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In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision op-
erator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method
(IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function
into symmetric and antisymmetric components and define the relaxation parameters for each part.
The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component
is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that
the relaxation time for the antisymmetric part controls the velocity gradient, the boundary veloc-
ity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear
flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles
of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework
exactly agree with those of the multi-relaxation time (MRT). The TRT is as effective in removing
the boundary slip as the MRT. We demonstrate analytically and numerically that the error of the
boundary velocity is caused by the smoothing technique using the delta function used in the inter-
polation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the
implicit correction method with the TRT succeeds in preventing the flow penetration through the
solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and
the separation points calculated by the present IB-LBM agree well with previous studies at Re =
10, 20, and 40.

PACS numbers: 47.11.-j, 02.60.Lj, 02.60.-x, 83.50.Rp

I. INTRODUCTION

The immersed boundary method (IBM) calculates
fluid dynamics on an Eulerian grid and the particle mo-
tion on a Lagrangian grid in order to simulate the dy-
namics of solid particles in an incompressible viscous
fluid [1]. In the lattice Boltzmann method (LBM), the
Navier-Stokes equations are solved by the motions of
the distribution functions streaming along discrete lat-
tices based on the uniform Cartesian mesh [2]. Since
the Cartesian mesh is used for fluid dynamics in both
methods, the IBM is applied to the LBM with the effi-
ciency in terms of the computational effort and memory
requirement. Feng and Michaelides first proposed the im-
mersed boundary-lattice Boltzmann method (IB-LBM),
which treats a body force density as a spring force of a
deformable boundary with a high stiffness [3]. Such a
body force density is distributed into the Eulerian nodes
of the grid to calculate interaction between the fluid and
particles. A variety of IB-LBMs based on the momentum
and energy conservation have been proposed for comput-
ing the force or heat balance between a solid wall and a
fluid [4–8].
Le et al. proved that the numerical errors in the veloc-

ity and the velocity gradient at the boundary, which are
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referred to collectively as boundary slip, increase with
the relaxation time τ [9]. In order to reduce boundary
slip, we proposed an IB-LBM using a two-relaxation-time
(TRT) model for the collision operator [10, 11]. In the
TRT model, we decompose the distribution function into
symmetric and antisymmetric components. The relax-
ation time for the symmetric part of the velocity dis-
tribution function is used to determine the kinematic
viscosity in the Navier-Stokes equations, whereas that
for the antisymmetric part is used to improve the nu-
merical accuracy. Ginzburg et al. extended the TRT
model to the anisotropic advection dispersion equation
and investigated the effect of a specific combination of
two relaxation parameters on the accuracy by Chapman-
Enskog analysis and Fourier analysis. Using von Neu-
mann stability analysis, Ginzburg et al. proved that
the TRT model is more stable than the single relaxation
time (SRT) collision model, especially in the advection-
dominant region [12].

Although two- and three-dimensional simulations of
particle motion in an incompressible viscous fluid demon-
strated that the IB-LBM with the TRT reduced the
boundary slip, theoretical proofs were not given in Refer-
ence [11]. Lu et al. numerically and analytically demon-
strated that the use of multi-relaxation time (MRT) [13]
solved the problem of boundary slip in the IB-LBM [14].
Although more than one relaxation time in the colli-
sion operator removes the boundary slip of the IB-LBM,
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one problem remains, i.e., the disagreement between the
boundary velocity uj0 on the Eulerian node and the de-
sired velocity ud [14].
In the present study, we apply an error analysis pro-

posed by Le and Zhang [9] and He et al. [15] to the IB-
LBM in order to compare the accuracy of the TRT model
to that of the MRT model. In order to investigate the
disagreement between uj0 and ud, we examine the delta
function used in the velocity and force interpolations be-
tween the Lagrangian nodes and the Eulerian nodes in
the IB-LBM. A comparative study on the simulations of
the flow past a circular cylinder calculated by various IB-
LBMs will clarify the influence of the boundary slip and
the streamline penetration on the drag coefficient, the
wake length, and the separation points.

II. IMMERSED BOUNDARY-LATTICE
BOLTZMANN METHOD

A. Lattice Boltzmann method

The LBM for the incompressible Navier-Stokes equa-
tions uses the following kinetic equations for the distri-
bution function fk:

fk(x+ ekδt, t+ δt) = fk(x, t)

−fk(x, t) − f
(eq)
k (x, t)

τ
+ δtFk(x, t), (1)

where ek is the particle discrete velocity, δt is the time
step, and τ is the relaxation time. The Bhatnagar-Gross-
Krook (BGK) single relaxation time (SRT) approxima-
tion is used for the collision matrix.

The fluid density and velocity are written in terms of
the distribution function as follows:

ρ =
∑

k

fk, u =
1

ρ

∑

k

fkek. (2)

The pressure is calculated by p = c2sρ. The speed of

sound cs is c/
√
3, where c is the lattice velocity magni-

tude. The D2Q9 model is used in the present study. The
discrete velocities are defined as

ek =







(0, 0), k = 0,

c(cos(π(k−1)
2 ), sin(π(k−1)

2 )), k = 1− 4,√
2c(cos(π(2k−9)

4 ), sin(π(2k−9)
4 )), k = 5− 8.

(3)

The equilibrium distribution function for the D2Q9
model is given by

f
(eq)
k = ωkρ

[

1 +
3ek · u
c2

+
9(ek · u)2

2c4
− 3u · u

2c2

]

, (4)

where ωk are the weight coefficients, i.e., ω0 = 4/9,
ω1−4 = 1/9, and ω5−8 = 1/36.
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(a) Schematic diagram of a symmetric shear flow and a
symmetric Poiseuille flow
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(b) Schematic diagram of a cylindrical Couette flow

FIG. 1. Schematic diagrams of a symmetric shear flow, a
symmetric Poiseuille flow, and a cylindrical Couette flow. The
circles indicate the boundary nodes xb and fluid nodes xf used
in the IB-LBM.

Applying the Chapman-Enskog expansion to Eqs. (1)
and (4) yields the following macroscopic equations:

∂ρ

∂t
+∇ · (ρu) = 0, (5)

∂ρu

∂t
+∇ · (ρuu) = −∇p

+ν∇ · [ρ(∇u+ (∇u)T )] + ρG, (6)

where G is a body force. The kinematic viscosity ν is
determined as

ν =
(2τ − 1)δ2x

6δt
, (7)

where δx is the Eulerian mesh size, which satisfies δx =
cδt.
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As shown in Fig. 1, the immersed boundary method
sets the Lagrangian points xb in uniform Cartesian co-
ordinates to represent the boundary of an arbitrarily
shaped body in a viscous incompressible fluid. The force
density G is used to calculate the interaction between
the boundary node xb and the Eulerian grid xf . Among
the numerous effective methods of computing the force
G in the IB-LBM, we herein consider three typical meth-
ods: the direct forcing method [4], the implicit correction
method [6], and the split forcing method [14].

B. Direct forcing method with a single relaxation
time [4]

The direct forcing method evaluates the force density
G(xb, t) at the Lagrangian points as follows:

G(xb, t) =
u
d(xb, t)− u(xb, t)

δt
, (8)

where u
d is the desired wall velocity on the boundary

nodes. The velocity u(xb) is evaluated through the in-
terpolation of the velocities at the neighboring fluid nodes
xf using a discrete delta function D(x) as follows:

u(xb, t) =
∑

f

u(xf , t)D(xf − xb)δ
2
x. (9)

In a two-dimensional coordinate system x = (x, y),
D(x) is expressed as

D(xf − xb) = δ(xf − xb)δ(yf − yb), (10)

where

δ(r) =

{

1
2d

(

1 + cos
(π|r|

d

))

|r| ≤ d
0 |r| > d

. (11)

For two-way fluid-solid coupling, we need to distribute
the force density G(xb) to the fluid nodes. We obtain
G(xf ) in the Eulerian coordinate system by interpolating
G(xb) as

G(xf , t) =
N
∑

b

G(xb, t)D(xf − xb)∆s, (12)

where N is the total number of Lagrangian points, and
∆s is the discrete volume (area) for each Lagrangian
point. Equation (12) indicates that the body force at
the boundary node is distributed to the fluid nodes in
the 2d × 2d square shown in Fig. 1(a). For a flat plate
of length L in the symmetric shear flows and in the sym-
metric Poiseuille flows, ∆s = Lδx/N . For the circular
cylinder of radius R in cylindrical Couette flows shown
in Fig. 1(b), we use ∆s = 2πRδx/N , following Refer-
ence [16].
The forcing term in Eq. (1) can be written as

Fk =
3ρωk

c2
G · ek. (13)

The solution procedure of the IB-LBM based on the
direct forcing method with the SRT can be summarized
as follows:

(1) Solve Eq. (1) to obtain the distribution functions
fk and compute the macroscopic variables ρ and u

using Eq. (2).

(2) Obtain the velocities at the Lagrangian points us-
ing Eq. (9), and compute the force density using
Eq. (8).

(3) Distribute the force density to Eulerian points us-
ing Eq. (12).

(4) Compute the forcing term Fk using Eq. (13), and
substitute Fk into Eq. (1).

(5) Compute the equilibrium distribution functions feq
k

using Eq. (4).

(6) Return to step (1).

C. Implicit correction method with the single
relaxation time [6]

Wu et al. proposed the IB-LBM using the external
forcing term proposed by Guo et al., which can take into
account the effect of the external force on the momen-
tum and momentum flux as well as the discrete lattice
effect [6, 17].
Guo redefined the fluid density, the velocity, and the

forcing term in Eq. (1) as follows:

ρ =
∑

k

fk, u =
1

ρ

∑

k

fkek + δt
G

2
, (14)

Fk =
(

1− 1

2τ

)

ρωk

[

3ek ·G
c2

+
9(uG : ekek)

c4
− 3u ·G

c2

]

. (15)

In the implicit correction method, Eq. (14) is solved in
order to obtain the velocity correction δu = δt

2 G at all
boundary points. This scheme can enforce the non-slip
boundary condition and reduce the streamline penetra-
tion into the solid surface. Equation (14) can be rewrit-
ten as

ρ =
∑

k

fk, u = u
∗ + δu. (16)

Here, the intermediate velocity u
∗ is defined as follows:

u
∗ =

1

ρ

∑

k

ekfk. (17)

Substituting the corrections δu = δt
2 G into Eq. (12),

we obtain

δu(xf , t) =

N
∑

b

δu(xb, t)D(xf − xb)∆s. (18)

The fluid velocity u(xb) should be equal to the wall ve-
locity u

d(xb) at the boundary points xb in order to satisfy
the non-slip boundary condition. From Eqs. (9), (16),
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and (18), we obtain the following simultaneous equations
for the unknown velocity δu:

u
d(xb) =

∑

f

u
∗(xf )D(xf − xb)δ

2
x

+
∑

f

∑

b′

δu(xb′)D(xf − xb′)∆sD(xf − xb)δ
2
x. (19)

Equation (19) can be expressed in matrix form as fol-
lows:

AX = B, (20)

where

X = (δu1, δu2, · · · δuN )T , (21a)

B = (∆u
1
b ,∆u

2
b , · · ·∆u

N
b )T , (21b)

∆ub = u
d(xb)−

∑

f

u
∗(xf )D(xf − xb)δ

2
x. (21c)

Here, T denotes the transpose operator.
The elements of matrix A are computed as a function

of the distance between the Lagrangian boundary points
and their neighboring Eulerian points. We obtain the
unknown velocity correction at all Lagrangian points by
solving Eq. (19), and can then easily compute the force
as follows:

G =
2δu

δt
. (22)

We solve the simultaneous equations given by Eq. (20)
using a direct method through the lower-upper triangu-
lar (LU) decomposition. The solution procedure of the
implicit correction method for the IB-LBM can be sum-
marized as follows:

(1) Set the initial values and compute the elements of
matrix A and inverse matrix A−1 for Eq. (20).

(2) Solve Eq. (1) to obtain the distribution functions
fk and compute ρ, u∗ using Eqs. (16) and (17).

(3) Solve Eq. (20) for the velocity correction δu and
obtain G at all boundary points using Eq. (22).

(4) Use Eq. (12) to spread the force density to the Eu-
lerian points.

(5) Correct the fluid velocity at Eulerian points using
Eq. (16).

(6) Compute the forcing term Fk using Eq. (15).

(7) Compute the equilibrium distribution function feq
k

using Eq. (4).

(8) Return to step (2).

D. Split forcing method with the multi-relaxation
time [14]

The dynamic equation adapted to the multi-relaxation
time collision scheme is described in concise vector form
as follows:

|f(x+ eδt, t+ δt)〉 = |f(x, t)〉
−M−1{S[|R(x, t)〉 − |R(eq)(x, t)〉] (23)

+(I − S/2)Mδt|F (x, t)〉},
where |f〉 is the distribution function in vector form, M
is the transformation matrix, S is the diagonal relaxation
matrix, |R〉 is the moment vector, |R(eq)〉 is the equilib-
rium moment vector, and I is the unity matrix.
For the D2Q9 model, the standard multi-relaxation

time scheme is organized as follows:

|f〉 = (f0, f1, f2, f3, f4, f5, f6, f7, f8)
T , (24)

S = diag(0, se, sǫ, 0, sq, 0, sq, sv, sv), (25)

|R〉 = (ρ, e, ǫ, jx, qx, jy, qy, pxx, pxy)
T . (26)

|R(eq)〉 = ρ(1,−2 + 3(u2 + v2), 1− 3(u2 + v2),

u,−u, v,−v, u2 − v2, uv)T , (27)

M =



























1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1



























, (28)

where u = (u, v). The matrix M projects |f〉 onto |R〉
such that |R〉 = M |f〉, and |R(eq)〉 = M |f (eq)〉.
Here, |F 〉 represents the forcing term proposed by

Guo [17].

Fk = ρωk

[

3ek ·G
c2

+
9(uG : ekek)

c4
− 3u ·G

c2

]

. (29)

The kinematic viscosity of the MRT model is related
to the relaxation time parameter sv:

ν =
δ2x
3δt

(

1

sv
− 1

2

)

. (30)

The theoretical analysis for the symmetric shear flow
yields the following equation:

sq =
8− 4sv
4 + 7sv

, (31)

to reduce the boundary slip. Lu proved that no spe-
cial restrictions need to be imposed on se or sǫ [14]. In
Eq. (25), we assume that se = sv and sǫ = sv.
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The following direct forcing formula [18] is chosen for
the split forcing method:

G(xb, t) = 2
u
d(xb, t+ δt)− u

∗(xb, t+ δt)

δt
, (32)

where u∗ is an intermediate velocity defined by Eq. (17).
The procedure of the split forcing method with the

multi-relaxation time can be concisely illustrated as
follows:

(1) Solve Eq. (23) without the forcing term as

|f(x+ eδt, t+ δt)〉 = |f(x, t)〉
−M−1S[|R(x, t)〉 − |R(eq)(x, t)〉], (33)

and compute ρ(xf ) and u
∗(xf ) using Eqs. (16) and

(17).

(2) Interpolate the velocities u∗(xb) from u
∗(xf ) using

Eq. (9), and compute G(xb) using Eq. (32).

(3) Compute G(xf ) using Eq. (12).

(4) Compute the forcing term Fk using Eq. (29), and
solve Eq. (23) to obtain the distribution functions
|f(x+ eδt, t+ δt)〉.

(5) Compute the macroscopic variables ρ and u using
Eq. (14), and compute feq

k using Eq. (4).

(6) Return to step (1).

In the following section, we numerically and analyti-
cally compare the effects of reducing the boundary slip
of the TRT and MRT models. Before presenting the
numerical and analytical solutions of the TRT-based IB-
LBMs, we summarize the algorithms of the direct forcing
methods and of the implicit correction methods that use
more than one relaxation time.

E. Direct forcing method with multiple relaxation
times

The TRT collision model takes the counterpart of each
velocity vector ek̄ that faces the opposite direction of ek,
i.e., ek̄ = −ek. For instance, e1̄ = −e1 = e3 in the
D2Q9 model. The distribution function fk and its coun-
terpart with the opposite velocity fk̄ generate the sym-
metric (even) f+

k and antisymmetric (odd) components

f−
k [10]:

f±
k =

fk ± fk̄
2

, f
±(eq)
k =

f
(eq)
k ± f

(eq)

k̄

2
,

fk = f+
k + f−

k , f
(eq)
k = f

+(eq)
k + f

−(eq)
k . (34)

For the rest particle, f+
0 = f0, f

+(eq)
0 = f

(eq)
0 , f−

0 = 0,

and f
−(eq)
0 = 0.

The discrete evolution equation solved in the LBM
with the TRT collision operator is given by

fk(x+ ekδt, t+ δt) = fk(x, t)−
f+
k (x, t)− f

+(eq)
k (x, t)

τ+

−f−
k (x, t)− f

−(eq)
k (x, t)

τ−
+ δtFk(x, t), (35)

where τ± are the relaxation times. When τ+ = τ− = τ ,
Eq. (35) becomes equivalent to Eq. (1) with the single
relaxation time. The kinematic viscosity ν is determined
as

ν =
(2τ+ − 1)δ2x

6δt
. (36)

In order to reduce the boundary velocity slip, we obtain
the following equation:

τ− =
3τ+ + 3

4τ+ − 2
. (37)

A detailed description of this condition is presented in
the next section. The solution procedure is carried out
as follows:

(1) Compute the f±
k and f±eq

k using Eq. (34).

(2) Compute fk, ρ(xf ), and u(xf ) using Eqs. (2) and
(35).

(3) Obtain u(xb) from u(xf ) using Eq. (9).

(4) Compute G(xb) using Eq. (8), and distribute
G(xb) to Eulerian points using Eq. (12).

(5) Compute Fk and feq
k using Eqs. (4) and (13).

(6) Return to step (1).

When the multi-relaxation time collision operator is
applied to the direct forcing method, the distribution
functions evolve according to the following equation:

|f(x+ eδt, t+ δt)〉 = |f(x, t)〉
−M−1S[|R(x, t)〉 − |R(eq)(x, t)〉] + δt|F (x, t)〉, (38)

where, S, R, and M are given by Eqs. (25), (27), and
(28), respectively. The relation between sq and sv for
the reduction of the boundary velocity slip is given by

sq =
4− 2sv
3 + 3sv

. (39)

F. Implicit correction method with multiple
relaxation times

In order to apply the TRT collision operator to the
implicit correction method, we divide the forcing term
defined by Eq. (29) into the odd and even parts,

F±
k =

Fk ± Fk̄

2
. (40)

The kinetic equation of fk in the lattice Boltzmann
method with the TRT collision operator uses the extra
forcing term proposed by Guo [17] as follows:

fk(x+ ekδt, t+ δt) = fk(x, t)

−f+
k (x, t) − f

+(eq)
k (x, t)

τ+
+ δt

(

1− 1

2τ+

)

F+
k (x, t)

−f−
k (x, t)− f

−(eq)
k (x, t)

τ−
+ δt

(

1− 1

2τ−

)

F−
k (x, t). (41)
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In order to reduce the velocity slip, the relaxation time
τ− is given by

τ− =
4τ+ + 7

8τ+ − 4
. (42)

The solution procedure of the implicit correction
method with the TRT (TRT implicit correction method)
can be summarized as follows:

(1) Set the initial values, and compute the elements of
matrix A and inverse matrix A−1 for Eq. (20).

(2) Compute f±
k , f±eq

k , F±
k using Eqs. (34) and (40).

(3) Solve Eq. (41) to obtain the distribution functions
fk, and use Eqs. (16) and (17) to compute the
macroscopic variables ρ, u∗.

(4) Solve Eq. (20) using the LU decomposition to ob-
tain δu.

(5) Obtain G at Lagrangian points using Eq. (22).

(6) Use Eq. (12) to spread G to the Eulerian points.

(7) Correct the fluid velocity at Eulerian points using
Eq. (16).

(8) Compute feq
k and Fk using Eqs. (4) and (29).

(9) Return to step (2).

The lattice Boltzmann method uses the kinematic
equation (23) for the implicit correction method using
the multi-relaxation time collision scheme. The relax-
ation time between sq and sv for the MRT implicit cor-
rection method for the reduction of the velocity slip is
the same as that for the MRT split forcing method, i.e.,
sq = (8 − 4sv)/(4 + 7sv), as shown in Eq. (31).

III. RESULTS AND DISCUSSION

A. Numerical results

In this section, we numerically investigate the bound-
ary slip of the IB-LBM schemes with the different LBMs
and forcing methods described in the previous section.
Figure 2 shows the profiles of the velocity normalized

with respect to the characteristic velocity in the half com-
putational domain for the calculations of the symmetric
shear flows, the symmetric Poiseuille flows, and the cylin-
drical Couette flows by the direct forcing method with a
single relaxation time (SRT direct forcing method) shown
in Section II B. The convergence criterion for all calcula-
tions is

max
||u(t+ δt)| − |u(t)||

u0
≤ 10−8, (43)

where u0 denotes the characteristic velocity.
When the numerical solution does not satisfy Eq. (43)

due to numerical oscillation, we use the results at time
t = 100, 000δt as the converged solutions. The computa-
tional domain with the periodic boundary is covered by
200×200 grid points. In the simulation of the symmetric
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FIG. 2. Velocity profiles calculated by the SRT direct forc-
ing method for the symmetric shear flows, the symmetric
Poiseuille flows, and the cylindrical Couette flows normalized
with respect to the characteristic velocity. The relaxation pa-
rameter τ is varied as 1, 5, 10, and 15. The thick line indicates
the exact velocity profile.
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8

shear flows shown in Fig. 1(a), two plates moving at equal
and opposite horizontal velocities ud and −ud are placed
at y = 50δx and y = 150δx. The velocity ud = 0.01c
is set at all Lagrangian points of the boundary, and the
distance between the two plates is h = 100. The body
force F = 0, and δx = δt = c = 1 are used.
The symmetric Poiseuille flow problem uses the com-

putational domain shown in Fig. 1(a). A constant body
force, F = 10−7, drives the fluid in the horizontal di-
rection (x-axis). In the simulation of the symmetric
Poiseuille flow, two plain surfaces at y = 50δx and at
y = 150δx remain at rest, i.e., ud = 0.0.
The exact solution for the tangential velocity of the

cylindrical Couette flow is given by

ûθ(R) = ud
θ

R/Ro − Ro/R

Ri/Ro − Ro/Ri
, (44)

where R is the radial coordinate. The radii of the outer
ring, Ro, and the inner ring, Ri, are 70δx and 45δx, re-
spectively. The outer ring is at rest, and the velocity of
the inner cylinder, ud

θ, is 0.01c. As shown in Fig. 1(b),
the two rings are placed at the center of the simulation
domain and are covered by 200δx×200δx grid points. As
indicated by Le et al. [9], the high relaxation time induces
the velocity slip in the numerical solutions calculated by
the SRT direct forcing method in Fig. 2.
Figure 3 shows the profiles of the velocity normalized

with respect to the characteristic velocity for the test
cases shown in Fig. 2 using the implicit correction method
with a single relaxation time (SRT implicit correction
method) described in Section II C. The SRT implicit cor-
rection method makes the boundary velocity agree with
the desired velocity and prevents the streamline penetra-
tion through the solid body. In Fig. 3, these advantages
over the SRT direct forcing method, however, do not con-
tribute to the reduction in the velocity slip at the high
relaxation time.
Figure 4 shows the velocity profiles as calculated by

the split forcing method with the multi-relaxation time
(MRT split forcing method) in the numerical tests shown
in Figs. 2 and 3. The MRT split forcing method is ex-
plained in Section II D. By satisfying Eq. (31), the MRT
split forcing method succeeds in reducing the velocity slip
at high relaxation time. Although the MRT split forcing
method reduces the velocity slip, the boundary velocity
does not completely agree with the desired velocity for
each result in Fig. 4. Equation (31) indicates that the
multi-relaxation time model requires only two relaxation
times sv and sq to reduce the boundary slip. In a previ-
ous study [11], we proved that the TRT collision model
is also effective in reducing the boundary slip.
Figure 5 shows the velocity profiles calculated by the

IB-LBMs, which are shown in Sections II E and II F, for
the symmetric shear flows. For both the direct forcing
method and the implicit correction method, the TRT col-
lision model provides numerical results similar to those
of the MRT collision model. Although the direct forc-
ing method can reduce the velocity slip by using more

than one relaxation time, the disagreement between the
numerical and theoretical solutions increases with the re-
laxation time in Figs. 5(a) and 5(c). The implicit cor-
rection method reduces both the boundary slip and the
disagreement between the numerical and theoretical so-
lutions in Figs. 5(b) and 5(d).
In the following section, in order to verify the effect of

the two relaxation times on the reduction of the bound-
ary slip observed in Fig. 5, we analyze the velocity distri-
bution in simple two-dimensional steady incompressible
shear flows following the procedure carried out by Le et

al. [9] and He et al. [15].

B. An analysis of the IB-LBMs for symmetric
shear flows

In the calculation of the symmetric shear flows, we
have

ρ = const, v = 0,
du

dx
= 0, and

du

dt
= 0, (45)

where u = (u, v) and G = (G, 0) in two dimensions.
As indicated in Appendix A, Eqs. (41) and (45) give

0 = ν
uj+1 − 2uj + uj−1

δ2x
+Gj

+φ(Gj+1 − 2Gj +Gj−1), (46)

where

φ =
1+ 4τ+ + 4τ− − 8τ+τ−

12
, (47)

for the TRT implicit correction method. From Eq. (46),
we obtain the analytical solutions for the normal-
ized boundary slip velocity us

j0
/ud, the bulk velocity

gradient du/dy, and the normalized boundary velocity
uj0/u

d for the TRT implicit correction method as follows:

us
j0

ud
=

− 7
24 − τ+

6 − τ−
6 + τ+τ−

3
h
4 − 13

32 − τ+
8 − τ−

8 + τ+τ−
4

, (48)

(dudy )bulk
2ud

hδx

=
h
4

h
4 − 13

32 − τ+
8 − τ−

8 + τ+τ−
4

, (49)

uj0

ud
=

h
4 − 7

24 − τ+
6 − τ−

6 + τ+τ−
3

h
4 − 13

32 − τ+
8 − τ−

8 + τ+τ−
4

. (50)

Substituting τ+ = τ− into Eqs. (48) through (50) gives
the analytical solution for the SRT implicit correction
method.
The distribution function fk in the MRT implicit cor-

rection method evolves following the kinematic equation
(23), which is also used in the MRT split forcing method.
Lu [14] has proved that Eq. (23) gives

0 = ν
uj+1 − 2uj + uj−1

δ2x
+Gj

+
svsq + 4sv + 4sq − 8

12svsq
(Gj+1 − 2Gj +Gj−1). (51)
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FIG. 5. Velocity profiles obtained through calculation of the symmetric shear flows. The relaxation parameter τ+ is varied as
1, 5, 10, and 15 (sv = 1/τ+). The thick line indicates the exact velocity profile.

Since Eq. (46) can be made equivalent to Eq. (51) by
replacement of τ+ with 1/sv and of τ− with 1/sq, the
substitution of τ+ = 1/sv and τ− = 1/sq into Eqs. (48)
through (50) gives the solutions for the MRT implicit
correction method as follows:

us
j0

ud
=

− 7
24 − 1

6sv
− 1

6sq
+ 1

3svsq
h
4 − 13

32 − 1
8sv

− 1
8sq

+ 1
4svsq

, (52)

(dudy )bulk
2ud

hδx

=
h
4

h
4 − 13

32 − 1
8sv

− 1
8sq

+ 1
4svsq

, (53)

uj0

ud
=

h
4 − 7

24 − 1
6sv

− 1
6sq

+ 1
3svsq

h
4 − 13

32 − 1
8sv

− 1
8sq

+ 1
4svsq

. (54)

Using a similar procedure, Eq. (35) gives the parameter
φ in Eq. (46) for the TRT direct forcing method.

φ =
3τ+ + 2τ− − 4τ+τ−

6
. (55)

Equation (55) gives the analytical solution for the TRT
direct forcing method. (See Appendix A for the detailed
derivation.)

us
j0

ud
=

− 1
4 − τ+

4 − τ−
6 + τ+τ−

3
h
4 − 13

24 + 7τ+
48 − τ−

8 + τ+τ−
4

, (56)

(dudy )bulk
2ud

hδx

=
h
4

h
4 − 13

24 + 7τ+
48 − τ−

8 + τ+τ−
4

, (57)

uj0

ud
=

h
4 − 1

4 − τ+
4 − τ−

6 + τ+τ−
3

h
4 − 13

24 + 7τ+
48 − τ−

8 + τ+τ−
4

. (58)

The TRT direct forcing method should satisfy Eq. (37)
in order to make us

j0 equal to zero in Eq. (56). When τ+
and τ− are replaced by τ in Eqs. (56) through (58), we
obtain the analytical solutions for the SRT direct forcing
method.
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FIG. 6. Comparison of the analytical and numerical solutions for the direct forcing method and the implicit correction method
depending on the relaxation time. The horizontal axis indicates the relaxation time τ , including τ+ and 1/sv .

For the MRT direct forcing method, we obtain φ in Eq. (46) as follows (see Appendix A):

φ =
3sq + 2sv − 4

6svsq
. (59)
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Similarly to the implicit correction method, when τ+ =
1/sv and τ− = 1/sq, Eq. (59) is equivalent to Eq. (55).
Equation (59) yields the following analytical solution:

us
j0

ud
=

− 1
4 − 1

4sv
− 1

6sq
+ 1

3svsq
h
4 − 13

24 + 7
48sv

− 1
8sq

+ 1
4svsq

, (60)

(dudy )bulk
2ud

hδx

=
h
4

h
4 − 13

24 + 7
48sv

− 1
8sq

+ 1
4svsq

, (61)

uj0

ud
=

h
4 − 1

4 − 1
4sv

− 1
6sq

+ 1
3svsq

h
4 − 13

24 + 7
48sv

− 1
8sq

+ 1
4svsq

. (62)

Figure 6 shows the numerical results computed by
the IB-LBMs and the analytical solutions. We compare
the present solutions to those of the MRT split forcing
method. Lu et al. [14] reported the analytical solutions
for the MRT split forcing method as follows:

us
j0

ud
=

0
h
4 +

8−242sv−367s2v
288sv(4+7sv)

, (63)

(dudy )bulk
2ud

hδx

=
h
4

h
4 +

8−242sv−367s2v
288sv(4+7sv)

, (64)

uj0

ud
=

h
4

h
4 +

8−242sv−367s2v
288sv(4+7sv)

. (65)

In Fig. 6, the horizontal axis indicates the relaxation
time τ including τ+ and 1/sv. As predicted from the an-
alytical solutions, Eqs. (48), (52), (56), and (60), the
boundary slip disappears for any value of the relax-
ation times τ+ and sv by using the MRT and the TRT
in Fig. 6(a). The velocity gradient (du/dy)bulk at the
boundary node is calculated using the body force G and

(du

dy

)

bulk
=

G0δx
2ν

. (66)

The good agreement for the velocity gradient between
the numerical and analytical solutions in Figs. 6(b) ver-
ifies the validity of the analytical solutions given by
Eqs. (49) and (57). The disagreement between the nu-
merical result uj0 and the desired boundary velocity ud

in the implicit correction method is less than that for the
direct forcing method, as shown in Fig. 6(c). The implicit
correction method reveals disagreement between uj0 and
ud similar to that of the MRT split forcing method in
Fig. 6(c-2). We demonstrate analytically and numeri-
cally that the TRT collision model has exactly the same
effect as the MRT in reducing the boundary slip.

C. An analysis of the IB-LBMs for symmetric
Poiseuille flows

Figure 7 shows the velocity profiles for the symmetric
Poiseuille flow calculated by the direct forcing method
and the implicit correction method using multiple relax-
ation times. As is the case for the symmetric shear flow
shown in Fig. 5, the velocity profiles for the TRT model
are the same as those for the MRT model obtained by
the direct forcing method and by the implicit correction
method. Following a procedure similar to that used in
the calculation of the symmetric shear flow, we obtain an-
alytical solutions for the symmetric Poiseuille flow driven
by a force F along the x-axis in Fig. 1(a).
The procedure shown in Appendix B gives the numer-

ical velocity slip:

us
j0 = uj0 − ūj0 =

Fhδ2x(1 + 2φ)

4ν
. (67)

Substituting Eq. (42) into Eq. (47) gives

φ = −1

2
. (68)

Equations (31), (37), and (39) can also be used to ob-
tain Eq. (68). Since Eq. (68) makes us

j0 = 0 in Eq. (67),
the IB-LBMs can use the same condition for τ− and for
sq to reduce the velocity slip in the symmetric Poiseuille
flows as in the symmetric shear flows.
Since ud = ub in the implicit correction method, the

boundary error uj0 −ud is given as follows (see Appendix
B):

uj0 − ud =
δ2xF

ν

(h(φ− 1)

8
+

1

4

)

, (69)

for the implicit correction method, and

uj0 − ud = uj0 − (ub + δtG0)

=
δ2xF

ν

(h(φ− 1)

8
+

1

4
+

hνδt
δ2x

)

, (70)

for the direct forcing method.
For the symmetric Poiseuille flow, the maximum veloc-

ity is given by umax = (δ2xh
2F )/(8ν) at j = j0 +

h
2 . We

obtain the velocity differences between uj0 and ud nor-
malized with respect to the maximum velocity as follows:

uj0 − ud

umax
=

1

h

( 2

h
− 3

2

)

, (71)

for the implicit correction method, and

uj0 − ud

umax
=

1

h

( 2

h
− 3

2
+

8νδt
δ2x

)

, (72)

for the direct forcing method.
Equations (71) and (72) show that neither the MRT

nor the TRT eliminate the boundary error uj0 − ud.
Equation (71) shows that the boundary error of the im-
plicit correction method depends only on the character-
istic length h. On the other hand, the boundary error of
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FIG. 7. Velocity profiles in the calculations of the symmetric Poiseuille flows. The relaxation parameter τ+ is varied as 1, 2, 5,
10, and 15 (sv = 1/τ+). The thick line indicates the exact velocity profile.

the direct forcing method increases with the kinematic
viscosity ν in Eq. (72). For the calculation of the sym-
metric shear flow, Eqs. (42) and (50) give

uj0

ud
=

1

1− 3
4h

, (73)

for the implicit correction method. Equations (37) and
(58) yield

uj0

ud
=

1

1− 3
4h + 4δtν

hδ2x

, (74)

for the direct forcing method. Similarly to the symmet-
ric Poiseuille flows, Eq. (73) reveals that the relaxation
time does not affect the boundary velocity uj0/u

d in the
calculation of the symmetric shear flow using the implicit
correction method. As shown in Eq. (74), for the direct
forcing method, uj0/u

d also depends on the kinematic
viscosity, which is a function of the relaxation time.

When τ+ = τ− = τ , Eqs. (67), (69), and (70) give the
analytical solutions for the single relaxation time model.
For the SRT implicit correction method, Eq. (47) gives

φ =
1 + 8τ − 8τ2

12
. (75)

Substituting Eq. (75) into Eqs. (67) and (69), we ob-
tain

us
j0 = uj0 − ūj0 =

Fhδ2x(7 + 8τ − 8τ2)

24ν
, (76)

and

uj0 − ud =
δ2xF (24− h(11− 8τ + 8τ2))

96ν
. (77)

For the SRT direct forcing method, Eqs. (55), (67),
and (70) give

φ =
5τ − 4τ2

6
, (78)
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FIG. 8. Comparison of the analytical and numerical solutions for the direct forcing method and the implicit correction method
in the calculation of the symmetric Poiseuille flows. The horizontal axis indicates the relaxation time τ , including τ+ and 1/sv .

us
j0 = uj0 − ūj0 =

Fhδ2x(3 + 5τ − 4τ2)

12ν
, (79)

and

uj0 − ud =
δ2xF (12− h(14− 21τ + 4τ2))

48ν
. (80)

Lu et al. obtained the following expression for the split
forcing method based on the multi-relaxation time [14]:

u∗
j =

1 + sv
3

uj +
2− sv

6
(uj+1 + uj−1)−

3− 2sv
2

δtGj

−8 + 17sv + 21s2v
6(4 + 7sv)

δt(Gj+1 − 2Gj +Gj−1), (81)

where u∗
j is the intermediate velocity defined by Eq. (17).

Using similar algebraic manipulation, Eq. (81) gives
the boundary velocity error as follows:

uj0 − ud =
F

ν

( 1

2sv
− h(367svsv + 242sv − 8)

288sv(4 + 7sv)

)

. (82)

Figure 8 shows the numerical and analytical solutions
versus the relaxation time. Figure 8(a) shows that the
MRT and TRT models succeed in reducing the bound-
ary slip. As predicted by Eq. (72), the direct forcing
method increases the difference between the velocity uj0

and the desired velocity ud with the relaxation time in
Fig. 8(b-1). Figure 8(b-2) shows the small constant dif-
ference between uj0 and ud in the solutions of the implicit
correction method using the TRT or the MRT. The re-
sults shown in Fig. 8 demonstrate both analytically and
numerically that the TRT contributes to the reduction
of the boundary slip for symmetric Poiseuille flows as
effectively as the MRT.
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FIG. 9. Velocity profiles calculated for the cylindrical Couette flows. The relaxation parameter τ+ is varied as 1, 5, 10, and 15
(sv = 1/τ+). The thick line indicates the exact velocity profile.

D. Cylindrical Couette flow

We examine the effectiveness of the TRT collision oper-
ator on the reduction of boundary slip in the simulation
of the two-dimensional cylindrical Couette flow shown
in Fig. 1(b). Figure 9 shows the profiles of the tangen-
tial velocity along y = 100δx at the horizontal centerline
of the computational domain. The TRT model reduces
the boundary slip and provides a smooth profile of the
tangential velocity, as compared to the results shown in
Figs. 2 and 3. In Figs. 9(a) and 9(c), the boundary
error increases with the relaxation time for the direct
forcing method. Although the numerical solutions ex-
hibit a slight deviation from the exact solutions shown in
Figs. 9(b) and 9(d), the application of the multiple relax-
ation collision operator to the implicit correction method
successfully reduces the errors, as shown in Figs. 9(a) and
9(c).

Figure 10 shows the relative error defined by

Error =

√

∑

x∈fluid(uθ(x)− ûθ(x))2
∑

x∈fluid ûθ(x)
2 , (83)

where fluid represents the region between the outer and
inner rings shown in Fig. 1(b). The exact solution ûθ

is given by Eq. (44). Figure 10 shows the relative er-
ror versus the relaxation time. Although the multiple-
relaxation-times scheme is applied to the direct forcing
method, the relative error increases with the relaxation
time in Fig. 10(a). Figure 10(b) shows that the accuracy
of the implicit correction method with the TRT is the
almost same as that of the MRT split forcing method.
When the relaxation time is twenty, the error of the im-
plicit correction method with multiple relaxation times
becomes unacceptably large. As shown in Fig. 11(b),
the numerical instability around the cylinders causes this
degradation in accuracy of the IB-LBMs at τ+ = 20.
In the calculation of the cylindrical Couette flows, the
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FIG. 10. Relative error versus relaxation time in the calcula-
tion of the cylindrical Couette flows. The error calculated by
the MRT split forcing method is added to all figures in order
to compare the accuracy of the present results.

discrete area ∆s on the inner cylinder is approximately
equal to that on the outer cylinder for all of the IB-LBMs.
We set 282 Lagrangian points on the inner cylinder, and
439 points on the outer cylinder, which makes ∆s ≈ δx.

In order to evaluate the numerical stability and accu-
racy of the TRT model, Ginzburg proposed the parame-
ter Λ = (2τ+−1)(2τ−−1)/4. For instance, Λ = 1/4 gives
the optimal stability for the TRT model, and Λ = 3/16
gives the exact wall locations in the Poiseuille flow sim-
ulation using the bounce-back scheme [10, 12]. For
the anisotropic advection-diffusion equation, Λ = 1/12
and Λ = 1/6 yield the best accuracy for the advection
term and the diffusion term in the TRT model, respec-
tively [19]. It is impossible to determine a unique pa-
rameter Λ that yields the most accurate and most stable
solution in the TRT collision model.

In the TRT implicit correction method, Eq. (42) yields
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FIG. 11. Tangential velocity profile in the cylindrical Couette
flows as calculated by the TRT implicit correction method.
The dashed circles indicates the position of the inner ring.

Λ = 9/8 in order to reduce the boundary slip. In order
to suppress the non-physical oscillations in the moving
boundary problem, Yang et al. proposed the following
smoothed three-point discrete delta function [20]:

δ3(r) =











































17
48 +

√
3π

108 + |r|
4 − r2

4

+ 1−2|r|
16

√

−12r2 + 12|r|+ 1

−
√
3

12 arcsin
(

√
3
2 (2|r| − 1)

)

, |r| ≤ 1,
55
48 −

√
3π

108 − 13|r|
12 + r2

4

+ 2|r|−3
48

√

−12r2 + 36|r| − 23

+
√
3

36 arcsin
(

√
3
2 (2|r| − 3)

)

, 1 < |r| ≤ 2,
0, 2 < |r|.

(84)

In order to reduce the boundary slip in the IB-LBM
using Eq. (84), the following equation must be satisfied:

τ− =
4τ+ + 4.7056

8τ+ − 4
. (85)

Equation (85) yields Λ = 6.7056/8. Although the value



16

50 100 200 400

0.01

0.1

Number of grid points

E
rr

o
r

MRT split forcing method

SRT direct forcing method

MRT direct forcing method

TRT direct forcing method

○ 

●

+

↑ Slope = -2

50 100 200 400

0.01

0.1

Number of grid points

E
rr

o
r

MRT split forcing method

SRT implicit correction method

MRT implicit correction method

TRT implicit correction method

○ 

●

+

↑ Slope = -2

(a) Direct forcing method (τ+ = sv = 1.) (b) Implicit correction method (τ+ = sv = 1.)

50 100 200 400

0.01

0.1

Number of grid points

E
rr

o
r

↑ Slope = -2

MRT split forcing method

SRT direct forcing method

MRT direct forcing method

TRT direct forcing method

○ 

●

+

50 100 200 400

0.01

0.1

Number of grid points

E
rr

o
r

↑ Slope = -2

MRT split forcing method

SRT implicit correction method

MRT implicit correction method

TRT implicit correction method

○ 

●

+

(c) Direct forcing method (τ+ = 5, sv = 0.2.) (d) Implicit correction method (τ+ = 5, sv = 0.2.)

FIG. 12. Relative error versus the number of grid points. The relaxation times are set to be unity and five.

of Λ affects the numerical stability, the value of Λ de-
pends on the discrete delta function for the boundary
slip problem in the IB-LBMs. In order to prevent nu-
merical instability, it will be necessary to investigate the
adequate discrete area ∆s, the parameter Λ, and the dis-
crete delta function δ(r) for the TRT implicit correction
method in the future.

Figure 12 shows the relation between the accuracy of
the IB-LBMs and the number of grid points on a side of
the square computational domain in the simulation of the
cylindrical Couette flows. The IB-LBMs with the TRT
exhibit second-order accuracy in space for both the direct
forcing method and the implicit correction method. Fig-
ures 12(c) and 12(d) show that the boundary slip caused
by the use of the SRT model in the IB-LBM impairs the
accuracy that the LBM intrinsically possesses. For all
of the numerical results obtained in the two-dimensional
stimulations, the IB-LBMs with TRT have exactly the
same accuracy as the MRT collision models, while main-
taining second-order accuracy in space.

E. Boundary velocity error

Although the TRT implicit correction method succeeds
in reducing the boundary slip while maintaining second-
order accuracy in space, eliminating the difference be-
tween the boundary velocity uj0 on the Eulerian node
and the desired velocity ud is difficult. We next inves-
tigate the boundary velocity error as computed by the
TRT implicit correction method in the calculation of the
symmetric shear flow. Figure 13 shows the boundary ve-
locity ub on the Lagrangian node computed based on the
results shown in Fig. 5. The solid line shows the ana-
lytical solution given by Eq. (58) for the direct forcing
method. Although the boundary velocity ub and the de-
sired velocity ud differ between the direct forcing method
and the split forcing method [14], the implicit correction
method makes ub/u

d = 1 for all relaxation times. For the
direct forcing method, Eq. (8) leads to ud = ub + G0δt.
The split forcing method obtains ud = ub +

1
2G0δt from
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Eq. (32). Except in the case of G0 = 0, ud = ub + G0δt
and ud = ub +

1
2G0δt do not give ub = ud. Since the im-

plicit correction method solves the simultaneous equation
given by Eq. (20) to make ub = ud, the result ub/u

d = 1
shown in Fig. 13 corresponds well with what is expected
theoretically.

The velocity ub on the Lagrangian nodes is inter-
polated from the velocities on the Eulerian nodes by
ub = (uj0 + uj0+1)/2 in the symmetric shear flow. Since
uj0 is larger than uj0+1, as shown in Fig. 5, the velocity
on the Eulerian node uj0 is larger than the desired veloc-
ity ud necessary to make ub equal to ud in the implicit
correction method. Figure 14 shows the velocity profiles
for the symmetric shear flow as calculated by the IB-
LBMs with the TRT using the following non-smoothed
delta function:

δ(r) =

{

1 |r| = 0
0 |r| 6= 0

, (86)

instead of Eq. (11). In Fig. 14(a), the TRT direct forc-
ing method exhibits disagreement between the numerical
and theoretical solutions at high relaxation time. The
numerical error observed in the direct forcing method is
due not only to the interpolation but also to the calcu-
lation of the body force shown by Eq. (8). Figure 14(b)
shows that the TRT implicit correction method succeeds
in making uj0 = ud at any relaxation time without the
boundary slip. The numerical results shown in Fig. 14
indicate that the smoothing technique of the delta func-
tion used in Eq. (9) causes the difference between uj0 and
ud in the calculation of the IB-LBMs.

Equation (46) gives the analytical solution of the IB-
LBMs using Eq. (86) in the simulations of the symmetric
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FIG. 14. Velocity profiles of the symmetric shear flows, as
calculated by the IB-LBMs with the TRT using the non-
smoothed delta function. The relaxation parameter τ+ is
varied as 1, 5, 10, and 15. The thick line indicates the ex-
act velocity profile.

shear flow:

uj0 =
δ2xG0

ν

(h

4
− φ

)

, (87)

and

us = −δ2xG0φ

ν
. (88)

When φ = 0, Eqs. (87) and (88) give uj0 = ūj0 and
us = 0, respectively. The exact solution is given by ūj0 =
(hG0δ

2
x)/(4ν). Substituting φ = 0 into Eqs. (47) and

(55), we obtain

τ− =
3τ+

4τ+ − 2
, (89)

for the direct forcing method, and

τ− =
4τ+ + 1

8τ+ − 4
, (90)
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FIG. 15. Comparison of the analytical and the numerical
solutions as calculated by the TRT direct forcing method and
by the TRT implicit correction method using a non-smoothed
delta function.

for the implicit correction method. When φ = 0, Eq. (46)

TABLE I. Comparison of drag coefficient, wake length, and
separation angle as calculated by the TRT implicit correction
method and in previous studies.

Re References Cd 2L/D θs

40 Dennis and Chang [21] 1.522 4.69 53.8

Nieuwstadt and Keller [22] 1.550 4.357 53.34

He and Doolen [23] 1.499 4.490 52.84

Present study 1.568 4.640 50.38

20 Dennis and Chang [21] 2.045 1.88 43.7

Nieuwstadt and Keller [22] 2.053 1.786 43.37

He and Doolen [23] 2.152 1.842 42.96

Present study 2.104 1.900 40.78

10 Dennis and Chang [21] 2.846 0.53 29.6

Nieuwstadt and Keller [22] 2.828 0.434 27.96

He and Doolen [23] 3.170 0.474 26.89

Present study 2.920 0.520 26.36

yields

0 = ν
uj+1 − 2uj + uj−1

δ2x
+Gj , (91)

which is the steady-state Navier-Stokes equation used in
the calculation of the symmetric shear flows by the IB-
LBMs.

Finally, the analytical solutions are given by

us
j0

ud
= 0,

(dudy )bulk
2ud

hδx

=
uj0

ud
= 1, (92)

for the TRT implicit correction method, and

us
j0

ud
= 0,

(dudy )bulk
2ud

hδx

=
uj0

ud
=

h
4

h
4 + τ+

3 − 1
6

, (93)

for the TRT direct forcing method.

Figure 15 compares the numerical and analytical solu-
tions for the IB-LBMs obtained using the non-smoothed
delta function shown by Eq. (86). As predicted by
Eqs. (92) and (93), in contrast to the direct forcing
method, the implicit correction method completely elim-
inates all numerical errors. The boundary velocity er-
ror uj0/u

d is confirmed to be induced by the smoothed
delta function used in the interpolation procedure. Since
the positions of the Lagrangian grids are not equal to
those of the Eulerian grids in the fluid flow simulation by
the IB-LBMs, it is not possible to use the non-smoothed
delta function. Although the boundary error due to the
smooth approximation of the delta function is inevitable,
the error decreases with the elongation of the character-
istic length h in the implicit correction method, as shown
in Eqs. (71) and (73).
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(a) SRT direct forcing method (b) MRT split forcing method

(c) SRT implicit correction method (d) TRT implicit correction method

FIG. 16. Streamlines for a flow past a circular cylinder at Re = 40. The thick line indicates the zero streamline. The surface
of the circular cylinder is indicated by the gray line. The relaxation time is equal to 1.25.

F. Flow past a circular cylinder

The final test is the calculation of the fluid flow past
a circular cylinder at Re = u0D/ν = 10, 20, and 40.
Numerous theoretical, experimental, and numerical re-
sults are available for comparison to the present results.
The diameter of the cylinder is given by D = 100δx, and
the characteristic free-stream velocity u0 is equal to 0.1c.
The cylinder is located at (16D, 20D) in the computa-
tional domain with 40D×40D. The fluid density is taken
as ρ = 1.0. We use the smoothed delta function given by
Eq. (11). In order to make ∆s ≈ 0.125δx, 2,513 La-
grangian points are set on the cylinder in the calculation
by the SRT direct forcing method and by the MRT split
forcing method. For ∆s ≈ 2δx, we use ∆s = 100πδx/157
for the cylinder in the calculation by the implicit correc-
tion method. The relaxation times are equal to 1.25, 2.0,
and 3.5 for Re = 40, 20, and 10, respectively.
Figures 16, 17, and 18 show the streamlines in the

half computational domain calculated by the IB-LBMs
at Re = 40, 20, and 10, respectively. The thick solid line
indicates the zero streamline. The gray semicircle indi-

cates the surface of the circular cylinder. In Figs. 16(a),
17(a), and 18(a), the SRT direct forcing method shows
the penetration of the streamline through the surface of
the cylinder. The MRT split forcing method decreases
the penetration of the streamline observed in the SRT di-
rect forcing method. In Fig. 18(b), the recirculating eddy,
however, does not sufficiently develop behind the cylin-
der due to the penetration of the streamline at Re = 10.
As Wu et al. reported [6], the implicit correction method
prevents the penetration of the streamlines into the solid
body and produces recirculating eddies with adequate
wake length and separation points. When the SRT is
used in the implicit correction method, the streamline
on the cylinder surface is not always zero in Fig. 18(c).
As shown in Fig. 18(d), by reducing the velocity slip, the
TRT implicit correction method removes the distortion
of the streamline observed in Fig. 18(c).

The drag coefficient is defined as follows:

Cd =
FD

(1/2)ρu2
0D

. (94)
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(a) SRT direct forcing method (b) MRT split forcing method

(c) SRT implicit correction method (d) TRT implicit correction method

FIG. 17. Streamlines for a flow past a circular cylinder at Re = 20. The thick line indicates the zero streamline. The surface
of the circular cylinder is indicated by the gray line. The relaxation time is equal to 2.0

Here, FD is the drag force calculated by

FD = −
∫

Ω

Gxdx, (95)

where Gx is the x component of the force density G.
Table I shows the drag coefficient CD, the wake length

L normalized with respect to the radius of the cylinder,
and the separation angle θs in the calculation of the TRT
implicit correction method. Dennis and Chang solved the
governing equations using a finite difference method in
the polar coordinate system [21]. Nieuwstadt and Keller
numerically investigated the flow past a circular cylin-
der using the semi-analytical method with the stream
function and the vorticity in a finite Fourier series [22].
He and Doolen used the lattice Boltzmann method ex-
tended to the general curvilinear coordinate system using

the interpolated strategy [23]. Good agreement between
the results of the proposed method and the results of
previous methods is observed [21–23].

IV. CONCLUSION

We analytically and numerically investigated the solu-
tions calculated by the IB-LBM with the TRT for the
symmetric shear flows and for the symmetric Poiseuille
flow in order to derive the theoretical relation between
two relaxation times so as to eliminate the boundary slip.
The simple TRT collision operator reduced the bound-
ary slip velocity occurring at the high relaxation time in
the IB-LBM calculation as effectively as the MRT colli-
sion operator. The IB-LBM with the multiple relaxation
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(a) SRT direct forcing method (b) MRT split forcing method

(c) SRT implicit correction method (d) TRT implicit correction method

FIG. 18. Streamlines for a flow past a circular cylinder at Re = 10. The thick line indicates the zero streamline. The surface
of the circular cylinder is indicated by the gray line. The relaxation time is equal to 3.5

times collision operator exhibited second-order accuracy
in space for the convergence rate in the calculation of the
cylindrical Couette flows. Lu et al. reported one prob-
lem, which is the disagreement between the boundary ve-
locity on the Eulerian grid and the desired velocity [14].
We demonstrated that this problem was induced by the
smoothing technique in the delta function used in the in-
terpolation procedure. The error in the calculation of the
IB-LBMs using the smoothed delta function is inevitable.
In the calculation of the flow past a circular cylinder, the
TRT implicit correction method prevented the stream-
line from penetrating through the solid surface as well as
the velocity distortion due to the boundary slip, which
allowed the recirculating wakes behind the cylinder to be
reasonably computed.

To yield the transfer matrix M satisfying |R〉 = M |f〉,
the multi-relaxation time D3Q15 model requires the 15
components in momentum vector |R〉 corresponding to
the fifteen distribution functions |f〉 [24]. For the D3Q15
and D3Q19 models, the TRT collision model can be eas-
ily formulated using only the distribution function fk and
the counterpart fk̄ with the opposite direction to fk re-
gardless of the number of the distribution functions. The
TRT collision operator is better suited than the MRT
collision operator to the three-dimensional problem for
reducing the boundary slip in the IB-LBM.

For the application of the multi-block approach in the
IB-LBM, the relaxation times τf on fine gird and τc on
the coarse grid obey the relation, τf = n(τc − 0.5) +
0.5, in order to maintain a consistent viscosity for the
any grid size [25]. Here, n = δxc

/δxf
is the ratio of

the lattice space between the coarse and fine grids. Since
the numerical solution is not influenced by the relaxation

time, the TRT implicit correction method can be used to
extend the IB-LBMs to the multi-block framework.
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Appendix A: ANALYTICAL SOLUTIONS FOR
SYMMETRIC SHEAR FLOWS

Since fk(x + ekδt, t+ δt) = fk(x, t) for k = 1 and 3 in
a steady state, Eqs. (41) and (45) yields

0 = −1

2

( 1

τ+
+

1

τ−

)

f j
1 − 1

2

( 1

τ+
− 1

τ−

)

f j
3

+
ρ

9τ+

(

1 +
3u2

j

c2

)

+ δt

(

1− 1

2τ+

)2ρuGj

3c2

+
ρuj

3cτ−
+ δt

(

1− 1

2τ−

)ρGj

3c
, (A1)
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( 1
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+

1

τ−
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f j
3 − 1

2

( 1

τ+
− 1

τ−

)

f j
1

+
ρ

9τ+

(

1 +
3u2

j

c2

)

+ δt

(

1− 1

2τ+

)2ρuGj

3c2

− ρuj

3cτ−
− δt

(

1− 1

2τ−

)ρGj

3c
, (A2)

for the TRT implicit correction method. In order to in-
dicate the position along the y-axis, we use the subscript
j in for fk, u, and G. Subtraction of Eq. (A1) from
Eq. (A2) gives

f j
1 − f j

3 =
2ρ

3c

{

uj + δt

(

τ− − 1

2

)

Gj

}

. (A3)

According to Eqs. (4), (29), (34), (40), and (41) in the
steady state, we have

f j
5 =

{

1− 1

2

( 1

τ+
+

1

τ−

)}

f j−1
5 − 1

2

( 1

τ+
− 1

τ−

)

f j−1
7

+
ρ

36τ+

(

1 +
3u2

j−1

c2

)

+ δt

(

1− 1

2τ+

)ρGj−1uj−1

6c2

+
ρuj−1

12cτ−
+ δt

(

1− 1

2τ−

)ρGj−1

12c
, (A4)

f j
6 =

{

1− 1

2

( 1

τ+
+

1

τ−

)}

f j−1
6 − 1

2

( 1

τ+
− 1

τ−

)

f j−1
8

+
ρ

36τ+

(

1 +
3u2

j−1

c2

)

+ δt

(

1− 1

2τ+

)ρGj−1uj−1

6c2

−ρuj−1

12cτ−
− δt

(

1− 1

2τ−

)ρGj−1

12c
, (A5)

f j
7 =

{

1− 1

2

( 1

τ+
+

1

τ−

)}

f j+1
7 − 1

2

( 1

τ+
− 1

τ−

)

f j+1
5

+
ρ

36τ+

(

1 +
3u2

j+1

c2

)

+ δt

(

1− 1

2τ+

)ρGj+1uj+1

6c2

−ρuj+1

12cτ−
− δt

(

1− 1

2τ−

)ρGj+1

12c
, (A6)

f j
8 =

{

1− 1

2

( 1

τ+
+

1

τ−

)}

f j+1
8 − 1

2

( 1

τ+
− 1

τ−

)

f j+1
6

+
ρ

36τ+

(

1 +
3u2

j+1

c2

)

+ δt

(

1− 1

2τ+

)ρGj+1uj+1

6c2

+
ρuj+1

12cτ−
+ δt

(

1− 1

2τ−

)ρGj+1

12c
. (A7)

Using the momentum density in the x direction given
by Eq. (14), we obtain:

ρu = c(f1 − f3 + f5 − f6 − f7 + f8) +
δtρG

2
. (A8)

Substituting Eqs. (A3) through (A7) into Eq. (A8) at
the two positions j ± 1 yields

(2τ+τ− − τ+ − τ− + 1)(f j
5 − f j

6 − f j
7 + f j

8 ) =

ρ

c

{

−τ+ − 1

3
uj +

τ−(2τ+ − 1)

6
(uj+1 + uj−1)

+
τ−(1 + 4τ+ + 4τ− − 8τ+τ−)

12
δt(Gj+1 +Gj−1)

− (2τ− − 1)(τ+ − 1)

6
δtGj

}

. (A9)

Substituting Eqs. (A3) and (A9) into Eq. (A8) at po-
sition j, and considering Eq. (36), we obtain Eqs. (46)
and (47).
When the total boundary force is given by G(xb) =

(G0, 0), Eqs. (10) and (12) yield

Gj0 =
G0

2
, Gj0±1 =

G0

4
, G|j−j0|≥2 = 0, (A10)

where j0 denotes the position of the moving surface. Due
to the symmetry of the flow, we obtain

uj0+1 = uj0−1. (A11)

Substitution of Eqs. (A10) and (A11) into Eq. (46)
gives the velocity difference in the immersed boundary
layer (IBL):

uj0 − uj0+1 =
G0δ

2
x

ν

(1

4
− φ

4

)

, (A12)

uj0+1 − uj0+2 =
G0δ

2
x

ν

(1

2
− φ

4

)

. (A13)

Since the body force does not spread beyond the IBL,
the velocity gradient in the bulk fluid is constant.

uj−1 − uj =
G0δ

2
x

2ν
, for j > j0 + 2. (A14)

Equation (A14) indicates that the force applied at the
boundary induces the bulk velocity gradient given by
Eq. (66).
Since the velocity is zero on the center plane between

the two plates, Eq. (66) gives the exact solution for the
velocity at j0:

ūj0 =
G0δ

2
x

2ν

h

2
. (A15)

Equation (A14) gives the velocity at j0+2 beyond the
IBL as follows:

uj0+2 =
G0δ

2
x

2ν

(h

2
− 2

)

. (A16)

Combining Eqs. (A12), (A13), and (A16), we have

uj0 =
G0δ

2
x

ν

(h

4
− 1

4
− φ

2

)

, (A17)

and

uj0±1 =
G0δ

2
x

ν

(h

4
− 1

2
− φ

4

)

. (A18)
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Subtracting Eq. (A15) from Eq. (A17), we obtain the
artificial slip velocity as

us
j0 = uj0 − ūj0 =

G0δ
2
x

ν

(

−1

4
− φ

2

)

. (A19)

Substituting Eq. (47) into Eq. (A19) yields

us
j0 =

G0δ
2
x

ν
· 8τ+τ− − 4τ+ − 4τ− − 7

24
, (A20)

from which we can deduce the following relation between
τ− and τ+:

τ− =
4τ+ + 7

8τ+ − 4
, (A21)

so that us
j0 = 0. The boundary velocity ub = u(xb) is

given by Eq. (9) as follows:

ub =
uj0

2
+

uj0+1

4
+

uj0−1

4
. (A22)

Substituting Eqs. (A17) and (A18) into Eq. (A22), we
obtain

ub =
G0δ

2
x

ν

(h

4
− 3

8
− 3φ

8

)

. (A23)

The desired velocity ud is equal to ub in the implicit
correction method. From Eqs. (A17), (A19), and (A23),
we obtain the analytical solutions given by Eqs. (48),
(49), and (50).
For the TRT direct forcing method, substitution of

Eq. (A23) into Eq. (8) yields

ud = ub + δtG0 =
G0δ

2
x

ν

(h

4
− 3

8
− 3φ

8
+

δtν

δ2x

)

.(A24)

Equations (36), (55), (A17), (A19), and (A24) give the
analytical solutions given by Eqs. (56), (57), and (58) for
the TRT direct forcing method.
For the MRT direct forcing method, Eq. (38) yields

f j
1 − f j

3 =
(f j

5 − f j
6 − f j

7 + f j
8 )

2
+

ρuj

2c
+

δtρGj

csq
, (A25)

f j
5 − f j

6 =
(

1− sv
2

)

(f j−1
5 − f j−1

6 )

−sv
2
(f j−1

7 − f j−1
8 ) +

δtρGj−1

2c
, (A26)

f j
8 − f j

7 =
(

1− sv
2

)

(f j+1
8 − f j+1

7 )

+
sv
2
(f j+1

5 − f j+1
6 ) +

δtρGj+1

2c
. (A27)

for the symmetric shear flows. Equations (A25) through
(A27) and the definition of momentum,

ρu = c(f1 − f3 + f5 − f6 − f7 + f8), (A28)

at the two positions j ± 1 give

f j
5 − f j

6 − f j
7 + f j

8 =
ρ

c

{1

6
(uj+1 + uj−1)

−1− sv
2− sv

δtGj +
2sv + 3sq − 4

6sq(2− sv)
δt(Gj+1 +Gj−1)

}

. (A29)

Substituting Eqs. (A25) and (A29) into Eq. (A28)
at the position j and considering Eq. (30), we obtain
Eq. (59) for the MRT direct forcing method.

Appendix B: ANALYTICAL SOLUTIONS FOR
SYMMETRIC POISEUILLE FLOWS

In the Poiseuille flow, the constant body force F is
added to Gj in Eq. (A10):

Gj =







G0/2 + F, j = j0
G0/4 + F, j = j0 ± 1
F, |j − j0| > 1

, (B1)

where F is the body force along the x-axis in Fig. 1(a).
Substitution of Eqs. (A11) and (B1) into Eq. (46) gives
the velocity differences between two adjacent Eulerian
nodes:

uj0 − uj0+1 =
δ2x
ν

(G0(1− φ)

4
+

F

2

)

, (B2)

uj0+1 − uj0+2 =
δ2x
ν

(G0(2 − φ)

4
+

3F

2

)

. (B3)

As shown in Eq. (B1), the boundary force G0 is zero
beyond the IBL, the velocity difference is given by

uj−1 − uj =
G0δ

2
x

2ν
+ [2(j − j0)− 1] · Fδ2x

2ν
for j ≥ j0 + 3. (B4)

Equation (B4) at j = j0 + h/2 and at j = j0 + h/2+ 1
gives

uj0+h/2−1 − uj0+h/2 =
G0δ

2
x

2ν
+ (h− 1)

Fδ2x
2ν

, (B5)

uj0+h/2 − uj0+h/2+1 =
G0δ

2
x

2ν
+ (h+ 1)

Fδ2x
2ν

. (B6)

Adding Eqs. (B5) and (B6) yields

uj0+h/2−1 − uj0+h/2+1 =
G0δ

2
x

ν
+

Fhδ2x
ν

. (B7)

Since the velocity of the Poiseuille flow takes its maxi-
mum value at the central plane j = j0+h/2, the velocity
adjacent to the central plane has the same value, as fol-
lows:

uj0+h/2−1 = uj0+h/2+1. (B8)
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The substitution of Eq. (B8) into Eq. (B7) gives G0 =
−Fh. The theoretical velocity profile ū for a Poiseuille
flow is given by

ū = −Fδ2x
2ν

(j − j0)(j − j0 − h). (B9)

Since uj0+2 = ūj0+2 beyond the IBL, Eq. (B9) yields

ūj0 − uj0+2 = −Fδ2x(h− 2)

ν
. (B10)

From Eqs. (B2), (B3), and (B10), we obtain Eq. (67)
for the numerical velocity slip.
Equations (9) and (B2) yield

ub =
1

2
(uj0 + uj0+1)

= uj0 +
δ2x
ν

(G0(φ− 1)

8
− F

4

)

. (B11)

Since ud = ub in the implicit correction method,
Eq. (B11) gives Eq. (69). For the direct forcing method,
Eqs. (8) and (B11) give Eq. (70).

[1] C. S. Peskin, J. Comput. Phys. 10, 252 (1972).
[2] S. Chen and G. D. Doolen, Annu. Rev. Fluid Mech. 30,

329 (1988).
[3] Z. G. Feng and E. E. Michaelides, J. Comput. Phys. 195,

602 (2004).
[4] Z. G. Feng and E. E. Michaelides, J. Comput. Phys. 202,

20 (2005).
[5] X. D. Niu, C. Shu, Y. T. Chew, and Y. Peng, Phys. Lett.

A 354, 173 (2006).
[6] J. Wu and C. Shu, J. Comput. Phys. 228, 1963 (2009).
[7] H. K. Jeong , H. S. Yoon, M. Y. Ha, and M. Tsutahara,

J. Comput. Phys. 229, 2526 (2010).
[8] T. Seta, Phys. Rev. E 87, 063304 (2013).
[9] G. Le and J. Zhang, Phys. Rev. E 79, 026701 (2009).

[10] I. Ginzburg, F. Verhaeghe, and D. d′Humières, Commun.
Comput. Phys. 3, 427 (2008).

[11] K. Hayashi, R. Rojas, T. Seta, and A. Tomiyama, J.
Comput. Multiphase Flows 4, 193 (2012).

[12] I. Ginzburg, D. d′Humières, and A. Kuzmin, J. Stat.
Phys. 139, 1090 (2010).

[13] P. Lallemand and L. S. Luo, Phys. Rev. E 61, 6546
(2000).

[14] J. Lu, H. Han, B. Shi, and Z. Guo, Phys. Rev. E 85,

016711 (2012).
[15] X. He, Q. Zou, L. S. Luo, and M. Dembo, J. Stat. Phys.

87, 115 (1997).
[16] M. Uhlmann, J. Comput. Phys. 209, 448 (2005).
[17] Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E 65, 046308

(2002).
[18] S. K. Kang and Y. A. Hassan, Int. J. Numer. Meth. Flu-

ids 66, 1132 (2011).
[19] I. Ginzburg, Commun. Comput. Phys. 11, 1439 (2012).
[20] X. Yang, X. Zhang, Z. Li, and G. W. He, J. Comput.

Phys. 228, 7821 (2009).
[21] S. C. R. Dennis and G. Z. Chang, J. Fluid Mech. 42, 471

(1970).
[22] F. Nieuwstadt and H. B. Keller, Comput. Fluids 1, 59

(1973).
[23] X. He and G. Doolen, J. Comput. Phys. 134, 306 (1997).
[24] D. d′Humières, I. Ginzburg, M. Krafczyk, P. Lallemand,

and L. S. Luo, Philos. Trans. R. Soc. Lond. A 360, 437
(2002).

[25] Y. Peng, C. Shu, Y. T. Chew, X. D. Niu, and X. Y. Lu,
J. Comput. Phys. 218, 460 (2006).


