p(x,y,E)0(E,y)el ¥ 8 qr

for all ueP(U). Then L(p) maps P(U) into AL
linearly. We call L(p) a canonical pseudodifferential

operator of order r.

PROPOSITION 3.2. If pe$. (U), them L(p) is an
s
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operator of order r.

1
~

PROOF. Let be the Fourier transform in the y-

X n
variable and let EF be the Fourier transform in R .

We have

FLp)w) (E,n) = M J p(x,y,T)G(T’y)e‘i(<X,€"T>+<y,n>)

dtdxdy.

Noting that

(2'”')—52/ J p(x 'y sT)ﬁ(T sY)e—i<y,n>dy

AN
pi (x,n,T)

{ ' (x,nN-w,T) Fu) (1,0)dw,
we have
FaEuwEm) = J #Fp) (E-1,n-w,T) GFu) (T,w)dTdw.

By (a) in DEFINITION 3.1 we obtain

Xz
| Fp) (E-T,n-w,T)| < Cy(l + e — 1|2 + |n —wlz)—N(l + |1]|®H?2

for any positive integer N. Therefore we have

IF@L(P)u)(E,m)| < C J A+ ]g—1]2+ [n—w>
L
_ 1+ |7|% + |w|®?Fu(t,w) |dtdw.
If s > 0, then the following inequality holds

s s s s
(1+]| g 2+|n|2)2 < 221+ &=1| 2| n-w|2) 2 (1+] | 2+]w] 2) 2.

From the above inequality we obtain
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s
[FLP)u) (€.n) | (1+]&|2+|n|?)2

T rts
<cC f (I E=1| 24| n-w|2) 21+ 1] 2+|w]?) 2 |Fu(T,w)]|dTdw.

Choosing a sufficiently large N and using Young's inequality,

we obtain

Il scllull,.-

The inequality for the case s £ 0 1is similarly obtained.

DEFINITION 3.3. Let L : E(X,E) —> ¢(X,F) be a linear

mapping. Then L 1is called a pseudodifferential operator
with respect to S(X) if for any coordinate chart U with
trivializations of E and F over U and for any open

set U'&U there exists a (q,p)-matrix [pij], pije S;,O(U)’

so that the induced mapping

Ly : DUHP — ¢t

with ueﬂ)ﬂﬂ)p —LLaLu, is a (q,p)-matrix [L(le)] of
canonical pseudodifferential operators, where p = rank E

and q = rank F.

DEFINITION 3.4. Let L : $Q(X,E) — ¢(X,F) be a

pseudodifferential operator with respect to S(X) which

is represented on a coordinate chart U as in DEFINITION 3.3.
The local r-symbol of L with respect to a coordinate
chart U and trivializations of E and F over U is

the matrix

0, (L) x5, = [0, (™) (x,y,0)1.

Let U be an open set in R'. For any 1)@55 O(U)
s

and ueP), L(p)u can be represented as
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(1)  Lp)ulx,y) = @m) " JJ e X2 (o v, E)u(z,y)dzdE.

Let q(x,v;&3;z,w) be a C" function on U x R™ x U, with
compact support in the (x,y)- and (z,w)-variables, and
satisfying the following two conditions.

(2.a) For any multiindices o, B and 7Yy, there exists
a constant C depending on o, B, Y and q such

a,B,Y
that

a8 Y £ r-|al
DD, Py d (sy3Es2sm | S ¢ o (+[E]) :

(2.b) For any £ # 0, the limit

) = lim q(Xsy;)\g;X,Y)

o _(q) (x,y;&;%,y
r ’ oo \E

exists and

a(x,y3E3%,y) = B(EIO_ () (6,3E55,y) € 55 (U),

where ¢ is a Coo function as in DEFINITION 3.1 (b).

PROPOSITION 3.5. Let q(x,y3;&3;z,w) be a function
satisfying the conditions (2.a) and (2.b), and let

the operator Q be defined by
- i<E,x-z>
(3)  Qux,y) = 2m™" fjel &ox-z q(x,y3&52,y)u(z,y)dzdg

for ueD(U). Then there exists a peSI]f1 0(U) such that
Q = L(p) and

0, (p) (x,y,8) = Lim LEYAEHY) - s g,
dosoo AF

PROOF, Let gzq(x,y;g;g,w) be the Fourier transform

of q(x,y;&;z,w) with respect to the z-variable. Then we

have
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QU(X,Y) JJ e—i<g’zi?§q(x!y;g;£_nsY)ﬁ(nsY)dndg

- f ei<n’X>{J et TR 4G,y E5En,y)AEN(,y )dn.

If we set

]

(4) P(X9st) J ei<£_n,xi;;q(X,Y;Q;E—H,Y)dg

i< >
J et e F,a(x,>y;24032,y)dg,

then we have a representation of Q as (l1). Since ¢q
LY
satisfies the condition. (2.a), p(x,y,g)e;si O(U). From

Taylor's theorem we obtain

() F,aGy;emity) = Falx,yin;t,y)
(04 o
+ =z Dnﬂéq(x,y,n+Co,C,Y)C ,
la|=1
where CO = CO(C) is a point on the segment in R joining
0 to C. We have the following estimate by (2.a)
o r-1 ~-N
D, FaCoysntegszy) | s Cy(|n+g DT (1+ 2]
for sufficiently large N. Since ]CO] < |§|, we get

0% aGeaysmicgstay | < &+ n)T A+ e HTVE

Substituting (5) in (4) and choosing N sufficiently
large, we obtain
P(XQst) = Q(x9y;n;X’Y) + E(X:st)s

where

6) |EGe,y,n)| < c(u+|n]HF L.

Therefore
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1im E(X,ZJ\T]) = 1im (l(X,Y;ATl;X’Y)
AP At Avoo AT
From the condition (2.b) and (6), it follows that

vr-1

p(x,y,8) — ¥(&)o_(p) (x,y,8)e s ~(U).

» N # 0.

We rewrite (1) as

L(p)u(x,y) = (2m) " J { J ei<€’x_2>p(x,y,£)d£ } u(z,y)dz.

Put

i<g ,x-z>

K(x,y,%x-2) = J e p(x,y,E)dE.

Then we have the following proposition which is proved in

the same manner as Proposition 3.10' in [2].

PROPOSITION 3.6. K(x,v,2z) is g_Cm function of x, y

and 2z provided that =z # 0,

THEOREM 3.7. Let UG R" be an open set and let

(x,x') = (x ,c--,xm,xi,...,xé) be a coordinate system of

R" = R" x R". Let »p e_s; o(U). Suppose that
»

ny
F=(F,F') : U3 (y,y') > (x,x")€U

is a diffeomorphism of U and F' does not depend on y.

For any open set U' U, we define the linear mapping

LD — g
by setting

Y -1 "
Lv(y,y"') = L(p)(F H*v(F(y,y")),
where (%Fl)*v = v.%_l. Then there exists a function qe

¥
S; O(U), so that L = L(q), and, moreover,

0, () (y>y'58) = 0_(p) (F(y,y"),F' (3"), 15 (3F/3y) 17 6).
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PROOF. Take a function U(x,x')eDWU) with § =1 on
supp pVUU'. We set
1 _mm 1
Y(@y,y') = Y(Fy,y")).

We have

L(p)u(x,x') = (ZTr)-m JJ ei<g’x_2>p(x,x',E)u(z,x')dzdg

for ueDU'). We write v(iw,w') = u(%(w,w')) and (z,z'")

n,
= F(w,w'). Then we obtain

LpuF(y,y")) = @n™ IJ 1< F(y,y")-F(w,y")>

P(F(y,y"),F' ("), Ou(Fw,y"),F'(y"))
|9F/0w| (w,y"')dwdE,
where |dF/dw| is the determinant of the Jacobian matrix

3F/dw = [BFilawj]i,j=1,...,m' By the mean-value theorem

we get

y-w
Fly,y") — Fw,w') = ﬁ(y,y';w,W'){ ],

y'«—w'
where ﬁ(y,y';w,w') is a non-singular (n,n)-matrix for
(w,w') sufficiently close to (y,y'). Especially,
E(W,W') a_FT(W:W')
’1}{ [ Ny ow ow
(wow' w,w') =
OF' , ,
0 Py w")
Let Xl(y,y';w,w') be a Coo non-negative function on U X U
identically 1 near the diagonal A in U X U and with
n,
support on a neighbourhood of A where H(y,y';w,w') is

invertible. Put
n
xl(YsW§Y') = Xl(Ysy';Way')9
Xo (7swsy") =1 — x, (y,w35").

If we write
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H(y,w3y') %
Ly 1
H(y,y';w,y') = R
0 *
then H(y,w;y') is an (m,m)-matrix and
H(w,w 3y') = (3F/3w) (w,y").
Setting ¢ = tH(y,w;y')é, we obtain

Lp)u(F(y,y")) = <zn>‘m{JJ eI IV (R (y,y ) P (v,

[CH(y,w3y") 17 ) |9F /0w v G,y )
X (7>wsy")

IH(Y’W;Y') l v(w,y')dwdg

+ BEu(F(y,y' )},

where

BaGex') = [[ &S P Grxt 0y (FGx) F G )3E (1)

u(z,x')dzdE&.
We set
a, (753" 5T5w,w") = p(E(y,y')LE ("), [TH(ywiy )17 D)
|9 /9] G X, vswsy ") o
) Ty V-
Then q, has compact support in the (y,y')- and (w,w')-
variables. It is easy to check that a4 satisfies the

condition (2.a). We have
4 (v5y" 3723555 ")

0.(q)(y>y"385y,y") = lim

Ao AT

Lim REGLYD)LE "), B,y sy 17D
Aro0 ot

0, () (Fly,y"),F' (3", [T (@F/3y) 17 0), © = 0.
By the growth of
V(E)o_(p) (x,¥,€) — p(x,¥,E),
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we see that the condition (2.b) 1is satisfied. We write
Xo (x5235%") = X, (F(x,x"),F(z,x");F' (x")).
Then we have '

Eu(x,x') = JJ ei<£’x_2>p(x,x',E)Xz(x,z;x')u(z,x')dzdg

= J{[ ei<g’x_2>p(x,X',E)XZ(x,z;X')dE}U(z,X')dz

= J Xz(XsZ;X')K(X,x',x—z)u(z,x')dz

1]

j W(x,x',z)u(z,x")dz,

where ’
R(x,x" ) = J VL (x,x" L ) dE.

(s o]
K(x,x',w) is a C function of x, x' and w for w # 0 by
PROPOSITION 3.6, moreover it has compact support in the x-
and x'-variables. We write in terms of the new coordinate

system (y,y'),
EU(%‘J(Y»YV')) = J W(F(Y,Y'),F'(Y')sF(WsY'))U(F(W,y'),F'(Y'))

[8F/8w|(w,y')dw

= J Wz(y,y',W)V(w,y')dw,
where

Wy (7,y"50) = W(F(y,y")LF (7). Fauy')) | 8F/0u] (ayy D0y

Since w2 has compact support, we have

f
Bu(F(y.y') = | W,(y,y",w)vw,y")dw
{ . .
- | FYE Sty Gy mauie ey e

f .
- e1<ysg>

qz(y,Y',E)G(E,Y')dE,

where

i <w~ >
qz(y,y',é) = J eI WY,E Wz(y,y',W)dw,
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vt . . .
and qzeism,O(U) for all - t. This implies that Gr(qz)(y,
y's8) = 0. Replace q,(y,y';&w,w') by q;(v,y',8), as
given by PROPOSITION 3.5, and let q = a4 + y- Then we
have

Lp)uF(y,y")) = L(QOv(y,y").

The following lemma is easily shown.

LEMMA 3.8. Let U and V be coordinate charts of X

with coordinate systems (x,x') = (xl,...,xm,xi,...,xé) and

(y,y") = (yl,...,ym,yi,...,yi) respectively, so that,
S(X)|,; and S(X)IV are given by {8/8x,...,3/3x_} and
{S/Byl,...,B/Bym} respectively. Suppose that UNV Z ¢

and that
F= (F,F) : UnV3(r,y") — (x,x') €UAY
is a diffeomorphism of UANV. Then F' does not depend

18

yc

We can define the global symbol of a pseudodifferential
operator with respect to S(X) by THEOREM 3.7 and Lemma 3.8.

DEFINITION 3.9. Let L : ¢€(X,E) — ¢(X,F) be a
pseudodifferential operator with respect to S(X).
Then L is called a pseudodifferential operator with
respect to S(X) of order r if, for any coordinate chart
U, the corresponding matrix of canonical pseudodifferential
operators LU = [L(pij)] is of order r. We denote by
PDiffi(E,F) the class of all pseudodifferential operators

with respect to S(X) of order r.

By THEOREM 3.7 and LEMMA 3.8 there exists a canonical
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linear mapping
S S
o ¢ Plefr(E,F)-——a Smblr(E,F),

which is called the symbol mapping.
Since X 1is compact, we obtain the following proposition

by PROPOSITION 3.2.

PROPOSITION 3.10. If I;éPDiffi(E,F), then IJGOPr(E,F).

The following two theorems are proved by the same argu-

ments to corresponding theorems in [2].

THEOREM 3.11. The following sequence is exact,

. (0]
0 —> K_(E,F) 4, PDiffi(E,F) -5 Smbli(E,F) — 0,

where Kr(E,F) is the kernel of o, and j is the natural

injection. Moreover, Kr(E,F)CLOPr_l(E,F).

THEOREM 3.12. Let E, F and G be vector bundles

over X, Then:
(a) If Q&PDiff>(E,F) and PEPDiff,(F,G), then the

composition PaQePDiff§+t(E,G) and
Opye (P2Q) = 0, (P)-0_(Q).

(b) 1If Pelﬁﬁffi(E,F), then the adjoint P* of P exists,
where P*ePDiffi(F,E), and

Qr(P*) = Or(P)*.
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4. ELLIPTIC DIFFERENTIAL OPERATORS.

DEFINITION 4.1. Let se Smbli(E,F). Then s is said
to be elliptic if and only if for any (p,E)€ S'(X), the

is an isomorphism.

DEFINITION 4.2, Let IJGPDiffi(E,F). Then L is said
to be elliptic if and only if Or(L) is elliptic.

Let PDiff>(E,F) be the direct sum ZPDiffi(E,F).

DEFINITION 4.3. Let LEPDiff>(E,F). Then T €PDiffS

(F,E) is said to be a parametrix for L if and only if

Lol — 1€ 0P_, (F),
LeL — 1.coP_ (B),

where IF and IE are the identity operators on F and

E respectively, and OP_I(E) = OP_l(E,E).

Let L@Difff(E,F). We set
Hy=1¢Eet®m) ;1£=01,

Hi= (new’® 5 (Em =0 for a1l e J.

We write Diffi(E) = Diffi(E,E).
Using results in section 3 and the standard argument for

the usual case (see [2]), we obtain the following propositions

and theorem,

PROPOSITION 4.4. If L&PDiff>(E,F) is elliptic, then

there exists a parametrix for L.
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S . .
PROPOSITION 4.5. Let LEDiffr(E,F) be elliptic. Let

F;EWS(E) have the property that LSE = 0eZ(X,F), where
LS is the extension of L to WS(E). Then £€ £(X,E).

PROPOSITION 4.6. Let I,eDiffs(E,F) be elliptic. Then,

T
for TQ%{‘*(‘\Z(X,F) there exists a unique £€&€ ¢(X,E) such

that L& = T and such that & 1is orthogonal to J{L in

THEOREM 4.7. Let L€Diff§(E) be self-adjoint and

elliptic. Then there exist linear mappings I-IL and GL

HL E S(X,E) —_—> E(X:E)’

G+ §(X,E) —> E(X,E)

so that
(a) H (EX,E)) =} (E) and dim ¥, (B) < =,
(b) LoGL + HL = GLoL + HL =1
(c) HL and GL
(@) ¢X,E) = ¥ (X,E) & GoL(E(X,E))
= geL(X,E) (3] LoGL(ﬁ(X,E))

and this decomposition is orthogonal with respect to the

E,
are operators of order 0,

inner product in WO(E).

>. SMOOTH SECTIONS WITH PARAMETER SPACE. We consider

the product manifold X x Rk of a compact differentiable

manifold X and the k-dimensional Euclidean space Rk.

Let p : X X Rk —> X be the projection. p*E is the
pull~back on X x Rk of a vector bundle E over X. Then,
g(X x Rk,p*E) is identified with the space of c” sections

k v
of E on X with parameter space Rk. Let QO(XX R ,p*E)
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be the space of Coo sections of p*E over X X Rk with
compact support. We denote by Ws(p*E) = WS(X X Rk,p*E)

the completion of ZU(X X Rk,p*E) with respect to the
Sobolev s-norm. Let W(p*E) = g;bws(p*E). A completely
integrable subbundle S(X) of T(X) 1is regarded as a sub-
bundle of the tangent bundle T(X X Rk). PDiffi(p*E,p*F),
Diffi(p*E,Q*F), ellipticity and parametrix are defined
similarly. Let LeDifff_(O*E,p*F). We set

#;, = {E€W(o*E) 5 1E = 0],
Wy = eW () 5 (E.m) 4y = 0 for all ge# ).

OPr(p*E,p*F) is the space of linear mappings

T : ‘ZO(X x Rk,p*E) —a?,o(x x Rk,p*F)

such that there exists a continuous extension of T

T WS (0*E) —> W° T (p*F)

for all s¢ R. Noting that a coordinate covering {Uu} of
X leads to a coordinate covering {Uu x B¥} of X x £,

we can rewrite propositions and theorem in section 4.

PROPOSITION 5.1.  If LePDiffi(p*E,p*F) is elliptic,

then there exists a parametrix for L.

. . e
PROPOS;TION 5.2. Let I,e[uffr(p*E,p*F) be elliptic.
Let &£ €W (p*E) have the property that LSE = 0 € W(p*F),

where L_ is the extension of L to W (E*E). Then £e
W(p*E).

PROPOSITION 5.3. Let Leniffi(p*E,p*F) be elliptic.

Then, for Te¢ &;{(\W(Q*F) there exists a unique &€ W(p*E)
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n
such that L{ = T and such that & 1is orthogonal to geL
in wo(p*E).

THEOREM 5.4. Let L G.Diffi(p*E) be self-adjoint and

n, n
elliptic. There exist linear mappings HL and GL

iiL : W(P*E) —> W(p*E) ,

EL : W(P*E) —— W(p*E)

so that
n, n LN
(@) H (W(o*E)) = H (p*E), dimg g (0*E) < e,
(b) LeG +H = oL + I
(c) it and & are operators of order 0
L — L = ’
ny 0
(d) W(p*E) =% (0*E) & G °L(W(P*E))
" n
=)CL(D*E) ® L°GL(W(D*E))

and this decomposition is orthogonal with respect to the

inner product in WO(Q*E).

COROLLARY 5.5. Let Le Diffi(p*E) be self-adjoint and
elliptic. Then any £&e& §(X X Rk,p*E) has a representation
€ =n+Lrt,

where n, Te¢ g(X % Rk,p*E) and In = 0.
PROOF.  Let {Ki} be a sequence of compact sets in Rk

a 0 k
such that KiCC Ki+1 and Ui=1Ki = R . We take a func-

tion Xie:D(Ki_H) such that X4 =1 on Ki’ for all i.
Let Ei = Xig' Then gie W(p*E). By THEOREM 5.4, there
ny n ,
exist uniquely n,€ RL(Q*E) and Tie GL(w(p*E))CycI'f' such
that
gi =n; + LTi.
By the choice of {Xi} we have

&5 = X38541 T XqNyqp T EOGTy40) -
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Since L(Xini+1) = XiLni+1%z.0’ we have Xini+1ejEL(p*E).
Also we see that xiTi_l_leytL. Therefore, we obtain by the
uniqueness of the representation of Ei that n; = Xini+l
and Ty = X340 Hence limits n = lim ny and T = lim T,

exist and n,T E:&(X X Rk,p*E). Thus we obtain the desired

representation.

£ = 1lim Ei = lim (ni+LTi) =n + LT.
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