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Abstract  

 

Time-series forecasting techniques have been applied in some real-world 

applications, for example economic environment and market forecasting of 

finance, electric utility load forecasting, weather prediction and reliability 

forecasting. Methods of forecasting time-series have attracted more and 

more attention of both academics and practitioners. However, there has not 

been a panacea for each time-series.  

Time-series is an accumulation of data points and is accumulated in a fixed 

time interval. And it is intend for analyzing and predicting long-term trend. 

Then the future can be forecasted and it can also perform some other form of 

analysis. There are two things make a time-series different from a regular 

regression problem. One thing is time dependent. The other thing is 

accompany with an increasing or decreasing trend, and almost all of the 

time-series have one or more form of seasonality trends. The data set can be 

loaded by many ways, and so as to load the data as a time-series data, some 

special arguments should be passed, such as differential, moving average 

and other ways. The time series is stationary if its statistical properties 

remain unchanged: the mean and the variance remain unchanged with time. 

However, why can it be said important? This is because most of the 

time-series models are on the basis of assumptions that the time-series is 

stationary. Obviously, we can express the opinion that if a time-series has a 

particular behavior over time, it can be highly represented that it will 

behave the same trend in the future. Similarly, the quiescent series of 

theories focuses on more mature and easier to implement than stationary 

sequences. Therefore, the use of static is very strict standard definition. And 

time-series can be considered to be stationary if the statistical properties are 

sustained over a long period of time: 1. Constant mean; 2. Constant variance; 

3. Auto-covariance that does not depend on time. Although the stationary 

hypothesis is used in many time-series models, and almost no actual 

time-series is stationary. For that, Statisticians have found a series of 

methods fixed. In fact, it is almost impossible to completely stop the 

time-series, but I can do my best to make it as much as possible by adjusting 

the trend and seasonality in my paper. 

Up to now, there are many researchers using a lot of methods to forecast the 
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time-series. And they can be divided into three types: statistical models, 

neural network and combined models. The most popular statistical models 

are the Naïve model, the exponential smoothing model (ES), and the 

autoregressive integrated moving averages model (ARIMA). They are almost 

used to forecast the linear models. Recently, more and more nonlinear 

forecasting models are proposed to address the time-series’ issues. Among 

them, artificial neural networks (ANNs) are receiving increasing interests 

due to their ability to imperfect data, functions of self-organizing, self-study, 

data-driven, associated memory, and arbiter function mapping. As we all 

know, the structure of every neuron is unique, it contains three components: 

the cell body, dendrite and axon. The dendrite receives signals from other 

neurons, then the signal is computed at the synapse and transmitted to the 

cell body. If the signal which was sent into the cell body exceeds the holding 

threshold, the cell will fire and send signals to other neurons by the axons. 

Follow this theory, the DNM model (Dendritic Neuron Model) was proposed 

in this thesis. Both linear and non-linear models have achieved great success 

in their own linear or nonlinear case. But none of them is an omnipotent 

model for all situations. So I can assume that a combined model of linear and 

nonlinear modeling capabilities may be a perfect choice for the prediction of 

time-series data. The purpose of my research is to find a super model which 

can forecast any time-series precisely. 
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1. Introduction 

1.1 Introduction of Time-Series 

Time-series is an accumulation of data points and is accumulated at 

constant time intervals. Time-series forecasting techniques have been 

applied in some real-world applications, for example economic environment 

and market forecasting of finance, electric utility load forecasting, weather 

prediction and reliability forecasting. The approaches of time-series analysis 

precedes the general stochastic process and Markov chain.[1],[2] The 

purpose of time-series analysis is describing and summarizing time-series 

data, fitting the models of low-dimensional, and making the predictions.   

When analyze a time-series data, the following steps should be gone 

through: [3],[4] 

① What lets time-series data particular? 

② How to loading and processing the time-series data. 

③ How to examine smoothness of a time-series data? 

④ How to turn a time-series data to be smooth? 

⑤ Prediction of time-series data. 

① What lets time-series data particular? 

As its name suggests, the time-series is a collection of data points at the 

fixed time intervals. It is used to analyze and determine the long-term trend, 

then it can be used to predict the future or perform some other form of 

analysis. However what lets a time series data special, so it can be said that 

it is unlike ordinary regression problems? There are two things:  

 One thing is the time dependent. It is determined by the basic 

hypothesis of a linear regression model that underlying observations 

are independent and not held. 

 The other thing is that it is along with an increasing or decreasing 

trend, There are some forms of seasonal trends in almost every 
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time-series data. For example, changes which are special to a specific 

time frame. 

Due to the inherent nature of time-series data, there are different kinds of 

steps to analyze it. They will be discussed in detail as below. 

② How to loading and processing the time-series data. 

The data set can be loaded by many ways, and for reading the data as a 

time-series, some special arguments should be passed, such as differential, 

moving average and other ways. There are 2 things to be noted. You should 

know the type of the data before you analyze it, whether it is numeric or 

string or some other else. Then the range of data will be sorted for working. 

If you confuse the data randomly, it will not work. 

③ How to examine smoothness of a time-series data? 

The time-series can be suggested to be smoothness when its statistical 

properties such as mean, variance can keep fixed over time. However why is 

this important? Almost every time-series model is based on the hypothesis 

that the time-series data is smoothness. Intuitively, it can be said that when 

a time- series has a similar behavior over a long period of time, there will be 

a very high probability that it will follow the same trend in the future. 

Similarly, the fixed time-series correlation theory is more mature and 

simpler to implement than non-stationary series. 

Smoothness definition has a very strict standard. However, we can assume 

the time-series to be smoothness for practical purposes if the statistics 

persist over a long period of time, as the follow shown: 

 Whether it has a constant mean or not. 

 Whether it has a constant variance or not. 

 Whether there is an auto-covariance that does not depend on time. 

How to test smoothness of time-series. The first thing is to plot the data 

simply and analyze visually. It will clearly evident trends in the data. 
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However, it might not always be possible to make such visual inferences. So, 

more formally, we can check the time-series is smoothness or not by using 

the following methods: 

 Rolling Statistics. It means that we can draw the moving average or 

moving variance and check whether it changes as the time changes.  

 Dickey-Fuller Test. Dickey-Fuller is a statistical test which can be used 

to check the data is smoothness or not.  

④ How to turn a time-series data to be smooth? 

As we all known, almost every time-series models is in the view of the 

assumption of smoothness. However, there is no practical time-series is 

smoothness. For this reason, statisticians have already found ways to 

stabilize time-series. In fact, it is obviously impossible to make a time-series 

completely static, but we can try to make it as much as possible. 

First we should have an opinion that what lets a time-series to be not 

smooth. There are two major reasons as follow: 

 The first one is the trend, for it always varies mean over time.  

 The second one is the seasonality, because of the variations at specific 

time-frames. 

 The fundamental principle is to model or estimate the trend and seasonal 

ability of the time-series and to remove the trend and seasonal time-series of 

stationary time-series. Statistical prediction techniques or other approaches 

can then be used to implement the time-series. The final step is to convert 

the predicted value to the original size by applying the trend and seasonal 

constraints. 

⑤ Prediction of time-series data 

We can use a simple method to describe a time-series which we call it the 

classical decomposition. The viewpoint of it can be concluded that the 

time-series could be divided by 4 elements:  
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 First one is the trend (Tt) ,it means thelong term movements in the 

mean;  

 Second one is the seasonality (It), because the cyclical fluctuations are 

thought to have connection with the calendar; 

 Third one is the cycles (Ct), for example, some else cyclical fluctuations 

(such as a business cycles, and so on); 

 Last is the residuals (Et), it means other random or perhaps we can call 

it the systematic fluctuations.  

The purpose is to bring about the separate model which is determined by 

the 4 elements, after that, we can combine them together, which can be 

shown as Xt = Tt + It + Ct + Et or Xt = Tt · It · Ct · Et by using 

multiplication. 

We have seen different approaches and each of them worked reasonably 

well for letting the time-series stoothness. Up to now, there are many 

researchers using a lot of methods to forecast the time-series. And they can 

be divided into three types: statistical models, neural network models and 

combined models. The most popular statistical models are the Naïve model, 

the exponential smoothing model (ES), and the autoregressive integrated 

moving averages model (ARIMA). They are almost used to forecast the linear 

models. Recently, more and more nonlinear forecasting models are proposed 

to address the time-series’ issues. Among them, artificial neural networks 

(ANNs) are receiving increasing interests due to their ability to imperfect 

data, functions of self-organizing, self-study, data-driven, associated memory, 

and arbiter function mapping. In my paper, I will introduce several 

statistical models and several neural networks models to fit and forecast the 

time-series data, and compare the effective of them. I will also use the 

inbound tourism data of Japan and the data of Chinese house price index to 

test the models I proposed. 
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1.2 Introduction of Statistics 

1.2.1 Basic of statistics 

 

Statistics is a science of a very wide range of subject, which is applied in a 

large number of different territories. Under normal circumstances it can be 

said that statistics is the technology of collecting the data in order to analyze 

it, after interpreting it, conclusions can be drawn from information through 

the previous steps. Another point of view, statistics is the technology that 

scientists and mathematicians have created to interpret and summarize 

conclusions from the information by collecting and analyzing the data. 

Everything that deals with the process of collecting, analyzing, interpreting 

and presenting of data is belong to the process of statistics, including all 

detailed planning and prior activities.[5] 

As mentioned above, it is clear that statistics is not just data collection and 

drawing the characterization of the data collected, but on the basis of these, 

statistics can classify the data and analyze it, it is a science which can 

provide answers to the following questions: 

 How much of the determined kind of data should be collected?  

 How could we range and summarize the data that we collected?  

 How could we analyze the data and give the conclusions after analyzing 

it?  

 How could we estimate the effectiveness of the conclusions and how 

could we assess their uncertainty? 

For that, statistics provides approaches for those: 

① For the design, which can plan and carry out research studies. 

② For the description, which can summarizing and exploring data. 

③ For the inference, which can make forecasts then summarize the possible 

phenomena that is represented by the data. 

 

In addition, statistical data are available to deal with uncertain scientific 

phenomena and events. It is successfully applied in different areas of 

research. Certainly, statistics are now used in all areas of science. [6]  

Statistics is a science with 2 basic concepts: Population and sample. 

Population which is defined as a group of individuals or object investigators 

which are primarily interested in their research questions. In some cases, 



13 

 

measurements of all individuals desired in a population are obtained, but in 

most cases, only a set of subjects of an individual or group is observed, such a 

set of individuals that may constitute a sample. There are always only 

certain, relatively few, characteristics of individuals or objects that are 

investigated at the same time. Not all attributes need to be measured from a 

population of individuals. This observation emphasizes the importance of a 

set of measurements, so it gives us an alternative definition of population 

and sample. 

The population tends to represent the objective of a survey. We can 

understand the collection of samples that are generally sampled. There may 

be many different populations, the difference of population and sample is 

shown as Fig.1.1. 

 

Fig.1.1 Population & Sample 

 

Statistics has two major types called descriptive statistics and inferential 

statistics. The embranchment of statistics which is mainly used in the 

description and summarization of the data is suggested as descriptive 

statistics. While the embranchment of statistics related with utilizing 

sample data to make inferences about the population that is suggested as 

inferential statistics.  

Descriptive statistics contains not only the construction of graphs, charts, 

and tables, but also the algorithm of different kinds of descriptive measures. 

For instance, the mean, measures of variation, and percentiles.  

Inferential statistics includes the methods such as point estimation, 

interval estimation and hypothesis testing. They are all built on top of the 

probability theory. 
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Descriptive statistics is interrelated to inferential statistics. It is always 

necessary to utilize approaches of descriptive statistics to describe and 

summarize the information which is included in the sample, after doing 

these, approaches of inferential statistics could be utilized to make more 

comprehensive analysis of the problem under investigation. In addition, the 

preliminary descriptive analysis of the sample shows the characteristics of 

these characteristics which are often the result of the appropriate inference 

methods chosen for use. 

As we all known, the data can sometimes be collected throughout the 

population. In this case you can perform a descriptive study on the 

population as well as on a sample. Only when reasonably draws the 

conclusion based on the population derived from the information obtained 

from the sample inference. 

 

1.2.2 Describing Distributions with Numbers 

  

As Andrejs Dunkels said: It is easy to lie with statistics. However it is also 

hard to tell the truth without it. Statistics can be very important to the truth. 

When analyzing the observations, we will observe and analyze the two basic 

attributes of the observations. One is a measure of the center value which is 

calculated by the data, for example, the median and the mean. In connection 

with this measurement, we can add a second value that describes how these 

observations propagate this given central measurement. The median is the 

central observation of the data. After sorting from the lowest observed value 

to the highest observed value [7]. In addition, in order to give a sense of 

expansion in the data, we often give the minimum and maximum 

observations and observations that are 1/4 and 3/4 of the rise of the list, 

which is known in the list Of the first and third quartiles. For this average, 

we usually use the standard deviation to represent the spread of the data. In 

measuring spread, five number summary is always been used. The first 

quartile Q1 is the median of the lower half, and third quartile Q3 means the 

upper half of the data. The five-digit summary of the data represents the 

values of the minimum value (Q1), the median value (Q3), and the maximum 

value. These values, as well as the mean can be summarized in box-plot as 

Fig.1.2 shown. 
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Fig.1.2 Example of the box-plot 

 

1.2.3 Statistical data analysis 

The purpose of the statistics is to make the data understandable. Any data 

analysis should include the following steps as Fig.1.3 shown: 
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Fig.1.3 Steps of data analysis 
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To summary this section, we can discover that the major purpose of 

statistics is to extrapolate the population by analyzing the information 

contained in the sample data. This includes assessing the degree of 

uncertainty involved in these inferences. 
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1.3 Introduction of Neural Networks 

The word "Neural networks" is very popularly mentioned in recent years. It 

means machines that something of them is like the brain, may be filled with 

science fiction mythology as the sci-fi content. [8] Neural networks are prone 

to sub-elements, units or nodes of the interrelated part of its function based 

on animal neurons and quickly. The branching capability of the networks are 

stored in the cross-connect strength, otherwise, through the weights which is 

contained by training by adapting the training pattern set or learning from 

the training pattern set. 

In this section, we first introduce a relationship between biological neural 

network and artificial neural network, then describe a historical overview of 

artificial neural network. Finally, we will discuss the common problems in 

these neural networks when using them to solve combinatorial optimization 

problems. 

 

1.3.1 Biological neural network to ANN 

  

The brain is constituted of about 10 billion neurons for the most parts, each 

one is concerned to about 10,000 other neurons. Every neuron can receive 

electrochemical inputs, and the inputs are from other neurons at the 

dendrites as shown in Fig.1.4. When the summation of the electrical inputs 

has the plenty energetic to operative the neuron, it will transmit 

electrochemical signals through the axon, then pass the signals to another 

neuron whose dendrites attach to other neurons at the end of any 

axon.[9][10] 
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Fig.1.4 Structure of a typical biological 

（neuronhttps://en.wikipedia.org/wiki/Neuron） 

 

We should pay attention to note that the neurons will only be excited if the 

summarized signal exceeds a given level. It is used to decide whether 

neurons will emit or not. 

 Every neuron contains 4 main areas connected with its structure. The cell 

body, or we can call it soma which contains the nucleus and maintains the 

protein mixture. Neurons also have some dendrites, and the branch like a 

tree-structure. However, neurons usually have just one axon, it grows from a 

part of the cell body, and it is called axon hump. The axons conduct electrical 

signals along the length of the axon mound. These electrical signals are 

considered as the action capability. [11][12] 

Then I will introduce about the artificial equivalents of biological neurons, 

which are considered as the units in the circumscription. There is an 

archetypal example about it is concluded in Fig.1.5. It shows that synapses 

are always modeled by one single number, and we can call it weight. So it is 

clear that every input is multiplied by the fixed weights, after that, it will be  

transmitted to the equivalent of the unit body (soma). [11] It means the 

weighted signals are summed together by simple arithmetic addition. And it 
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intended to provide node activation. It can be shown in Fig.1.5, through that,  

we can get the so-called threshold logic unit (TLU), and then can use the 

method by comparing the activation with the threshold; if the activation is 

larger than the threshold, the cell produces a high value output (normally 

"1"), which in turn produces zero. In Figure 1.5, the size of the signal is 

represented by the width of the corresponding arrow, and the weights are 

shown by the multiplicative symbols in the circle, and their values are 

proportional to the size of the symbol; only when positive weights are used. 

TLU is the simplest model of artificial neurons. 

 

Fig.1.5 Common artificial neuron 

 

 And almost all of the artificial neural networks that we know are based on 

this model. Accordingly, ANNs (artificial neural networks) are not even close 

to the complexity of the model's brain. However, they have been shown to be 

easy problems for humans, but for traditional computers, such as image 

recognition and prediction are so difficult that should be based on past 

knowledge. 
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The word "network" is often used to refer to the artificial neuron system. 

Thus, it can range from a simple single unit to a large number of the 

collection of units, where each node connects to other node in the network. A 

type of network may be illustrated as Figure 1.6 shown. Every node here is 

displayed by just one circle. However, all of the connections maintain the 

weights. So the nodes are arranged in a hierarchy where each signal radiates 

from the input, and it passes through two nodes, and then outputs beyond its 

no longer transformed. The feed-forward configuration is just one of several 

available, and is typically used to place the input pattern in one of several 

categories by according to the timing of the output. For instance, if the 

encoding of both the light and the dark patterns are included in the image of 

the handwritten letter, the uppermost output layer in the picture will 

contain 26 nodes instead, and each letter of the alphabet may be used to 

mark the letter class to which the input character belongs. This can be done 

by categorizing one output node for each class, and just one of such nodes is 

triggered whenever a pattern of related classes is provided at the input. [13] 

There are so many basic structural elements and operations. Back to our 

definition, we can note the emphases of experiential learning. In real 

neurons, in some cases, the synaptic strength can be modified so that the 

behavior of each neuron can be adapted to its particular ascending input. In 

artificial neurons, this is equivalent to a modification called a weight value. 

No computer program is available to process the information. The 

“ knowledge” possessed by the network should be stored in its weight, which 

evolves by adapting itself from some examples to provocative processes. In 

the training example, it is referred to as supervised learning, one of which is 

shown in Figure 1.6, where the input pattern is represented as a network 

whose reply is compared with the target output. The difference which is 

made by the two output modes can then determine how the weights are 

transformed. Every specific change recipe builds a learning rule. When the 

required weight update is performed, another mode is indicated, and after 

the output compared to the target, a new change will occur. This event array 

iterates over and over until the network behavior converges. So we can see 

that the answer to each model is near the target. The process of any sort of 

pattern presentation and the criteria is used to expire the process. If the 

network has learned the infrastructure of the problem area, it should 

correctly classify the invisible patterns and the network is considered to be 
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good. If the network does not have this attribute, and it exceeds the training 

set classification lookup table. Therefore, good generalization is one of the 

key characteristics of neural networks. 

 

 

Fig.1.6 Common example of neural network 

 

 Artificial neural networks that well known in nowadays appeared after the 

introduction of the simplified neurons. The concept of simplified neurons is 

first introduced by McCulloch and Pitts in 1943.[13] 
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Fig.1.7 McCulloch-Pitts Model. 

 

These simplified neurons are introduced as models of biological neurons, or 

as conceptual components that can undergo detours of computational tasks. 

The basic model of neurons is created in the function of biological neurons. 

When building a functional model of a biological neuron, there are 3 basic 

components that should be instated. First, synapses of neurons. they are 

modeled as weights. And the intensity of the relationship between the input 

and the neuron is indicated by the value of the weight. Here, the negative 

weight value forms a known suppressed connection, otherwise, the positive 

value forms a known excited connection. The next 2 components mimic the 

actual activity of neuronal cells or somatic cells. The adder adds all of the 

inputs modeled by their own weights. The activity is treated as a linear 

combination. Finally, the activation function dominates the amplitude of the 

neuron's output. The appropriate range for the output is usually between 0 

and 1, or between -1 and 1. Mathematically, the process is described in detail 

in Figure 1.8. 

 We can see the interval activity of the neuron from this model, and it can be 

shown as: 

 

                                                           𝑛𝑒𝑡𝑗 =  ∑ 𝑤𝑖𝑗𝑥𝑖
𝑛
𝑖=1                          (2.5)     

 

 Therefore the output of the neuron 𝑜𝑗  is to be the outcome of some 
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activation functions on the value of 𝑛𝑒𝑡𝑗. One often used activation function 

is sigmoid function: 

 

                                                           𝑜𝑗 = 𝑓(𝑛𝑒𝑡𝑗) =  
1

1+𝑒−𝑥
                      (2.6) 

 

 

 

Fig.1.8 Structure of an artificial neuron 

 

 

1.3.2 History of ANN 

  

In the 1940s, neurophysiologist Warren McCullock and mathematician 

Walter Pitts wrote an article on how neurons work. For knowing how the 

neurons work in the brain, they use circuits to model a simple neural 

network. [14] Then, Donald Habb published his essay "Behavioral 

Organization," which points out a work that points to the fact that neural 

pathways are reinforced every time a concept is used that essentially 

indispensable for human learning in 1949 year. [15] If the two nerves both 

get angry at the same time, he retorts that the relationship between them is 

promoted. In the 1950s, with the development of computer more and more 

advanced methods can simulate a hypothetical neural network. Nathanial 

Rochester from the IBM research lab firstly proposed a method of simulating 

a hypothetical neural network. [16] However, his first attempt failed. After 

that, Bernard Widrow and Marcian Hoff from Stanford developed models 
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instead. And they are called "ADALINE" and "MADALINE". Although the 

system developed by them is so old that like the air traffic control system, it 

is still commonly in used. [17] 

 In 1960s, Widrow and Hoff mature a learning program. It can check the 

value before weight adjustment (sometimes 0 or 1 in experiment) according 

to the following rules: Weight change = (pre-weight line value) * (error / 

(number of inputs)) [18]. The basic idea is that when an active sensor may 

have a large error, in this case, the weight value may be adjusted to span the 

network or at least to the neighboring perceptron. If a maintenance error 

occurs, all errors are distributed to all weights, not the error being cleared. 

During the same period, a paper was written which suggested that it could 

not be extended from single-layer neural networks to multilayer neural 

networks. Furthermore, more and more people use an essentially flawed 

learning function in the field because it is indistinguishable over the entire 

line. Due to that, research and funding have declined significantly. 

 This is in fact related to the fact that before some neural networks succeed, 

the potential for neural networks leads to an exaggeration, especially 

considering the actual technology at the time. 

 In 1972, Kohonen and Anderson gave a similar network on their own. They 

all use matrix math to describe their ideas separately, but none of them are 

aware of what they are doing to create an analog ADALINE circuit array. 

[19] Neurons should activate a set of outputs, not just activate one output. So 

the first multi-layer network was proposed in 1975, which is an 

unsupervised network. 

In 1980s, more and more interests in the field of neurons was with an 

innovation. John Hopfield of the California Institute of Technology presented 

a paper to the National Academy of Sciences. In his paper, the approach was 

to create more useful machines by using bi-directional lines. However, there 

is only one way to the connection between neurons. Then Reilly and Cooper 

used a "hybrid network" with multiple tiers in the same year, each with a 

different problem-solving strategy. In the same year, there was also a 

cooperative and competitive neural network of US-Japan cooperation 

meetings. Japan announced a new fifth-generation effort neural network 

involving artificial intelligence, the United States file to worry about. The 

United States is afraid of being abandoned in this leadership. The first 

generation uses switches and wires, the second uses transistors, and then 
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the third state uses solid-state techniques. Therefore, there are more 

foundations and more research in this field. [20] 

 In 1986, with the development of multilayer neural networks in the news, 

the question of how to extend the Widrow-Hoff rule to multiple layers was 

mentioned. 3 independent research teams have grabbed the analogous idea, 

now known as the Back Propagation Network, one of which involves David 

Rumelhart who was a former member of Stanford's psychology department 

because it misidentified patterns throughout the network distribution. The 

hybrid network uses only two layers, and these back propagation networks 

use a lot. The result of its turn is that the back-propagation network is "slow 

learner" because it needs to be able to learn thousands of layers. 

 Nowadays, neural networks are used in some areas as we all know, in my 

thesis, I will describe some applications later. The basic idea of neural 

network properties is that if it works in nature, it must be able to work on a 

computer. Therefore, the future of neural networks is related to the 

development of hardware. 

 

1.3.3 Why study neural networks 

 

The question is applicable here because, according to one's intentions, the 

study of connectivism can substitute for different points of view. Neural 

networks are often used for statistical analysis and data modeling where 

their roles become aware of alternative standard non-linear regression or 

beam analysis techniques. Therefore, they are often used for classification or 

prediction problems that may arise.  

Some examples, such as image and speech recognition, text character 

recognition, and human attitudes, including medical diagnostics, petroleum 

geology, and financial market indicators are mentioned. This type of 

problems is also in the realm of classical artificial intelligence (AI), therefore, 

engineers and computer scientists have noticed that neural networks provide 

parallel distributed computing styles that, in turn, provide an alternative to 

machine intelligence. 

By a concise explanation of this term, the correspondence refers to the fact 

that each node is assumed to operate on one itself and operate concurrently 

with the other nodes, and the “ knowledge ” in the network is distributed 

rather than concentrated as a conventional computer in several memory 
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locations. 

Practitioners in this field do not care about biorealism and are often due to 

the ease of implementation of the solution in digital hardware or the 

efficiency and accuracy of certain techniques. Haykin (1994) from the 

engineering point of view gave a variety of neural network technology for a 

comprehensive survey. [21] 

Neuroscientists and psychologists are interested in networks. Because the 

networks are like computational models of animal brains, and it is developed 

by extracting those qualities that are necessary for the information 

processing of true neural tissue. However, only time will tell us that by 

making use of how real neuronal interconnection as a local "circuit" of 

knowledge, functional modeling of the brain has made great progress. A good 

introduction to this procedure for calculating neuroscience is by Churchland 

& Sejnowski (1992). 

There should be mentioned in the last that more and more physicists and 

mathematicians have traction to networks of interest in nonlinear dynamical 

systems, statistical mechanics and automata theory. The work of applied 

mathematicians is to use the tools previously used in other fields of science 

to discover and systematize the properties of new systems. For example, 

there is a strong link between some type of mesh and a magnetic system 

called rotating glasses. The complete mathematical device used to explore 

these links was developed by Amit (1989) (along with a series of concise 

summaries). 

Every group is appealing different questions. Neuroscientists intend to 

know how the animal brain works, while engineers and computer scientists 

who intend to understand the basic properties of networks as complex 

systems are attend to build intelligent machines and mathematicians. 

Another (or perhaps the largest) group of people can be found in various 

industrial and commercial fields, they are giving their interests to the 

simulation and analysis of naturally occurring in the workplace in the use of 

neural network, however, it is difficult to understand the data set. Therefore, 

it is very important to make sure the author's viewpoint when reading 

literature. However, their common focus in neural networks may be the basis 

for close cooperation. For instance, biologists can effectively learn what 

scientists from the computer calculation, allowing the animal to solve 

specific problems, solutions and engineers can use natural design, so that 
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they can be applied to "reverse engineering" behavior.  

ANNs (artificial neural networks) can be thought of as a simplified model of 

neural networks. And they naturally exist in animals’ brains. Through a 

biological point of view, the basic requirement of a neural network is that it 

should try to capture the basic information-processing features that we 

consider to be the corresponding "real" networks. For engineers, this 

communication is less important after comparing, and the network is 

provided by an alternative form of parallel computing. Form the experience, 

it may be more appropriate to solve the current task. The simplest artificial 

neurons are threshold logic cells, or we can call them TLUs. The basic 

operation of the TLUs is to perform a weighted sum of its inputs. And we can 

get the output "1" when the sum exceeds the threshold, otherwise, the output 

will be "0" instead. TLUs should simulate the basic "integration and 

excitation" mechanism of real neurons. 

 

1.3.4 Problems of Neural Network 

 

 Although it has been proven that neural network is an effective method to 

solve combinatorial optimization problems, neural network still has some 

problems preventing its development. [22] The main problems are as follows: 

 

 Parameters selection problem. 

 It is difficult to select an effective parameters to initial neural networks 

when using them to solve combinatorial optimization problems. Such as 

illustration of Wilson and Pawley, They could not find that the parameters of 

the Hopfield model need to be changed as the size is enlarged, because no 

combination of parameter values is always found that produces a valid 

solution of executive efficient problem 

 Some neural networks are able to find the optimal solutions of optimization 

problems, but they should spend long executive time and cost large numbers 

of resources. Although many researchers have proposed some improvement 

methods to increase neural networks’ efficiency, but the effect is not clear. 

 

 Local minimum problem  

 As a proximate algorithm, neural network is easy to get convergence to a 

near optimal solution. These solutions lead to local minimization problems, 
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which is one of the major drawbacks of Hopfield neural networks. Because 

the energy function consists of several terms, there are many local minima, 

and there is a trade-off between these terms. When at least one of the 

constraint penalty items is non-zero, an infeasible solution to the problem 

arises. 
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1.4 Statistics and Neural Networks 

In several instances, it has already been noticed that there is a similarity 

between the training algorithm of the network and some of the techniques in 

statistics or data analysis. For instance, we can refer to back propagation as 

non-linear regression and competitive learning to certain types of clustering 

analysis. Are all the neural networks just a familiar technique for redo 

situations? We claim that although there is a similarity between the "classic" 

approach and the network, the latter does retain the novelty and utility 

beyond the established method.  

Consider the MLP definition again. At the calculation level, this may be the 

model is considered to be a non-linear regression with parameterization by 

the weights. But in 1994, Cheng & Titterington pointed out that it is not 

consistent with any previously developed regression model, and is not a 

priori, but network-based. [23] Thus, network paradigms have the potential 

to stimulating novel computational methods in a bottom-up fashion; it isn’t 

just a given implementation of a computational strategy, and indeed can 

support its own merits. 

Suppose that we find a network in the biological environment, which may 

have the same structural properties. For those we should study its artificial 

disguise. If we have a network signal-level implementation that gives it 

biological plausibility, there are further benefits. 

The feed-forward network is proposed to select the best function which can 

perfectly fit a set of input-output data. The changes related to the network 

weights permit tuning of network functions so that can detect the best 

configuration. There are 2 complementary motivations that can decide our 

view of the best means in the case. On the one hand, we expect the network 

can map the known inputs as accurately as possible, so that we can be aware 

of the outputs. On the other hand, the network must be able to generalize the 

unknown inputs which will be compared to known inputs, and through that, 

it will lead the resulting output to be the interpolation of the learned values.  

From the Fig 1.9, we can see that the problem from another point of view. 

The points in Fig 1.9 represent the training set. A function that can map a 

known input to a known output are being searched. If using a linear 

approximation, as shown, the residual is not too large, and a new unknown 

value of the input x can be mapped to the regression line. When Figure 1.10 
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shows that there is another approximation of the function, it is using linear 

splines which can reproduce the training set without error. While the 

training set is a consist of experimental points, there is usually some noise in 

the data. Therefore, the linear approximation in Figure 1.9 may be a better 

alternative to the exact fit of the training data.  
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Fig.1.9 Linear approximation of the training set 

 

 

Fig.1.10 Approximation of the training set with linear splines 
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Here is no general way to decide the optimal number of parameters of the 

networks. It is totally decided by the structure of the current issues. The best 

results are obtained when the network topology is selected, and it can take 

into account to know interrelationship between the inputs and the outputs. 

As the examples shown in the above, the linear approximation would be the 

best if the theoretical analysis suggests to speculate the linear 

correspondence between the input and the output, although the multi-linear 

approximation had less training error. Statisticians have studied this 

function approximation for a given training set in the field of both linear and 

non-linear regression. In a sense, the back-propagation algorithm is only a 

numerical method for statistical approximation. Analyzing the linearity can 

improve our understanding of the connection. 

A linear correlator is a computing unit that only adds its weighted input. 

We can also think of them as part of a nonlinear element. If it has a linear 

correlator for the weight vectors (w1, w2, ..., wn) of the n-dimensional input (x1, 

x2, ..., xn), the output can be expressed as y = w1x1 +…+wnxn. As Figure 1.8 

shown, the output function of a linear correlator, and the correlaor has two 

inputs. The learning problem is the output from the input vector in the 

reproduction training set. The points will correspond to the training set after 

training. The parameters of the hyperplane should be chosen to minimize the 

error. The back-propagation algorithm can be used to find them out. 
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Fig.1.11 Learning problem for a linear associator 

 

This paper is organized as follows: In section 2, the models that the 

research proposed are described. They can be divided into three types: 

statistical models, neural network models and combination model. Section 3 

and section 4 separately introduces the experiment of time-series forecasting 

for house price index of China and tourism economy. Section 5 provides 

concluding remarks.  

  



35 

 

2. Modeling  

 The time-series model explains variables about its own past and stochastic 

perturbation terms. Time series models have been widely used for a lot of 

areas’ forecasts over the last four decades. In this section, statistical models, 

Artificial Neural Network are described as follow. 

 Traditionally, time-series prediction has been primarily performed using 

statistical models. 

2.1 Statistical models 

 In recent years, statistics has been widely applied to the time-series 

forecasting. Among the statistical methods, the most popular methods are 

the Naïve model, the exponential smoothing model (ES, and the 

autoregressive integrated moving averages model (ARIMA). Among them, 

the most advanced forecasting model is Autoregressive integrated 

moving-average model (ARIMA) which has been successfully inspected in 

many theoretical and practical applications. If the linear models have a good 

approximation to the underlying data generation process, they can be 

regarded as the preferred models. 

 

2.1.1 The naïve model 

  

The naïve model is the most cost-effective forecasting model, and provides 

that a benchmark can compare more complex models. This prediction 

method only applies to time-series data which uses the naive model to 

produce a prediction equal to the last observation. This approach is very 

efficient for economic and financial time series, which often have patterns 

that are difficult to predict reliably and accurately. Seasonal naïve methods 

may be more appropriate if the time series is considered to be seasonal, 

where the forecast is equal to the value of the previous quarter. The naive 

model may also use drift, which will use the last observation plus the 

average change from the first observation to the last observation. The naïve 

forecasting model can be simply stated that the forecast value for the period 

𝐹𝑡 , it is the same to the actual value of the last period available value (𝑋𝑡−1). 

The equation can be shown as follow: 
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                                                                 𝐹𝑡 =  𝑋𝑡−1                             (2.1) 

Where F is the predict value, X is the truevalue, t is some time period. 

 Eq.2.1 can be considered as a random walk model in which the assumed 

trend and the turning points that can not be forecasted and the prediction 

can be seen as horizontal line extrapolation. 
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2.1.2 The ES model 

  

The ES model (exponential smoothing) is the most commonly used 

time-series prediction method. It was based on the development of mobile 

averaging technology. It predicts the effect of the closest actual value on the 

predicted value based on the current actual value and the currently 

predicted next value but does not require a large amount of past values, it 

can be shown as: 

 

                                                              𝐹𝑡+1 = 𝑎𝑋𝑡 + (1 − 𝑎)𝐹𝑡                   (2.2) 

 

Where 𝐹𝑡+1 is the prediction value of time interval t+1; a is the smoothing 

constant (when 0 < 𝑎 < 1). 𝑋𝑡 is the actual value when in the time t, 𝐹𝑡 is 

the prediction value of time interval t. From Eq.2.2, We can find that a can 

be regarded as the weight of the past history. The larger of a value, the less 

weight the past history has. The history is related to the last actual value of 

the parameter. This method is referred to as "exponential" because the 

predicted value is a discrete convolution of the observation sequence with an 

exponential curve with a time constant 1
(1 − 𝑎)⁄  . In turn, if the value of 𝑋𝑡 

becomes stable, the error (𝑋𝑡 − 𝐹𝑡) decays exponentially. 
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2.1.3 The ARIMA model 

 

ARIMA is the most welcomed model of the linear model. It is used to predict 

time-series. It has been a large success not only in the academic research but 

also in the industrial and economic applications. A common ARIMA model is 

ordered by (p, d, q), and it can be shown as: 

 

d

t t
x (B B   （ ） ）                              (2.3)    
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t

x and 
t
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separately represent autoregressive (AR will be used hereinafter) and 

moving averages (MA will be used hereinafter) operators of orders p and q
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When 
1 2 p
, . . .-    are the autoregressive coefficients, while 

1 2
, ...

q
    are the 

moving average coefficients. 

 When the ARIMA model is fitted to the original data, the ARIMA model 

should go through the following 4 steps. 

( I). Identify the ARIMA (p,q,d) structure. 

( II). Estimate the unknown parameters. 

(III). Goodness - of - fit test for the estimated residual. 

(IV). Predicting future results based on known data. 

 The 𝜀𝑡  shoud be independent and it can be considered as a positive random 

variable with mean = 0 and a constant variance=𝜎2. The roots of ∅𝑝(𝑥𝑡) = 0 

and 𝜃𝑞(𝑥𝑡) = 0 should all be outside the unit circle. Box and Jenkins (1976) 

suggested that the ARIMA model should use at least 50 or preferably 100 
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observations. 

 If the data has significant seasonal changes periodically. We can use the 

SARIMA model to eliminate the effects of seasonal cycles. 

2.2 Neural Network models 

  

 In this section, I will introduce five models of neural networks as follow. 

 

2.2.1 Hopfield Neural Network 

 

 In popular terms, "remembering" things involves associating thoughts or 

ideas with sensory cues. For instance, somebody may notice the name of a 

celebrity, thus we immediately recall celebrity television or newspaper 

articles. Or we may see pictures of the places we visit, which recall the 

memory of the people we meet and the experiences we enjoyed at the time. 

(Smells) can also be recalled and considered to be particularly effective, so we 

will consider a more trivial example, including all aspects. Consider the left 

side of Figure 2.1. This should represent the binary version of the letter "T". 

The open and filled circular symbol indicates that the pattern in the center of 

the 0 and the 1, then the graph is the same "T", but the lower part is replaced 

by a noise with a probability of 0.5. We can imagine that the upper part of 

the letter is provided as a cue, and the lower part must be remembered. Get 

the correct pattern from the original "T"; by adding 20% noise, each pixel is 

inverted with a probability of 0.2. In this case, we assume that the entire 

memory is available, but in the form of an incomplete adjustment, the task is 

to "remember" the original letter in its undamaged state. [24] 

It can be compared to our "fuzzy" or inaccurate memories of some scenes, 

names and sequences of events. It also can be stitched together after 

recalling some efforts. 
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Fig.2.1 Associative recall with binarized letter images 

The general examples herein can be concluded as follows. There are some 

basic stored data sets that are sorted and interrelated to some extent; the 

data constitutes a stored pattern of memories. In the above example of 

human memory, it is a set of items which are associated with celebrities or 

places we visit. It is part of some alphabet (pixels), the arrangement of which 

is determined by the stereotyped version of the letter by the case of character 

recognition. Alternatively, an incomplete version of the stored memory may 

be provided to us, which must be associated with the actual undamaged 

mode. Note that it is not important which part of the pattern is used as a 

hint; because the entire model is always restored. 

Sometimes, we can search for any of these discrete items by selecting the 

correct option from the menu and entering the complete project. Suppose 

now we only have code to record the fragment "ion, Mar" in "Vision, Marr D". 

The database cannot use this snippet or even start the search. We do not 

know whether it belongs to the author or maybe to the title, even if we do so, 

we may also find "leave" at the beginning of the title or author. The input to 

the regular database must be very specific and complete after it working like 

this. 

Considering a feed-forward network where the output target of it is the 

same as its input. This type of network can be considered as associative 

memory, since an incomplete copy of the training sets should result in a true 

vector at the output from which it is derived. The network is the first to be 

used for memory storage and its mathematical analysis can be found in 1982 

which is proposed by Kohonen. However, John Hopfield insisted that there is 

a potentially more powerful network type for associating memory popular, 

and it is different from the above-described network types because the 
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network has a feedback loop in its connection path. The relationship between 

the two types of association networks is discussed below. The Hopfield 

network is in fact an example of a more general class of dynamic physical 

systems that can be considered to instantiate a ”memory”, as a stable state 

associated with a minimum value of an appropriately defined system energy. 

Therefore, we now talk about the description of these systems.  

In the early 1980s, two scientific papers were published by Hopfield, they 

aroused great interests and became the starting point for a new period of 

neural networks and it continues until today. 

Hopfield shows that the physical system model can be great approach of 

solving computational problems.  

Hopfield network is fed by the feedback of the whole network, in the form of 

the network by the neurons are connected with each other, that is, each 

neuron will own output through the connection right to other neurons, while 

each neuron accepts information came from other neurons. 

In the acyclic network, the information is added from the input end of the 

network, through the network processing step by step, the final output from 

the output, this process does not exist signal feedback. 

In the loop network, the network to receive a signal, it makes the signal in 

the network through repeated iterative processing, until the change stops, or 

changes in the amplitude is small enough, the network can be given at this 

time the corresponding output can be regarded as its output. Obviously, for a 

given input, the network output is constantly changing from its feedback 

signal caused. The processing of the input signal by the network is a gradual 

restoration and strengthening process. [25] 

We have to attempt to apply the above concepts to the construction of 

neural networks. And it is capable of performing associative recall. 

Considering there is a network of 3 TLU nodes, as Fig.2.2shown. Every node 

is connected to each other, and the connection strength or weight is 

symmetric because the weight from node i to node j is the same as the weight 

from node j to node i. it can be presented as wij = wji and wii=0 for all i, j. In 

addition, the threshold is assumed to be “0”. Since the signal may flow back 

from one node to itself via another node. We can say there must be feedback 

in the network, or we can say it is iterative. Because nodes can be used 

repeatedly to process information. This is in contrast to the only 

feed-forward network used to date. 
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This type of network and its energy-based analysis was elegantly talked 

about by John Hopfield in 1980s, thus his name is often related with this 

type of network. However, there is some other model that is very close to the 

"Hopfield model". It was proposed by Little before 1974, but there is no 

emphasis on energy-based descriptions here. 

Little has also been widely used in quantum mechanics, which may make 

his work more inconvenient for non-physical readers. 

 

 

Fig.2.2 Three-node Hopfield net 

 

 In the n-dimensional data space, the classical pattern should have n-binary 

components, it can be shown as 1 or -1; this means that each classical 

pattern corresponds to the angle of the cube in the n-dimensional space. 

Then the network is used to classify the distortion patterns into these classes. 

While the distortion mode is used to the network, it must be associated with 
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another mode. As the network is working properly, then the association 

pattern is one of the class patterns. Sometimes pseudo-minimum values may 

also occur.  

 Hopfield networks are always referred to as associative networks. The 

reason is that they often associate a class pattern with each input pattern. 

 Hopfield networks have 2 types of neural networks: one is the 

continuous-time versions, and the other is the discrete-time versions. The 

two network types have a weight matrix W defined as: 

 

                                                      W =  
1

𝑛
∑ 𝜗𝑖

𝑇𝜗𝑖
𝐷
𝑖=1                             (2.7) 

 

Where D is the number of class patterns (𝜗1 , 𝜗2 , … , 𝜗𝐷 ), and n is the number 

of components. 

 Hopfield networks of discrete-time versions have the following dynamics: 

 

x(t + 1) = Sign[Wx(t)]                       (2.8) 

 

 

 For a discrete-time Hopfield network, x is given by the follow equation: 

 

                                                       E(x) =  −xW𝑥𝑇                            (2.9) 

 

 We can realize that if an initial state vector x(0), x(t) is given as in Eq.2.8, it 

will converge to a value which has minimum energy. Through that, the 

minimum of Eq.2.9 constitutes the possible convergence points of the 

Hopfield network, and ideally, these values are the same as the class pattern 

(𝜗1 , 𝜗2 , … , 𝜗𝐷 ). Therefore, it is guaranteed that the Hopfield network will 

converge to a certain mode, however there is no guarantee that it will 

converge to the correct mode. However, this is only a scaling issue. Add large 

enough constants to the energy expression to make it positive. 

Continuous Hopfield networks are stated by the following differential 

equations: 

 

𝑑𝑥(𝑡)

𝑑𝑡
=  −𝑥(𝑡) + 𝑊𝜎[𝑥(𝑡)]                  (2.10) 
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Here x (t) presents the state vector of the network, when W is a parameter 

weight. Sigma is the nonlinearity acting on the state x (t). The weight W is 

defined in Equation 2.7. The differential equation (Eq.2.10) is solved using 

an Eulerian modeling.  

For a continuous-time Hopfield network, it will be defined by the 

parameters given in Eq.2.7: 

 

                                             E(x) = −
1

2
𝑥𝑊𝑥𝑇 + ∑ ∫ 𝜎−1(𝑡)𝑑𝑡

𝑥𝑖

0
𝑚
𝑖=1             (2.11) 

 

For a discrete-time network, it can be shown that the state vector x (t) in 

Equation 2.10 converges to the local energy minimum for a given initial state 

vector x (0). Thus, the minimum of Eq. 2.11 constitutes a possible 

convergence point of the Hopfield network, and ideally these minimum 

values coincide with the class patterns (𝜗1 , 𝜗2 , … , 𝜗𝐷 ). However, there is no 

guarantee that the minima will match with this set of class patterns. 

 

2.2.2 Self-Organizing Map 

 

 In this section, we explore the possibility that the network can discover 

clusters of similar patterns in unsupervised data. It means, different from 

the MLP, the target information is not provided in the training set. A typical 

data set to be processed is schematically illustrated as Figure 2.3 shown. The 

point appears to fall naturally in 3 clusters, two of them are smaller, they are 

more closely bound to the left, and the left larger one is more closely bound to 

the right. Pay attention that there is no mention of class labels. Because of 

that it is known as experiencing self-organization and unsupervised learning 

by assigning nodes to nodes in some way. 

The key technologies used in training networks in this way involve nodes 

that are most responsive to any pattern. One approach is to simply search for 

the largest activity in the network. When shifts the responsibility of this 

process to some sort of oversight mechanism that is not part of the network. 

Another approach is to provide the network with additional resources. It  

allows this search to instead of the network itself. This distinction will be 

clearer in the future, however we are here to introduce it about its motivate 
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in the next section. And we will also deal with the search mechanism within 

the network.[26] 

 

Fig.2.3 Clusters in a training set 

 

Self-organizing mapping (SOM) is one type of artificial neural networks 

which uses unsupervised learning to train the produce of a low-dimensional 

(almost two-dimensional) discrete. The representation of the input space of a 

training sample can be called as a map. This mapping is designed to preserve 

the topological properties of the input space. [27] 

 Such as most artificial neural networks, SOM can be in 2 modes: one is 

training, and the other one is mapping. Training uses the input example to 

build the map. This is a competitive process, also known as vector 

quantization. Automatically categorize the mapping of new input vectors. 

The components that the SOM contains are called nodes or neurons. Weight 

vectors of the same size as each node are used as input data vectors and 

locations in the map space. The usual arrangement of nodes is the regular 

spacing between hexagonal or rectangular meshes. The SOM description 

maps from a high-dimensional input space to a low-dimensional space map. 

The process from the data space vector map is to find the nearest node to the 

weight vectors of the vector data distribution and the space node coordinates 

to the vector. While this type of network architecture is generally considered 

to be associated with a feed-forward network in which nodes are visual 
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connections, and this type of architecture is fundamentally different from the 

arrangement and motivation. 

 The SOM's basic idea is simple and effective. The SOM is defined from the 

high-dimensional input data space to the rules of the two-dimensional 

mapped neuron array. Each neuron of map is related to an n-dimensional 

vectors 𝑚𝑖 =  [𝑚𝑖1 , 𝑚𝑖2 , … , 𝑚𝑖𝑛]𝑇 , here n is considered as the dimension of 

the input vector. Neurons of the map are connected to neighboring neurons 

through neighborhood relationships, which indicate the topology or the 

structure of the map. The most common topologies used are rectangles and 

hexagons. 

The network architecture also includes a set of fully connected to a specific 

input layer, but now there is no horizontal connection. From the analysis of 

the directional map in the previous section, it is clear that the principle used 

to form the mapping relation is that the training should be performed on the 

extended area network concentrating on the largest active node. What is 

needed is a conceptual network that defines "communities". This solves the 

self-organizing layer by the spatial relationship between the internal nodes, 

as shown in Figure 2.4. And the above two two-dimensional array rectangles 

and hexagonal grid forms show three community plans. In all cases, three 

communities separated by shaded cells from nodes 1, 2, 3. Thus, the linear, 

rectangular, and hexagonal arrays are in their distance-2 neighborhoods 

(including the central node) have 5, 25, and 19 nodes, respectively. Although 

the three-dimensional array of nodes is conceivable, due to their complexity, 

they are often not used in practice. 
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Fig.2.4 Neighborhood schemes for SOMs 

 

In the algorithm of the basic SOM, the number of topologies and neurons is 

fixed from the beginning. The size of the mapping is determined by the 

neurons’ number which can also affect the accuracy and generalization of 

SOM. 

When in the time of the training phase, the SOM forms an elastic mesh, 

which is folded onto the "cloud", by the input data. The algorithm controls 

the network and attempts to approximate the density data. Reference vector 

in the codebook floats to high-density region of the input data. However, only 

a few codebook vectors are located in areas where the input data is sparse. 

The basic learning process of SOM can be described as follow: 

a. A sample vector x is randomly extracted from the input data set, and its 

similarity (distance) to the codebook vector is calculated by using, for 

example, a vector. Common Euclidean distance measurement: 

 

‖𝑥 − 𝑚𝑐‖ = 𝑚𝑖𝑛𝑖{‖𝑥 − 𝑚𝑖‖}                      (2.12) 
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b. As learning takes place and the new input vector is given to the map, the 

learning rate is gradually reduced to “0” according to the specified 

learning rate function type. As the learning speed, the radius of 

neighborhood decreases. 

The update rule of the reference vector of unit i is as follow: 

 

          (2.13) 

 

c. The step a and b together show the number of training steps. It must be 

fixed before training the SOM since the convergence rate and the 

learning rate in the neighboring functions are calculated accordingly. 

SOM, since the convergence rate and the learning rate in the 

neighboring functions are calculated accordingly. 

The horizontal center around the external junction in the layer of neurons, 

make active contour by contrast enhancement layer. So, setting up have the 

strongest external input node under the weak driving node price became 

very active. Use proper transverse weights, which can lead to extreme, the 

winners have all dynamics, which has the largest external input node to 

achieve the maximum effective strength, and minimise the activities of all 

other nodes. This mechanism is used in the competitive learning, which the 

weight vector of node through them and clustering center alignment and is 

associated with pattern clustering. 

X for any given model, the weight vector w with x alignment node is 

adaptation, makes the w to move closer to x. Determine the degree of weight 

design aimed at by the node activity, because the dot product with the two 

vectors is proportional to the wx (in two) under the normalization scheme of 

vector set. Therefore, the most active node is its weight vector should be 

adapt to the competition and you can use for all (winner) dynamically to find 

the node. Ideally, each cluster by at least one node (given maximum 

response) encoding. This type of equivalent network, called unsupervised 

learning and experience the self-organizing process because there are no 

known target output. 

In the topography map, not only response to the cluster, and they are 

arranged in the network, makes the adjacent nodes coding "close" cluster for 
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each other. The closer to the concept here is based on the model space with 

basic dimensions of each vector. It can find the singularity or rupture. Cortex 

of topography map widely exists in animals and their sensory and motor 

information coding. They can be used under the self-organization in the 

competitive learning to use the similar development in artificial network 

learning rules, but now not only training "winning" node, and training in the 

community around the node. In order to ensure good resolution pattern 

space good sort of fine details of image, must be conducted with the training 

and reduce the neighborhood size and learning rate. In this way after 

training self-organizing mapping (SOM), if known linear vector quantization 

(LVQ), you can use linear vector quantization (LVQ) to improve its boundary. 

[28][29] 

The purpose of biometric features in the set figure can be related to keep 

"line length" needs. SOM algorithm shows that the development process of 

the brain may, characteristic figure allowed in the training of the training set 

in space visual basic relations. SOM can consider to reduce the size of the 

input space; Another attempt to do linear statistical method is principal 

component analysis (PCA), it is shown that a neural network 

implementation is contained. 

 

2.2.3 Maximum Neural Network 

 

In 1985, Hopfield and Tank first introduced the neural network approach to 

the travel salesman problem, since then it has been widely used to solve 

combinatorial optimization problems. In order to avoid local minimum 

convergence and furthermore, in order to improve the solution quality, the 

largest neuron model has been successfully proposed by Takefuji et al., Lee 

et al. in 1992. It deals with a class of NP-complete optimization problems, 

which is difficult for a neural network to solve. They show the effectiveness 

of the maximum neuron model with 2 NP-complete optimization problems, 

namely, module orientation problems and objective functions, such as bus 

length and sub-graph size, and no constraints are imposed. [30] 

 The maximum neural network (MNN) consists of M clusters of N neurons. 

The total number of neurons is M*. One and only one neuron among N 

neurons with the maximum input per cluster always has nonzero output.[31] 

 The input or output function of the j-th neuron in cluster i is given by: 
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                                                    𝑉𝑖𝑗 = {
1 ;  𝑖𝑓𝑉𝑖𝑗 = 𝑚𝑎𝑥𝑘=1,2,…𝑚{𝑈𝑖𝑘}

0 ;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             (2.14) 

While there is more than one neuron have the largest input in any cluster, 

the neuron which has the smallest index will show a non-zero output.  

 The change of 𝑈𝑖𝑗 is given by motion equation. It can be shown as: 

 

                                     
𝑑𝑈𝑖𝑗

𝑑𝑡
= −

𝜕𝐸

𝜕𝑉𝑖𝑗
                     (2.15)  

 

 However, they are approximated in the form of a first order Euler method: 

 

                                                      ∆𝑈𝑖𝑗 =
𝑑𝑈𝑖𝑗

𝑑𝑡
                                (2.16) 

 

 So the input 𝑈𝑖𝑗 is based on the first order Euler method, and every neuron 

of the MNN is iteratively updated by using the following equation: 

 

                                        𝑈𝑖𝑗(𝑡 + 1) =  𝑈𝑖𝑗(𝑡) + ∆𝑈𝑖𝑗(𝑡)                      (2.17) 

 

2.2.4 Elastic Net 

 

 The advantage of elastic networks is the geometric nature of the algorithm. 

It means that the progress of the algorithm can be visually tracked. In 

addition, the number of neurons needed is scaled linearly with the number of 

cities. [32]However, although it produces quite good solutions, running times 

can be large. Many researchers want to improve the elastic network and 

have presented their methods.  

In 1990, Simic gave an idea of using statistical mechanics as the underlying 

theory which mixed both the Hopfield neural network and the elastic neural 

network algorithm together. In 1995, Vakhutinsky and Golden introduced a 

hierarchical strategy to elastic neural network for solving travelling 

salesman problem. The method of the algorithm is to divide the city area. It 

made the nodes (cities) into smaller districts then replace the nodes in each 

district with their “center of gravity”.[33][34] 

 The elastic network was proposed in 1987 as an effective method of travel 
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salesman problem. Later in 1989, Durbin et al. Described, analyzed and 

evaluated elastomeric webs in detail. Elastic webs can be briefly introduced 

to ensure their main properties. It has a set of n nodes in the plane within a 

unit square. And it also has a set of m dynamic points that define a rubber 

band. The rubber band is shown to be a small circle nearby the center of 

gravity of the node at the beginning. It then stretches toward the node by 

tracking the minimum value of the energy function: 

 

E = −αK ∑ 𝑙𝑛 ∑ 𝑒−‖𝑥𝑖−𝑦𝑗‖/2𝑘2
+ 𝛽 ∑ ‖𝑦𝑗 − 𝑦𝑗+1‖𝑚

𝑗=1
𝑚
𝑗=1

𝑛
𝑖=1            (2.18) 

 

 Where K → 0 and ‖𝑎 − 𝑏‖ = (𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2. The points’ position can 

define the rubber band. And it is updated through the formula which can be 

shown as: 

 ∆Y = −K∇Y𝐸 (gradient descent). Where the right side of the equation is set 

up by two items: the first one is responsible for the point-to-node attraction 

on the rubber band, and the second is for the shortest trip. We can think of as 

the temperature, we use some cooling schedule to minimize the energy. 
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Fig.2.5 Elastic Net for travelling salesman problem 

 

2.2.5 Dendritic Neuron Network 

 

As we all known, the structure of every neuron is unique, it contains three 

parts: the cell body, dendrite and axon. The dendrite receives the signal from 

other neurons, then the signal is computed at the synapse and transmitted to 

the cell body. If the signal into the cell body exceeds the holding threshold, 

the cell will fire and send the signal down to other neurons through axon. 

 In 1943, a simple neuron model is proposed by McCulloch and Pitts in 

which the dendrites and synapses are independents and there are no effects 

on them from one to another. However, in 1987, Minsky and Papert indicated 

that the McCulloch-Pitts model is limited to solve complex problems.[35] 

Different from the McCulloch-Pitts model which do not consider the 

dendritic structure in the neuron, Dendritic Neuron Model (DNM model) is 

proposed in our researches. The DNM model can be generalized as 

follow:[36] 

① The dendrites can be initialized by any arbitrary decision.  

② The synapses on the same branch interact each other.  
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③ The nonlinear interaction produced in a dendrite can express by a logical 

network.  

④ After learning, the branches’ ripened number and the locations and 

types of synapses on the branches will be synthesized.  

 

 

Fig.2.6 Neuron Model with Dendritic Nonlinearity. 

 

 As shown in Fig.2.5, the dendritic branches receive signals from x1 to   xn, 

then perform a simple multiplication on their own signal. At the junction of 

the branches, the outputs are summed up and then conducted to soma. If the 

input of the soma is bigger than a threshold, the cell will fire it, then the cell 

will send it to other neurons through the axon. 

Synaptic Function: In the connection layer, there is a sigmoid function 

reflects the interaction among the synapses in a dendrite. The output of the 

synapse whose address is from the i − th (i = 1, 2, … , m) input to the j −

th(j = 1, 2, … , n) branch is given by Eq2.19. 

 

                                                                      Yij =
1

1+e
−k(wij−θij)                       (2.19) 

 

wij, θij  respectively means the connection parameters, absolutely, k is a 

positive constant. When k becomes big enough, the sigmoid function will 
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turn out to be similar to a step function. Through the change of the value of 

wij and θij , four types of synaptic connections can be defined: a direct 

connection, an inverted connection, a constant-0 connection( ◎ ), and 

constant-1 connection(①). 

Dendritic Function: It performs a simple multiplication on various synaptic 

connections of the branch. The output of the j- th branch is given by 

 

                                                              𝑍𝑗 = ∏ 𝑌𝑖𝑗
𝑛
𝑖=1                           (2.20) 

 

Membrane Function: It is approximated as follow: 

 

V = ∑ 𝑍𝑗
𝑚
𝑗=1                            (2.21) 

 

Soma Function: The function of the soma which is introduced by a sigmoid 

operation, when the k is considered as a positive constant, then the γ can be 

considered as a threshold from 0 to 1. 

O =
1

1+𝑒−𝑘(𝑉−𝛾)                         (2.22) 

 

Learning Function: Because DNM is a feed-forward network with continuous 

functions, the error back-propagation-like algorithm is valid for DNM. By 

using the learning rule, the error between the target vector and the actual 

output vector can be expressed as follow: 

E =  
1

2
 ( 𝑇 − 𝑂 )2                        (2.23) 

 

  We should pay attention that the synaptic parameters 𝑤𝑖ℎ and 𝜃𝑖𝑗 can be 

modified in the direction to decrease the value of E. And they can be 

described as: 

 

∆𝑤𝑖𝑗(𝑡) = −𝜇
𝜕𝐸

𝜕𝑤𝑖𝑗
                       (2.24) 

 

                                                             ∆𝜃𝑖𝑗(𝑡) = −𝜇
𝜕𝐸

𝜕𝜃𝑖𝑗
                        (2.25) 
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Where μ is a positive constant that represents the learning rate. A low 

learning rate makes the convergence very slow while a high learning rate is 

difficult for making the error to converge. And the partial differential of E 

with respect to 𝑤𝑖ℎ and 𝜃𝑖𝑗 are computed as follow: 

 

𝜕𝐸

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑂
・

𝜕𝑂

𝜕𝑉
・

𝜕𝑉

𝜕𝑍𝑗
・

𝜕𝑍𝑗

𝜕𝑌𝑖𝑗
・

𝜕𝑌𝑖𝑗

𝜕𝑤𝑖𝑗
             (2.26) 

 

𝜕𝐸

𝜕𝜃𝑖𝑗
=

𝜕𝐸

𝜕𝑂
・

𝜕𝑂

𝜕𝑉
・

𝜕𝑉

𝜕𝑍𝑗
・

𝜕𝑍𝑗

𝜕𝑌𝑖𝑗
・

𝜕𝑌𝑖𝑗

𝜕𝜃𝑖𝑗
             (2.27) 
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2.3 Combination model 

The linear and nonlinear models on their own problems have gotten great 

successes. However, they are not suitable for all cases of general model. 

Bates, J.M., Granger, C.W.J. Said the portfolio model which is with the both 

modeling ability will be a good alternative when forecasting time-series data. 

Therefore, this study proposed a combination of model is composed of linear 

and nonlinear. Therefore, performance can be used to improve overall 

portfolio model to simulate the linear and nonlinear model. [37][38][39] 

As experience, it is reasonable that we can consider time-series is composed 

of linear autocorrelations and non-linear components which can be 

performed as: 

 

                                                             𝑌𝑡 = 𝐿𝑡 + 𝑁𝑡                            (2.28) 

 

Here, the 𝐿𝑡 represents the linear component, while the 𝑁𝑡 represents the 

nonlinear component of the combined model. Both  𝐿𝑡 and 𝑁𝑡 should be 

estimated for the data set. First, the author let linear model (here we use the 

Seasonal trend-ARIMA model for the data performs the obvious seasonal 

trends) to model the linear part, so that the residuals from the linear model 

will only contain the nonlinear relationship. Make 𝑅𝑡  represents the 

residual at time t, then we can know:  

                            

             𝑅𝑡 = 𝑍𝑡 − 𝐿𝑡̂                            (2.29) 

 

Where 𝐿𝑡̂ represents the forecast value of the linear model at period t. By 

modeling residuals using nonlinear model (here we use the DNM model), 

nonlinear relationships can be discovered. In this paper, we built the model 

with the following input layers: 

 

                         𝑅𝑡
𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑓𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑅𝑡−1

𝑙𝑖𝑛𝑒𝑎𝑟, 𝑅𝑡−2
𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑅𝑡−3

𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑅𝑡−4
𝑙𝑖𝑛𝑒𝑎𝑟) + 𝑒𝑡      (2.30) 

 

Where 𝑅𝑡
𝑙𝑖𝑛𝑒𝑎𝑟 is the residual at time t, and it is calculated through the 

ARIMA model, 𝑓𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 is a nonlinear function which is decided by the 

DNM model and 𝑒𝑡 is the random error. And the combined forecast can be 

performed as: 
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                                                             𝑌̂𝑡 = 𝐿̂𝑡 + 𝑁̂𝑡                           (2.31) 

 

Where 𝑁̂𝑡 is the forecasting value of Eq 2.30. 
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3. Time-Series forecasting for House Price Index of 

China (HPI) 

3.1 Introduction of HPI 

Interest in the global economy and policy community is growing during the 

ten-year boom of the property market in China. A major problem is that the 

collapse of the housing market could undermine the Chinese economy as a 

result of the housing market bubble, which in turn could have an infectious 

impact in the United States and Europe. [40]So whether the bubble of 

Chinese housing market burst or Chinese housing market continues to 

prosper related to development of not only China, but also the world. 

 

 

Fig.3.1 HPI of china from 2010 to 2016 

 

 In this paper, we will use the house price index of china to forecast the 

Chinese housing market. House Price Index (HPI) is a set of price indices to 

reflect the major cities in the country’s real estate market conditions and 

trends in the development of the index system and analysis methods. It uses 

the weighted average method to calculate the national housing price index as 

Eq.1 shown:[55] 

 

                                                         𝑃𝑗
𝑡 =  

∑ 𝑃𝑖𝑗
𝑡 ∗𝑄𝑖𝑗

∑ 𝑄𝑖𝑗
                              (1) 

Where  𝑃𝑗
𝑡  represents the average price of the j-th city in period t, 𝑃𝑖𝑗

𝑡  

represents the average price of the j-th city in period t of the i-th project, and 
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𝑄𝑖𝑗 represents the adjusted construction area of the project. In this paper we 

used the HPI data which is calculated by China Index Academy. [41,42,43] 

 In this paper, we used DNM model to fit the HPI data and forecast the 

trends of Chinese housing market. And then we use the statistical model (the 

ES model) to test the effectiveness of the DNM model. 

 

3.2 Data set and Prediction 

 

Here we choose the HPI data of China from 1995: 1 to 2012: 9. The collected 

data were divided into two sets: the training data (data before 2010) and the 

testing data (data after 2010).[55][56] 

As Fig.3.1 shown, the house price index data has extremely trends, then we 

choose the ES model to fit the data. 
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Fig.3.2 the trend of house price index 

 

Fig.3.3 Test of autocorrelation and partial correlation 
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In the view of the severe autocorrelation and partial autocorrelation of 

time-series data, we also checked the HCI data’s autocorrelation and partial 

autocorrelation. As Fig.3.3 shown, there is no significant autocorrelation and 

partial autocorrelation, and the results are good enough that can lead our 

research to a ideal state. 

As Table 3.1 shown, we summarize the experimental results and choose the 

best one of DNM model based on the orthogonal array and factor assignment. 

Here MSD values are calculated by ¯x±s , where ¯x means the mean of the 

results over 20 runs, and s means the standard deviation. It can verify that 

the data is closer to reality or not. Finally we choose the result of No.10 to 

compare with the ES model. As Fig. 3.4 show, when we use the DNM model 

to fit and forecast the data, the error of the data can be quickly converged 

during the experiment. 

 

Table 3.1 Results based on the orthogonal array and factor assignment of the 

DNM 

 

As Fig.3.5 – Fig.3.7 shown, the DNM model plays as well as the popular 

traditional statistical model (ES model) in forecasting the time-series data. 

Further attesting to this, some quantitative statistical metrics are used to 

evaluate the performance of models. They are NMSE (normalized mean 

square error), APE (absolute percentage of error), and R (correlation 

coefficient). When the values of NMSE and APE is small enough, we can 

regard the predicted values is as close as the actual values. The metric R is 
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used to calculate the correlation of the actual and the predicted values. The 

calculation of them is set up in Table 3.2. The result is shown as Table 3.3. 

 

Table 3.2 Calculation of the NMSE, APE and R 

Metrics Calculation 

NMSE 
NMSE=

∑ (ai−bi)2n
i=1

nδ2  ; δ =
∑ (ai−a̅)2n

i=1

n−1
 

APE 
APE=

∑ |(ai−bi)/ai|n
i=1

n
× 100% 

R R=
∑ (ai

n
i=1 bi)

√∑ ai
2n

i=1 ×√∑ bi
2n

i=1

 

 

 

 

Fig.3.4 Error decline curve of the DNM model 
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Fig.3.5 Data fit of the ES model 

 

 

 

Fig.3.6 Data fit of the DNM model 
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Fig.3.7 Data fit and residual error of the DNM model and the ES model 

 

Table 3.3 The compared results of the DNM model and the ES model 

Metrics The DNN model The ES model 

NMSE 0.279 0.322 

APE 0.79 0.83 

R 0.92 0.90 
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3.3 Conclusions of experiment (HPI) 

In this study of forecasting HPI of China, we proposed our model, the DNM 

model can forecast the HCI data very effectively. We use the HCI data which 

we collected from China Index Academy to fit the DNM model. The results 

showed the DNM model performed very well in fitting and forecasting the 

HCI data. Then we verified the effectiveness of our model by comparing the 

ES model and got the expected result. 

 The contributions of our study is that it is based on neuron model with 

dendritic nonlinearity model and it theoretically strengthens the assumption 

that a neural network model performs effectively not only in the nonlinear 

model but also in the time-series data.  

In our further work, to excavate more efficient of the DNM model, we are 

considering to mix the DNM model and the statistical model together to 

create a combination model which maybe predict random data much better. 
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4. Time-Series Forecasting for Tourism Economy 

4.1 Introduction of Tourism Economy 

 With the impact of Global Internationalization, Tourism is also in a state of 

rapid development. As we all know, Tourism to a country's economic and 

social development is huge. It not only can be used for commercial, trade and 

capital investment, and can also create employment and entrepreneurship 

for labor, protection of heritage and cultural value (as Table 4.1 and Fig.4.1 

shown). Every country wants to know the data of inbound tourists, in order 

to select the appropriate strategy for its economic welfare. Therefore, the 

reliable prediction is needed, and plays an important role in tourism 

planning. [44][45] 

 

Table 4.1 Inbound tourism consumption 

(Billion Yen) 

Products same-day 

visitors 

touris

ts 

total 

visitors 

Characteristic products 0 1167 1167 

Accommodation services 0 496 496 

Food and beverage servicing services 0 303 303 

Passenger transport services 0 328 328 

Travel agency, tour operator and tourist guide 

services 

0 8 8 

Cultural services 0 10 10 

Recreation and other entertainment services 0 8 8 

Miscellaneous toirism service 0 14 14 

Connected products 0 483 483 

TOTAL 0 1650 1650 
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Fig.4.1 Inbound tourism consumption 

 

Accurate forecasting lays the foundation for better tourism planning and 

management. Therefore, more effective tourism demand research and 

forecasting technology is needed.[46] 

 Over the past two decades, tourism demand modeling and forecasting that 

is one of the most important areas in tourism research has called for more 

and more attention of both Theoretical scholars and practitioners. As Song, 

and Li concluded, Twenty years ago, only a few academic journals which 

have published travel-related research. However, after two decades, there 

are now over 70 journals which are serving a thriving research community, 

covering more than 3,000 universities on five continents. Unfortunately, 

there is no panacea for tourism demand prediction. [47][48] 

In recent years, statistical data has been widely used in the study of 

tourism economy. In statistical methods, time-series prediction is an 

important field of prediction. It can be divided into two categories: linear 

method and nonlinear method. The most popular linear methods are the 

naive models, the exponential smoothing (ES) model and the autoregressive 

integral moving average model (ARIMA). And among them, the most 

advanced linear method prediction model is the ARIMA model, and it has 

gotten great successes in many practical applications. If the linear model is a 

good approximation to the underlying data generation process, they can be 

considered as the preferred model. However, more complex nonlinear models 

should be considered if linear models are not well implemented in both 

intra-sample and out-of-sample predictions. While there is some doubt about 

the prediction of travel demand based on neural networks, nonlinear 
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methods are generally considered superior to linear methods. For they have 

gotten great success in modeling economic behavior which can help to make 

better decisions. [49] 

After decades of development, it has formed hundreds of artificial neural 

networks. In 1974, P.Werbos firstly proposed learning algorithm for 

multi-layer network in his doctoral thesis, but the algorithm has not been 

enough attention and wide range of applications. Until the 20th century, 

mid-1980s, David Rumelhart, Geoffrey Hintorl and RorlaldWilliams, David 

Parkr, and Yannn Le Cun each independently discovered the BP algorithm. 

In 1986, California's PDP (parallel distributed processing) group issued a 

book called "Parallel Distributed Processing", from then on, the BP 

algorithm was applied as a study in the neural network. BP neural network 

is the network which is trained after this algorithm.[50] 

Up to now, there are many researchers using a lot of methods to forecast the 

tourism demand. And they can be divided into three types: time series, 

neural network and combined models. In 2014, J.P. Terxeira and P.O. 

Fernandes published [ 25 years of time series forecasting, International 

Journal of Forecasting], in which, the three methods are all be mentioned. 

Except those, there are also a lot of authors using the three methods 

separately. Such as Box & Jenkins, Cho, Chu, Song & Li, Law, Qu & Zhang, 

Shahrabi &Hadavandi & Asadi, Li & Pan & Law & Huang, Kawakubo & 

kubokawa have used the traditional time series methods to forecast the 

tourism demand. As neural network is widely known, there are many 

authors turning to use the neural network to forecast the time series data 

such as Chen & Lai & yeh, Claveria & Torra, Davies & Petruccelli 

&Pemberton, Constantino & Fernanded & Teixeira, Law, Lin & Chen & Lee, 

Pai &Hong. With the progress of science, more and more methods are being 

used. The combined models are the most popular method in them. And up to 

now, Bates & Granger, Chen, K., Chen Kuan-Yu, Shen & Li & Song, Yan 

have used this method and got the expected results. Besides these, Lin & Pai 

& Lu & Chang, Pai & Hung &Lin also proposed the different methods like 

support vector regression and novel hybrid system.[51] 

In this sample, we mix the most advanced linear model (SARIMA model) 

with the innovative neural network model (DNM model) together and call 

the mixed model the SA-D model, By comparing, we obtained the SA-D 

model is much better than the DNM model to tourism demand forecasting 
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whether in the time used or the accuracy of prediction. 
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4.2 Data set and Prediction 

As a result of the rapid economic growth and international tourism 

promotion, visitors to Japan increased year by year. Here we choose the 

inbound tourists from 2009:1 to 2015:12. And the process of data set is shown 

in Table.2. The collected data were divided into two sets: the training data 

(data before 2015) and the testing data (data of 2015). [53][54] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 Process of data set. 
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Performance criteria 

 The predictive performance of the predictive model is evaluated using a 

number of quantitative statistical measures such as normalized mean 

square error (NMSE), absolute error percentage (APE), R (correlation 

coefficient), and program run time (PRT) (Table 4.2). NMSE and APE are 

used to measure the deviation between the predicted and actual values. The 

smaller the value of NMSE and APE, the closer the predicted value is to the 

actual value. The measure R is used to measure the correlation between the 

actual value and the predicted value. PRT can measure the running speed of 

the model. 

 

Table 4.2 Calculations of the performance metrics. 

Metrics Calculation 

NMSE 
NMSE=

∑ (ai−bi)2n
i=1

nδ2  ; δ =
∑ (ai−a̅)2n

i=1

n−1
 

APE 
APE=

∑ |(ai−bi)/ai|n
i=1

n
× 100% 

R R=
∑ (ai

n
i=1 bi)

√∑ ai
2n

i=1 ×√∑ bi
2n

i=1

 

PRT Decided by the actual operation. 

*      ai and bi are the actual values and the predicted values 

  



72 

 

Experimental results 

  

For the data has significant seasonal changes periodically. We use the 

SARIMA model in this paper to eliminate the linear trend. As the Fig.4.3 

shown, we can decide the possible generations of the ARIMA model, and use 

the Akaike Information Criterion (AIC) to test which of the generations is 

the best. 

 

 

Fig.4.3 Autocorrelation and Partial correlation. 

 

Through the SARIMA model, we get the data that has no linear trend, and 

train the data separately by the DNN model and the SA-D model. We can get 

the results of the DNM model and the SA-D model as follow. 
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Fig.4.4 Error decline curve of the DNM model and the SA-D model 
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Fig.4.5 Training data before 2015 simulation of the DNM model and the 

SA-D model 
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Fig.4.6 Forecast data after 2015 simulation of the DNM model and the SA-D 

model 
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As Fig.4.4 to Fig.4.6 shown, we can see that the results of the SA-D model 

perform much better than those of the DNM model. In order to deeply 

evaluate the performance of the DNM model and the SA-D model, we 

calculate MAPE, NMSE and R of the testing data set as Table 4.3 shown. 

 

Table 4.3 the compared results of the DNM model and the SA-D model. 

Metrics The DNM model The SA-D model 

NMSE 2.245 0.219 

APE 0.87 0.78 

R 0.32 0.89 

PRT The DNN model is rapider than the SA-D model 

  

We can see that although the PRT of the DNM model is rapider than that of 

the SA-D model, the NMSE, APE and R of the SA-D model are much better 

than those of the DNM model.  

4.3 Models comparing 

To demonstrate the validity of the SA-D model, we train the same data that 

other author had used in the other combination models. And compare the 

results of the SA-D model and the models other author had proposed. [10] We 

collected the monthly outbound tourism data that from Taiwan travel to 3 

areas (Americas, Europe and Oceania) from Tourism Burean M.O.T.C. 

Republic of China (Taiwan) [72]. The study time ranges from January of 

1998 to June of 2009. The collected data were divided into two parts, training 

data (data from 1998 to 2007) and testing data (data after 2007) for each 

tourism demand time series. The author scaled the data within the range of 

(0, 1) through the following formula.[52] 

𝑋𝑡−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 × 0.7 + 0.15                      (3.1) 

So we use the data with the same pre-set as the author did and without the 

data pre-set separately and get our experimental results. 
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Before comparing with the models, we summarize the experimental results and 

choose the best one of the SA-D model based on the orthogonal array, factor 

assignment and statistical tests as Table 4.4 shown. Here the MSD values are calculated 

by 𝑥̅ ± 𝑠, where𝑥̅ means the mean of the results over 20 runs, and s means the standard 

deviation. It can verify the data is closer to reality or not. And the p value can determine 

whether the residual is white noise sequence or not after the statistical test by using 

QLB statistic. Finally we choose the result of the No.7 to do the comparison. 

 

Table 4.4: Results based on the orthogonal array factor assignment and 

statistical tests of the SA-D model 
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Table 4.5 Comparison of the SA-D model and the other combination models 

 

                                Americas     Europe       Oceania 

ARIMA+BPNN APE 13.41 12.95 13.46 

NMSE 0.3992 0.8153 0.5327 

R 0.9918 0.9917 0.9856 

ARIMA+SVR APE 11.46 11.37 11.87 

NMSE 0.2878 0.6316 0.5102 

R 0.9923 0.9917 0.9871 

The SA-D model 

(with data 

pre-set as other 

author did) 

APE 9.61 9.73 9.89 

NMSE 0.2788 0.4561 0.4968 

R 0.9934 0.9921 0.9864 

The SA-D model 

(without data 

pre-set) 

APE 10.34 10.51 10.87 

NMSE 0.3458 0.5619 0.6027 

R 0.9912 0.9906 0.9891 

 

As table 4.5 shown, our model performed much better results than other 

author’s models. But there have to say that the data pre-set by formula 14 

made the results better and reduced the running time of program. 

4.4 Conclusions of experiment (Tourism Economy) 

We proposed a new model, the SA-D model which mixed the SARIMA model 

and the DNN model together. First, we used the data that collected from 

Japan Tourism Agency Ministry of Land, Infrastructure, Transport and 

Tourism and Japan National Tourism Organization to compare the SA-D 

model and DNN model, the results showed the SA-D model performed much 

better in fitting and forecasting the time series data. Then we verified the 

effectiveness of our model by comparing other author’s models and got the 

expected result. 

 The contributions of this study lie in two aspects. Our study is based on 

neuron model with dendritic nonlinearity model and it theoretically 

strengthens the assumption that neural network model implementation 

which performs effectively not only in the nonlinear model but also in the 

time-series data. 

 This study which mixed the linear model and the nonlinear model together 
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opens the door to further combination models with different methods and 

models. 
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5. Conclusion 

5.1 Conclusions of the thesis 

 In my paper, I have presented the concept and the particularity of the 

time-series firstly. When analyze a time-series data, we should follow the 

steps as: 

① What lets time-series data particular? 

② How to loading and processing the time-series data. 

③ How to examine smoothness of a time-series data? 

④ How to turn a time-series data to be smooth? 

⑤ Prediction of time-series data. 

 After statistics, neural network, and the relationship between them are 

stated, some statistical models (such as the naïve model, the ES model, and 

the ARIMA model), neural network models (such as Hopfield neural network, 

self-organizing map, maximum neural network, and elastic net), and 

combinatorial model are proposed. The main goal is to study neuron model 

with dendritic nonlinearity model, and based on it, effective combinatorial 

model is to be created to fit and forecast the time-series data. 

 In chapter 2, the statistical models, neural network models and 

combinatorial model are detailed descripted. The naïve model is the most 

cost-effective predictive model and provides a benchmark against which 

more complex models can be compared. This prediction method only applies 

to time series data. ES model is the most common time series forecasting 

method. It was developed on the basis of mobile averaging technology. It 

predicts the effect of the closest actual value on the predicted value which is 

based on the current actual value and the currently predicted next value, but 

does not require the quality of past values. The ARIMA is the most welcomed 

linear model for predicting time-series data. It has been a great success not 

only in academic research but also in industrial and economic applications. 

Box and Jenkins suggested that in 1976 the ARIMA model should use at 

least 50 or preferably 100 observations. Due to the theoretical limitations of 

the network structure, the importance of different Hopfield networks in 

practical applications is limited. But in some cases, they may form 
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interesting models. Hopfield networks are often used to classify vectors with 

binary patterns. The self-organizing map is an artificial neural network. It is 

trained by using unsupervised learning which generates a low-dimensional, 

and discretes representation of the input space of the training sample, it is 

named as a mapping. This mapping is designed to preserve the topological 

properties of the input space. There are two NP-complete optimization 

problems, they are called module orientation problems and objective 

functions, such as bus length and subgraph size, the effectiveness of the 

largest neuron model, and no constraints imposed. The advantage of elastic 

networks is that the geometric nature of the algorithm means that the 

progress of the algorithm can be visually tracked. In addition, the number of 

neurons needed is scaled linearly with the number of cities. However, 

although it produces quite good solutions, running times can be large. 

Dendritic neuron model can be generalized as: the dendrites can be 

initialized by any arbitrary decision, the synapses on the same branch 

interact each other, the nonlinear interaction produced in a dendrite can 

express by a logical network, after learning, the branches’ ripened number 

and the locations and types of synapses on the branches will be synthesized. 

Both linear and nonlinear models have maintained great successes in 

theoretical and practical problems. However, none of them is an universal 

model that can hand all situations. So the combinatorial model proposed in 

this paper is composed of the linear and nonlinear component can model 

linear and nonlinear patterns with improved overall forecasting 

performance. 

 In chapter 3 and 4, two experimental results are stated. One is the 

time-series forecasting for house price index of China, in which, the DNM 

model is proposed, and the ES model is used to be compared with the DNM 

model which showed its feasibility. The other one is the time-series 

forecasting for tourism economy, in which a new model is proposed, it is 

called the SA-D model which mixed the SARIMA model and the DNM model 

together. The results showed the SA-D model performed much better in 

fitting and forecasting the time-series data. Then I verified the effectiveness 

of the SA-D model by comparing other author’s models and got the expected 

result. 
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5.2 Contributions of the thesis 

 The contributions of my paper can be divided into three parts: 

 I systematically enumerated and stated the time-series forecasting 

models, and analyzed their advantages and disadvantages respectively. 

 My research is based on neuron model with dendritic nonlinearity model 

and it theoretically strengthens the assumption that neural network 

model implementation which performs effectively not only in the 

nonlinear model but also in the time-series data. 

 To excavate more efficient of the DNM model, I am considering to mix the 

DNM model and the statistical model together to create a combinatorial 

model which maybe predict random data much better, and opened a door 

to the combinatorial models. 

 

5.3 Suggestion for future research 

 In recent years, time-series have been receiving considerable attention and 

prediction approaches are slowly being developed. However, there are still 

some areas of future research should be developed as soon as possible. 

Concern with the time-series, approaches of the future research in my 

opinion are as follows: 

Research and development of multivariate methods focuses on a more 

practical proposition can be made. Some researchers have noted that much 

work has not been done on multiple time-series models, including 

multivariate exponential smoothing. I suspect that there are two reasons: 

one is the lack of multi-variable model of the robust prediction algorithm of 

empirical research; the other is the lack of easy to use software. Some of the 

proposed methods are very difficult to estimate for a large number of 

parameters involved. When others, for example, the multiple exponential 

smoothing, do not get enough theoretical attention to prepare for everyday 

use. So I doubt it will be more widely used in the near future. 

The prediction method based on non-linear model needs more in-depth 

research. The development model selection process makes good use of data 

and prior knowledge, needs to specify forecasting goals, and develops 

predictive systems that meet these goals.  
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These areas are still calling for the notices and I believe that in the future 

researches, they will create techniques to solve the problems of the 

time-series forecasting. 
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