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Abstract

In this thesis, I studied several advanced immunological and evolutionary algorithms,

and their applications on optimization problems. The work of this thesis can be

summarized as in the following.

First and foremost, an improved quantum immunological algorithm for optimiza-

tion is presented. Clonal selection mechanism, the theoretical foundation of clonal

selection algorithm (CSA) and its variants, was proposed for explaining the essential

features of adaptive immune responses: adequate diversity, discrimination of self and

non-self, and sustaining immunologic memory. On the basis of the clonal selection

theory, only the high affinity immune cells are chosen to proliferate. Those cells with

low affinity must be efficiently eliminated. However, the ability of receptor editing to

salvage from deletion low affinity immune cells via changing their receptor specifici-

ty realized the clonal selection process anew. By combining clonal selection theory

and receptor editing, a complete receptor editing operation based quantum clonal

selection algorithm is proposed for traveling salesman problem and holes machining

path planning problem. Two receptor editing operators (inversion and deletion) work

together to improve the performance of CSA. Furthermore, in order to overcome the

drawback of asexual proliferation during the immune maturation process, a complete

receptor editing operation based quantum interference crossover is used. The effec-

tiveness of the improved algorithm is evaluated on optimization problems including

traveling salesman problems and holes machining path planning. The experimental

results are also compared with other clonal selection theory based methods.

Secondly, a novel clonal selection algorithm for resource scheduling optimization

problem in cloud computing is introduced. Cloud computing, a computing paradigm
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that provides a variety of virtualized resources to end users in pay-as-you-go fashion

over the internet, has attracted much attention during recent years. Meanwhile, re-

sources scheduling becomes the primary problematic issue in cloud computing due

to rapid growth of services, demand, and requirements. To handle this NP-complete

resources scheduling problem, an improved Clonal Selection Algorithm (CSA) is pro-

posed in this paper. An improvement operation with vaccine injection is designed

to enhance the diversity of solutions. On the other hand, Gauss mutation is used to

improve ability to escape from local optima. Moreover, the effects of the proposed

algorithm are analyzed and evaluated by comparison with other resource scheduling

methods by simulation toolkit - CloudSim. The comparative results show that the

proposed algorithm outperforms these algorithms in terms of execution time.

Thirdly, a hybrid ant lion differential evolution for optimization is presented. Ant

lion optimization algorithm (ALO) is a swarm-based metaheuristic for optimization

inspired by the nature of ant lion hunting. One of the main step of hunting is the

random walk of ants around the ant lion, which ensures ALO to possess a good

local searching ability. Differential evolution (DE) is an evolutionary algorithm with

a structure including mutation, crossover, and selection. The operations of DE are

randomly executed which makes DE suffering from week exploiting ability. In this

paper, a hybrid differential evolution based on the random walk of ants around the ant

lion is presented, which combines the advantages of ant lion optimization algorithm

and differential evolution, aiming to well balance the exploitation and exploration of

the search. The hybrid algorithm is tested on CEC’17 benchmark suit and clustering

problems. Experimental results verify the superiority of the proposed algorithm in

comparison with other related algorithms.

Finally, a novel hypercube and spherical evolution for optimization is depicted.

In recent two decades, nature-inspired metaheuristic algorithms have been paid more

and more attention. Although many new algorithms have been proposed, there is

no quintessential difference among classic metaheuristic algorithms. Therefore, some

researchers have focused on the essence of search operators in these optimizers. Spher-

ical Evolution (SE) is one of the recent studies on the search style in metaheuristic
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algorithms. Contrary to other algorithms, SE adopts a spherical search instead of a

hypercube search. In this paper, we focus on the advantages of the two search styles,

We propose a hybrid optimizer based on the two complementary search styles, and

design a rule to control their utilization. Experimental results based on 30 bench-

mark functions of CEC2017 show that the proposed optimizer outperforms other

state-of-the-art algorithms in terms of effectiveness and robustness.
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Chapter 1

Introduction

In real life, many important issues are solved by optimization methods which involve

selecting an optimal solution from a number of options, further improving produc-

tion efficiency without changing existing conditions, and determining the best solu-

tion. With the development of science and technology and production management,

optimization problems are almost everywhere, including engineering, medicine, fi-

nance, physics, chemistry, bioinformatics and other fields. Optimization methods are

gradually being achieved in scientific research, engineering technology and econom-

ic management. More and more attention and promotion are paid to optimization

methods and thus emerging many successful applications, such as intelligent systems,

system control, production scheduling, pattern recognition, software engineering and

management engineering, etc.

Swarm intelligence is an emerging technology field that has developed rapidly in

recent years. Through in-depth observation and analysis of natural phenomena such

as biology, society and microphysics, people gradually discover that individuals in

nature have simple behavior and limited ability, but when they work together, they

exhibit powerful and complex behavioral characteristics. For example, immunologi-

cal algorithms motivated by human biological adaptive immune system, ant colony

algorithms and particle swarm optimization inspired by biological phenomena, grav-

ity algorithms inspired by physical mechanisms, and colonial competition algorithms

inspired by sociology have been successfully applied to various national production

systems, respectively.
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The introduction of swarm intelligence has important theoretical value for the

development of artificial intelligence and machine learning. It has broad application

prospects in many fields such as function optimization, data mining, pattern recog-

nition, information security, anomaly detection and robotics. It is another milestone

in human understanding of nature and learning of nature. Therefore, the research of

swarm intelligence method provides effective technical assistance and theoretical sup-

port for solving optimization problems such as engineering application and production

scheduling.

Although the algorithms and systems based on swarm intelligence have been well

applied in some complex optimization problems, traditional swarm intelligence has

become more common as the scale of the problem has expanded, and some random

factors and noise effects in the application environment have been adversely affected.

Research on algorithms has encountered bottlenecks in development. In the case of

complex optimization problems in dynamic environments, the global optimization

ability of traditional swarm intelligence algorithms is greatly reduced. Due to the

interference of noise in the environment, it generates a large number of redundant

solutions or even infeasible solutions, thus reducing the algorithm and the actual

application performance.

For the uncertain and noisy random complex environment, previous research pro-

poses an aggregated intelligent optimization algorithm based on population structure

and information interaction network to solve the complex optimization problem of

high-dimensional multimodal and stochastic feedback. Firstly, by using the statis-

tical information contained in the prior data, the algorithm is first hierarchically

clustered to form a multi-layered population model for the specific search space, and

the dynamics of the evolutionary search are analyzed from the perspective of the

information interaction network formed by the complex network. First, the optimal

structural features under the layering are found. Then, it is used that the collab-

orative computing function between the populations under the optimal population

structure to eliminate the hypothesis requirements of learning independent and i-

dentical distribution of the environment, and then adaptively control the parameters
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to enhance the surface. Finally, it is abstracted resolution capabilities for random

problems.

Specifically, the implementation of this research has theoretical support for the

innovation of traditional swarm intelligence methods in terms of statistics, structure

and abstraction. As Tenenbaum et al. [3] wrote that the main gaps between intelligent

learning algorithm and learning with humans are in terms of statistics, structure, and

abstraction. In this thesis, we mainly concentrate our attentions on two kinds of

swarm intelligent technologies: one is immunological clonal selection algorithms, and

the other is the hybridization of different swarm intelligent algorithms, and their

applications.

(1) The use of statistical methods and techniques to model the swarm intelligence

method has important theoretical and practical value for improving the efficiency

and robust performance of the algorithm in solving complex problems. In the face of

complex problems in a dynamic environment, the search space and parameter range

of the problem will change with time. At this time, the global and local optimal

solutions of the problem are all in motion. Although traditional swarm intelligence

technology has a good effect in dealing with static optimization problems, its ability to

find optimal solutions in dynamic uncertain environments is greatly reduced because

it does not track and locate mobile feasible solutions. The statistical-based clustering

methods, such as support vector machines and estimation distribution algorithms,

can generate global estimates for the sample space, so that important information

of the solution space at the time of change is stored in the form of statistical data.

Through the statistical analysis and modeling of the temporary feasible solutions

generated in the swarm intelligence algorithm, the targeted tracking and positioning

optimization are formed for different specific solution spaces, so as to improve the

global optimization ability of the algorithm in the random environment.

(2) The characteristics of the information interaction network formed during the

process of population evolution search is analyzed to find out the general rules of

general structural features, and then design and enhance the collaborative comput-

ing function between groups, including the design and development of memory and
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sharing mechanisms, thereby eliminating the assumptions about the independent and

identical distribution of the environment. It is to improve the computational efficien-

cy of the algorithm when solving dynamic optimization problems. The advantage

of swarm intelligence algorithm lies in the collaborative computing ability between

different individuals. In order to further improve the synergy effect, the swarm intel-

ligence under special population structure (such as hierarchical structure, scale-free

structure, small world model structure, etc.) should be studied. The algorithm will

carry out targeted calculations for dynamic environments with different specificities,

and use the memory mechanism in each group to perform regression analysis on

the periodically changing environment in a timely manner, and use the sharing and

crowding mechanism among groups to effectively control the scale of each group. The

regular information interaction is to improve the diversity of the entire group. The

remaining issues is the lack of dynamic environment prior knowledge to improve its

own computing and application capabilities.

(3) Through the adaptive adjustment of the parameters in the swarm intelligence

algorithm, the independent learning of the algorithm is realized, which improves the

abstract generalization ability of the system and can better deal with the uncertain

conditions or random noise in the dynamic environment. There are some custom

parameters in the swarm intelligence algorithm that affect the execution complexi-

ty and computational efficiency of the algorithm. By designing the hooks with the

changing environmental parameters, the principle of maximizing the performance of

the algorithm at different times can be satisfied, and the parameters can be adaptive-

ly adjusted. For example, the size of the group should be expanded rapidly in the

event of a sudden change in the environment, so as to cope with various optimization

details after the mutation, or the scale is gradually adaptively reduced after the en-

vironment is balanced and stable, under the premise of not increasing the complexity

of the algorithm time. Thus, the optimization ability in the dynamic environment is

improved.

Based on the above consideration, in this thesis, I will present several research

results of how to applied improved immunological and evolutionary algorithms to
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solve very complex optimization problems.

1.1 Research Background

Human beings have been continually enlightened by nature, and through in-depth

and meticulous observation of various biological behavior patterns, macroscopic and

microphysical phenomena, and social behavioral mechanisms in nature, condensing

the laws of learning or synergy, and conducting mathematical modeling, in order

to continue to get inspiration for solving complex problems. At present, the swarm

intelligence algorithm has achieved certain results in practical engineering applications

such as optimization.

Swarm intelligence refers to the characteristics of individuals with simple intel-

ligence that exhibit group intelligence behavior through mutual cooperation and

organization, with natural distributed and self-organizing characteristics. Typical

swarm intelligence algorithm models are: (1) an ant colony algorithm that simulates

pheromone transfer and optimal shortest path in ant collective foraging; (2) a particle

swarm optimization proposed by the mechanism of cooperation and competition in

the process of mimicking foraging of birds; (3) a bacterial foraging algorithm that

mimics the microscopic behavioral characteristics of bacterial chemotaxis, replica-

tion, and migration; (4) a gravity algorithm that simulates gravity under gravitation;

(5) a colonial competition algorithm that simulates social behavior; (6) an artificial

bee colony algorithm for self-organizing collaborative mode such as feeding, collect-

ing honey, nesting, etc, and (7) an immunological clonal selection algorithm mimics

the biological adaptive immune response mechanisms, especially the clonal selection

theory.

Bonabeau et al. [4] wrote in the magazine NATURE that the swarm intelligence

algorithm has broad application prospects in solving complex problems. At present,

swarm intelligence algorithms have been successfully applied to optimization prob-

lem solving, pattern clustering, biological information, production control, intelligent

health monitoring, signal processing. And geophysics and other fields fully demon-
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strate the distribution, simplicity and scalability of group intelligence in solving prac-

tical complex problems. Because the swarm intelligence algorithm does not have a

central control system, it can use simple and efficient individual behaviors to form a

robust and flexible solution to tasks through self-organizing operations and indirect

communication with individuals.

Although swarm intelligence algorithms have demonstrated superior computing

performance in the face of static problems, the development of swarm intelligence

has only just begun in the face of dynamic environments. However, due to the large

number of complex optimization problems in engineering design, scientific computing,

social economy, network communication and other application fields, the environment

is actually changing with time. For example, new tasks in production scheduling

problems may arrive at any time, and the quality and design requirements of objects

in engineering design may suddenly change. The optimization problems in these

applications will change with the design variables, objective functions, constraints,

etc. of the problem.

At present, swarm intelligence has made initial progress in the face of complex

dynamic optimization problems. Literature [5] analyzed the environmental changes

by re-estimating the particles in the particle swarm algorithm and performing random

sampling to analyze the environmental detection. Literature [6] uses the diversity of

groups in the particle swarm optimization algorithm to re-diverge the groups that

tend to converge to cope with environmental changes. In [7], the ant colony opti-

mization algorithm based on random, optimal preservation and mixed immigration

strategy is used to deal with the dynamic traveling salesman problem. The results

show that the stochastic immigration strategy is better than the other two when the

environmental change rate is high, and the optimal retention is when the frequency is

low. The immigration strategy is better. In [8], through the memory update method

of some particles, the memory traceability and variable-scale random initialization

strategy are introduced into the phase particle group, and the ability of the memory

strategy to respond to the dynamic environment is discussed. By using a variety of

group strategies, the literature [9] uses the mechanism of mutual exclusion of parti-
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cles to realize the detection of the unknown solution space. Literature [10] explores

the ability of group intelligence to search for direct good solutions in dynamic en-

vironment from the perspective of individual evolvability. In practical engineering

applications, group intelligence for dynamic optimization has also been successfully

applied in dynamic scheduling, dynamic sequencing and routing planning, invento-

ry management, dynamic communication, robotics, grinding wheel cutting, Ad Hoc

networks, etc. [11–13].

The theoretical analysis of the swarm computing algorithm can be traced back

to the genetic algorithm based on Darwin’s evolutionary theory. Compared with the

simulated annealing algorithm, the genetic algorithm is an early calculation algorithm

based on the population group. Therefore, the theory of the relevant theoretical re-

search results on the swarm computing theory. As an important guiding significance,

Holland proposed the well-known model theorem [14] (i.e., Schema theory). The pat-

tern theorem is a model with low order, short defined distance and average fitness

higher than the average fitness of the population. It grows exponentially in the off-

spring, which guarantees The number of excellent models (the optimal solution of the

population calculation algorithm) increases exponentially, providing a mathematical

basis for explaining the mechanism of population calculations (including genetic al-

gorithms). On this basis, Zhou Zhihua [15] and others proposed a new Markov chain-

based method to evaluate the expectation of ”First-Hitting-Time” in the population

algorithm, and it is theoretically analyzed the probability of the algorithm finding

the optimal solution. Goldberg and Deb [16] proposed a method of Takeover-Time-

Analysis, which can quantitatively compare the selection pressure between selection

strategies in evolutionary populations. Prugel-Bennett and Shapiro [17] proposed a

statistical physical analysis method to study the evolutionary process of population

fitness distribution. Wolpert and Macready [18] proposed and proved the famous

NFLT (No-Free-Lunch-Theory) theorem, pointing out that the general algorithm can

not achieve the highest optimization efficiency on all problems, and needs to inte-

grate the specific knowledge related to the problem to improve the specificity and the

computational efficiency of the algorithm.
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Although up to now, a number of theoretical analysis methods for swarm intel-

ligence calculation algorithms have been proposed to study the convergence of algo-

rithms [19], performance evaluation [20], development and balance in search [21], etc.

Relying on specific choices, mutations, and cross-operations in specific algorithms

does not form a more unified theoretical research framework. In recent years, more

scholars have begun to analyze the characteristics of the algorithm from another per-

spective, that is, the information interaction network formed in the algorithm search

process, thus avoiding the dependence on the specific implementation of the algo-

rithm. Liu Jing [22] et al. proposed a predictive method based on the information

interaction network called Motif to judge the difficulty of the population evolution

algorithm to solve the problem.

The development of swarm intelligence algorithms for dynamic environment opti-

mization problems shows that it has carried out new research in theoretical concepts,

computer science, integrated technology and popularization applications. Among

them, the research on the strategy of dealing with the dynamic environment and the

construction of the corresponding algorithm model are particularly important. Some

problems need to be combined with other technologies to find a solution. There-

fore, swarm intelligence computing has the following research trends in dealing with

dynamic optimization problems:

(1) The use of statistical methods that are not sensitive to environmental changes

to model cluster intelligence will become the mainstream research direction for group

intelligence to deal with uncertain environmental changes. Regardless of the method

used to detect the externally unknown computing environment, the disadvantage is

that the detection methods are both passive and lagging [5]. The swarm intelligence

algorithm needs to be directed to the changing frequency of the environment, the

intensity of the change, the predictability of the change, and cyclically varying cycle

lengths and accuracy are used to develop different detection mechanisms, and even

to determine the necessity of changing the algorithm’s coding. The integration of

statistical methods and the use of efficient population structures (such as hierarchi-

cal, distributed, scale-free, etc.) can well avoid the above shortcomings. However,
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the use of statistical methods to integrate group intelligence and how to effectively

establish a hybrid computing model is one of the new challenges to further improve

the application scope and efficiency of swarm intelligence.

(2) Two aspects which includes further maintaining the ability of the swarm in-

telligence algorithm to adapt to environmental changes and improving the addressing

ability of the algorithm to the optimal solution after the change is an innovative drive

to solve the dynamic optimization problem. Traditional swarm intelligence algorithm-

s deal with dynamic environment changes by maintaining and increasing population

diversity strategies [6, 7], memory strategies [8], multi-group strategies [9], and en-

hancing individual evolution [10]. None of these strategies can dominate, that is,

any strategy has its own advantages and disadvantages. For example, based on the

strategy of increasing group diversity, after detecting changes in the environment, it

temporarily increases diversity by restarting techniques such as search and excessive

mutation, and improves the global search ability of the algorithm. The disadvantage

of this strategy is that the difficulty of monitoring changes, the blindness of processes

that increase diversity, and the difficulty of transmitting and measuring information

between old and new populations. Therefore, how to proceed from the model struc-

ture and self-adaptation of the swarm intelligence algorithm itself, continue to explore

the computational strategies that can improve the response to complex environmen-

tal changes, is the second challenge to realize the computational efficiency of swarm

intelligence itself.

In summary, swarm intelligence uses distributed individuals to solve problems

by simulating biological natural and social phenomena and mechanisms, and then

uses the characteristics of group collaboration to improve algorithms to solve the

performance of various complex problems. Practical engineering applications provide

a broad development prospect. Based on the above research background, we mainly

developed two kinds of swarm intelligent algorithms, including two immunological

clonal selection algorithms, and two kinds of hybridization of different single swarm

intelligent algorithms. The performance of these improved algorithms are verified

on several optimization problems, arising from numerical optimization problems or
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combinatorial optimization problems, to complex resource scheduling optimization in

cloud computing.

1.2 Organization of the Thesis

In Chapter 1, several basic theories and research background, research motivation, and

ideas are introduced. In Chapter 2, an improved quantum immunological algorithm

for optimization is presented. The greatly improved algorithm is applied on two im-

portant combinatorial optimization problems, including traveling salesman problem

and holes machining path planning problem. Experimental results and performance

comparison suggested that the proposed method is effective and efficient. In Chapter

3, I elaborate a novel clonal selection algorithm for resource scheduling optimization

problem in cloud computing. An improvement operation with vaccine injection is

designed to enhance the diversity of solutions. On the other hand, Gauss mutation

is used to improve ability to escape from local optima. Moreover, the effects of the

proposed algorithm are analyzed and evaluated by comparison with other resource

scheduling methods by simulation toolkit - CloudSim. The comparative results show

that the proposed algorithm outperforms these algorithms in terms of execution time.

In Chapter 4, a hybrid ant lion differential evolution for optimization is presented.

In Chapter 5, a novel hypercube and spherical evolution for optimization is depicted.

In chapter 6, some general remarks and future works are given.
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Chapter 2

Improved Quantum Clonal
Selection Algorithm

2.1 Introduction

A great deal of real-world problems, such as job shop scheduling problem [23], fre-

quency assignment problem [24], machining parameter selection problem [25], and

structural topology configuration [26], can be treated as optimization problems (OP-

s).Various attempts from different perspectives have been made to resolve these op-

timization problems.

Traditional methods such as steepest decent, linear programming, dynamic pro-

gramming, etc. commonly are indeed producing some satisfactory results under cer-

tain conditions. However, these conventional methods confirm certain negative sit-

uations according to the powerful constraints on the objective function, continuity,

differentiable, unimodal and so forth [27]. In addition, these conventional methods

have been facing common problems such as the premature convergence.

As we know, many engineering problems generally are complicated with a high-

dimensional space, multiobjective and multiconstraint functions and difficult to be

solved by traditional methods. Thus, efficient and effective optimization algorithms

are still necessary to be proposed.

In the last few decades, substantial operational researchers have proposed a wide

variety of approaches to handle complex optimization problems. However, it was
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until relatively recently that researchers utilized evolutionary algorithms (EAs) and

other population-based heuristics for their global optimization, parallelism, and ef-

fectiveness [28]. These novel methods have the distinctive advantage for resolving

multiobjective and multiconstraint problems that traditional approaches have failed

to tackle.

Among population-based optimization methods, genetic algorithm (GA), an bio-

inspired intelligent model of Darwinian evolution based on the mechanism composed

of genetic mutation and natural selection, was first proposed by Holland. Different

genetic algorithms have been successfully used to a extensive filed of problems includ-

ing control [29], optimization problems [30], 3D metamaterial design [31] and software

test data generation [32], [33].

Although GAs have broad applicability and great potential for global search, they

have to face some problems such as premature convergence and a lack of local search

abilities. A number of improved genetic algorithms and hybrid approaches have been

proposed to overcome these problems [34], [35], [36].

Besides, some other bio-inspired methods such as particle swarm optimization

(PSO) which depends on the foraging behavior of bird swarms [37], artificial bee

colony (ABC) which simulates intelligent behaviors of honey bee swarms [38], and ant

colony optimization (ACO) which emulates the foraging behavior of ant colonies [39]

have also been thoroughly studied and successfully applied in many places.

Apart from the above mentioned methods, there has been an increasing interest in

researching the immune systems to develop new methods for addressing different engi-

neering problems in recent years. Artificial immune system (AIS), one of the most at-

tractive nature inspired computation models, has been proposed to deal with different

problems [40]. This emerging computational intelligence simulates the learning and

adaptive mechanisms of living organisms in protecting themselves against antigens.

Numerous artificial immune systems and their modified versions, such as negative

selection algorithm [41], and immune network theory based algorithm [42], have been

proposed to apply for both theoretical and practical problems [43], [44], [45], [40].

Particularly, clonal selection algorithm (CSA) [46] which is based on the clonal selec-
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tion principle proposed by Burnet [47] has attracted more and more interest and has

been validated as a powerful method to optimization problems [48], [49], [50], [51].

Although CSA provides an alternative approach for problems that are difficult to

be handled by traditional optimization methods, it has to undergo a fact of falling

into local minima but not global optimum for complex problems. This circumstance

called premature convergence takes place when the population of CSA reaches such

a local minimum state that the immune operators can not generate new solutions

with a high affinity (degree of match) anymore [52]. To deal with the premature

convergence problem, several receptor editing based CSAs have been proposed by us

or other researchers [53], [54], [55], [56].

As mentioned above, sufficient diversity is one of the essential features of adap-

tive immune responses. This is implemented by the distinctive structure of the im-

munoglobulin molecule, which consists of two chains, i.e., heavy and light chains [57].

At the heavy chain locus, receptor editing takes place mainly by the deletion of in-

tervening gene segments. At the light chain locus, receptor editing can take place by

either deletion or inversion of the intervening gene sequences. However, almost all

receptor editing based on immune algorithms have ignored the deletion operation.

In this paper, a complete receptor editing based on clonal selection algorithm is

proposed. The novel algorithm with complete receptor editing will cover the solution

space more efficiently and is less likely to be trapped on local optima. Moreover, a

quantum interference crossover is also embedded for exchanging knowledge among

different solutions.

The rest of this paper is structured as follows. Section 2.2 gives a brief overview

of the immune response, clonal selection theory, and receptor editing. Section 2.3

introduces the novel clonal selection algorithm in detail. Traveling salesman problems

and holes machining path planning problems are briefly introduced and then solved

to verify the performance of the novel approach in Section 2.4. Section 2.5 draws

conclusions.
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2.2 Natural Immune System

As described above, artificial immune system can be defined as a computational model

based on the biological immune system. In order to develop a new artificial immune

system for optimization problems, the natural immune system needs to be explained.

2.2.1 Natural Immune Response and Clonal Selection The-

ory

Immune system which is a highly parallel, evolved and distributed adaptive system

protects the body against bacteria and viruses [58]. This system can automatically

adapt or learn to discern different antigens, even those never met before. Anything

that can trigger this immune response is called an antigen (Ag). From a pattern

recognition perspective, the most attractive attribute of the immune system is the

existence of receptor molecules on the surface of immune cells, which can discern the

nearly limitless range of antigenic patterns. Two major immune cells, i.e., B cells

and T cells, can be recognized by the receptor molecules. When the structures of an

immune cell receptor and an antigen are complementary, the antigen is discerned by

the immune cell. The more complementary the structures are, the higher the affinity

between the immune cell and the antigen is [45].

Clonal selection theory proposed by Burnet [47] explains the essential properties of

immune system including adequate diversity, discrimination of self and non-self, and

sustaining immunologic memory. In essence, the clonal selection theory is a pattern

of natural selection. The clonal selection principle is shown in Fig. 2.1 and the details

are described as follows.

When an antigen occurs in an immune system, it will impose a selective pressure

on the antibody (Ab) population. That is to say, only those immune cells which

specifically discern the antigen are chosen to proliferate and differentiate. We call

these immune cells high affinity cells. In the following selection stage, immune cells

with high affinity to the antigen are activated, and then stimulated to proliferate

generating numerous clones. Finally, these clones can mutate or become plasma cells
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Figure 2.1: Illustration of the clonal selection process.

which release a great deal of antibodies or memory cells that maintain the antigenic

status for future infections.

2.2.2 Receptor Editing

On the basis of the clonal selection theory, immune cells with low affinity with antigen

do not divide and will be discarded or deleted. However, recent investigations suggest

that clonal deletion, formerly regarded as one of the most important mechanisms of

clonal selection theory, handle next and only when receptor editing (RE) can not offer

a high affinity specificity [59], [60], [61].

As noted former, diversity is one important feature of adaptive immune system.

It is implemented by the distinctive structure of antibody molecule, which contains

heavy chain and light chain formed by the rearrangement of diverse gene segments.

Fig. 2.2 shows the Y structure of an antibody receptor molecule.

As can be seen in Fig. 2.2, the antibody molecule consists of two light (L) chains

and two heavy (H) chains. Each chain contains the variable (V) region and constant

(C) region. The V region (VH, VL) is mainly in charge of antigen recognition and

contains special variable subregions where the residues have contacted with the actual

antigen. The C region (CH, CL) is in charge of diverse effector functions and defines
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Figure 2.2: Y-type structure of antibody molecule.

the chain types or classes [62].

In the elementary rearrangement, the heavy chain locus is realigned to generate

a VDJ segment whose locus is composed of numerous variable (V), diversity (D)

and junction (J) segments. The VDJ is generated by the combination between a

V segment and the assembled DJ. In the secondary rearrangement, B lymphocyte

tolerance is governed by the light chain where only V and J segments are assembled to

generate VJ segment. Thereafter, the upstream V segments can be further combined

with the downstream J segment so as to delete or replace the previous VJ segment.

Moreover, substantial V regions in reverse direction of the chromosome are realigned

by the inversion instead of the deletion in the intervening sequences, thus retaining

the V segments [61], [57].

Fig. 2.3 indicates the different arrangements on heavy and light chains.
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Figure 2.3: Gene rearrangement of receptor editing on the heavy chain (a) and light
chain (b).

2.3 Complete Receptor Editing Based on Quan-

tum Clonal Selection Algorithm

In this section, the proposed complete receptor editing based on novel clonal selection

algorithm (CRECSA) is presented. The initial idea of CRECSA is inspired by the

natural immune system where the purpose is to efficiently eliminate the antigens. The

evolutionary process of CRECSA is composed of initialization, affinity evaluation,

clone operator, hypermutation, receptor editing and quantum crossover operation.

The algorithm will evolve over iterations and not be ended until the termination
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Figure 2.4: The flowcharts of the proposed algorithm CRECSA.

condition is satisfied.

Like other CSAs, the proposed CRECSA is also based on CLONALG, which is

proposed by Castro et al. [63]. The flowcharts of novel CRECSA are illustrated in

Fig. 2.4 in a comparative perspective.

Since each step of CLONALG is included in CRECSA, we just describe the pro-

cedure of CRECSA as follows:

Step 1Generate an initial population S includingm cells randomly (S1, S2, ..., Sm)

and give the termination criterion.

The termination criteria can be determined by the limited CPU time, the number

of generations, or the number of consecutive iterations without the enhancement of

the best solution. In this paper, a maximum generation number Gmax is used as the

termination criteria for fair comparison with other algorithms.

Step 2 Compute individual affinity A(S1), A(S2), ..., A(Sm) and then rank these
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cells via a descending order, where A(.) is a affinity computation function. Then

choose n (n ≤ m) high affinity antibodies as elite cells, which depends on their

affinities from m original antibodies. And place each elite in n separate and different

elite pools (EP1, EP2, ..., EPn).

Step 3 Duplicate the elites in each elite solution pool with a rate proportional to

its fitness as Eq.(2.1):

pi = round(
(n− i)

n
×M), (2.1)

where i indicates the ordinal of elite pools and M denotes a multiplying factor.

round(.) is to round its argument towards the closest integer.

Step 4 Change the clones in each pool by the complete receptor editing. Ac-

cording to the shape-space model [64], a group of coordinates in a N -dimensional

shape-space can embody an antigen or an immune cell. Thus, the receptor gene se-

quence of immune cell can be formulated as S = (s1, s2, ..., sN). The receptor editing

process is described as follows:

s1... → si−1 → si → sj → sj+1... → sN

⇑

Deletion operation

⇑

s1... → si−1 → si → si+1...sj−1 → sj → sj+1... → sN

⇓

Inversion rearrangement

(−−−−−−−−−−→si → si+1...sj−1 ⇒ −−−−−−−−−−→sj−1...si+1 → si)

⇓

s1... → si−1 → sj−1...si+1 → si → sj → sj+1... → sN

It should be noticed that the algorithm in this paper is proposed to solve traveling

salesman problems (TSP) and holes machining path planning problems which can be

transformed into TSP. The solution of TSP is encoded in a permutation of cities.

The deletion operator destroys a closed feasible solution. Consequently, almost all
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receptor editing based immune algorithms ignored the deletion operation. However,

the ability of receptor editing to salvage from deletion low affinity immune cells via

changing their receptor specificity realized the clonal selection process anew [57]. By

simulating the recombination mechanism in nature immune system, a rearrangement

operation based receptor deletion editing is proposed. Suppose the solution sequence

is S = (s1, s2, ..., sN). Two points x and y are selected randomly. Algorithm 1 shows

the pseudo code of rearrangement operation.

begin
Input x, y
dsum=0,pselSum=0,msel=0
for i=x : y do

dmax=argmax{cityDis(si, sz), z = i+ 1, i+ 2, ..., y}
dsum=

∑y
z=i+1 cityDis(si, sz)

for j=i+1:y do

psel[j]=
dmax−cityDis(si,sj)

dsum

pselSum+=psel[j]

end
srand=rnd(0, PselSum)
for j =i+1:y do

msel+=psel[j]
if msel ≥ srand then

cityI=j
break

end

end
si+1 = scityI

end

end
Algorithm 1: Deletion rearrangement operation

Here, cityDis(sx, sz) returns the distance between city sx and city sz. dmax means

the maximal distance between city sx and other cities in sub-segment. dsum means

the sum of distance between city sx and other cities in sub-segment. psel[j] is the

probability of city sj to be selected. rnd(0, pselsum) is a random function which returns

a value between 0 and pselsum. From Algorithm 1, the city close to the preselected

city will be selected with a higher probability.

In this step, inversion rearrangement operation or deletion rearrangement opera-
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tion is randomly selected according to the threshold probability ps.

Without loss of generality, we suppose that s1, s2, ..., si, si+1, ..., sj, sj+1, ..., sN is

the original solution, s1, ..., si−1, sx1, sx2, ..., si−j+1, sj+1, ..., sN is the new solution gen-

erated by receptor editing operation.

If cityDis(si−1, si)+cityDis(si, si+1)+...+cityDis(sj−1, sj)

+cityDis(sj, sj+1) > cityDis(si−1, sx1)+cityDis(sx1, sx2)

+...+cityDis(sj−i, sj−i+1)+cityDis(sj−i+1, sj+1), we can confirm the receptor edit-

ing process is success.

Step 5 Subject the clones which fail at the receptor editing process through

random point mutation. This process can be illustrated as follows:

s1 → s2... → si → si+1... → sj → sj+1... → sN

⇓

s1 → s2... → sj → si+1... → si → sj+1... → sN

Step 6 In order to enhance the information exchange ability among different so-

lutions, an improved quantum crossover operator is added into this CSA. Subject

n selected original solutions (S1, S2, ..., Sn) through improved quantum crossover op-

eration. Through this operation, we will get n new solutions. The pseudo code of

quantum crossover operation is shown as Algorithm 2. Because every city in the new

solution comes from different original solutions, we need to determine the candidate

city according to Algorithm 2. In this algorithm, the parameter pos is the index

of candidate solution. cityName(x, j) is a function which returns the city name of

jth city in Sx. cityIndex(x,CN) returns the index of preselected city CN in Sx.

cityDis(sx, sy) returns the distance between city sx and city sy. LCI and RCI are

the index of the left and right city of CN in candidate solution. LC and RC are the

left and right neighbour city of CN in candidate solution.

For clarity, a simple TSP instance including A,B,C,D,E, F six cities is used for

explaining the quantum crossover. Six solutions are:

S1 : A → B → C → D → E → F → A

S2 : C → E → A → B → F → D → C

S3 : B → F → D → C → A → E → B
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S4 : A → C → E → F → D → B → A

S5 : B → D → F → E → C → A → B

S6 : F → B → A → C → E → D → F

begin
for i=1:N do

for j=1:N do
if j==1 then

CN=cityName(i+j-1,j)
end
else

pos=(i+j > N+1)?(i+j-(N+1)):(i+j-1)
LCI=cityIndex(pos, CN)-1
RCI=cityIndex(pos, CN)+1
LC=cityName(pos, LCI)
RC=cityName(pos,RCI)
if cityDis(CN,LC) ≤ cityDis(CN,RC) then

CN = LC
end
else

CN = RC
end

end
sQC[i][j]=CN

end

end

end
Algorithm 2: Improved quantum interference crossover operation

Fig. 2.5 demonstrates the construction procedure of a quantum crossover. The

following describes an example of the process of how a new crossover solution is

constructed.

(1) Without loss of generality, cityB is selected from solution S3. Then jump to S4,

two neighbour cities D and A are candidate cities. If cityDis(B,A) < cityDis(B,D),

city A is selected. The new solution under construction is B → A.

(2) Then jump to S5, C and B are two neighbour cities of A. If cityDis(C,A) <

cityDis(A,B), city C is selected. The new solution under construction is B → A →

C.



23

Jump Selection

S A B C D E F A1

S A BC DE F C2

AB CD EFS B3

A BC DE F AS 4

AB CD EFS B5

AB C DEF FS 6

(5)

(4)

(3)

(2)

(1)

Figure 2.5: Illustration of construction process of quantum interference crossover
solution.

(3) Then jump to S6, A and E are two neighbour cities of C. If cityDis(C,E) <

cityDis(A,E), city E is selected. The new solution under construction is B → A →

C → E.

This way, a new solution will be constructed step by step. If a city already appears

in the new solution under manipulation, it will be replaced by the closest city which

is not used in current solution.

Step 7 Select the best cell from each elite pool and solutions generated by the

quantum crossover and then update current elite pool with the best solutions.

Step 8 If the generation number reaches the maximum generation number Gmax,

the algorithm is ended. Otherwise, return to Step 3 for next iteration.
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2.4 Simulation and Discussion

In this section, in order to evaluate the performance of CRECSA, computational ex-

periments are conducted to optimize two benchmark problems containing TSP and

holes machining path planning problem. In the following subsections, these problems

are firstly described. Then, the parameter settings for CRECSA are discussed. Simu-

lation results are presented finally. The CRECSA is programmed by C++ and all the

computational results demonstrated in the following figures and tables are obtained

over 10 runs unless there is a special statement.

2.4.1 Traveling Salesman Problem (TSP)

TSP, one of the most widely discussed combinatorial optimization problems, is a

famous NP-hard problem. Generally, the optimal solution of TSP is a minimum

Hamiltonian path. Thus, various practical problems such as intelligent transporta-

tion, flow shop scheduling, and logistics, can be regarded as TSP or its variants. As a

result, TSP attracts many attention from the scientific and industrial fields through

the years.

Generally, the TSP can be described as follows: an optimal route is constructed

via visiting n cities only once and finally returning to the initial point. It is assumed

that Ci represents the ith city in a route. π = {C1, C2, ..., Ci, ..., Cj, ..., CN} (1 ≤ i ≤

j ≤ N) indicates a feasible route containing all the visited cities. Therefore, a typical

TSP can be expressed mathematically as follow [65]:



min f(π) =
∑N−1

i=1 cityDis(Ci, Ci+1)

+cityDis(C1, CN)

s.t. Ci ̸= Cj(i ̸= j)

Ci ∈ {1, 2, ..., N},

(2.2)

whereN indicates the total number of cities. f(π) denotes the path length of a feasible

route π. If cityDis(Ci, Cj) = cityDis(Cj, Ci), the problem is called a symmetric TSP
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Table 2.1: TSP instances used in simulation.
Problem City number Optimum Gmax

eil51 51 426 1000
st70 70 675 1000
eil76 76 538 1000
rd100 100 7910 1000
eil101 101 629 1000
lin105 105 14379 1000
pr107 107 44303 1000
pr124 124 59030 1000
bier127 127 118282 2000
pr136 136 96772 2000
pr152 152 73682 2000
rat195 195 2323 2000
kroA200 200 29368 5000
lin318 318 42029 10000

Table 2.2: Parameters setup in simulation.
Parameter Meaning Values

N city number 51∼318
m number of initial antibodies N
n number of elite pools N
M proliferation rate 50
ps threshold probability of 0.5

revision and deletion rearrangement
Gmax maximum number of generation *

*:see Table 2.1

(STSP). If cityDis(Ci, Cj) ̸= cityDis(Cj, Ci), the problem is called an asymmetric

TSP (ATSP). In this paper, all tested traveling salesman problems are STSP and

available at TSPLIB [66]. Table 2.1 lists the specific results of several TSP instances.

Meaning and value of each parameter used in simulation are given in Table 2.2. In

this table, the value 0.5 of ps means inversion or deletion rearrangement opeartion

has the same probability to be selected during Step 4.

2.4.2 Simulation Results of TSP Instances

In terms of the structure of algorithm, the proposed method is an improved version

of the receptor editing based on clonal selection algorithm RECSA [53]. According to
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Table 2.3: Comparison results of the three algorithms RECSA, RECSA+IQC, and
RECSA+DEL on TSP instances.

TSP RECSA RECSA+IQC RECSA+DEL
Instance PDB PDM PDB PDM PDB PDM
eil51 1.41 2.63 1.17 2.16 0.70 1.27
eil76 3.35 4.54 1.86 3.09 1.67 2.84
rd100 4.55 5.85 2.40 3.30 2.34 3.53
pr107 2.11 3.40 2.44 2.77 1.57 2.44
pr124 1.65 4.42 0.64 1.64 0.94 2.97

RECSA, the improved quantum crossover IQC is added to improve the global search

performance through exchanging information between different solutions. Deletion

operation DEL, one of the receptor editing methods, is embedded into RECSA to

further boost the local search ability. Table 2.3 shows the experimental results of

three algorithms RECSA, RECSA+IQC, and RECSA+DEL.

As shown in Table 2.3, the improved quantum crossover IQC and the deletion

receptor editing operation DEL can enhance the performance of RECSA. In this

table, PDM and PDB indicate the percentage deviation of the average result Dm and

the best result Db over the optimal solution Dopt respectively. Here, Dm is the average

distance of all 10 trials, and Db is the shortest distance among 10 runs.

PDM =
Dm −Dopt

Dopt

× 100, (2.3)

PDB =
Db −Dopt

Dopt

× 100. (2.4)

Like other evolutionary algorithms, population diversity plays a very important

role in clonal selection algorithms. In this kind of algorithm, the diversity is repre-

sented by the average edge-distance between the best solution and other solutions.

Edge-distance indicates diverse edges between two solutions [67].

The average population diversity of each generation of four algorithms RECSA,

RECSA+IQC, RECSA+DEL, and CRECSA for eil51 problem are shown in Fig. 2.6.
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Figure 2.6: Comparison of population diversity of the four algorithms for eil51 prob-
lem.

From Fig. 2.6, the diversity of the proposed algorithm is lower than others. The

usual view is that higher diversity is beneficial for avoiding premature convergence

and escaping from local optima of algorithm [68]. However, based on our experi-

mental results, the diversity is not the only key to the performance of algorithm. It

seems that a proper control of balancing the exploration and exploitation process of

algorithm is needed. In general, a good population diversity is helpful for exploring

the search space widely, and a low diversity leads to the convergence of algorithm.

Consequently, the algorithm should possess a higher diversity in the beginning of the

searching process and a lower one in the end. As Fig. 2.6 shown, the proposed algo-

rithm possesses equivalent diversity maintenance ability at the beginning of searching

process and a lower diversity at the end stage. That is to say, the proposed algorithm

maintains a higher population diversity at the initial stage to explore the search space

widely, and a lower diversity easy to converge to the optimal value at the end stage.

Fig. 2.7 illustrates the convergence process of RECSA, RECSA+IQC, REC-

SA+DEL, and CRECSA. The distance in Figs. 2.7 and 2.8 is the average distance of

each generation of 10 runs. From Fig. 2.6 and Fig. 2.7, it can be confirmed that the

CRECSA has better performance of balancing the exploration search and exploita-

tion search than other methods. The same conclusion can be drawn from another

TSP instance of eil76 in Fig. 2.8.



28

10
0

10
1

10
2

10
3

400

600

800

1000

1200

1400

1600

Generation

D
is

ta
nc

e

CRECSA
RECSA+IQC
RECSA+DEL
RECSA

(a)

400 500 600 700 800 900 1000
428

430

432

434

436

438

Generation

D
is

ta
nc

e

CRECSA
RECSA+IQC
RECSA+DEL
RECSA

(b)

Figure 2.7: (a) Comparison of convergence process of the four algorithms for eil51
problem (b) the last 600 generations of the convergence process.

In order to further confirm the performance of the CRECSA, we apply our method

for TSP instances with the city number from 51 to 318 and also compare CRECSA

with other CSAs [53]. Table 2.4 shows the experimental results. t is CPU time.

From this table, it can be confirmed that the proposed algorithm CRECSA outper-

forms RECSA, RECSA+IQC, and RECSA+DEL. RECSA indicates clonal selection

algorithm including receptor inversion editing operation. RECSA+IQC manifests

the improved quantum crossover based on RECSA [53]. RECSA+DEL denotes the

RECSA combined with receptor deletion editing operation. The computational re-

sults of RECSA+IQC are recalculated by the same hardware PC so as to make fair

comparison.
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Figure 2.8: (a) Comparison of convergence process of the four algorithms for eil76
problem (b) the last 600 generations of the convergence process.

2.4.3 Holes Machining Path Planning (HMPP) Problem

Most of the earlier algorithms of AISs were used for solving benchmark cases. Howev-

er, the number of resolving engineering optimization problems such as I-beam design

problem [55], structural layout problem [25] has been increasing lately. HMPP is a

crucial mission for machining process planning of multi-hole parts.

HMPP aims to minimize the overall machining costs, including the moving cost

of tools (CM), cutting tools cost(CT), and tools replacement cost (CR) respectively.

The mathematical formulation of the case is as follows [69].
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CM =
N∑
i=1

N∑
j=1,j ̸=i

η ·Dij · eij, (2.5)

where η is the moving cost of the cutting tools for unit length. eij ∈ {0, 1}. eij = 1

denotes the edge(i, j) is in the optimization solution.

CR =
N∑
i=1

N∑
j=1,j ̸=i

λ · pij · eij, (2.6)

where pij is the tools replacement time from point i to point j and λ is the replacement

cost in unit time.

The tool cost (CT) is defined as follow:

CT =

NT∑
k=1

CTk,

CTk =
N∑
i=1

(
tki
Tki

Qk + c · tki
)
, (2.7)

where k ∈ {0, 1, 2, ..., NT}, NT is the number of tools which to be used for machining

N holes, tki is the cutting time of tool k when machining the hole i, Tki is the life-span

of tool k machining the hole i, c is the machining cost for unit time, and Qk is the

economic cost of the cutting tool k.

Obviously, the objective of HMPP is to minimize the overall machining costs as

follow:

min(CM + CR + CT). (2.8)

2.4.4 Computational Results of HMPPs

In order to compare the proposed algorithm with other methods fairly, the aim in

experimental simulation is to minimize the moving cost of the machining tools. Fig.

2.9 shows the dimensional drawing of the part with 26 holes. The coordinates of holes
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Figure 2.9: Illustration of 26-hole machining part.

are:

X = [xi] = [50, 50, 690, 690, 100, 100, 640, 640, 30, 30, 710, 710, 160, 580, 160, 160,

580, 580, 230, 300, 440, 510, 440, 300, 250, 490], i=1,2,...,26.

Y = [yi] = [50, 450, 450, 50, 120, 380, 380, 120, 150, 350, 350, 150, 70, 430, 150, 350,

350, 150, 250, 130, 130, 250, 370, 370, 180, 320], i=1,2,...,26.

Parameters of the proposed algorithm are set as follows: the number of initial

solutions m = 10, the number of clone solution M = 8, and the maximum generation

Gmax = 100. The algorithm is tested by 100 independent runs. Optimization results

are presented in Table 2.5 and also compared with other algorithms. In this table,

Dm is the average distance of all 100 trials, and Db is the shortest distance among 100

runs. Success rate means the probability to find the optimal solution. Improvements

of the mean results compared with machining path length in sequence are also shown

in this table.

It should be noted that the computational results of the machining path distance

in [2], [1] are conflicted with our re-tested results. Fig. 2.10(b) and 2.10(c) illustrate

the optimal machining paths of these two algorithms and present the correct distance.
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Figure 2.10: Comparison of holes machining path planning results of four methods.
(a) machining path in sequence (b) EACS algorithm [1] (c) GA [2] (d) the proposed
algorithm CRECSA.

Fig. 2.10(a) shows the machining path in sequence A1 → A2 → ... → A26 → A1.

To the best of our knowledge, the best result achieved by the proposed algorithm is

shown in Fig.2.10(d). The best machining path is A1 → A9 → A10 → A2 → A6 →

A16 → A24 → A23 → A26 → A22 → A17 → A14 → A7 → A3 → A11 → A12 →

A4 → A8 → A18 → A21 → A20 → A25 → A19 → A15 → A13 → A5 → A1, and

the path length is 2696.38. The same results were also confirmed in the literature.

Based on the simulation results, it can be confirmed that the performance of the

proposed algorithm is better than other algorithms.

Furthermore, a bi-objective path planing optimization problem is also used to

evaluate the performance of the proposed algorithm. Apart from the moving cost
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of the machining tools CM , the parameter Trd which means reverse shifting times of

machining tools is also considered. In machining process, low Trd is desirable to decline

accumulated error. Without loss of generality, every machining point is expressed by

a x dimensional vector Z = (z1, z2, ..., zx). The position of N machining points can be

expressed as N vectors Zi = z1i , z
2
i , ..., z

x
i , i = 1, 2, ..., N . The optimization objective

is to find a point machining sequence Zi1, Zi2, ..., ZiN that minimizes the following

equation:

Trd =
N−1∑
i=2

x∑
j=1

Aj
i , (2.9)

where

Aj
i =

 1, when Dj
i < 0

0, otherwise
. (2.10)

Here,Dj
i = (zji+1 − zji )(z

j
i − zji−1).

Clearly, this is a multi-objective machining path optimization problem which aims

to minimize the moving cost of the cutting tools CM and the reverse shifting times

of machining tool Trd. That is min[CM , Trd]
T . To solve this bi-objective machining

optimization problem, a fast bi-objective non-dominated sorting algorithm (BNSA)

is adopted to recognize non-dominated solutions [70].

The data shown in Table 2.6 are used to verify the proposed method. Parameters

of the proposed algorithm are set as follows: the number of initial solutions m = 100,

the number of elite pools n = 100, the proliferation rate M = 1, and the maximum

generation Gmax = 3.

Table 2.7 shows the computational results of different algorithms. Fig. 2.11

illustrates the Pareto solutions of the bi-objective machining path planning problem.

The result of CRECSA shown in Table 2.7 and Fig. 2.11 is one of the results from

10 runs. Different colors and different numbers in Fig. 2.11 represent different rank

of Pareto solutions. The Pareto front, which consists of solutions with rank 1, is also

shown in Fig. 2.11.
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2.5 Conclusions

In this paper, a framework of complete receptor editing based on clonal selection al-

gorithm CRECSA is proposed. The complete receptor editing operation imitates not

only the reversion rearrangement, but also the deletion rearrangement of gene seg-

ments in natural immune system. The deletion operation further improves the local

search ability. Moreover, in order to overcome the drawback of asexual proliferation

during the immune maturation process, an improved quantum interference crossover

is embedded to enhance the global search ability.

The proposed algorithm CRECSA is evaluated on two benchmark problems con-

taining TSP and HMPP. Computational results reveal that CRECSA is very compet-

itive with the other algorithms in terms of optimal result in single objective problems
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and well-distributed solution set in bi-objective optimization problems. Our future

work is to explore other complex multi-objective optimization problems, such as cloud

computing resources manage problem, software test data generation problem, and ra-

dio resource management.
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Table 2.5: Best and mean optimization results obtained by different algorithms on
26-hole part.

Algorithm Db Dm Success rate/ % Improvement/ %

Hopfield [1] 2923.6 3313.5 25 64.9
ARTIA [1] 2876.1 3091.3 78 67.3
EACS [1] 2834.7 2910.2 93 69.2
GA [2] 3570.34 - - 38.52
AFSA 2696.38 2934.9 - 68.9
RECSA 2696.38 2815.05 27 69.6

RECSA+IQC 2696.38 2841.98 12 69.3
RECSA+DEL 2696.38 2879.73 2 68.9

CRECSA 2696.38 2703.93 65 70.8

Table 2.6: The coordinates of 10 holes in [1]*.
Point (x, y, z, α, β, γ) Point (x, y, z, α, β, γ)

1 (0,0,0,0,0,0) 6 (50,36,14,16,11,8)
2 (10,30,20,8,7,9) 7 (46,27,16,13,7,2)
3 (20,17,16,12,15,5) 8 (90,40,3,5,9,10)
4 (11,20,21,7,2,0) 9 (36,70,40,6,12,9)
5 (70,2,11,6,12,15) 10 (100,50,4,4,5,11)

* x, y, z determine the position of the hole, and α, β, γ
determine the orientation of the hole.
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Chapter 3

Improved Clonal Selection
Algorithm

3.1 Introduction

Since the concept of cloud computing was proposed in 2006, the term cloud com-

puting has become one of the most well-known buzzword in academic research and

IT industries [71]. Many companies, such as Amazon, IBM, Google, Baidu, Alibaba

and so on, accelerate their paces in constructing Cloud Computing systems and pro-

vide different types of services for institutions or individuals. Based on the different

levels service provisioning, the services offered by cloud computing can be classified

into three types: Infrastructure as a service (Iaas), Platform as a service (PaaS) and

Software as a service (SaaS) . In Iaas, computing resources (such as servers, network-

ing, storage and data-center space) are provided to the consumers. PaaS supplies an

on-demand environment for developing, testing, delivering, and managing software

applications. SaaS is a method for delivering software applications over the Internet,

on demand and typically on a subscription basis [72] [73].

Different from traditional service model, cloud computing provides an on-demand

service model with scalability, reliability, high performance and comparatively low

cost feasible solution [74]. With the increasing demand for cloud computing, the

energy consumption has become a focus problem. Meanwhile, cloud-based services

have become very dynamic, resource scheduling problem plays a vital role in cloud
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computing. Suppose that there are m available virtual machines (VMs) and n tasks

in a workflow, there exist mn different allocation solutions in which the tasks can

be mapped to the VM pool. Obviously, for a large value of m and n, making the

appropriate decision to allocate cloud resource to end users to the available VM pool

is a major concern, and finding an optimal allocation solution by brute force method

is computationally very expensive [75].

In addition to exact approaches, lots of different heuristic algorithms have been

proposed in cloud environment to solve workflow scheduling problems. In HEFT (Het-

erogeneous Earliest Finish Time) algorithm proposed by H. Topcuoglu [76] [77], tasks

are scheduled according to their priority and each task is allocated to virtual machine

that can complete the task at the earliest time. Min-max scheduling algorithm as-

signs the larger tasks to best resources at the starting to improve the makespan time,

response time as well as resource utilization ratio of user request [78] [79]. Deadline

based scheduling algorithm and its variants have also been proposed to dynamical-

ly provision the resource for scalability as per demand and optimize the key QoS

parameters such as task meet with deadline, time etc [80] [81]. Other algorithms,

such as FCFS (First come first serve), bin packing, agent and credit based algorithm,

best fit algorithm, priority based scheduling and so on, have also been proposed and

improved to deal with cloud resources scheduling problem [82].

However, these heuristic algorithms mention above are problem dependent and

show different performance for different problems. Therefore, a meta-heuristic algo-

rithm may be effective for solving cloud resources scheduling problem. Meta-heuristic

algorithms are problem independent and can be used to solve large optimization prob-

lems with acceptable performance in short period of time. Scheduling of task is one

such NP-complete problem due to large solution space and takes the long time to

obtain the optimal solution. According to the latest literature surveys [82] [83], there

are various meta-heuristic algorithms, such as Genetic Algorithm [84] [85] [86], Par-

ticle Swarm Optimization (PSO) [87] [88], Ant Colony Optimization (ACO) [89] [90],

Simulated Annealing (SA) [91], Bacteria Foraging Optimization (BFO) [92] and so

on , proposed to solve task scheduling problem. During the last few decades, an
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innovative optimized meta-heuristic algorithm - Clonal Selection Algorithm (CSA)

has been widely researched [93] [94], and also applied in different categories such as

price forecasting [95], face recognition [96], wireless sensor network planning [97], ve-

hicle routing optimization [98], carbon dioxide emissions predicting [99] and so on.

Existing studies confirm that CSA is reliable and performs better than many current

meta-heuristic algorithms in multi-discipline areas. However, this biology-inspired al-

gorithm suffers from several problems, such as premature convergence and difficulties

in obtaining high-quality solutions in reasonable time [100]. In this research article,

an improved clonal selection algorithm is proposed for solving cloud computing re-

source scheduling problem. This novel algorithm enhances the diversity of solutions

by adding vaccines to current solutions. On the other hand, Gauss mutation is used

to improve performance of algorithm to escape from local optima. Computational

results show that the algorithm works better than other method in terms of reducing

execution time.

The remainder of this paper is organized as follows: Section 3.2 introduces the

clonal selection algorithm and reviews the the related work on cloud computing re-

source scheduling problem. Section 3.3 presents problem description and formaliza-

tion. Then, an improved CSA to solve the problem is proposed in Section 3.4. In

Section 3.5, simulation comparisons are given to demonstrate the performance of the

algorithm. Finally, we draw the conclusions in Section 3.6.

3.2 Related Works

Clonal selection algorithm is essentially an artificial immune method inspired by nat-

ural immune system. In this section, we will firstly introduce artificial immune system

(AIS) and clonal selection algorithm in Section 3.2.1. Then, a short review of sev-

eral meta-heuristic algorithms relevant to cloud resource scheduling is presented in

Section 3.2.2.
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3.2.1 Artificial Immune System and Clonal selection Algo-

rithm

As mentioned above, many natural inspired methods were designed and developed

during the last few decades. Genetic Algorithm (GA) was proposed based on the

principle of the theory of the survival of the fittest and the theory of evolution [14].

Ant Colony Optimization (ACO) simulates the behavior of ant colonies [101]. Ar-

tificial Bee Colony (ABC) which depends on different intelligent behaviors of honey

bee swarms [102]. Meanwhile, an artificial computational system named artificial

immune system inspired by the characteristics of learning and memory of natural

immune system has received a rapidly increasing interest [103].

As one of the most important artificial immune algorithms, Clonal Selection Algo-

rithm (CSA) was designed based on the clonal selection theory of adaptive immunity.

The clonal selection theory describes the basic features of immune response to an anti-

genic stimulus. It establishes the idea that only those immune cells that recognize the

antigens proliferate [103]. By imitating the process of natural immune response, CSA

iterates the procedures including initialization, affinity evaluation, clonal operator,

affinity maturation, and clonal selection until a pre-specified termination criterion is

satisfied.

3.2.2 Cloud Computing Resources Scheduling Problem and

Algorithms

With the rapid increasing types of computing services and requirements, assigning

tasks and services requests into available cloud resources has become a persistent

problem in cloud computing environment. From the perspective of cloud service

providers, a variety of virtualized resource need to be allocated to different end users

dynamically, correctly and profitably. For cloud users, they are economically driven

entities and always compare the cost between different cloud providers [71]. Therefore,

many researchers have proposed different heuristics as well as meta-heuristics methods

for solving resource scheduling by considering cost, energy, makespan, etc.
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As mention above, heuristic algorithms, as a problem dependent method, nor-

mally give exact solution for particular problem in finite amount of time but cannot

handle large scale hard optimization problems effectively. Therefore, meta-heuristic

algorithms have gained much interesting during the last few decades due to their

effectiveness in solving complex optimization problems.

Particle Swarm Optimization (PSO) algorithm is a swarm intelligence evolutionary

algorithm derived from the physical phenomena of bird flocking [88]. Each particle in

the swarm is distributed randomly in the search space with a attribute of velocity and

position. During the iterations, each particle updates its own speed and position based

on individual and global extremum so as to find the optimal solution. [104] [105] both

used adaptive mechanism to change the inertia weight of particle position update,

so as to accelerate the convergence speed. While [106] proposed RBPSO algorithm,

which also considered how to minimize the degree of load imbalance, maximize the

resource utilization and minimize the energy consumption.

Genetic algorithm (GA), a classical evolution method, is inspired by the princi-

ples of evolution and was proposed by Holland in 1975. GA and its variants have

been proven to be very robust algorithms for solving optimization problems. Three

GAs in [107] [108] [73] are all considering not only the makespan time but also the

maximum customer satisfaction. Based on the concept of green development, the

author proposed Non-dominated Sorting Genetic Algorithm (NSGA-II) control the

energy consumption efficaciously [109]. However, all the algorithms mention above

have to face the same question that the algorithms’ performance will go down when

the scheduling task complexity increases. The article [110] proposed an improved

algorithm which uses K-means cluster method to classify the tasks at the beginning

of scheduling and uses genetic algorithm to scheduling tasks of each class. To the

best of our knowledge, clonal selection algorithm (CSA) has rarely been used to solve

cloud resources scheduling problem. Even in the latest literature review for scheduling

techniques in cloud computing [82] [83], there are no words about CSA.
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VM1 VMj VMm
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Figure 3.1: Diagrammatic presentation of cloud resources scheduling problem.

3.3 Problem Description and Formulation

This section presents the description and formulation of the cloud resource scheduling

problem.

3.3.1 Problem Description

We assume that there are m available computational resources (virtual machine:

VM) given as VM = {VM1, V M2, , V Mm}, and n tasks given as T = {t1, t2, , tn}.

The cloud resources scheduling problem can be described as Figure 3.1 shows.

The aim of the problem is to assign each task to available resources so that the total

execution time (makespan) is minimized. Every scheduling is defined as a nonnegative

matrix E of nm elements. For instance, eij = 1 represents the task ti is assigned to

the virtual machine VMj.

3.3.2 Problem Formulation

Makespan is referred as the total execution time for the entire workflow T on the

available resources R. If the scheduling solution is written as:

Sch = {T,R, Ts, Tf}, (3.1)

where Tsand Tf are the start time and the finish time of task t on virtual machine r.

Therefore, makespan can be mathematically formulated as follows:
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Table 3.1: Relationship between immune system and cloud resource scheduling prob-
lem.

Immune system Resource scheduling problem
Antigen Scheduling problem
Antibody Solution

Immune cell gene sequence Mapping sequence of solution
Affinity Spantime

Makespan = max{Tfi} −min{Tsj} 1 ≤ i, j ≤ n, (3.2)

where max{Tfi} and min{Tsj} denote the latest finish time and the earliest start

time for all tasks.

3.4 Proposed Algorithm

In this section, an improved clonal selection algorithm (CSA) inspired by the nat-

ural immune system for resource scheduling is described. Before introducing the

proposed algorithm, the corresponding relationship between immune system and re-

source scheduling problem is illustrated in Table 3.1.

Like other evolution algorithms, CSA is usually used to solve optimization prob-

lems. Initially, a number of candidate solutions called individuals are generated ran-

domly. Then these solutions will be improved by clonal selection, affinity maturation,

and clonal proliferation. During each iteration, the affinity of the current solutions is

evaluated. Then a number of solutions are selected to proliferate. The proliferation

rate is directly proportional to their affinity level. In order to enhance the diversity of

solutions, some new antibodies will be added to current solutions by vaccine injecting.

The flowchart of the proposed algorithm for resource scheduling is illustrated in

Figure 3.2 and the notations are explained as Table 3.2.

Initialization:

A prespecified maximal generation number Gmax is given as the termination cri-

terion. Then generate the initial solution matrix Ass[M ][taskN ] randomly with the

value between 1 and vmNum.
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Figure 3.2: Flowchart of the proposed CSA for resource scheduling problem.

Evaluation:

Calculate the execution time of M solutions and then sort them in descending

order.

timeSum[m] =
taskNum∑

j=1

time[j][Ass[m][j]]. (3.3)

Clonal Proliferation Number Calculation:

Clone the M best solutions with a rate proportional to their affinities. The amount
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Table 3.2: Notations and definitions.
Notation Definition
vmNum Number of virtual machine(VM)
taskN Number of task
Gmax Maximal generation number
M Number of initial solution
clonalN Proliferation rate
time[i][j] Processing time of tasks i assigned to virtual machine j
Ass[M ][taskN ] Scheduling matrix
timeSum[M ] Total execution time of M solutions
V mtime[M ][vmNum] Execution time of each VM
assN [M ] Clone number of each solution
relate[M ] Affinity of each solution
V ar[M ][taskN ] Gauss mutation solutions

of clone generated for these solutions is determined by Equation 3.4:

assN [i] = (int) ∗ (clonalN ∗ relate[i]) i = 1, 2, ...,M, (3.4)

where relate[i] is the affinity of solution i calculated by Equation 3.5.

relate[i] = (maxT − timeSum[i])/(maxT −minT ) i = 1, 2, ...,M, (3.5)

where maxT , minT are the longest and shortest execution time of current solutions.

Vaccine Selection and Injection:

One antibody is selected as vaccine according to the following step:

(1) Calculate the selection probability of each antibody: pselect[i] = relate[i]/relatesum,

where relatesum =
∑M

i=1 relate[i]. Then the interval of selection probability of an-

tibody i can be described as [
∑i−1

j=1 pselect[j],
∑i−1

j=1 pselect[j] + pselect[i]]. It should be

notice that pselect[i] = 0 when i = 0.

(2) Generate a random number prand between [0,1], if
∑i−1

j=1 pselect[j] ≤ prand ≤∑i−1
j=1 pselect[j] + pselect[i], then antibody i is selected as vaccine V ac.

Then the vaccine will be injected like the following way:

(1) Generate an vector V = v1, v2, ..., vvmNum with the random number between
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[0, 2cloudletNum]. (2) Compare every bit of ith antibody with vector V , the jth bit of

current antibody will be replaced by V ac[j] if vj = 0.

Local Gauss Mutation:

In this paper, CloudSim is used for simulation and experimentation. CloudSim

is an open source toolkit and based on Java programming language. The method

nextGaussian() of class Random is used to generate Gaussian pseudo-random values.

Local Gauss mutation can be expressed as Equation 3.6 (where r is a random value

and pm is mutation probability):

V ar[i][j] = (int)(Ass[i][j]+pm∗r.nextGaussian()∗Math.pow(Math.E,−relate[i])).

(3.6)

Select M best solutions as elites and put them into Ass[][]. Repeat these opera-

tions until termination criteria is met.

3.5 Simulation and Comparison

This section presents the simulation results of the proposed algorithm and its com-

parison with first come first service (FCFS) strategy, greedy scheduling strategy, and

classical clonal selection algorithm.

There are some simulation tools, such as Cloud Analyst, EMUSIM, GroudSim,

and GreenCloud, which is used to analyze and evaluate the performance of new

scheduling methods. However, CloudSim is the most popular simulation tool for

resource scheduling. CloudSim is open source toolkit and implemented in university

of Melbourne with java programming language [82]. All the computational results in

this article are obtained by CloudSim.

In order to study the efficiency of the proposed algorithm,10 tasks will be scheduled

on 5 virtual machines. Simulation parameters are shown in Table 3.3.

For illustration purposes, an example of the scheduling solution AssBest[10] =

1, 1, 2, 2, 4, 5, 5, 5, 4, 3 for 10 tasks with 5 virtual machines is shown in Table 3.4. The

timing property of the scheduled task is shown in Table 3.5. Time means the execution
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Table 3.3: Simulation parameters and values.
Parameter Value
taskN 10
vmNum 5
VM [vmNum] 278,289,132,209,286
Host RAM 2048MB
Host storage 1000000
Host Bandwidth 10000
VM RAM 2048MB
VMM Xen
VM OS Linux
Number of CPU 1

Table 3.4: Example of one mapping solution.
Tasks t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
VMs VM1 VM1 VM2 VM2 VM4 VM5 VM5 VM5 VM4 VM3

time of one task processed by the assigned virtual machine. In this solution, task

t6, t7, t8 are assigned to VM5, and the processing time is 64.11s, 70.08s, and 110.11s

respectively. These three tasks will be processed by VM5 one by one. The Finish

time of VM5 is 0.1+64.11+70.08+110.11=244.40s. The execution time (makespan)

of this scheduling solution is the maximal VM finish time, that is 257.45s.

In order to further evaluate the efficiency of the algorithm, we measured the ex-

ecution time of the algorithm for different values of number of tasks and virtual

machines. Figure 3.3 shows the execution time in seconds versus the number of tasks

for various value of number of virtual machines. Figure 3.4 presents the execution

time in seconds versus the number of tasks and number of VMs. The results illus-

trated in Figure 3.3 and Figure 3.4 show linear or nearly linear increment versus each

parameter.

In addition, in order to evaluate the effectiveness of the improved clonal selection

algorithm, we compare the proposed algorithm with FCFS [111], greedy method [111],

and improved greedy method [112]. Table 3.6 shows the experimental results of cloud

computing resource scheduling problem with 10 tasks and 5 VMs. All simulation

results are run 10 times on Windows 10 64-bit system with 32GB RAM, and Intel(R)
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Table 3.5: Timing properties of scheduled task.
Task VM Time(s) Start Time(s) Finish Time(s)
6 5 64.11 0.1 64.21
1 1 69.66 0.1 69.76
5 4 80.16 0.1 80.26
3 2 104.56 0.1 104.66
7 5 70.08 64.21 134.29
9 4 147.02 80.26 227.28
10 3 234.97 0.1 235.07
8 5 110.11 134.29 244.40
2 1 179.17 69.76 248.92
4 2 152.79 104.66 257.45
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Figure 3.3: Execution time versus number of tasks for different VMs.

core(TM) i5-7200 CPU @ 2.50GHz. Computational results demonstrate that the

proposed algorithm outperforms other methods in small size cloud computing resource

scheduling problem.

3.6 Conclusions and Future Work

As a novel computing paradigm, cloud computing provides the software, storage,

database, infrastructure, hardware, and security as service to end users based on

their demands anywhere and anytime in pay-as-you-go model. Because of the special
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Figure 3.4: Execution time versus number of tasks and virtual machines.

characteristics of cloud computing including the agility, delegation of maintenance,

disaster recovery, elasticity, reliability, scalability and security, it has attracted much

attention during these years and has been applied to many categories. Meanwhile,

how to manage the applications and computing resources in a more efficient way

becomes a matter of great concern due to rapid growth of service demand. There-

fore, in this work, an improved clonal selection algorithm is proposed to deal with

the cloud computing resource scheduling problem. In this algorithm, a vaccine injec-

tion operation is designed to enhance the diversity of solutions. Furthermore, Gauss

mutation is used to improve ability to escape from local optima. The efficiency and

usefulness of the algorithm has been demonstrated by comparison with other resource

scheduling methods. The computational results depict that the proposed algorithm

performs better than FCFS by 42.4%, greedy method by 4.91%, and the improved

greedy method by 5.75 in terms of execution time.

However, in the proposed approach, we just use the execution time as optimization

objective. In reality, resource scheduling problem in cloud computing environment

are mostly influenced by many other factors such as cost, energy, resource utilization,

etc. The future work could focus on multi objective optimization algorithms so as to

solve the actual, complex cloud computing resource scheduling problem.
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Chapter 4

Novel Ant Lion-based Random
Walk Differential Evolution
Algorithm

4.1 Introduction

Recently, stochastic optimization algorithms with random operators have been ap-

plied in searching for global value in search space. Due to the existence of random

operator, these algorithms outperform its rivals such as deterministic algorithms.

Evolutionary algorithm (EAs) [113] is one of the stochastic optimizations algorithms.

EAs utilize the approach of stochastic operator to generate new populations when

searching for the global minimum of objective function in search space. EAs’ great

performance in getting rid of the local optima stagnation which most deterministic

algorithms are suffering from makes EAs widely used to solve optimum problems in

the area of industry.

Some wide-used algorithms in EAs’ family are briefly descried as follows: particle

swarm optimization algorithm (PSO) [114] simulates the social behavior of creatures,

such as bird flock or fish schooling. The ant colony optimization algorithm (ACO)

[115] is a stochastic search algorithm that simulates the process of natural ants seeking

source of food. The artificial bee colony algorithm (ABC) [116–118] is an optimization

algorithm that simulates the foraging behavior of honey bees. The genetic algorithm

(GA) [119] is a metaheuristic algorithm inspired by the process of natural selection
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strategy.

Differential evolution [26, 120–122] is another variant of EAs. In recent years,

DE with a simple population structure has shown its ability of solving various opti-

mization problem, arising from neural network learning [123] tasks, scheduling prob-

lems [124], etc. Inspired from genetic algorithm, DE generally has four main parts,

including initialization, differential mutation, crossover, and selection. In initializa-

tion, a random NP D-dimensional parameter vector is assumed as the population for

each generation G which is defined as:

xi,G = [1, 2, 3, ......D], i = 1, 2, 3, ......, NP. (4.1)

In the mutation procedure, the way of differential is considered as mutant vector

which is defined as:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G), (4.2)

where r1, r2, r3 ∈ [1, 2, 3..., NP ] are random indexes. F is the constant which repre-

sents the scaling factor. G denotes the generation.

The crossover operator is shown as follows:

uji,G+1 =

 vji,G+1, if rand ≤ CR

xji,G, if rand > CR
, (4.3)

where rand is a vector of the numbers randomly generated from 0 to 1. CR is the

user-defined crossover constant which is from 0 to 1.

In the selection procedure, the “one-to-one selection” rule is used to determine

whether the mutated individual is going to be one of the G + 1 generation or not.

Since the vector possessing better fitness should be guaranteed in the population, the

trail vector uji,G+1 is compared with the former vector xji,G . If uji,G+1 has a better

fitness, then it will survive in the population. Otherwise, xji,G will maintain in the

population.

Owing to its simple population structure, low computational complexity, and sol-



55

id theoretical foundations, DE has attracted many attentions and been successfully

applied on many practical problems. Readers can refer [125,126] for more such appli-

cations. Although DE has achieved great successes which is mainly due to its great

ability of exploring the search space, its performance is still limited, especially for

large-scale or dynamic problems [39,127]. To further improve the search capability of

DE, many attempts have been made by introducing new differential operators [127],

ensemble strategies [128], novel population structures [129], orthogonal crossover [130]

and external archive [131]. Moreover, hybridization of different algorithms is widely

accepted as a general framework to merge useful characteristics of algorithms, and

thus to improve its performance in terms of robustness and efficiency. For DE, many

such hybrid DE-based algorithms have been proposed in the literature. For example,

Gong et al. [132] proposed an algorithm combining DE with biogeography-based op-

timization. Lin et al. [133] proposed a hybrid evolutionary algorithm via combining

DE with the real-valued genetic algorithm.

In this paper, we propose a new variant of DE by incorporating the random walk

mechanism around the ant lion into the search of DE. The resultant hybrid algorithm

is called random walk based differential evolutionary (RWDE). In it, the main search

procedure is implemented by the original differential mutation and crossover opera-

tors in DE, while the random walk which is taken from the recently proposed new

algorithm, ant lion optimization algorithm, is carried out to make a complementary

role of balancing the exploration and exploitation of the search. The performance

of RWDE is verified on both complex numerical optimization problems and clus-

tering tasks. The experimental results based on thirty optimization instances and

one clustering problem demonstrate its superiority in terms of the solution accuracy.

Moreover, the statistical analysis shows that RWDE is significantly better than its

priors.

The rest of this paper is organized as follows: Section 4.2 introduces the hybridiza-

tion of random walk and DE, i.e., RWDE. Section 4.3, we represent the approach of

using RWDE to solve clustering problems. In Section 4.4, the paper discusses the re-

sults of RWDE on the benchmark function suit CEC’17 [134] and clustering problems.
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In Section 4.5, we conclude the work in the paper and give some future works.

4.2 Ant Lion based random walk DE

Ant lion optimizer [135] is inspired from the relationship between antlions and ants

in the trap. Using the antlion hunting as a model, ants are required to walk over

the searching space and the antlions need to catch them and get fitter. Thus, we

are supposed to define the random walk in this model. Random walk is a stochastic

process consisting of steps. It can be defined as:

Xn =
n∑

i=1

ri, (4.4)

where ri is a random step defined as a stochastic function:

ri =

 1, if rand > 0.5

−1 if rand ≤ 0.5
, (4.5)

where i is the step of random walk. rand is a uniformly generated random number

and rand ∈ [0, 1]. The interaction between the two neighbour random walk can be

defined as:

Xn =
n∑

i=1

ri =
n−1∑
i=1

ri + rn = Xn−1 + rn. (4.6)

Eq. (4.6) shows that the sequent step of the random walk only depends on the

current step. The number of steps is a given constant. Ants utilize the random walk

to update their positions in ever generation of the algorithm. Considering the search

space in this study generally has boundaries, a normalizing process on Eq.(4.4) is

implemented to ensure the ants are located within boundaries. Here, we use min-

max normalization function defined as:

X t
i =

(X t
i − ai)× (bi − cti)

(dti − ai)
+ ci, (4.7)
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where ai is the minimal value of the random walk of ith variable, bi is the maximal

value of the random walk of ith variable, cti is the minimal value of ith variable at tth

iteration, and dti is the maximal value of ith variable at tth iteration.

In this study, we consider that every vector in the population after the mutation

of DE is an ant lion in every iteration. We randomly generate the ants position

around these ant lions and use the way of random walk mentioned above to update

the position of ants. If the fitness of the ant position is better than that of the ant

lion, then let the ant in the position be a new ant lion to update the old one. The

pseudo-code of RWDE is given in Algorithm 1.

4.3 Evolutionary Clustering Analysis

As an important way of unsupervised learning, clustering is a technique of grouping

a set of objects which can be patterns or vectors into clusters. The objects in the

same cluster is similar and at the same time, objects in different clusters is dissimilar.

One of the remaining questions is how to measure the similarity for assigning objects

to the domain of a cluster center. One of the most popular ways of measuring the

similarity is the Euclidean distance which measures the distance between objects x

and y as:

d(x, y) =

√
|x1 − y1|2 + |x2 − y2|2 + ...+ |xn − yn|2. (4.8)

If the distance is smaller, the two objects are treated as more similar.

In general, clustering analysis has two main procedures: one is the technique of

measuring distance defined above and the other is the clustering algorithm. There

are various clustering algorithms, e.g., K-means and hierarchical clustering [136], in

the literature. In this paper, we use RWDE to deal with the clustering analysis

problem. First of all, clustering in N -dimensional Euclidean space RN is the process

of partitioning a given set of n points into a number, say K, of groups (or, clusters)

based on some similarity / dissimilarity metrics. Let the set of n points x1, x2, ..., xn

be represented by the set S, and the K clusters be represented by C1, C2, ..., Ck. Then
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we define: 
Ci ̸= ∅ for i = 1, 2, ...K

Ci

∩
Cj = ∅ for i = 1, 2, ...K, j = 1, 2...K, and i ̸= j∪

Ci = S

. (4.9)

Euclidean distances of the points are calculated from their respective cluster cen-

ters. Mathematically, the clustering metric for the K clusters C1, C2, ..., Ck is given

by:

D =
k∑
i

∑
x1∈Ci

||xj − zi| |. (4.10)

The task of the RWDE is to search for the appropriate cluster centers C1, C2, ..., Ck

to ensure that the clustering metric is minimized. The pseudo-code of RWDE for

clustering is given in Algorithm 2:

4.4 Experimental results

In this section, the proposed RWDE algorithm is tested on CEC’17 benchmark func-

tion suit. The population size is set as 100 and dimension is set to 30. The maximum

iteration in the algorithm is 3000. Additionally, for getting rid of the random error,

we run all the functions in the algorithm 30 times. Then we calculate their mean and

standard deviation of every function results. In addition, we compare the proposed

RWDE with some other evolutionary algorithms including differential evolution (DE),

ant lion optimization (ALO), particle swarm optimization algorithm (PSO) to show

its performance. The clustering problem is taken from [137]. The number of clusters

is set to 3 and the iteration is set to 200.

The results of the tested algorithms are summarized in Table 4.1 and the best

results are highlighted by bold values. The mean value of 30 independent runs denotes

the average performance of the algorithm, while the standard deviation (Std) reflects

the robustness of the algorithm. Obviously, it can be found that RWDE performs the

best for 27 out of 30 optimization functions in Table 4.1. Fig. 4.1 shows the typical
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convergence results of four functions (F16, F23, F24, and F26) selected out of the

30 functions, and it suggests that RWDE can converge fast to the optimal solutions,

especially in the latter search phases due to the incorporation of the random walk.

From it, it is apparent that the random walk which is performed as a local exploitation

operator enables DE to well balance its search exploration and exploitation. All

in all, it is obvious that the proposed RWDE algorithm obtains the best value on

most functions in comparison with DE, ALO and PSO, and also has competitive

performance on the remaining functions.

Then, Wilcoxon matched-pairs signed-rank test is used to precisely analyze the

performance among RWDE and its competitors. Wilcoxon’s test is a nonparametric

procedure, which is used for hypothesis testing involving two samples. Table 4.2

exhibits the result of the Wilcoxon’s test, and the p-values which are all smaller than

the significance level (i.e., 0.05) shows that RWDE is significantly superior to other

compared algorithms.

Fig. 4.2 is the convergence graph of the clustering and Fig. 4.3 is the graph

of clustering result by RWDE. In Table III, we compare the proposed RWDE with

K-means clustering. The minimum cost calculated by Eq. (4.10) of RWDE is far

smaller than that of K-means, which demonstrates that RWDE is more effective for

clustering problems.

4.5 Conclusions

In this paper, we proposed an ant lion-based random walk differential evolution al-

gorithm, namely RWDE, to improve its search ability. The random walk which is

constructed based on the ant lion optimization algorithm is used as a local search

operator in the differential evolution (DE). By doing so, it can be expected that the

search exploitation and exploration of DE can be well balanced, and thus improv-

ing its search efficiency. Experiment results based on thirty numerical optimization

functions and a clustering problem verified that the proposed RWDE can definitely

improve the performance of DE and other related algorithms in terms of solution
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(a) F16  (b) F23

(c) F24
(d) F26

Figure 4.1: Convergence graph of the compared algorithms on (a) F16, (b) F23, (c)
F24, and (d) F26.

quality and convergence speed. In the future, we plan to apply RWDE to multi-

ple objective optimization [138–140], combinatorial optimization problems [141–143],

vehicle routing problems [144,145], and neural network leaning tasks [30,146,147].
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Figure 4.2: Convergence graph of clustering by RWDE.
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begin
Initialization
Set t = 0; pop = GeneratePopulation(popsize, dim, low, up)
ant = GeneratePopulation(popsize, dim, low, up)
for iteration from 1 to maxcycle do

fitnesspop = function(pop)
for i from 1 to popsize do

// DE Mutation
popdifferential = popr1 + F · (popr2 − popr3)
// crossover
t = rand(1, dim) < CR
popdifferential = t ∗ popdifferential + (1− t) ∗ pop
// Random Walk Mutation
pA = random walk(antselectant)
pE = random walk(popelite)
anti =

pA+pE
2

end
for i from 1 to popsize do

if fitnessant < fitness(pop)differential then
Update u with anti
Update u with fitnessant

end
else

Update u with popdifferential
Update u with fitness(pop)differential

end

end
// Selection
for i from 1 to size do

if fitness(ui) < fitness(popi) then
Update popi with ui

Update fitness(pop)i with fitness(ui)

end

end

end

end
Algorithm 3: Pseudo-Code of RWDE
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begin
// Initialization
Set t = 0
Set K = 3
popi = GeneratePopulation(size, dim, low, up)
for iteration from 1 to maxcycle do

fitness(Pi) = Cost(popi)
// Mutation and crossover
ui = RWDE(Pi)
fitness(ui) = Cost(ui)
// Selection
for i from 1 to size do

if fitness(ui) < fitness(Pi) then
Update Pi with ui

Update fitness(Pi) with fitness(ui)

end

end

end

end
Algorithm 4: Pseudo-Code of Clustering via RWDE



64

T
ab

le
4.
1:

E
x
p
er
im

en
t
re
su
lt
s
of

R
W

D
E
an

d
D
E
on

C
E
C
’1
7.

R
W

D
E

D
E

A
L
O

P
S
O

M
ea
n

S
td

M
ea
n

S
td

M
ea
n

S
td

M
ea
n

S
td

F
1

1
.0
0
E
+
0
2

7.
92
E
-1
5

1.
00
E
+
02

6.
98
E
-1
5

1.
48
E
+
10

3.
78
E
+
09

5.
06
E
+
10

5.
45
E
+
09

F
2

1
.6
1
E
+
0
6

8.
65
E
+
06

3.
41
E
+
06

7.
28
E
+
06

1.
43
E
+
35

2.
90
E
+
35

1.
64
E
+
40

6.
91
E
+
40

F
3

3
.0
9
E
+
0
2

7.
10
E
+
00

3.
19
E
+
02

1.
63
E
+
01

7.
56
E
+
04

2.
09
E
+
04

1.
10
E
+
05

1.
50
E
+
04

F
4

4
.1
7
E
+
0
2

7.
04
E
-0
1

4.
59
E
+
02

1.
92
E
+
00

1.
63
E
+
03

3.
47
E
+
02

9.
69
E
+
03

1.
50
E
+
03

F
5

5
.3
7
E
+
0
2

1.
18
E
+
01

6.
78
E
+
02

7.
11
E
+
00

8.
00
E
+
02

2.
89
E
+
01

9.
25
E
+
02

2.
17
E
+
01

F
6

6
.0
0
E
+
0
2

2.
97
E
-0
8

6.
00
E
+
02

3.
84
E
-0
8

6.
58
E
+
02

9.
80
E
+
00

6.
86
E
+
02

4.
00
E
+
00

F
7

8
.5
9
E
+
0
2

5.
15
E
+
01

9.
07
E
+
02

1.
10
E
+
01

1.
28
E
+
03

6.
16
E
+
01

2.
16
E
+
03

1.
50
E
+
02

F
8

8
.4
0
E
+
0
2

1.
35
E
+
01

9.
77
E
+
02

1.
00
E
+
01

1.
08
E
+
03

2.
49
E
+
01

1.
19
E
+
03

2.
31
E
+
01

F
9

9
.0
0
E
+
0
2

0.
00
E
+
00

9.
00
E
+
02

0.
00
E
+
00

7.
10
E
+
03

1.
98
E
+
03

1.
46
E
+
04

1.
41
E
+
03

F
10

4
.2
8
E
+
0
3

5.
87
E
+
02

7.
80
E
+
03

3.
31
E
+
02

8.
51
E
+
03

2.
47
E
+
02

8.
26
E
+
03

3.
19
E
+
02

F
11

1
.1
2
E
+
0
3

1.
88
E
+
01

1.
16
E
+
03

3.
18
E
+
01

2.
62
E
+
03

4.
77
E
+
02

7.
08
E
+
03

1.
07
E
+
03

F
12

7.
83
E
+
03

4.
03
E
+
03

7.
43
E
+
03

5.
80
E
+
03

1.
37
E
+
09

3.
63
E
+
08

5.
98
E
+
09

6.
38
E
+
08

F
13

1
.3
8
E
+
0
3

7.
30
E
+
00

1.
38
E
+
03

7.
99
E
+
00

4.
49
E
+
08

1.
78
E
+
08

2.
42
E
+
09

5.
54
E
+
08

F
14

1
.4
6
E
+
0
3

6.
32
E
+
00

1.
46
E
+
03

3.
31
E
+
00

2.
89
E
+
05

2.
04
E
+
05

6.
05
E
+
05

2.
66
E
+
05

F
15

1
.5
3
E
+
0
3

9.
28
E
+
00

1.
53
E
+
03

8.
59
E
+
00

4.
94
E
+
07

3.
14
E
+
07

1.
80
E
+
08

8.
67
E
+
07

F
16

1
.9
0
E
+
0
3

2.
01
E
+
02

2.
21
E
+
03

4.
31
E
+
02

3.
81
E
+
03

2.
70
E
+
02

4.
41
E
+
03

2.
79
E
+
02

F
17

1
.7
5
E
+
0
3

1.
67
E
+
01

1.
78
E
+
03

8.
02
E
+
00

2.
67
E
+
03

2.
21
E
+
02

3.
02
E
+
03

1.
78
E
+
02

F
18

1
.8
4
E
+
0
3

3.
80
E
+
00

1.
84
E
+
03

3.
80
E
+
00

3.
48
E
+
06

2.
49
E
+
06

8.
58
E
+
06

2.
81
E
+
06

F
19

1.
92
E
+
03

6.
38
E
+
00

1.
91
E
+
03

5.
99
E
+
00

1.
07
E
+
08

4.
82
E
+
07

3.
06
E
+
08

1.
15
E
+
08

F
20

2
.0
3
E
+
0
3

1.
30
E
+
01

2.
03
E
+
03

2.
86
E
+
01

2.
84
E
+
03

1.
89
E
+
02

2.
80
E
+
03

8.
49
E
+
01

F
21

2
.3
4
E
+
0
3

1.
31
E
+
01

2.
46
E
+
03

9.
83
E
+
00

2.
57
E
+
03

2.
44
E
+
01

2.
69
E
+
03

1.
90
E
+
01

F
22

2
.3
0
E
+
0
3

0.
00
E
+
00

2.
30
E
+
03

0.
00
E
+
00

6.
78
E
+
03

2.
89
E
+
03

7.
74
E
+
03

4.
87
E
+
02

F
23

2
.6
9
E
+
0
3

1.
34
E
+
01

2.
82
E
+
03

8.
89
E
+
00

2.
97
E
+
03

2.
90
E
+
01

3.
26
E
+
03

4.
18
E
+
01

F
24

2
.8
6
E
+
0
3

1.
07
E
+
01

2.
99
E
+
03

1.
09
E
+
01

3.
12
E
+
03

2.
50
E
+
01

3.
46
E
+
03

4.
60
E
+
01

F
25

2
.8
9
E
+
0
3

2.
33
E
-0
2

2.
89
E
+
03

2.
72
E
-0
2

3.
73
E
+
03

2.
20
E
+
02

6.
44
E
+
03

5.
84
E
+
02

F
26

3
.8
4
E
+
0
3

1.
40
E
+
02

5.
11
E
+
03

1.
50
E
+
02

6.
62
E
+
03

7.
79
E
+
02

9.
72
E
+
03

4.
60
E
+
02

F
27

3
.1
9
E
+
0
3

8.
89
E
+
00

3.
19
E
+
03

1.
02
E
+
01

3.
21
E
+
03

1.
68
E
+
01

3.
79
E
+
03

8.
61
E
+
01

F
28

3
.1
3
E
+
0
3

5.
28
E
+
01

3.
14
E
+
03

5.
68
E
+
01

3.
75
E
+
03

4.
98
E
+
02

6.
34
E
+
03

3.
74
E
+
02

F
29

3
.3
5
E
+
0
3

3.
27
E
+
01

3.
48
E
+
03

1.
30
E
+
02

4.
71
E
+
03

2.
48
E
+
02

5.
56
E
+
03

2.
92
E
+
02

F
30

5.
01
E
+
03

5.
57
E
+
01

5.
00
E
+
03

5.
15
E
+
01

8.
16
E
+
07

3.
87
E
+
07

2.
86
E
+
08

8.
56
E
+
07



65

Table 4.2: Results obtained by the Wilcoxon test.
RWDE VS. R+ R− p-value

DE 356.5 78.5 0.001718

ALO 465 0 0.000002

PSO 447.0 18 0.00001

Table 4.3: Clustering Results of RWDE and K-means.
Minimum Cost

RWDE 370.36

K-means 593.391

Figure 4.3: Cluster result graph of RWDE.
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Chapter 5

Hybrid Hypercube and Spherical
Evolution

5.1 Introduction

Nature-inspired meta-heuristic (NMH) algorithms are a class of optimizers that simu-

late the evolutionary process or social behavior of creatures for complex real-world op-

timization problems [148], e.g., traveling salesman problem [149,150], multi-objective

optimization problem [94, 151], graph planarization problem [141, 152] and dynamic

problem [39]. Genetic algorithm is one of the classic evolutionary algorithms based on

Darwinian theory, where crossover and mutation operators are adopted to simulate

the natural selection process [153]. As a representation of algorithms inspired by the

social behavior of animals, practical swarm optimization imitates the bird flocking

or fish schooling [154]. In recent two decades, more and more NMH algorithms were

proposed, such as gray wolf optimization which is inspired by the leadership hierarchy

and hunting mechanism [155], artificial immune system which simulates the learning

and adaptive mechanisms of living organisms in protecting themselves against anti-

gens [156–158], ant colony optimization [115,159] and artificial bee colony algorithm

which mimic the foraging behavior of an ant and bee colony [160, 161], respectively,

and so on [26, 162, 163]. Although these new algorithms are inspired by differen-

t animals or behaviors, there is no quintessential difference among them. A study

found that most of NMH algorithms support a mathematical formation named search
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pattern which can be represented as Eq. (5.1) [164].

Xnew
i,d = Xold

i,d +
∑n

k=1 S
(
Xk

α,d, X
k
β,d

)
, (5.1)

where Xi,d indicates the value of the dth dimension in the ith solution, and Xα and

Xβ are two certain solutions selected by a selection strategy. S(·) represents the

updating units in the search operator named search style, and n denotes the number

of updating units. Most of NMH algorithms adopt hypercube search style that is the

first-order difference among solutions as the updating unit, and it can be represented

as Eq. (5.2).

HS (Xα,d, Xβ,d) = SF1() · (SF2() ·Xα,d − SF3() ·Xβ,d) , (5.2)

where SF1(),SF2(),and SF3() are three scaling factor functions used to adjust the

scale of difference between Xα and Xβ.

Different search style determines the different characteristic of the search operator

and affects the performance of the algorithm. In this paper, we adopt a combina-

tion of two different search styles as a united search operator to propose a hybrid

metaheuristic algorithm HHS which adopt both the hypercube and spherical search

styles. Also, we design a sophisticated control rule to use these search styles, aim-

ing to well balance the exploration and exploitation of the search. Experimental

results based on numerical optimization problems demonstrate the effectiveness and

outstanding performance of the proposed hybrid algorithm in comparison with other

the-state-of-the-art algorithms.

The rest of this paper is organized as follows: a brief introduction of sphercial

evolution is given in Section 5.2. The hybrid algorithm HHS is presented in Section

5.3. The experimental results and discussions are given in Section 5.4. Finally Section

5.5 gives conclusions and some future works.
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5.2 Spherical Evolution

Spherical evolution (SE) was proposed by Tang in 2019. It was composed of a spher-

ical search style instead of a hypercube search style, and use a selection strategy

similar to differential evolution [164]. Different from the rectangular search space of

the hypercube search style in two-dimension space, the spherical search style presents

a circular search space, and the exploration ability of spherical search is stronger than

the hypercube search, which means spherical evolution can widely search the whole

search space and avoid local optimal more possibly. The spherical search style can be

represented as Eq. (5.3)-(5.7) in high-dimension, two-dimension, and one-dimension,

respectively [165].

SS≥3 (Xα,d, Xβ,d) = SF() · ∥Xα,∗ −Xβ,∗∥2

·
dim−1∏
k=d

sin (θj) , d = 1

,

(5.3)

SS≥3 (Xα,d, Xβ,d) = SF() · ∥Xα,∗ −Xβ,∗∥2 · cos (θd−1)

·
dim−1∏
k=d

sin (θj) , 1 < d ≤ dim−1,
(5.4)

SS≥3 (Xα,d, Xi,d) = SF() · ∥Xα,∗ −Xβ,∗∥2

· cos (θd−1) , d = dim,
(5.5)

SS2 (Xα,d, Xβ,d) = SF () · ∥Xα,∗ −Xβ,∗∥2 · sin(θ)

SS2 (Xα,d, Xβ,d) = SF () · ∥Xα,∗ −Xβ,∗∥2 · cos(θ),
(5.6)

SS1 (Xα,d, Xβ,d) = SF () · |Xα,d −Xβ,d| · cos(θ), (5.7)

where ∥Xα,∗ −Xβ,∗∥2 denotes the radius of sphere computed by Euclidean norm in

high dimension, θ donetes the angle between Xα,∗ and Xβ,∗ and it is generated by a

random number of uniform distribution between [0, 2π].
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The main characteristic of spherical search style is the larger search range and an

undirected search trajectory which can provide more promising evolutionary paths

in comparison with the hypercube search style. Besides, contrary to the unidirec-

tional evolution that is easy to fall into local optimal, undirected evolution may help

algorithms escape local optima. However, the disadvantages of undirected evolution

are duplicated search and slow convergence speed, because the rotation angle is a

random distribution between [0, 2π], which a high risk of generating an opposite to

the pervious evolutionary direction. Both unidirectional and undirected evolution are

needed for an effective metaheuristic algorithm, though it is difficult to coordinate

each other.

5.3 Hybrid Hypercube and Shperical Evolution

5.3.1 Motivation

The performance of evolutionary algorithms depends on two main aspects. One is

the ability to search an effective evolutionary direction that can improve the current

individual or population. Another is the ability to continue searching in the vicinity of

that effective evolutionary direction until reach optima [21]. As mentioned above, the

spherical search style has more opportunities to find an effective evolution direction

which is benefit for powerful exploration. Meanwhile the possibility of searching in

an ineffective direction that escaping from the global optima can also be increased.

Contrary to the spherical search style, the exploitation that can search in neighbors of

effective direction is more powerful than exploration in hypercube search style. This

naturally motivate us to propose a hypothesis of whether the combination of these

two search styles may make the search perform better.

5.3.2 The Principle of HHS

Based on the above motivation, we proposed a hybrid hypercube and spherical (HHS)

evolution algorithm. The core of the proposed algorithm can be described as three
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steps:

(1) Let initial individuals in the population search by the spherical style and prop-

agate them to the next generation.

(2) Evaluate the offsprings to verify whether the algorithm has found an effective

evolutionary direction or not.

(3) Determine the search style of individuals in the current generation based on the

results of the previous step and the search style of their parent. Repeat step

(2) and (3) until fulfilling the termination conditions.

Specifically, there are four situations should be considered.

(a) When the offspring is better than its parent by the spherical search, it should

continue in the same direction by a hypercube search operator

(b) When the offspring is not better than its parent by the spherical search, it

should find another direction by a spherical search operator

(c) When the offspring is better than its parent by the hypercube search, it should

continue in the same direction by a hypercube search operator

(d) When the offspring is not better than its parent by the hypercube search, it

should find another direction by a spherical search operator

The Pseudo-code of HHS is shown as in Algorithm 5. Parameter F0, σ0, and flag

of an individual present the initial scale factor in the hypercube search, the initial

variance of Gauss distribution in SF turning and the search styles of the parent of

xi which are setted to 2.5, 0.5 and 0 (means spherical the style), respectively. The

turning methods of SF and DSF are same as these in SE. It should be noted that

we use σ instead of 0.1 as variance in Gauss distribution. In HHS, k in the spherical

mutation is dependent on the mutation dimensions d which are selected by DSF. EPi

and Fi in the spherical mutation represent the effective path that made xi better

than its parent and corresponding scale factor, respectively. It is worth noting that
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Figure 5.1: Convergence graph of F4.

an adaptive parameter control strategy is embedded into four situations mentioned

above. In case (a), an effective path has been found, a tentative hypercube search

should be performed as lines 23-25 in Algorithm 5. In case (b), expanding the search

range may also increase the probability of finding an effective path as line 35. In case

(c), the step size should be increased to obtain faster convergence as realized by line

21. In case (d), the optimal area may have been missed, therefore we need to adjust

the direction rather than expanding the search range as implemented in line 31-33.

5.4 Experimental Results

To verify the performance of the proposed HHS algorithm, 30 benchmark function-

s of CEC2017 which composed of unimodal functions (F1-F3), simple multimodal

functions (F4-F10), hybrid functions (F11-F20) and composition functions (F21-F30)

are adopted to experiment. Besides SE, HHS was compared with three state-of-the-
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Figure 5.2: Convergence graph of F20.

art algorithms including differential evolution (DE) [120], hierarchical gravitational

search algorithm (HGSA) [166] and genetic learning practical swarm optimization

(GLPSO) [167]. Each algorithm was run 30 times with population size 100, and the

maximum number of the function evaluationsD∗1E+4 where D is the dimension size.

It is worth mentioning that the DE/current/r1 of DE and SE06 of SE are adopted

to test. The parameter setting as shown in Talbe 5.3. The experiment results are

listed in Talbe 5.1 where the highlighted ones are the best. In it, the obtained results

are the errors between the returned the number of tested functions for which function

values and the known best optimal value. Additionally, W/T/L denotes the proposed

algorithm HHS performs significantly better/tied/worse than its competitor under a

significance level 5%. The analysis results of Wilcoxon matched-pairs signed-rank

test are presented in Table 5.2. The representative convergence and box-and-whisker

plot results are exhibit in Figs. 5.1-5.4.

It is obvious that the proposed HHS algorithm performs superior on composition
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Figure 5.3: Convergence graph of F23.

functions, and competitive on other functions in comparison with those state-of-the-

art algorithms according to Table 5.1 and Table 5.2. Moreover, it is worth noting that

the overall slope of the curve belongs to HHS is larger than that of other algorithms in

Figs. 5.1-5.3. This characteristic reveals that the algorithm is not easy to premature

convergence and drop into local optimum, which demonstrates our assumption that

combining the advantages of spherical search and hypercube search is reasonable. We

can also observe that HHS is still convergent when the search is adjacent to the ter-

mination condition. We convince that HHS can perform better than other algorithms

after increasing the number of function evaluations. As a result, we can conclude that

the proposed hybrid hypercube and spherical evolution algorithm performs effective

and robust on optimization problems.
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Figure 5.4: Box-and-whisker graphs of F4, F20 and F23.

5.5 Conclusions

In this paper, we study the characteristic of two different and interrelated search

styles, i.e., the hypercube search and spherical search. We find that these two search

styles affect two main abilities of the algorithm from the perspective of exploration and

exploitation. Inspired by it, we propose a hybrid hypercube and spherical evolution

(HHS) algorithm with an exquisite parameter control strategy. To assess the perfor-

mance of the proposed HHS algorithm, we compared it with SE06, DE/current/r1,

HGSA and GLPSO on benchmark functions in CEC2017. Experimental results prove

the superior performance of HHS. In the future, we want to turn our attention to solve
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some real-world problems, e.g., Internet of vehicles [145, 168], multiple-valued logic

network synthesis [169,170] and protein structure prediction [139,140].
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begin
/* Initialization */
for i = 1 to M do

Randomly initialize xi

Evaluate f(xi)

end
while Termianal Condition do

Scale factor (SF) tuning with N(0, σ)
Dimension selection factor (DSF) tuning
for i = 1 to M do

Select two distinct individuals xr1 and xr2 randomly, i ̸= r1 and
i ̸= r2
if flagi == 1 then

/* Spherical mutation */

x
′

i,d = xi,d + SSk (xr1,d, xr2,d)

end
else

/* Hypercube mutation */

x
′
i = xi + Fi · EPi

end

Evaluate f(x
′
i)

if f(x
′
i) < f(xi) then

if flagi == 1 then
Fi = Fi + U(0, 0.1)

end
flagi = 1
Fi = Fi − U(0, 0.1)
σ(i) = σ0

EPi = x
′
i − xi

xi = x
′
i

end
else

if flagi == 1 then
flag(i) = 0
F(i) = F0
σ(i) = σ(i)− U(0, 0.1)

end
else

σ(i) = σ(i) + U(0, 0.1)
end

end

end

end

end
Algorithm 5: Proce-dures of HHS
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Table 5.2: Results obtained by the Wilcoxon test for algorithm HHS
VS R+ R− Exact P-value Asymptotic P-value
SE06 359.0 106.0 0.008142 0.008997

DE/current/r1 363.0 102.0 0.006194 0.00705
HGSA 276.0 189.0 ≥ 0.2 0.365462
GLPSO 377.0 88.0 0.002188 0.00286

Table 5.3: Parameter setting of algorithms.
Algorithm parameters

HHS F0 = 2.5, σ = 0.5
SE06 σ = 0.1

DE/current/r1 F = 0.5CR = 0.9
HGSA G0 = 100, L = 100, w1(t) = 1− w2(t), w2(t) = t6/T 6, K ∈ [n, 2]
GLPSO ω = 0.7298, c = 1.49618, pm = 0.01, sg = 7
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Chapter 6

Conclusions

In this thesis, I studied two kinds of swarm intelligent algorithms. One is immunolog-

ical algorithms which include clonal selection algorithm and quantum immunological

algorithm. The other is evolutionary algorithm which involve ant lion algorithms,

differential evolution algorithms, hypercube evolution algorithm, and spherical al-

gorithms (especially the mechanisms used in particle swarm optimization). Several

new mechanisms are proposed for the above mentioned algorithms to further improve

their performance. Practical applications of optimization problems are carried out

to verified their effectiveness. The contributions of this thesis can be summarized as

follows.

(1) For one of the most popular immunological algorithm, i.e., clonal selection al-

gorithm, I re-examine its basic theories and proposed two kinds of novel variants. The

first one is a quantum clonal selection algorithm and its performance is confirmed by

applying it on two typical combinatorial optimization problems. The main novelty of

the proposed quantum clonal selection algorithm is the proposal of the combination of

clonal selection theory and receptor editing, wherein a complete receptor editing op-

eration based quantum clonal selection algorithm is proposed and a complete receptor

editing operation based quantum interference crossover is introduced to alleviate the

limitations of asexual proliferation during the immune maturation process. Exten-

sive experimental results based on traveling salesman problems and holes machining

path planning demonstrated the superiority of the proposed method in comparison

with some other traditional immunological algorithms. On the other hand, I also
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proposed another novel immunological algorithm based on clonal selection theory.

The improved one is innovatively incorporated with a vaccine injection operator to

maintain the diversity of B cells (i.e., solution population), and a Gaussian mutation

operator which is aimed to enhance the algorithm to get out of the local optima once

it is trapped. A more practical application is used, that is, to optimize the resource

scheduling in cloud computing. The comparative results indicated that the proposed

method is faster than other three typical algorithms.

(2) For evolutionary algorithms, I also studied two kinds of improved variants

which is a hybridization of ant lion optimization with differential evolution, and an-

other hybridization one by combing hypercube evolution with spherical evolution.

Recently, hybridization of different algorithms is a common research framework for

improving the search performance of algorithms according to the famous No Free

Lunch Theorem. However, the questions of how to combine different algorithms and

what kind of algorithms can be merged together to be an unified one, aiming to

achieve better search performance, are still very challenging. In this thesis, I success-

fully give two examples of such hybridization which might give more insights into the

above challenging issues.

In the future, I plan to apply the above improved algorithms to solve more kinds of

combinatorial optimization problems, including set-union knapsack problem, general-

ized max-mean dispersion problem, equitable coloring problem, traveling repairman

problem with profits, minimum differential dispersion problem, and so on.
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