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Implicit temperature correction-based immersed boundary-thermal lattice Boltzmann

method for the simulation of natural convection
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In the present paper, we apply the implicit correction method to the immersed boundary-thermal
lattice Boltzmann method (IB-TLBM) for the natural convection between two concentric horizontal
cylinders and in a square enclosure containing a circular cylinder. The Chapman-Enskog multi-scale
expansion proves the existence of an extra term in the temperature equation from the source term
of the kinetic equation. In order to eliminate the extra term, we redefine the temperature and the
source term in the lattice Boltzmann equation. When the relaxation time is less than unity, the
new definition of the temperature and source term enhances the accuracy of the thermal lattice
Boltzmann method. The implicit correction method is required in order to calculate the thermal
interaction between a fluid and a rigid solid using the redefined temperature. Simulation of the heat
conduction between two concentric cylinders indicates that the error at each boundary point of the
proposed IB-TLBM is reduced by the increment of the number of Lagrangian points constituting
the boundaries. We derive the theoretical relation between a temperature slip at the boundary
and the relaxation time and demonstrate that the IB-TLBM requires a small relaxation time in
order to avoid temperature distortion around the immersed boundary. The streamline, isotherms,
and average Nusselt number calculated by the proposed method agree well with those of previous
numerical studies involving natural convection. The proposed IB-TLBM improves the accuracy of
the boundary conditions for the temperature and velocity using an adequate discrete area for each
of the Lagrangian nodes and reduces the penetration of the streamline on the surface of the body.

PACS numbers: 47.11.-j,47.55.P-

I. INTRODUCTION

The combination of the lattice Boltzmann method
(LBM) [1] and the immersed boundary method (IBM) [2]
has been used successfully in simulating the dynamics of
particles suspended in an incompressible viscous fluid.
The immersed boundary-lattice Boltzmann method (IB-
LBM) for the simulation of particulate flow uses an Eu-
lerian grid for fluid dynamics and a Lagrangian grid for
the motion of particles. The interaction between the fluid
and the suspended particles is implemented by balanc-
ing the body force density. Several methods by which
to calculate this boundary force have been proposed for
simulation of an incompressible flow around a circular
cylinder or for moving-boundary problems [3–6]. Feng
and Michaelides expressed the force as a spring force
of slightly deformable solid particles with a high stiff-
ness [3]. In order to compute the boundary force, Feng
and Michaelides used the direct forcing method, which
does not require a user-defined spring constant [4]. Niu
et al. proposed a momentum exchange scheme by which
to obtain the force through the bounce-back rules for
the distribution functions interpolated onto a Lagrangian
grid from the Eulerian grid [5]. These methods, which
are described in Reference [3–5], use the same simple
forcing term in the lattice Boltzmann equation (LBE)
while disregarding the discrete lattice effects of the body
force. Wu and Shu proposed an implicit velocity cor-
rection method by which the density force is implicitly
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obtained from the definition of the fluid velocity, includ-
ing the body force [6]. They used the higher-order forc-
ing term proposed by Guo et al. [7] and succeeded in
preventing streamline penetration into a solid cylinder.
Jeong et al. extended the application of the IB-LBM to
thermal phenomena by incorporating the IBM into the
thermal LBM (TLBM) based on the double population
approach [8]. They realized heat transfer between a bluff
body and an incompressible fluid by satisfying the en-
ergy balance between the heat source and the amount of
change of the internal energy.
Since the accuracy of the source term in the LBE is sig-

nificant for the calculation of the energy balance on im-
mersed boundaries, we will examine the representation of
the source term in the LBE via a Chapman-Enskogmulti-
scaling analysis and numerical experiments. We intend
to demonstrate that the immersed boundary-thermal lat-
tice Boltzmann method (IB-TLBM) requires the implicit
temperature correction method in order to use the source
term to enhance the accuracy of the temperature equa-
tion in the lattice Boltzmann scheme. The accuracy and
applicability of the proposed IB-TLBM to the numeral
simulation of the natural convection will be verified. In
the present paper, the immersed structures are rigid and
have quasi-infinite heat capacity.
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II. THERMAL LATTICE BOLTZMANN

METHOD

A. Source term in the thermal lattice Boltzmann

method

The IBM calculates the heat transfer between a fluid
and a solid body using the source term in the temperature
equation [9]. In order to incorporate the IBM into the
TLBM, the LBE must accurately derive the heat source
term Q in the following temperature equation:

∂T

∂t
+ u · ∇T = χ∇2T +Q, (1)

where T is the temperature, u is the velocity, and χ is the
thermal diffusivity. In the simplified thermal energy dis-
tribution model [10], the distribution function gk evolves
following the equation with the Bhatnagar-Gross-Krook
(BGK) collision approximation:

gk(x+ ekδt, t+ δt)− gk(x, t)

= −gk(x, t) − g
(eq)
k (x, t)

τc
, (2)

where g
(eq)
k is the equilibrium distribution function, τc

is the single relaxation parameter, and ek is the particle
discrete velocity.
In order to solve the incompressible thermal flow, we

substitute ρ = ρ0 into the equilibrium distribution func-
tion proposed by Peng [10].

g
(eq)
0 = −ρ0T

3

u · u
c2

, (3a)

g
(eq)
1−4 =

ρ0T

9

[

3

2
+

3ek · u
2c2

+
9(ek · u)2

2c4
− 3u · u

2c2

]

,(3b)

g
(eq)
5−8 =

ρ0T

36

[

3 +
6ei · u
c2

+
9(ei · u)2

2c4
− 3u · u

2c2

]

, (3c)

where ρ0 is a constant density. The D2Q9 model is used
in the present study. The discrete velocities are defined
as

ek =







(0, 0), k = 0,

c(cos(π(k−1)
2 ), sin(π(k−1)

2 )), k = 1− 4,√
2c(cos(π(2k−9)

4 ), sin(π(2k−9)
4 )), k = 5− 8,

(4)

where c is the lattice spacing.
The macroscopic temperature is calculated by

T =
1

ρ0

∑

k

gk. (5)

The fluid velocity u is given by another distribution
function fk. Through the Chapman-Enskog expansion,
Eq. (2) can derive Eq. (1) without the source term Q,
and the thermal diffusivity χ can be defined as

χ =
2

3

(

τc −
1

2

)

c2δt. (6)

In order to take into account the source term Q in Eq.
(1), we add a corresponding source term qk to Eq. (2).

gk(x+ ekδt, t+ δt)− gk(x, t)

= −gk(x, t)− g
(eq)
k (x, t)

τc
+ δtqk. (7)

The macrodynamic behavior of the LBE (7) is obtained
by the Chapman-Enskog expansion, which introduces the
following expansions [7]:

gk = g
(0)
k + ǫg

(1)
k + ǫ2g

(2)
k + . . . , (8a)

∂

∂t
= ǫ

∂

∂t1
+ ǫ2

∂

∂t2
, (8b)

∇ = ǫ∇1, Q = ǫQ1, (8c)

where ǫ is a small parameter that represents the Knudsen
number.
Expanding gk(x + ekδt, t + δt) in Eq. (7) as a Taylor

series in space x and time t and substituting Eqs. (8a)
through (8c) into Eq. (7), we obtain an equation corre-
sponding to the order in ǫ as follows:
O(ǫ0):

g
(0)
k = g

(eq)
k , (9a)

O(ǫ1):

D1kg
(0)
k = − g

(1)
k

τcδt
+ q1k, (9b)

O(ǫ2):

∂g
(0)
k

∂t2
+
(

1− 1

2τc

)

D1kg
(1)
k = − g

(2)
k

τcδt
− δt

2
D1kq1k,(9c)

where D1k = ∂/∂t1 + ek · ∇1.
Substituting Eq. (9b) into Eq. (9c) yields

∂g
(0)
k

∂t2
= δt

(

τc −
1

2

)

D2
1kg

(0)
k − g

(2)
k

τcδt
− δtτcD1kq1k.(10)

Using the multi-scale expansion, we verify the accuracy
of the convenient formulation of qk written as

qk = ωkρ0Q, (11)

in the existing method [11]. Here, ωk is the weight coef-
ficient. For the D2Q9 model, ω0 = 4/9, ω1−4 = 1/9, and
ω5−9 = 1/36. Equation (11) distributes the source term
Q over the distribution functions along each direction of
the discrete velocity and satisfies

∑

k

qk = ρ0Q,
∑

k

ekqk = 0. (12)

Substituting qk shown in Eq. (11) into Eq. (9b), and
summing Eq. (9b) over k, we obtain

∂T

∂t1
+ u · ∇1T = Q1, (13)
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on the t1 = ǫt time scale.
The first term of the right-hand side of Eq. (10) can

be rewritten as
∑

k

D2
1kg

(0)
k =

∑

k

( ∂

∂t1
D1kg

(0)
k +∇1 · ekD1kg

(0)
k

)

= ρ0

(∂Q1

∂t1
+

2c2

3
δt∇2

1T +O(u2T )
)

. (14)

The sum of Eq. (10), the use of Eq. (11), and neglect-
ing the term O(u2T ) in Eq. (14) yield the macroscopic
equation on the t2 = ǫ2t time scale, as follows:

∂T

∂t2
=

2c2

3
δt

(

τc −
1

2

)

∇2
1T − δt

2

∂Q1

∂t1
. (15)

Combining Eqs. (13) and (15), we obtain the macro-
scopic equation

∂T

∂t
+ u · ∇T = χ∇2T +Q1 − ǫ

δt
2

∂Q

∂t1
. (16)

In order to neglect the last term ǫ(δt/2)∂Q/∂t1 in the
RHS of Eq. (16), the TLBM obtained using Eq. (11)
should solve the thermal problem through a slow heat
source change. We can remove this artifact by a redefini-
tion of the macroscopic variables, such as T , or by the ad-
dition of a term with regard to the derivative of the source
term D1kqk to the evolution equation (7) [7, 13, 14].
In the present study, we redefine the temperature and

the source term as

ρ0T =
∑

k

gk +Aρ0Qδt, qk = Bωkρ0Q, (17)

where A and B are constants to be determined based
on the conditions for the elimination of ǫ(δt/2)∂Q/∂t1 in
Eq. (16).
When Eq. (17) is used in the TLBM, the macroscopic

equation on the t1 time scale is derived from Eq. (9b) as

∂T

∂t1
+ u · ∇1T =

(A

τc
+B

)

Q1. (18)

In order to recover the temperature equation (1), we
must take

A

τc
+B = 1. (19)

After performing some standard algebra manipula-
tions, we obtain the macroscopic equation on the t2 time
scale from Eq. (10):

∂T

∂t2
= χ∇2

1T + δt

(

τc −
1

2
− τcB

)∂Q1

∂t1
. (20)

In order to eliminate the unexpected effect, we must
choose

τc −
1

2
− τcB = 0. (21)

The simultaneous equations, Eqs. (19) and (21), deter-
mine A and B as

A =
1

2
, B = 1− 1

2τc
. (22)
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FIG. 1. Temporal evolution of the temperature profile. The
solid lines and symbols represent the analytical and numerical
solutions along temporal series t = 16(∗), 32(•), 64(◦), and
128(+) to 256(×), respectively. The function decays with
time.

B. Accuracy of the TLBM with the source term

We verify the effect of the elimination of the error term
ǫ(δt/2)∂Q/∂t1 on the accuracy of the TLBM. One par-
ticular analytical solution of Eq. (1) is given as follows:

T̂ (x, y) = sin(κx) sin(κy) exp(αt), (23)

which leads to the following source term as a function of
time:

Q = (α+ 2χκ2) sin(κx) sin(κy) exp(αt), (24)

where κ is the wave number, and α is the damping rate.
The initial condition is given by the equilibrium distri-
bution function corresponding to the analytical solution
shown in Eq. (23). Since the source term is symmetric
with respect to the xy plane, a periodic boundary con-
dition can be used in this calculation. The grid size is
128× 128, and the constant density ρ0 is unity. The ve-
locity u is set to zero in order to eliminate the effect of the
convection term. Figure 1 shows the temporal evolution
of the temperature profile along y = 64 as calculated
by the proposed TLBM with Eq. (17). The relaxation
time is set to τc = 0.8. The wave number κ is set to
8π/128, and the damping rate α is set to -0.0128. In
addition, the diffusivity χ is set to 0.2. The solid lines
and symbols represent the analytical and numerical solu-
tions, respectively, along the temporal series t = 16, 32,
64, 128, and 256. The numerical predictions are in very
good agreement with the analytical results. We com-
pare the accuracy of the proposed method using Eq. (17)
(method 1) to that of the commonly used method using
Eqs. (5) and (11) (method 2). Figure 2 shows the de-
pendence of the magnitude of the damping rate α on the
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FIG. 2. Relative error versus damping rate, α. The damping
rate satisfies αt = −1.6384, which enables the error to be
calculated from the same exact solution for any value of α.

global relative error E. The relative error is defined as

E =

√

∑

x,y(T (x, y)− T̂ (x, y))2

√

∑

x,y T̂ (x, y)
2

. (25)

In order to use the same analytical solution in the com-
putation of Eq. (25) over the entire range of the damp-
ing rate α, we take the numerical solution at time t that
satisfies the relation αt = −1.6384. Figure 2 indicates
that the definition of the temperature and the source
term in Eq. (17) reduces the temporal error caused by
the source term in the LBE. In Fig. 2, the relative er-
rors for both methods become small when α → 0. The
temporal change of Q becomes small with the decrease
in the absolute value of α, and the error term ∂Q/∂t1
does not affect the accuracy of the TLBM. Although the
errors should approach each other when α becomes zero,
they appear to have a constant offset between method 1
and method 2 for all of the relaxation times in Fig. 2.
We investigate the difference in the accuracy of method

1 and method 2 in the steady state when α = 0. When
the source term Q is given by

Q = 2χκ2 sin(κx) sin(κy), (26)

we obtain the analytical steady-state solution of Eq. (1)
as

T̂ (x, y) = sin(κx) sin(κy). (27)

The convergence criterion for all calculations is set to

max|T n+1 − T n| ≤ 10−8, (28)

where n represents the time step. Figure 3 shows the
dependence of the wave number κ on the relative error
E defined by Eq. (25). Method 1 is more accurate than
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FIG. 3. Relative error versus wave number of the source term.

method 2 for both relaxation times τc = 0.8 and τc = 1.0
over the entire range of wave number.
In order to analytically investigate the steady-state er-

ror observed in Figs. 2 and 3, we expand the distribution
function gk and time t to the fourth order in terms of time
following Qian and Orszag [12]. Instead of Eqs. (8a) and
(8b), we use the following equations:

gk = g
(0)
k + ǫg

(1)
k + ǫ2g

(2)
k + ǫ2g

(3)
k + ǫ2g

(4)
k + . . . , (29a)

∂

∂t
= ǫ

∂

∂t1
+ ǫ2

∂

∂t2
+ ǫ3

∂

∂t3
+ ǫ4

∂

∂t4
. (29b)

Using Eqs. (7), (8c), (29a), and (29b), we obtain an
equation corresponding to the third and fourth orders in
terms of ǫ as follows:
O(ǫ3):

∂g
(0)
k

∂t3
+ δt(1− 2τc)D1k

∂g
(0)
k

∂t2
+ δ2t

(

τ2c − τc +
1

6

)

D3
1kg

(0)
k

= − g
(3)
k

τcδt
− δtτc

∂q1k
∂t2

+ δ2t τc

(

τc −
1

2

)

D2
1kq1k, (30a)

O(ǫ4):

∂g
(0)
k

∂t4
+ δt(1− 2τc)D1k

∂g
(0)
k

∂t3
− δt

(

τc −
1

2

)∂2g
(0)
k

∂t22

+δ2t

(

3τ2c − 3τc +
1

2

)

D2
1k

∂g
(0)
k

∂t2

−δ3t
(

τ3c − 3

2
τ2c +

7

12
τc −

1

24

)

D4
1kg

(0)
k

= − g
(4)
k

τcδt
− δtτc

∂q1k
∂t3

− δ2t τc(1− 2τc)D1k
∂q1k
∂t2

−δ3t τc
(

τ2c − τc +
1

6

)

D3
1kq1k. (30b)
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Calculating the sum of Eq. (30a) over k and using
Eq. (17), we obtain the macroscopic equation on the
t3 = ǫ3t time scale for method 1,

∂T

∂t3
= δt(τc −

1

2
)
∂Q1

∂t2
+
δ2t
12

∂2Q1

∂t21
,

−δ
2
t c

2

12
(20τ2c − 20τc + 3)∇2

1Q1

+δ2t c
2
(

τ2c − τc +
1

6

)(∂3Tux
∂x31

+
∂3Tuy
∂y31

)

. (31)

Summing Eq. (30a) over k using Eqs. (5) and (11), we
obtain the equation for method 2,

∂T

∂t3
= δt(2τc − 1)

∂Q1

∂t2
+ δ2t

(τc
2

− 1

6

)∂2Q1

∂t21
,

−δ
2
t c

2

6
(10τ2c − 11τc + 2)∇2

1Q1

+δ2t c
2
(

τ2c − τc +
1

6

)(∂3Tux
∂x31

+
∂3Tuy
∂y31

)

. (32)

Similarly, the summation of Eq. (30b) with respect to
k gives the macroscopic equation on the t4 = ǫ4t time
scale as follows:
For method 1:

∂T

∂t4
= −χδ

2
t c

2

4
(2τc − 1)2

(∂4T

∂x41
+
∂4T

∂y41

)

−χδ
2
t c

2

12
(12τ2c − 12τc + 5)

∂4T

∂x21∂y
2
1

+ δt

(

τc −
1

2

)∂Q1

∂t3
,

+
δ3t c

2

12
(2τc − 1)(18τ2c − 18τc + 1)∇2

1

∂Q1

∂t1

−δ2t τc(τc − 1)
∂2Q1

∂t1∂t2
− δ3t

24
(2τ2c − 1)

∂3Q1

∂t31
, (33)

For method 2:

∂T

∂t4
= −χδ

2
t c

2

4
(2τc − 1)2

(∂4T

∂x41
+
∂4T

∂y41

)

−χδ
2
t c

2

12
(12τ2c − 12τc + 5)

∂4T

∂x21∂y
2
1

+ δt(τc − 1)
∂Q1

∂t3
,

+
δ3t c

2

12
(36τ3c − 52τ2c + 18τc − 1)∇2

1

∂Q1

∂t1

−δ
2
t

4
(4τ2c − 6τc + 1)

∂2Q1

∂t1∂t2

− δ3t
24

(12τ2c − 10τc + 1)
∂3Q1

∂t31
. (34)

For method 1, combining Eqs. (18), (20), (31), and
(33), and neglecting u · ∇T , ∂T/∂t, and O(∂Q/∂t), we
obtain the macroscopic steady-state equation,

0 = χ
{

∇2T − δ2t c
2

4
(2τc − 1)2

(∂4T

∂x4
+
∂4T

∂y4

)

,

−δ
2
t c

2

12
(12τ2c − 12τc + 5)

∂4T

∂x2∂y2

}

+Q− δ2t c
2

12
(20τ2c − 20τc + 3)∇2Q. (35)
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(b) The wave number κ = 32π/128.

FIG. 4. Relative error versus relaxation time. The solid lines
show the analytical solutions. The symbols (+) and (×) are
numerical solutions obtained using method 1 and method 2,
respectively.

In the same manner, combining Eqs. (13), (15), (32),
and (34) yields

0 = χ
{

∇2T − δ2t c
2

4
(2τc − 1)2

(∂4T

∂x4
+
∂4T

∂y4

)

−δ
2
t c

2

12
(12τ2c − 12τc + 5)

∂4T

∂x2∂y2

}

+Q− δ2t c
2

6
(10τ2c − 11τc + 2)∇2Q, (36)

for method 2.
The source term Q given by Eq. (26) yields the follow-

ing analytical solution for Eq. (35) or for Eq. (36).

T̃ (x, y) = C(τc, κ) sin(κx) sin(κy), (37)

Substituting Eq. (26) and (37) into Eq. (35), we obtain
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C(τc, κ) in the analytical solution for method 1 as follows:

C(τc, κ) =
24 + δ2t c

2(80τ2c − 80τc + 12)k2

24 + δ2t c
2(36τ2c − 36τc + 11)k2

. (38)

Equations (26), (36), and (37) yield C(τc, κ) for
method 2 as follows:

C(τc, κ) =
24 + δ2t c

2(80τ2c − 88τc + 16)k2

24 + δ2t c
2(36τ2c − 36τc + 11)k2

. (39)

Using Eq. (38), we obtain the analytical relative error
between Eq. (27) and Eq. (37) for method 1 as follows:

Ẽ =

∣

∣

∣

∣

1− 24 + δ2t c
2(80τ2c − 80τc + 12)k2

24 + δ2t c
2(36τ2c − 36τc + 11)k2

∣

∣

∣

∣

. (40)

From Eq. (39), the analytical relative error for method
2 is given by

Ẽ =

∣

∣

∣

∣

1− 24 + δ2t c
2(80τ2c − 88τc + 16)k2

24 + δ2t c
2(36τ2c − 36τc + 11)k2

∣

∣

∣

∣

. (41)

Figure 4 shows the analytical errors Ẽ in Eqs. (40) and
(41), and the numerically calculated errors E in Eq.(25)
for wave numbers of κ = 4π/128 and κ = 32π/128. In
the calculation of the error shown in Eq. (25), the ana-

lytical solution T̂ is given by Eq. (27). Ẽ in Eqs. (40)
and (41) is given by the solid line. The errors calculated
by the proposed and original methods are indicated by
the symbols (+) and (×), respectively. When τc ≈ 0.5,
the numerical solutions agree well with the analytical so-
lutions. A pair of simultaneous equations, namely, Eqs.
(40) and (41), yields two solid lines that intersect at the

point at which τc = 12+
√
111

22 ≈ 1.024 in Fig. 4. Figure
4 indicates that method 1 is theoretically more accurate
than method 2 for any wave number under the condition
in which τc is less than 1.024. When the relaxation time
is equal to 1.025, the numerical solutions indicated by
the symbols intersect each other in Figs. 4(a) and 4(b).
Figure 4 indicates good agreement between the analytical
and numerical solutions for the entire range of relaxation
time. Figure 4 demonstrates that the higher-order spa-
tial derivatives, ∂4T/∂x4 and ∇2

1Q1 are related to lattice
artifacts of the thermal diffusivity and of the source term
in the temperature equation, as shown in Eqs. (35) and
(36).
Figure 5 shows the dependence of the relative error E

shown in Eq. (25) on the grid size, which changes from
32×32 to 256×256. The error for both methods decreases
with increasing grid size. The convergence rate of the
space accuracy is larger than 1.7. Theoretical analysis
and numerical calculations prove that the LBM solves
fluid problems with second-order accuracy in space [1].
Equation (40) for the error of method 1 is equal to zero,

when τc is equal to 11+
√
110

22 ≈ 0.9767. Since the error of
method 1 decreases drastically for τc = 1, Fig. 5 shows a
rare case in which the convergence rate of the spatial ac-
curacy is greater than 2. Method 1 is more accurate than
method 2 over the entire range of grid size. Based on the

30 50 100 150 200 300
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10
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10
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10
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↓ Slope = -1.7

↓ Slope = -2.8⋅×
°
+

method 1,τ
c
=0.8
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c
=0.8

method 1,τ
c
=1.0

method 2,τ
c
=1.0

The number of the grid points

E
r
r
o
r

FIG. 5. Relative error versus the number of grid points.

concept of Guo’s forcing term [7], the proposed method
improves the accuracy of the TLBM for the temperature
equation with the heat source term when the relaxation
time τc is less than unity.

III. IMMERSED BOUNDARY-THERMAL

LATTICE BOLTZMANN METHOD

In this section, we explain two immersed boundary-
thermal lattice Boltzmann methods, namely, the direct
forcing method using Eqs. (5) and (11) and the implicit
correction method using Eq. (17). The body is rigid and
does not deform due to the fluid shear stresses. The body
temperature does not change when the fluid is heated or
cooled locally. After the explanation, we calculate the
heat transfer to verify the accuracy of the IB-TLBMs.

A. IB-TLBM based on the direct forcing method

Wang et al. demonstrated that the direct forcing
method is applicable to the simulation of thermal hy-
draulics [9]. We apply Wang’s procedure in the frame-
work of the LBM to calculate the fluid flow and heat
transfer. The LBM for the incompressible Navier-Stokes
equation uses the following kinetic equations for the dis-
tribution function fk:

fk(x+ ekδt, t+ δt)− fk(x, t)

= −fk(x, t)− f
(eq)
k (x, t)

τv
+ δtFk, (42)

where f
(eq)
k is equilibrium distribution function, τv is a

single relaxation parameter, and Fk is an external forcing
term.
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The equilibrium distribution function for incompress-
ible flows [15] is given by

feq
k =ωk

[

p

c2s
+ ρ0

(3ek · u
c2

+
9(ek · u)2

2c4
− 3u · u

2c2

)

]

. (43)

The fluid pressure and velocity are written in terms of
the distribution function as follows:

p = c2s
∑

k

fk, (44)

u =
1

ρ0

∑

k

ekfk, (45)

where the speed of sound is cs = c/
√
3. The kinematic

viscosity ν is determined as

ν =
1

3

(

τv −
1

2

)

c2δt. (46)

The IB-LBM uses the following forcing term in
LBE (42) [3, 4]:

Fk =
3

c2
ωkF · ek. (47)

The immersed boundary method arranges the La-
grangian points of the structure xb independently of the
grid nodes, which are arranged regularly in the Eulerian
frame to represent a structure of arbitrary shape in a
fluid. The direct forcing method evaluates the force den-
sity F(xb) and the source term Q(xb) at the Lagrangian
points by

F(xb) =
ud(xb)− ũ(xb)

δt
, (48)

Q(xb) =
T d(xb)− T̃ (xb)

δt
, (49)

where ud and T d are the desired wall velocity and the
temperature on the boundary nodes, respectively. The
velocity ũ and temperature T̃ are evaluated through the
interpolation of the corresponding values at the neigh-
boring fluid nodes with a discrete delta function D(x) as
follows:

ũ(xb) =
∑

f

u(xf )D(xf − xb)δ
2
x, (50)

T̃ (xb) =
∑

f

T (xf)D(xf − xb)δ
2
x, (51)

where xf are the nearby fluid grid points, and δx is the
Eulerian mesh size that exhibits the following relation in
the LBM: δx = cδt.
For a two-dimensional coordinate system x = (x, y),

D(x) is expressed as

δ(r) =

{

1
4

(

1 + cos
(

π|r|
2

))

|r| ≤ 2
0 |r| > 2

, (52)

and

D(xf − xb) = δ(xf − xb)δ(yf − yb). (53)

In order to implement two-way fluid-solid coupling,
we need to spread the force density F(xb) and the heat
source Q(xb) to the fluid nodes. We obtain F(xf ) and
Q(xf ) in the Eulerian coordinate system by interpolating
F(xb) and Q(xb) as

F(xf ) =

N
∑

b

F(xb)D(xf − xb)∆s, (54)

Q(xf ) =

N
∑

b

Q(xb)D(xf − xb)∆s, (55)

where N is the total number of Lagrangian points,
and ∆s is a discrete volume (area) for each Lagrangian
point. For a circular cylinder of radius R, we use
∆s = 2πRδx/N , following Reference [16]. The solution
procedure of the IB-TLBM based on the direct forcing
method can be summarized as follows:

(1) Solve Eqs. (7) and (42) to obtain the distribution
functions gk and fk and compute the macroscopic
variables T , p, and u using Eqs. (5), (44), and (45).

(2) Obtain the velocity and temperature at Lagrangian
points using Eqs. (50) and (51), and compute the
force density and heat source using Eqs. (48) and
(49).

(3) Spread the force and heat source density to Eule-
rian points using Eqs. (54) and (55).

(4) Compute the source term qk and forcing term Fk

using Eqs. (11) and (47).

(5) Compute the equilibrium distribution functions geqk
and feq

k using Eqs. (3a) through (3c) and (43).

(6) Return to step (1).

B. IB-TLBM based on the implicit correction

method

Wu et al. proposed the IB-LBM method using the
external forcing term proposed by Guo et al. that can
take into account the effect of the external force on the
momentum and momentum flux as well as the discrete
lattice effect [6, 7]. In order to calculate the dynamics of
the incompressible flow, we substitute a constant density
ρ0 into the definition of the fluid velocity and into the
external forcing term proposed by Guo et al., as follows:

ρ0u =
∑

k

ekfk +
δt
2
F, (56)

Fk =
(

1− 1

2τv

)

ωk

[

3ek ·F
c2

+
9(uF : ekek)

c4
− 3u ·F

c2

]

. (57)
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In the implicit correction method, Eq. (56) is solved to
obtain the velocity correction ρ0δu = δt

2 F at all bound-
ary points. This scheme can enforce the non-slip bound-
ary condition and reduce the streamline penetration into
the boundary surface. Since Eq. (17) is similar in form
to Eq. (56), we need to define a temperature correction
δT = δt

2 Q to apply the highly accurate method using
Eq. (17) to the IB-TLBM. Equations (17) and (56) can
be written as

u = u∗ + δu, (58)

T = T ∗ + δT. (59)

Here, the intermediate velocity u∗ and intermediate
temperature T ∗ are defined as follows:

u∗ =
1

ρ0

∑

k

ekαfk, (60)

T ∗ =
1

ρ0

∑

k

gk. (61)

Substituting the corrections δu = δt
2ρ0

F and δT = δt
2 Q

into Eqs. (54) and (55), we obtain

δu(xf ) =

N
∑

b

δu(xb)D(xf − xb)∆s, (62)

δT (xf ) =

N
∑

b

δT (xb)D(xf − xb)∆s. (63)

The fluid velocity u(xb) should be equal to the wall
velocity ud(xb) at the boundary points xb in order to
satisfy the non-slip boundary condition.
From Eqs. (50), (59), and (62), we obtain the following

simultaneous equations for the unknown velocity δu:

ud(xb) =
∑

f

u∗(xf )D(xf − xb)δ
2
x

+
∑

f

∑

b′

δu(xb′)D(xf − xb′)∆sD(xf − xb)δ
2
x. (64)

Equation (64) can be expressed in matrix form:

AX = B, (65)

where

X = (δu1, δu2, · · · δuN )T , (66a)

B = (∆u1
b ,∆u2

b , · · ·∆uN
b )T , (66b)

∆ub = ud(xb)−
∑

f

u∗(xf )D(xf − xb)δ
2
x. (66c)

The elements of matrix A are computed as a func-
tion of the distance between the Lagrangian bound-
ary points and their neighboring Eulerian points. For
the fixed-temperature boundary condition, the relation

T (xb) = T d(xb) must be satisfied in Eq. (59). Equa-
tions (51), (58), and (63) yield the following equation for
the unknown temperature δT :

T d(xb) =
∑

f

T ∗(xf )D(xf − xb)δ
2
x

+
∑

f

∑

b′

δT (xb′)D(xf − xb′)∆sD(xf − xb)δ
2
x. (67)

Equation (67) is also described in matrix form AX = B

using

X = (δT 1, δT 2, · · · δTN)T , (68a)

B = (∆T 1
b ,∆T

2
b , · · ·∆TN

b )T , (68b)

∆Tb = T d(xb)−
∑

f

T ∗(xf )D(xf − xb)δ
2
x. (68c)

We obtain the unknown velocity and temperature cor-
rection at all Lagrangian points by solving Eqs. (64) and
(67), and can then easily compute the force and heat
source density as follows:

F = 2ρ0δu/δt, Q = 2δT/δt. (69)

We solve the simultaneous equations (65) using a di-
rect method through the lower-upper triangular (LU) de-
composition. The solution procedure of the implicit cor-
rection method for the IB-TLBM can be summarized as
follows:

(1) Set initial values and compute the elements of ma-
trix A and inverse matrix A−1 for Eqs. (64) and
(67).

(2) Solve Eqs. (7) and (42) to obtain the distribution
functions gk and fk and compute the macroscopic
variables p, u∗, and T ∗ using Eqs. (5), (60), and
(61).

(3) Solve Eq. (65) for the velocity correction δu and
temperature correction δT and obtain F and Q at
all boundary points.

(4) Use Eqs. (54) and (55) to spread the force density
and heat source to the Eulerian points.

(5) Correct the fluid velocity and temperature at Eu-
lerian points using Eqs. (58) and (59)

(6) Compute the source term qk and the forcing term
Fk using Eqs. (17) and (57).

(7) Compute the equilibrium distribution functions geqk
and feq

k using Eqs. (3a) through (3c) and (43).

(8) Return to step (2).
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δx 

FIG. 6. Schematic diagram of heat transfer between two con-
centric circular cylinders and of a cylindrical Couette flow.
The circles indicate the boundary nodes xb and fluid nodes
xf used in the IB-TLBM. The bulk fluid is indicated by the
shaded area between the inner and outer cylinders.

C. Results and Discussion

1. An analysis of heat transfer between two concentric

circular cylinders and of a cylindrical Couette flow

We compare the accuracy of these two methods for the
distribution function gk through the simulation of heat
transfer between two concentric circular cylinders with an
isothermal hot inner cylinder and a cold outer cylinder.
As shown in Fig. 6, two circles having radii of 45δx and
70δx are placed in the center of the simulation domain.
The grid size is 200×200, and the circles are at rest. The
relaxation time τc is equal to 0.6. The inner and outer
cylinders are maintained at temperatures of T̂i = 1.0 and
T̂o = 0.0, respectively. The exact solution is given by

T̂ (R) =
To log(R/Ri)− Ti log(R/Ro)

log(Ro/Ri)
, (70)

where R is the radial coordinate, and Ri and Ro are the
radii of the inner and outer cylinders, respectively. Since
the velocity is zero everywhere, the velocity distribution
is not displayed in this simulation. Figure 7 shows the
temperature profile calculated by the implicit correction
method. The discrete area ∆s on the inner cylinder is
approximately equal to that on the outer cylinder. In
Fig. 7, we set 141 Lagrangian points on the inner cylin-
der, and 219 points on the outer cylinder, which makes
∆s ≈ 2δx. To make ∆s ≈ 1.0δx, we use ∆s = 90πδx/282
for the inner cylinder, and ∆s = 140πδx/439 for the outer
cylinder. For ∆s ≈ 0.5δx, 565 and 879 Lagrangian points
are set on the inner and outer cylinders, respectively. Al-
though the numerical results agree with the exact solu-
tion in Fig. 7, slight distortions appear near the cylinders
for ∆s ≈ 0.5δx.
In order to verify the accuracy of the IB-LBM for the

distribution function fk, we calculate the cylindrical Cou-
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∆s ≈ 0.5 δ
x

exact

FIG. 7. Temperature profile along the central horizontal plane
y = 100δx between two concentric cylinders as calculated by
the implicit correction method.
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FIG. 8. Tangential velocity profile along the central horizontal
plane y = 100δx in the cylindrical Couette flow as calculated
by the implicit correction method.

ette flow under isothermal conditions. We use the same
computational domain used in Fig. 7, namely, Ro = 70δx,
Ri = 45δx, and 200× 200 grid size. τv = 0.6. The outer
ring is at rest, and the tangential velocity of the inner
cylinder, udθ, is 0.01. The exact solution for the tangen-
tial velocity of the cylindrical Couette flow is given by

ûθ(R) = udθ
R/Ro −Ro/R

Ri/Ro −Ro/Ri

. (71)

For an isothermal flow, it is not necessary to calculate
gk for the temperature equation. Figure 8 shows the
tangential velocity distributions calculated by the im-
plicit correction method with ∆s ≈ 2, ∆s ≈ 1.0, and
∆s ≈ 0.7, respectively. In order to make ∆s ≈ 0.7δx,
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FIG. 10. Error in tangential velocity versus the discrete area
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we use ∆s = 90πδx/403 for the inner cylinder, and
∆s = 140πδx/628 for the outer cylinder. Although os-
cillation due to the numerical instability is observed for
∆s ≈ 0.7, there is good agreement between the numerical
and exact solutions for the case of ∆s ≈ 2.0 in Fig. 8.
In the direct forcing method, Eqs. (48) and (49) are

expressed in matrix form AX = B, where A is an iden-
tical matrix multiplied by δt. For instance, the matrix
form of Eq. (48) is presented as

AX = B, A = δtI, (72a)

X = (F1,F2, · · ·FN )T , (72b)

B = (∆u1
b ,∆u2

b , · · ·∆uN
b )T , (72c)

∆ub = ud(xb)−
∑

f

u(xf )D(xf − xb)δ
2
x. (72d)

In the direct forcing method, the equation A = δtI in-
dicates that the individual forces FN on each of the La-
grangian points on the immersed boundary do not com-
bine to enhance the accuracy of the boundary condition.
Figures 9 and 10 show the numerical errors versus the
discrete area ∆s for heat transfer between two concen-
tric cylinders and for the cylindrical Couette flow, respec-
tively. At a small gap such as ∆s ≤ 3.33, the increment
of the Lagrangian points does not improve the accuracy
of the boundary condition at each Lagrangian point, as
indicated by the (+) and (×) symbols in Figs. 9 and
10. In the implicit correction method, the elements of
matrix A shown by Eqs. (64) and (67) depend on the
distance between the boundary nodes and show the in-
teraction between the boundary values. This interaction
in the implicit correction method causes the enhance-
ment of the accuracy of the IB-TLBM by the increment
of the number of Lagrangian points, as shown in Figs. 9
and 10. The high accuracy of the boundary condition in
the implicit correction method prevents flow penetration
thorough the immersed structures. However, the implicit
correction method has its limitation in the improvement
of accuracy by the increment of the Lagrangian points.
The implicit correction method appropriately manages
the effect of the source term on the temperature equation
in the TLBM using Eq. (17). This proper management
results in higher accuracy than the direct forcing method.

2. Boundary slip of the IB-TLBM

Le et. al. [17] indicated that the boundary slip veloc-
ity observed in the simulation of the isothermal IB-LBM
depends strongly on the relaxation time τv. They also
proved that the boundary slip cannot be reduced by a
wide immersed boundary layer or by the prevention of
the flow penetration. In order to verify the boundary
slip on the IB-TLBM, we analyze the temperature dis-
tribution for simple two-dimensional steady heat transfer
between hot and cold plain plates, as shown in Fig. 11:

ρ = const, u = v = 0,
dT

dx
= 0, and

dT

dt
= 0, (73)

where u = (u, v) in two dimensions. The computational
domain is covered by a 200 × 200 grid with a periodic
boundary condition applied. δx = δt = c = 1 is used.
The temperature at the Lagrangian points of the bound-
ary T d is set to unity, and the distance between the two
plates is h = 100. Figures 12(a) and 12(b) show the tem-
perature distributions in the half-computational domain
calculated by the IB-TLBM based on the direct forcing
method and based on the implicit correction method, re-
spectively. As shown in Fig. 12, when τc = 1, the nu-
merical solution agrees well with the exact solution. The
numerical error in the temperature distribution at the
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immersed boundary, which is referred to as the bound-
ary slip, increases with the relaxation time τc. Figure
12(b) shows that the boundary slip also occurs in the
implicit correction method.
In order to obtain analytical solutions of the boundary

slip of the IB-TLBM based on the direct forcing method,
we follow the procedure carried out by He et al. [15] and
Le et al. [17]. Since gk(x + ekδt, t + δt) = gk(x, t) for
k = 0, k = 1 and 3 in the steady state, we obtain

gj0 =
4δtτcρ0Qj

9
, (74)

gj1 =
ρ0Tj
6

+
δtτcρ0Qj

9
, (75)

gj3 =
ρ0Tj
6

+
δtτcρ0Qj

9
, (76)

gj2 =
ρ0Tj−1

6τc
+
τc − 1

τc
gj−1
2 +

δtρ0Qj−1

9
, (77)

gj4 =
ρ0Tj+1

6τc
+
τc − 1

τc
gj+1
4 +

δtρ0Qj+1

9
, (78)

gj5 =
ρ0Tj−1

12τc
+
τc − 1

τc
gj−1
5 +

δtρ0Qj−1

36
, (79)

gj6 =
ρ0Tj−1

12τc
+
τc − 1

τc
gj−1
6 +

δtρ0Qj−1

36
, (80)

gj7 =
ρ0Tj+1

12τc
+
τc − 1

τc
gj+1
7 +

δtρ0Qj+1

36
, (81)

gj8 =
ρ0Tj+1

12τc
+
τc − 1

τc
gj+1
8 +

δtρ0Qj+1

36
. (82)

In order to indicate the position along the y-axis, we
attach the subscript j to gk, T , and Q. Substituting
Eqs. (74) through (82) into the definition of the temper-
ature shown by Eq. (5) at position j, we have

2Tj
3

=
2τcδtQj

3
+
δt(Qj+1 +Qj−1)

6

+
Tj+1 + Tj−1

3τc
+
τc − 1

ρ0τc
(gj−1

2 + gj−1
5 + gj−1

6 ) (83)

+
τc − 1

ρ0τc
(gj+1

4 + gj+1
7 + gj+1

8 ).

Combining Eqs. (74), (75), and (76), we obtain

gj0 + gj1 + gj3 =
ρ0Tj
3

+
2τcδtρ0Qj

3
. (84)

FIG. 11. Schematic diagram of heat transfer between hot and
cold plain plates. The circles indicate the boundary nodes xb

and fluid nodes xf used in the IB-TLBM.

Substituting Eqs. (74)-(82) into Eq. (5) at position j+
1, we obtain

gj+1
4 + gj+1

7 + gj+1
8

=
2ρ0Tj+1

3
− 2τcδtρ0Qj+1

3
− (gj+1

2 + gj+1
5 + gj+1

6 )

=
2ρ0Tj+1

3
− 2τcδtρ0Qj+1

3

−
{τc − 1

τc
(gj2 + gj5 + gj6) +

ρ0Tj
3τc

+
δtρ0Qj

6

}

. (85)

Similarly, substituting Eqs. (74) through (82) into
Eq. (5) at position j − 1 yields

gj−1
2 + gj−1

5 + gj−1
6

=
2ρ0Tj−1

3
− 2τcδtρ0Qj−1

3
− (gj−1

4 + gj−1
7 + gj−1

8 )

=
2ρ0Tj−1

3
− 2τcδtρ0Qj−1

3

−
{τc − 1

τc
(gj4 + gj7 + gj6) +

ρ0Tj
3τc

+
δtρ0Qj

6

}

. (86)

Substituting Eqs. (84), (85), and (86) into Eq. (83)
and considering the definition of the thermal diffusivity
shown in Eq. (6), we obtain

0 = χ
Tj+1 − 2Tj + Tj−1

δ2x
+Qj

+
5τc − 4τ2c

6
(Qj+1 − 2Qj +Qj−1). (87)

When the total boundary source is given by Q0,
Eqs. (49) and (53) yield

Qj0 =
Q0

2
, Qj0±1 =

Q0

4
, Q|j−j0|≥2 = 0, (88)

where j0 denotes the position of the immersed boundary.
Due to the symmetry of the temperature distribution, we
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FIG. 12. Temperature distributions in the half computational
domain. The relaxation parameter τc changes from 1, 2, 5, 10,
to 15. The thick line indicates the exact temperature profile.

obtain

Tj0+1 = Tj0−1. (89)

Substitution of Eqs. (88) and (89) into Eq. (87) yields
the temperature difference in the immersed boundary
layer (IBL).

Tj0 − Tj0+1 =
Q0δ

2
x

χ

(1

4
− 5τc − 4τ2c

24

)

, (90)

Tj0+1 − Tj0+2 =
Q0δ

2
x

χ

(1

2
− 5τc − 4τ2c

24

)

. (91)

Since Q0 does not spread beyond the IBL, the temper-
ature gradient in the bulk fluid is constant.

Tj−1 − Tj =
Q0δ

2
x

2χ
, for j > j0 + 2. (92)

Equation (92) indicates that the heat source applied
at the boundary induces the following bulk temperature
gradient:

(dT

dy

)

bulk
=
Q0δx
2χ

. (93)

Since the temperature is zero on the center plane be-
tween the two plates, Eq. (93) gives the exact solution
for the temperature at j0.

T̄j0 =
Q0δ

2
x

2χ

h

2
. (94)

Equation (92) gives the temperature at j0 + 2 beyond
the IBL as follows:

Tj0+2 =
Q0δ

2
x

2χ

(h

2
− 2

)

. (95)

Combining Eqs. (90), (91), and (95), we have

Tj0 =
Q0δ

2
x

χ

(h

4
− 1

4
− 5τc − 4τ2c

12

)

, (96)

and

Tj0±1 =
Q0δ

2
x

χ

(h

4
− 1

2
− 5τc − 4τ2c

24

)

. (97)

Subtracting Eq. (94) from Eq. (96), we obtain the ar-
tificial slip of the temperature as follows:

T s
j0

= Tj0 − T̄j0 =
Q0δ

2
x

χ

4τ2c − 5τc − 3

12
. (98)

In order to make the boundary slip T s
j0

equal to
zero [17], the IB-TLBM based on the direct forcing

method requires that τc = (5+
√
73)/8 ≈ 1.693. When τc

becomes greater than two, the larger boundary slip might
destroy the validity and usefulness of the IB-TLBM.
Substitution of Eqs. (96) and (97) into Eq. (51) yields

the boundary temperature T̃ :

T̃ =
Tj0
2

+
Tj0+1

4
+
Tj0−1

4

=
Q0δ

2
x

χ

(h

4
− 3

8
− 5τc − 4τ2c

16

)

. (99)

Substituting Eq. (99) into Eq. (49), and considering
Eq. (46), we have

T d =
Q0δ

2
x

χ

(h

4
− 17

24
+

17τc
48

+
τ2c
4

)

. (100)

Equations (96), (98), and (100) yield the normalized
boundary temperature Tj0/T

d and the boundary slip of
temperature T s

j0
/T d, as follows:

Tj0
T d

=
h
4 − 1

4 − 5τc
12 +

τ2

c

3

h
4 − 17

24 + 17τc
48 +

τ2
c

4

, (101)
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FIG. 13. Comparison of the analytical and numerical solu-
tions for the IB-TLBM as a function of the relaxation time
τc.

T s
j0

T d
=

− 1
4 − 5τc

12 +
τ2

c

3

h
4 − 17

24 + 17τc
48 +

τ2
c

4

. (102)

Similarly, for the implicit correction method, we obtain
the analytical solutions for the boundary temperature
and for the boundary slip of the temperature. By using
Eqs. (17) and (22) instead of Eqs. (5) and (11), we obtain
the following equation:

0 = χ
Tj+1 − 2Tj + Tj−1

δ2x
+Qj

+
1 + 8τc − 8τ2c

12
(Qj+1 − 2Qj +Qj−1). (103)

Equation (103) yields

Tj0 =
Q0δ

2
x

χ

(h

4
− 1

4
− 1 + 8τc − 8τ2c

24

)

, (104)

and

Tj0±1 =
Q0δ

2
x

χ

(h

4
− 1

2
− 1 + 8τc − 8τ2c

48

)

. (105)

The difference between Eq. (94) and Eq. (104) gives
the artificial slip of the temperature for the implicit cor-
rection method:

T s
j0

= Tj0 − T̄j0 =
Q0δ

2
x

χ

8τ2c − 8τc − 7

24
. (106)

The implicit correction method eliminates the bound-
ary slip T s

j0
, when the relaxation time is τc = (2 +

3
√
2)/4 ≈ 1.561. Since the desired temperature T d is

equal to the boundary temperature T̃ in the implicit cor-
rection method, T d is given by Eq. (51) as follows:

T d =
Tj0
2

+
Tj0+1

4
+
Tj0−1

4
. (107)

Substituting Eqs. (104) and (105) into Eq. (107), we
obtain

T d =
Q0δ

2
x

χ

(h

4
− 3

8
− 1 + 8τc − 8τ2c

32

)

. (108)

Combining Eqs. (104), (106), and (108), we obtain the
analytical solutions for the implicit correction method as
follows:

Tj0
T d

=
h
4 − 7

24 − τc
3 +

τ2

c

3

h
4 − 13

32 − τc
4 +

τ2
c

4

, (109)

T s
j0

T d
=

− 7
24 − τc

3 +
τ2

c

3

h
4 − 13

32 − τc
4 +

τ2
c

4

. (110)

Figure 13 shows plots of the analytical solutions and
the IB-TLBM predictions with respect to τc. The good
agreement between the numerical and the analytical so-
lutions shown in Fig. 13 demonstrates the validity of the
analytical solutions, i.e., Eqs. (101), (102), (109), and
(110). The implicit correction method shows that the
boundary error depends on the relaxation time as is also
the case for the direct forcing method.
The analytical boundary error |1 − Tj0/T

d| is given
by Eqs. (101) and (109). The analytical boundary error
|1− Tj0/T

d| of the implicit correction method is smaller
than that of the direct forcing method at the relaxation
time τc in the range from 0.7949 to 4.163. Although
the accuracy in Tj0 of the implicit correction method is
worse than that of the direct forcing method when τc is
less than 0.7949, the implicit correction method yields ac-
ceptable results, as shown in Fig. 13(a). Equations (102)
and (110) show that the boundary slip of the implicit
correction method is smaller than that of the direct forc-
ing method when τc is less than 1.624. Although the
implicit correction method does not completely reduce
the temperature slip and the disagreement between the
numerical and desired temperatures at the boundary, the
implicit correction method is more accurate than the di-
rect forcing method at a small relaxation time τc < 1.624.
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FIG. 14. Streamlines and isotherms for Ra = 5×104 and Pr =
0.7. The results of the implicit correction method are shown
in (a), and those of the direct forcing method are shown in
(b). The discrete area ∆s ≈ 2δx. The color bars indicate the
values of the stream function and temperature in each figure.

3. Natural convection by the IB-TLBM

We use the IB-TLBM based on the implicit correction
method for the simulation of the natural convection be-
tween two concentrically placed horizontal circular cylin-
ders. The number of Lagrangian points N for all sim-
ulations is given by the integral part of πR in order to
equalize the distance between the boundary points as far
as possible. The discrete area ∆s is approximately 2. We
use the Boussinesq approximation, g = βG(T −Tm)j, to
obtain the buoyancy force, where β is the thermal expan-
sion coefficient, G is the acceleration due to gravity, Tm is
the mean temperature, and j denotes the direction oppo-
site to the force of gravity. Section III C 2 indicates that
a large relaxation time (τv > 2, τc > 2) causes boundary
slip of the velocity or temperature profile around a solid-
fluid interface in the IB-TLBM simulation. We carefully
set τv and τc using

τv =
3U0H

√
Pr

cδx
√
Ra

+ 0.5, (111)

τc =
3U0H

2cδx
√
PrRa

+ 0.5, (112)

where U0 is the nondimensional characteristic velocity,
H = Ro − Ri is the characteristic length, and Ro and
Ri are the radii of the outer and inner cylinders, respec-
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FIG. 15. Temperature and angular velocity distributions be-
tween the two cylinders. The solid lines represent numer-
ical solutions calculated by the implicit correction method,
and the symbols represent the results reported by Kuehn and
Goldstein [18].

tively. Equations (111) and (112) are derived from the
definition of the Prandtl number Pr = ν/χ, the defini-
tion of the Rayleigh number Ra = βG∆TH3/νχ, Eqs.
(6) and (46), and the relation U0 =

√
βG∆TH [8]. The

Rayleigh number is a dimensionless number associated
with a buoyancy driven fluid. When the Rayleigh num-
ber is small, conduction is dominant in the heat trans-
fer. A large Rayleigh number indicates that the buoy-
ancy is large and that convection is dominant. Here,
∆T = Ti − To = 1 is the temperature difference between
the hot and cold cylinders. We set the nondimensional
characteristic velocity U0 = 0.1c so as to satisfy the Mach
number Ma < 0.3 for the simulation of incompressible
fluid flows.

In this simulation, we use the following condition: Pr =
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FIG. 16. Streamlines and isotherm contours for different val-
ues of R/L at Ra = 104.

0.7, Ra = 5×104, Ro = 208δx, Ri = 80δx, To = 0, Ti = 1,
U0 = 0.1c. The gird size is 425 × 425 with the periodic
boundary. Substituting these values into Eqs. (111) and
(112), we obtain the relaxation times τv = 0.6437 and
τc = 0.6026.
The convergence criterion is set as

max|(|u|n+1 − |u|n)| ≤ 10−8, (113)

max|T n+1 − T n| ≤ 10−8. (114)

Figure 14(a) shows the streamlines and isotherm con-
tours calculated by the IB-TLBM based on the implicit
correction method that agree well with those of the fi-
nite difference method reported by Kuehn et al. [18].
The numerical results calculated by the direct forcing
method are shown in Fig. 14(b). For the direct forcing
method, ∆s ≈ 2δx is too large to prevent flow penetra-
tion through the immersed boundary, the streamlines and

 

 

-10

-5

0

5

10

 

 

0

0.2

0.4

0.6

0.8

1

(a-1) streamlines (a-2) isotherms
(a) R/L = 0.1

 

 

-8

-4

0

4

8

 

 

0

0.2

0.4

0.6

0.8

1

(b-1) streamlines (b-2) isotherms
(b) R/L = 0.2

 

 

-5

-3

-1

1

3

5

 

 

0

0.2

0.4

0.6

0.8

1

(c-1) streamlines (c-2) isotherms
(c) R/L = 0.3

FIG. 17. Streamlines and isotherm contours for different val-
ues of R/L at Ra = 105.

isotherm contours do not agree with those of the previ-
ous study [18]. The penetrating flow circulates through
the periodic boundary and disturbs the temperature dis-
tribution and streamlines in Fig. 14(b). Wu et al. have
demonstrated that flow penetration is not observed in
the implicit correction method through the simulation of
the flow around a circular cylinder at Re = 20 and Re =
40 [6].

Figure 15 compares the present results calculated by
the implicit correction method with the results of a previ-
ous study [18]. The angle θ is zero in a vertically upward
direction (y-axis) and increases clockwise. The velocity
is normalized by the reference velocity χ/H [10]. Good
agreement with the previous study is obtained for both
the velocity and the temperature distributions.

We calculate the natural convection between a hot cir-
cular cylinder and a cold square enclosure using the IB-
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FIG. 18. Streamlines and isotherm contours for different val-
ues of R/L at Ra = 106.

TLBM based on the implicit correction method. In order
to consider the compressible error, the Reynolds num-
ber effect, and the magnitude of the relaxation times, we
use the following grid sizes and characteristic velocities
151 × 151 and U0 = 0.02c for Ra = 104, 201 × 201 and
U0 = 0.05c for Ra = 105, and 401× 401 and U0 = 0.07c
for Ra = 106, respectively. The inner cylinder and the
square enclosure are at temperatures Ti = 1 and To = 0,
respectively. The Prandtl number is set to be 0.71 in
order to compare the present results with the results re-
ported in a previous study [8, 19, 20]. Equations (111)
and (112) give the relaxation times τv = 0.5758 and
τc = 0.5534 for Ra = 104, τv = 0.5799 and τc = 0.5563 for
Ra = 105, and τv = 0.5708 and τc = 0.5498 for Ra = 106.
The Reynolds number is given by Re =

√

Ra/Rr. The
Reynolds numbers for Ra = 104, Ra = 105, and Ra = 106

are Re = 118.68, Re = 375.29, and Re = 1186.8, respec-

TABLE I. Comparison of surface-averaged Nusselt number.

Ra R/L Present SIMPLE [19] DQM [20] LBM [8]

0.1 2.206 2.071 2.08 −

104 0.2 3.461 3.331 3.24 3.412

0.3 5.832 5.826 5.40 −

0.1 3.987 3.825 3.79 −

105 0.2 5.253 5.08 4.86 5.176

0.3 6.685 6.212 6.21 −

0.1 6.542 6.107 6.11 −

106 0.2 9.547 9.374 8.90 9.171

0.3 12.87 11.62 12.00 −

TABLE II. Comparison of the maximum absolute values of
the stream function.

Ra R/L Present SIMPLE [19] DQM [20]

0.1 1.743 1.73 1.71

104 0.2 0.981 1.02 0.97

0.3 0.486 0.50 0.49

0.1 10.11 10.15 9.93

105 0.2 8.267 8.38 8.10

0.3 5.023 5.10 5.10

0.1 21.05 25.35 20.98

106 0.2 24.23 24.07 24.13

0.3 20.33 21.30 20.46

tively. Equations (113) and (114) are used to judge the
convergence of the numerical solution. The immersed
boundary method is applied to the surface of the inner
cylinder. For the outer enclosure, we use the bounce-back
scheme for the non-equilibrium distribution functions,
fneq
α = fneq

β , and gneqα − c2αf
neq
α = −(gneqβ − c2βf

neq
β ) [21],

where α and β are the directions opposite to the direction
of the discrete velocity that satisfy the following equa-
tion: eα = −eβ . The non-equilibrium distribution func-

tions fneq
α and gneqα are given by fneq

α = fα−f (eq)
α and by

gneqα = gα − g
(eq)
α , respectively. The equilibrium popula-

tions f
(eq)
α and f

(eq)
α are given by substitution of the wall

velocity and temperature into Eqs. (3a), (3b), (3c), and
(43). The pressure on the wall is given by simultaneous
equations, including fneq

α = fneq
β , the definition of the

pressure, and the velocity in Eqs. (44) and (45).

Figures 16 through 18 show the streamlines and
isotherm contours for the different ratios of the cylinder
radius R to the length of the side of the square enclosure
L. The isotherms and streamlines obtained by the IB-
TLBM show good agreement with those obtained by the
differential quadrature method [20]. We verify the aver-
age Nusselt number on the hot cylinder N̄u. The Nusselt
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TABLE III. Effect of the characteristic velocity U0 on the
surface-averaged Nusselt number N̄u and the maximum ab-
solute values of the stream function ψmax for Ra = 106,
Pr = 0.71, Re = 1186.8, and R/L = 0.3.

U0 τv τc N̄u ψmax

0.15c 0.6517 0.6068 12.8903 (7.42%) 20.2823 (0.87%)

0.13c 0.6314 0.5926 12.8838 (7.37%) 20.2899 (0.83%)

0.11c 0.6112 0.5783 12.8775 (7.31%) 20.2956 (0.80%)

0.09c 0.5910 0.5641 12.8721 (7.27%) 20.3038 (0.76%)

0.07c 0.5708 0.5498 12.8678 (7.23%) 20.3265 (0.65%)

number Nu is defined by the following equation:

Nu = −∂T
∂n

∣

∣

∣

∣

wall

, N̄u =
1

W

∫ W

0

Nuds , (115)

where n is an outward unit vector normal to the cylinder
surface, and W is the circumferential length of the inner
cylinder surface [22]. We use the second-order approxi-
mation ∂T/∂n ≈ (−T2 +4T1 − 3T0)/2δx. Here, T0 is the
temperature on the inner cylinder. T1 and T2 are temper-
atures δx and 2δx away from the cylinder surface along
the normal direction of the cylinder and interpolated
by the delta function shown in Eq. (53), respectively.
Table I shows the average Nusselt number. Moukalled
and Acharya solved the governing equations by a control
volume-based numerical procedure in a body-fitted coor-
dinate system using the semi-implicit method for pres-
sure linked equations (SIMPLE) algorithm for pressure
correction [19]. Shu and Zhu numerically investigated
the natural convection using the differential quadrature
(DQ) method [20]. Jeong et al. used the IB-TLBM,
which simply introduces the heat source into the inter-
nal energy density based on the double population ap-
proach [8]. Good agreement between the results of the
proposed method and the results of previous methods is
observed [8, 19, 20]. The maximum values of the stream-
lines are listed in Table II. The numerical results of the
proposed method indicate good agreement with the re-
sults of previous methods [19, 20].
Table III shows the effects of the characteristic velocity

U0 on the surface-averaged Nusselt number N̄u and the
maximum absolute values of the stream function ψmax

for Ra = 106 and R/L = 0.3. The numbers enclosed in
parentheses in Table III indicate the difference from the
reference values as calculated by the DQM [20]. The dif-
ference decreases with decreasing characteristic velocity
in Table III. Since the Reynolds number U0L/ν is con-
stant for the given Rayleigh number, the relaxation time
decreases as the characteristic velocity U0 decreases. In
order to avoid the numerical instability resulting from
the use of a relaxation time of approximately 0.5 [23], it
is necessary to increase the grid size L. Although we use
the incompressible model [15] to reduce the compress-

ible effect, we need to consider the trade-off between the
accuracy and the computational load in the IB-TLBM
calculation.

IV. CONCLUSION

We examined the source term for the thermal lattice
Boltzmann method and demonstrated that redefinition
of the temperature is necessary in order to improve the
accuracy of this method. Numerical analysis of the
heat transfer between two concentric cylinders and of a
cylindrical Couette flow revealed that the implicit cor-
rection method using the source term and temperature
proposed herein improved the accuracy of the boundary
condition at each Lagrangian point by the increment
of the number of Lagrangian points. The proposed
TLBM was more accurate than the original TLBM,
when the relaxation time is less than unity. Theoretical
and numerical analysis of the IB-TLBM in the heat
transfer between hot and cold plain plates indicated
that the relaxation time should be less than 2 in order
to reduce the boundary slip of the temperature. The
Chapman-Enskog expansion is useful for analyzing the
lattice Boltzmann method at a small Knudsen number,
i.e., small relaxation time. The condition τc < 1 for
the accuracy of the proposed TLBM is consistent with
the restriction for the Chapman-Enskog expansion and
the boundary slip condition. The numerical results
obtained by the proposed IB-TLBM based on the
implicit correction method were in good agreement
with those of previous studies involving the calculation
of natural convection. We demonstrated that the
implicit correction method is useful for preventing the
flow penetration into the boundary and for improving
the accuracy of the IB-TLBM for thermal-hydraulics
calculation. Although the additional lattice term δT is
chosen in such a way that the calculated temperature
agrees with the desired value at the boundary after the
time step, the theoretical and numerical analyses show
the temperature slip of the implicit correction method.
Lu et al. demonstrated that the numerical boundary slip
is reduced by using the multiple relaxation time (MRT)
model [24, 25]. We need to properly formulate the MRT
algorithm for the thermal lattice Boltzmann method in
order to investigate these issues.
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