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Abstract

The standard model of particle physics (SM) consists of two important pillars; i.e., the
gauge principle and the electroweak symmetry breaking. The SM have been established by the
discoveries of the weak gauge bosons in 1980s and the Higgs boson in 2012. However, still we
cannot explain the phenomena such as dark matter (DM), neutrino oscillation, cosmic inflation
and baryon asymmetry of the Universe (BAU), etc. These problems must be solved by new
physics beyond the SM.

On the other hand, the SM has the minimal Higgs sector with one doublet field, though
there is no principle to explain such a shape of the Higgs sector. The new physics may be
described by introducing an extended Higgs sector. In this case, by exploring the Higgs sector,
it is possible to approach not only the nature of electroweak symmetry breaking but also new
physics. As the experiment at CERN Large Hadron Collider (LHC) is running today, it has
become an urgent task to study Higgs physics.

In this thesis, we focus on the possibility that Higgs physics is related to the cosmological
problems. In addition to current and future collider experiments, we consider testability of some
Higgs-related new physics scenarios by using various space experiments such as observation of
gravitational waves, observation of the cosmic microwave background, direct detection of DM,
etc. This thesis consists of the following three subjects.

In Part III, we discuss two new physics models with extended Higgs sectors, which can
explain tiny neutrino masses and DM at the same time at the TeV scale. We call these models
as “radiative seesaw” models. In radiative seesaw models, a new symmetry imposed to the
model forbids generating neutrino masses at the tree level and explains the stability of DM.
First, we study the scalar sector of the neutrinophilic two Higgs doublet model (vTHDM),
where the neutrinophilic scalar doublet has a small vacuum expectation value (VEV) v, and
give Dirac masses of neutrinos. We consider a possibility that we can explain naturally small
masses of neutrinos by the idea that a small v, is generated at the higher order of perturbation.
In addition to right-handed neutrinos v, and the second SU(2)-doublet scalar field ®, which
exist in the original ¥ THDM, we introduce scalars (7 and s9) which do not have VEVs and a
scalar ¥, and we impose the global U(1)x symmetry. Although the global U(1)x symmetry
imposed to the model is broken spontaneously by a new VEV of the singlet field s, there
remains a residual Z5 symmetry. The lightest Z;-odd scalar boson in the model can be a dark
matter candidate. We clarify that our model can explain neutrino data and DM data. We
briefly discuss a possible signature of our model at the LHC.

Second, we consider a radiative seesaw model where the Dirac mass term for neutrinos, the
Majorana mass term for right-handed neutrinos, and the other new fermion masses arise via the
spontaneous breakdown of the U(1)g_, gauge symmetry. We propose the scenario which is an
improved version of the previous work from the view point of the anomaly cancellation. With
appropriate U(1)g_y, charge assignments, there exists an unbroken global U(1) symmetry even
after spontaneous breaking of the U(1)g_, symmetry. The global U(1) symmetry stabilizes
the DM, so that we hereafter call it U(1)py. The Dirac mass term of neutrinos is radiatively
generated at the one-loop level due to the quantum effect of the new particles. Tiny neutrino
masses are then explained by the two-loop diagrams with a Type-I-Seesaw-like mechanism. We
find that the model can satisfy current data from the neutrino oscillation, the lepton flavor
violation, the relic abundance and the direct search for the DM, and the LHC experiment.
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In Part IV, we investigate a simple model to explain inflation, neutrino masses and DM
simultaneously. We propose a Higgs inflation scenario in a radiative seesaw model with an
inert doublet, which originally has been proposed to explain dark matter and neutrino masses.
We study the possibility that the Higgs boson as well as neutral components of the Zy-odd
scalar doublet field can satisfy conditions from slow-roll inflation and vacuum stability up to
the inflation scale. We study this model under the constraints from the current data, and find
parameter regions where additional scalar bosons can play a role of inflatons. They satisfy the
current data from neutrino experiments, the dark matter searches and also from LEP and LHC.
A unique phenomenological prediction appears in the mass spectrum of inert scalar bosons. We
show that this scenario is challenging to be tested at the LHC, but would be well testable at the
International Liner Collider by measuring endpoints of energy distribution of a two jet system
from decay processes of the inert scalar fields produced via pair production.

In Part V, we discuss spectra of gravitational waves which are originated by the strongly first
order phase transition at the electroweak symmetry breaking, which is required for a successful
scenario of electroweak baryogenesis. Such spectra are numerically evaluated without high
temperature expansion in a set of extended scalar sectors with additional N isospin-singlet
fields as a concrete example of renormalizable theories. We find that the produced gravitational
waves can be significant, so that they are detectable at future gravitational wave interferometers
such as DECIGO and BBO. Furthermore, since the spectra strongly depend on N and the mass
of the singlet fields, our results indicate that future detailed observation of gravitational waves
can be in general a useful probe of extended scalar sectors with the first order phase transition.
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Part 1

Introduction






Overview

In July 2012, the new particle was discovered at the LHC [1,2]. Tt is consistent with the
Higgs boson of the standard model of particle physics (SM) within the error. However, we
cannot explain dark matter (DM) [3,4], neutrino oscillation [5-13], cosmic inflation [14] and
baryon asymmetry of the Universe (BAU) [3,4,15,16]. To solve these problems, we need a new
physics model beyond the SM.

On the other hand, the SM has the minimal Higgs sector with one doublet field, though there
is no principle to explain such a shape of the Higgs sector. The new physics may be described by
introducing an extended Higgs sector. In this case, by exploring the Higgs sector, it is possible
to approach not only the nature of electroweak symmetry breaking but also new physics. In this
thesis, we focus on the possibility that Higgs physics is related to the cosmological problems.

One of the valuable scenario which can explain DM is known as weakly interactive massive
particle (WIMP). In this scenario, typical scale of DM mass is required ¢'(100)GeV. Because
collider experiments explore such scale, WIMP scenario is known for testable. This scale is also
the scale which explained by Higgs physics.

Standard cosmology is very successful to explain the observations. Additionally, to solve
horizon problem and flatness problem, we need to explain cosmic inflation [14] by introducing
scalar boson so-called inflaton [17]. The paper [18] proposed the model which the Higgs boson
works as an inflaton by introducing the non-minimal coupling £ so-called Higgs inflation. The
advantage of Higgs inflation is testability via Higgs physics. Cosmic microwave background
(CMB) observation [4] shows us the scenario of Higgs inflation is not excluded.

Among various scenarios of BAU, electroweak baryogenesis (EWBG) [19] is directly con-
nected with physics of the Higgs sector, requiring a strongly first order phase transition (1stOPT)
at the electroweak symmetry breaking (EWSB) and also additional CP violating phases. It is
known that new physics beyond the SM is necessary for EWBG. Such a scenario can be tested
by experimental determination of the property of the Higgs sector. For instance, the condition
of the strongly 1stOPT can predict a significant deviation (order of several tens percent) in the
triple Higgs boson coupling (the hhh coupling) from the SM prediction [20], and the required
CP violating phases lead to appearance of electric dipole moments, etc. At the LHC experi-
ment and its high luminosity one, the measurement of the hhh coupling seems to be challenging.
There is still a hope that in future the hhh coupling could be measured by 13% accuracy [21]
at the upgraded version of the International Linear Collider (ILC).

As the experiment at CERN Large Hadron Collider (LHC) is running today, it has become
an urgent task to study Higgs physics. In addition to current and future collider experiments,
we consider some Higgs-related new physics scenarios by using various space experiments such
as observation of gravitational waves, observation of the cosmic microwave background, direct
detection of DM, etc.

Solving neutrino mass problem in radiative seesaw models

In order to generate tiny masses of neutrinos, various kinds of models have been proposed.
The simplest scenario is so called the seesaw mechanism, where the tiny neutrino masses are
generated at the tree level by introducing very heavy particles, such as right-handed neutri-
nos [22], a complex triplet scalar field [23], or a complex triplet fermion field [24]. There are
new physics models with extended Higgs sectors, which can explain tiny neutrino masses and



DM at the same time at the TeV scale, so-called “radiative seesaw” models. In radiative seesaw
models, a new symmetry imposed to the model forbids generating neutrino masses at the tree
level and explains the stability of DM [25-27]. Such radiative seesaw models are explained by
multi-Higgs structure.

We can constrain radiative seesaw models by using experimental data from the neutrino
oscillation, the lepton flavor violation, the relic abundance and the direct search for the DM,
and the LHC experiment. Furthermore, we can derive predictions of models.

Higgs inflation and a radiative seesaw model

There are some theoretical problems in the simplest Higgs inflation model. When we calcu-
late the running coupling constant of the Higgs self-coupling, the critical energy scale is around
10'% GeV due to the contribution of the top quark [28]. The vacuum is difficult to be stable up
to the inflation scale A;. This problem can be solved in two Higgs doublet models [29], because
the loop effect of additional scalar bosons weakens the top-loop contribution in the running
coupling constants [30]. Perturbative unitarity is also violated at the energy scale Ay = 22
by the Higgs-gauge scattering processes [31]. This problem is solved by a heavy additional real
singlet scalar boson which does not interact with gauge fields as shown by [32].

On the other hand, such Higgs inflation models with extended Higgs sector are also testable.
Because we can obtain the prediction for mass spectrum at the TeV scale by analyzing the
renormalization group equations of running coupling constants which satisfying data of CMB
observation. The prediction at the TeV scale would be testable at current and future collider
experiments.

Gravitational waves from electroweak phase transition

As a possible alternative method to test the strongly 1stOPT, we may be able to utilize
future observation of gravitational waves (GWs) [33]. On February 11th, the first direct detec-
tion of GWs emitted by the merger of black holes at Advanced LIGO [34] was reported [35].
Furthermore, a number of observatories such as KAGRA [36], Advanced VIRGO [37] are trying
to detect them. The target frequencies of GWs correspond to those from astronomical phe-
nomena such as the binary of neutron stars, black holes, etc. Once the GWs will be detected
in the near future, the era of GW astronomy will come true. Spectroscopy of GWs will make
it possible to explore phenomena at the very early stage of the Universe, such as a strongly
1stOPT, cosmic inflation, topological defects like cosmic strings, domain wall, etc.

GWs originated from the strongly 1stOPT have been discussed in a model independent way
in Refs. [33,38-45]. In the effective theory approach with higher order operators the possibility
of detecting such GWs was studied by Delaunay et al. [46]. Apreda et al. evaluated spectra of
GWs from the strongly 1stOPT due to thermal loop effects in the minimal supersymmetric SM
(MSSM) [47], although such a scenario was already excluded by the LHC data. Espinosa et
al. studied spectra of GWs in extended scalar sectors with the O(N) symmetry [48,49]. GWs
from the non-thermal 1stOPT were investigated in singlet extensions of the SM [50] and the
MSSM [47] and in the left-right symmetric model [51].

Organization

This thesis is organized as follows. In Part I, we first review about the Higgs physics in the
SM, and problems in the SM. We then discuss phenomena of DM, neutrino oscillation, cosmic



inflation and BAU. In Part I1I, we discuss radiative seesaw models that can explain tiny neutrino
masses and DM at the same time. In Part IV, we investigate a model to explain inflation in
a framework of radiative seesaw model. In Part V, we discuss spectra of gravitational waves
which are originated by the strongly first order phase transition at the electroweak symmetry
breaking, which is required for a successful scenario of electroweak baryogenesis. We show that
future detailed observation of gravitational waves can be in general a useful probe of extended
scalar sectors with the first order phase transition.






Part 11

Beyond the standard model
phenomena






Chapter 1

Higgs physics in the standard model

In this chapter, we review the SM. In particular, we focus on the Higgs sector in the SM.
We first discuss how all the masses of the SM particles are generated. Second, the bounds of
the Higgs boson mass are discussed. Third, how to calculate the decay rates of the Higgs boson
is shown. Finally, the production of the Higgs boson at LHC is shown.

1.1 The standard model

After the spontaneous breaking of the SU(2), x U(1)y gauge symmetry, the Higgs boson,
weak gauge bosons and fermions obtain their masses in the Higgs potential, the kinetic term
of the Higgs doublet field and the Yukawa interactions, respectively. The charge assignments
for the SM particles under the SU(3). x SU(2), x U(1)y gauge symmetry is shown in Fig. 1.1.
The Lagrangian of the standard model is given by

Lsu = Lm+ L+ Liiges + Ly (1.1)
1.1.1 The Yang-Mills sector

The Lagrangian of a gauge-invariant kinetic energy term for G (« = 1—-38), W (a = 1-3)
and B, is

1 o v 1 a v 1 14
.,g/ﬂYM = _ZGW/GZ - ZW,U«VW‘iL - ZBHVB'M 5 (12)
where
GZ‘V = QMGS — 8,,G/‘j — gsfamGﬁGZ,
Wy, = 9Ws—0,W— geacWIWY,
B, = éLBl, — &,Bﬂ. (1.5)
’ HQiL‘UiR‘diR\LiLMiR\@‘
SU(S)C 3 3 3 1 1 |1
SU(2)L 2 1 1 2 1 |2
UMy || 5 [ F1-3[-3][-1]3

Table 1.1: Particle contents and its charge assignments in the SM.
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We define G%, W and B, as SU(3)¢, SU(2); and U(1)y gauge fields, respectively. In this basis,
the covariant derivative is

Y
D, = 0, +igsT*G, +igT" Wy + ig’EB#. (1.6)

1.1.2 The fermion sector

The Lagrangian of fermion sector is given by

Qir
o - (z@u — gSTan) UiR
% = (Qir Wr dir Lip Gr)y" dir , (1.7)

(z@u — gTaW: — g/XBu)LiL
where Q;;, = (ZiL>, Li; = <ZZL)
iL iL

2
1.1.3 The Higgs sector

(0, — 9,§Bu)€iR
The SM has the minimal Higgs sector with one SU(2);, doublet field. The Lagrangian of
Higgs sector is

Ltiges = | D"[* — Vou(®), (1.8)

with the Higgs potential in the standard model given by
1
Vam(®) = —p*(¢'0) + 5)\(@@)27 (1.9)

where the Higgs doublet field ® can be parametrized as
wt
¢ = (\%(v—i—h—l—iz)) (1.10)

with w* and z are the NG bosons which are absorbed by longitudinal components of W+ boson
and Z boson, respectively, and v ~ 246 GeV is VEV of ®. By imposing the vacuum condition

OVsm
Oh

=0, (1.11)

h—0

we obtain

p? = %1)2. (1.12)

Then, the mass of the physical neutral Higgs boson h is obtained as

m; = v’ (1.13)
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By electroweak symmetry breaking, the mass terms of the weak gauge bosons are derived as

N | 2
|DFO? — '(—zggwp —@g’iBu><I> (1.14)
1 3 / 1 a2 2
_ _Kg%ﬁgmfjg 9(%3 ’foé)) (0) (1.15)
8 g( I +1 /,1,) —g I + g by, v
1
= U WP+ (V)] (1.16)
1
+ V(' By = gW)(g'B" — gW™) (1.17)
1 2 » 1 ) 3 92 _gg/ W3[A
= (§vg) W,IW 4 g? (W;,B,) (_gg, e Be (1.18)
1\’ 1
= (§Ug> Wrw=r + §[9W3 — ¢'B,J* + 0[g W} + gB,J>. (1.19)

The charged gauge bosons W= and the neutral gauge bosons are obtained by let = (Wﬁ F

W2/, Zy= (gW2— 9B,/ g*+ 92 Ay = (¢W2+9B,)/\/g° + 9. The masses of W* and
Z are

1 1
mw = Svg, mz = 5V g%+ g%, (1.20)

and the photon A is massless.

1.1.4 The Yukawa interaction

Finally, Yukawa interactions are

3 B @(i)ujg + h.c.
.;%Y = — (YJ] de] }/KZ]) QiL(deR + h.c. y (121)

LiLq)éjR + h.c.

where ® = i02d*. After electroweak symmetry breaking,

v

V2

= —(mytiu + mgdd + me0) (1.23)

,?Y — (YuijﬂiLUjR + }/ZjJiLde + YzijgingR + hC) (122)

The fermion masses are writen as

1
my = —=vY. (1.24)

V2

1.1.5 Relation between mass and coupling of particles

As shown in above results, we obtain the universal relation between coupling and masses

m; o v. (1.25)
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1.2 Predictions to the Higgs boson from the standard
model

1.2.1 Bounds from perturbative unitarity

From the conservation of probability

<ala> = |<blS|a>|? (1.26)
= <a|ST|b>< b|S|a > (1.27)
= <alS'S|a >, (1.28)

we obtain a consequence of the unitarity of the S-matrix STS = 1. Inserting S = 1 + 4T (T is
the part due to interactions), we have

—i(T =T =T'T. (1.29)
Namely,
—i<al(T—THla> = <a|T'T|a >, (1.30)
—i[ i — M) = Z/dH.///*///, (1.31)
2ImM = Z/dH\//P. (1.32)
where,

fert- (11 &5

n

) (27)* 6™ (pa + pi — Z pi). (1.33)

From the relation

& 1
p) ﬁ) [ (pa,ps = {p})F2m) 6D (pa+ps = Y 1),

1 n
d p—
/ 4 QEAQEB”UA—’UB‘ (H/ (2m)3

Otot = ApomE Cm/dl_[|///|2 (1.34)

we obtain
Im# = 2pcmEchtOt' (135)

This relation is known as the optical theorem.
For the case of two particles in the final state

do | |2
(E)m " GimE, (136)
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we obtain
A
Otot > (O’ _)/dgm (137)
2m | |
1 | A |?
= - /|d 0 . 1.39
[ dtcost)E (1.39)
Then, Eq. (1.35) is
]m% ~ go-tot (140)
s
d 0 . 1.41
> / (cos )167r (1.41)

On the other hand, we define the partial wave amplitude a; as

M (s,t) = 167 Z(QJ + D)ay(s)Pj(cos®). (1.42)

Then, Eq. (1.41) is

167 Z(2J+1)ImaJPJ(cosﬁ) > 167?2 (2J +1)(2J" + )G/J(l]//d(COSG)P}(COSQ)PJ/(COSG)

5T’
25JJ'
=1 2
67?2 J+1 2J R
Ima;Pj(cosf) > 2|GJ|27
1\? 1)
Re(as)? + (Im(aJ) - 5) < <§) : (1.43)

In order keep perturbativity, we require that the absolute value of the eigenvalues of the s-wave
amplitudes are at most of the order of the unity:

lay| < amax- (1.44)

We take a,.x = 1 in this section.

By calculating the partial wave amplitude for elastic scattering of longitudinally polarized
gauge bosons, perturbativity condition (Eq. (1.44)) give the prediction of the upper bound of
Higgs mass as shown in Fig. 1.1.

1.2.2 Bounds from triviality and vacuum stability

The renormalization group equation of Higgs self coupling is approximately given by

d\(p)  12)\?

= L . 1.45
& du 1672 (1.45)
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Figure 1.1: A sketch of the energy (s/m?) dependence of the partial wave amplitude for elastic
scattering of longitudinally polarized W= bosons |ao(W; W; — W W, )| for two choice of the
Higgs boson mass (my, ~ 1TeV (above), 300GeV (below)). The Higgs boson mass is constrained
by perturbative unitarity.

When we fix the scale at v = 246GeV, we obtain energy dependence of Higgs self coupling,

A(v)
A = . 1.46
REEECING Y
In the limit of yu < v,
Ap) = AW) SR ONNY (1.47)

" lnoo

In ((u/vwe(w/“"’)

On the other hand, in the limit of x> v, we obtain the energy scale A, which satisfy
A(A) = 0. (1.48)

Then, we obtain

4 2
= wvexp < 37;;2] ) . (1.49)
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1000 -

500

400 |

300 |

Higgs mass [GeV]

200

| |
1000 10° 10° 1012 10%° 1018 ///’—/
100 £ q

I I I I I I I
10000 1le+06 1e+08 le+10 le+12 le+l4 le+16 le+l
cut-off scal[GeV]

Figure 1.2: The triviality bound: Cutoff Figure 1.3: Vacuum stability bound:
scale A [GeV] depends on Higgs boson Cutoff scale A [GeV] depends on Higgs
mass my, [GeV] from Eq. (1.45). boson mass my, [GeV].

The cutoff scale in the SM is determined by Higgs boson mass as shown in Fig. 1.2.
The one-loop renormalization group equations involving the contribution of fermions and
gauge bosons are given by [52]

1 9 6 3
— 12 2 12 4 12 2 < 4 2 12 d 4 o 2 12
B(A) 1672[ A Yo T120A + 197+ 19797 + 19" = 905" =39 ],
. —793 _ —39° no_ 79" Y |9, o 945 17 ,
Blos) = b3 B =15 B =152 B =1z (g0 =84 -39 — 97|

The cutoff scale satisfying A(A) = 0 is calculated by above conditions Eq. (1.50). The condition
of vacuum stability

M) > 0 (1.50)

give the lower bound of Higgs mass as shown in Fig. 1.3.

1.2.3 Decays of the Higgs boson

We calculate the decay rates of the Higgs boson. There are various decay modes of the
Higgs boson; h — ff(f =t b,¢c,s,u,7); h > VV,V*V(V =W, Z); h = vv,99; h — Z~v. We
define functions

arcsin® /X (; >1)
—1 [ln A m} (1, < 1)

V/T; — larcsin \/g (; > 1)

g(n) =
%m [mi— % — m} (: < 1)
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f t |b |c |s |p|T
Ny [3 ]33 311
o A
T3L 1 7_I71 D I §
f 2 2 | 2 2 2 2

Table 1.2: Fermion charge assignments.

where 7, = (2m;/mp)?, A\i = (2m;/m.)?. In Table. 1.2, we show the color factor N, the
electromagnetic charge of the final state fermion ey and the third component of the isospin
T}))L . The decay rates of the Higgs boson decaying into the fermion pair h — f f are given by

L(h— ff) = 36572 TH(l—Tf)%- (1.51)

w

The decay rates of the Higgs boson decaying into the gauge boson pair h — WHTW ™ or
h — ZZ are given by

2 3
_ g Mg 3 5
T(h — W+ = L M T T+ O 1.52
(h— WTW™) 61m m2 Tw( T+4Tw), (1.52)
T(h— Z2) 9" Mt (1—7 + 272 (1.53)
= —V1—=-7,(1 =7, + -77). :
1287 m?2 AT TR T YT

On the other hand, the decay modes of h — W*W or h — Z*Z is given by

4 v\ | 3 W* — tb not allowed
Th—ww) = £2%8p (m—) Tt not afowed, (1.54)
5127 4 W* = tb allowed,
4 40 160
. g*my 7— 3sm0 + 1804int g, m,
I'h — 277 °F 1.55
(h = ) 204873 cos* 0, my )’ (1.55)
where
47 13 1
_ 2 2 2 4
F(z) = —|1—2a7 (?x —?+ﬁ> +3(1 — 62 + 42")|Inz|
3(1—8x%+20z%) (32 -1
+ 12— 1 COS W . (156)

There re one-loop induced decay processes, such as h — vy, h — gg and h — Z~. These decay
rates can be given by

ag m3
I(h—yy) = 10247T3m§ ZchefFf—l—F : (1.57)
azg® mj
P(h—g9) = =55 ZFf , (1.58)
h 009" M NSy o
P(h—27) = +p 5 > Ap+ A, 1_m?q : (1.59)
wof
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Figure 1.4: The decay branching ratio of the SM Higgs boson as a function of SM Higgs mass.

where Fy = 751 — 7, f(75)], Fr = =214[1 + (1 — 74) f(74)], Fv =2+ 37w + 37 (2 — 7v) f(7v),

Ay =
A, =

Li(ti,N) =

12(7'1‘,)\1') =

—2ch€f<T;c)’L — 2€f Sin2

0)

sin 0, cos 6,

— cot Hw{4(3 — tan® 0y, ) I (7w, M) + [(1 +

2y)2

T — )\z

_m[f(ﬁ) - f()‘i)]‘

The result of the decay branching ratio is shown in Fig. 1.4.

1.2.4 Production of the Higgs boson at LHC
The production cross section of SM Higgs boson at 14TeV pp-collider is shown in Fig. 1.5.

(7, Ap) = La(75, Af)],

2
—) tan2 6, — (
T’LU

- 9(%’)],

5+ —

72)] fl(Twa)\w)}7

w
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Figure 1.5: The production cross section of SM Higgs boson as a function of Higgs boson mass
at 14TeV pp-collider (PDF: mrst2002 nlo).



Chapter 2
Dark matter

2.1 Evidences of DM

We consider an astronomical] object with the orbital velocity v and the mass m which is
separated by a distance R from the center of a galaxy with the mass M. The equilibrium of
forces of gravity and centripetal force is given by
mM mu?

= (2.1)

G

r

We obtain the orbital velocity as v = /GM/r.
If we consider the cace that a galaxy is uniform density p and the size Ry, we obtain the
mass of a galaxy as the function of R:

iTR3p = My (for R > Ry)
M(R)=143. " ’ 2.2
(B) {A}g—é’Rg (for R < Ry). (22)

Then, the orbital velocity v of an astronomical| object is predicted by

o(R) o Vi for B> Ry, (2.3)
r (for R < Ry).

This prediction show us that the rotational speed v(R) behave as \/W

However, this prediction is not consistent with the observation which reported by V. Rubin
and K. Ford in 1970. The observed rotational speed is a constant value v ~ 230km s~!. This
observation show us that there are unknown source of gravity, so called dark matter (DM).
Furthermore, there are other various observations which suggest the evidence of DM.

2.2 Constraints of primordial black holes as dark matter

The recent estimation of the amount of DM trapped in stars at their birth have shown the
best constraints come from white dwarfs or a neutron stars in globular clusters which exclude
the DM consisting entirely of primordial black holes (PBHs) in the mass range 10'¢ — 3 x 10?%g,
with the strongest constraint on the fraction Qpgy = Qpy = 1072 being in the range of PBH
masses 107 — 10'8g [53]. Furthermore, Ref. [54] have shown the constraint of the PBH DM

19
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with masses in the range of 2 x 107° M, — 107" M. They claim that PBHs in these mass ranges
cannot make up the entirety of the DM, thus closing a full order of magnitude in the allowed
mass range for PBH DM.

2.3 WIMP hypothesis

We understand the properties of DM as

e almost no interacting with the photon, DM itself and other fermions,

e non-relativistic,

e relic abundance is observed as Qpy = 0.1198 4 0.0026.

In the hypothesis of weakly interacting massive particles (WIMPs), DMs are explained as

particles with no electric charge, stable and DM masses are ¢/(100)GeV.

Dark matter stability by new symmetries In this thesis, we consider three scenarios of
dark matter stability which explained by discrete symmetry, global U(1) symmetry and gauge
symietry.

2.4 The calculation of relic abundance of dark matter

We review the calculation of relic abundance of dark matter. This section is based on [55-58].

The Boltzmann equation The Boltzmann equation is given by

dn
pr +3H n = — {oegv) (n* — n%Q) (2.4)

By the definition Y = n/s, we obtain

dy
S T n? — nEqQ = s2(Y? — YEQQ). (2.5)
During the radiation dominated epoch, the energy density is given by pr = (72/30)g.T*. By
the definition of the scaled inverse temperature x = m/T, the Friedmann equation for flat
Universe H? = (87/3m%)p gives

— —1/2Mp —1/2Mp
t=H"'=0.301g, Wﬁ = 0.301 g; UZ’W 22, (2.6)

Then, the Boltzmann equation is written by

dY (x)  —x (o) (x) s 2 e
dr 1.67 gi/2 m2 (Y (z) YEQ( )7)- (2.7)

mp

For the case of relativistic particles s = (2m%/45)g.sT°, we obtain

dY () TG« Mmp (oev) () 2 )2
dr 3807 gi/*a? (V(2)” = Yeq(2))- (2.8)
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Figure 2.1: The freeze out of a massive particle species. The dashed line is the actual abundance
Y (z), and the solid line is the equilibrium abundance Ygq(x). Each curbs are normalized by
Y(z=1).

Freeze out In the non-relativistic regimes (z > 3), the Boltzmann equation is written by
approximately

dy o
where
A= 0.264% % mpmpyon, (2.10)
s
Yeg = 0.145% 23" (for > 3). (2.11)
Gxs

By solving this equation, we obtain the behavior which is shown in Fig. 2.1.
Relic abundance The freeze out point is given in terms of x:
0.038 g mp mpu (Tesrv) (T¢)

1/2 1/2 ’
g7 oV

(2.12)

ry = In

where m, = 1.22 x 10"%GeV and g, is total number of effectively relativistic degrees of freedom
at the time of freeze out. Eq. (2.12) is usually solved iteratively. By the definition of

J(zg) = /Oo (e0) (2) 4 (2.13)

x2

we obtain the relic abundance

1.07 x 10° GeV ™!

9" mpJ(zy)

Qh? (2.14)
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The thermally-averaged annihilation cross section tomes velocity We write the ther-
mal average of the annihilation cross section as

A
<Oeffv> = 5 (215)
nho
where
o 9i 3 o m;
ngg = zl: (2n)? /d D; €XP (——) = Zgz m; K2< ) (2.16)
NG

A = 327r4 Z/ +m] dS g; gj pij Wij_ﬂgl K1 <? . (217)
where m; (i =1,---, N) is masses, g; is internal degrees of freedom (statistical weights), K, is

the modified Bessel function of the second kind of order a and
Vs — (mi +mj)2\/s — (m; —mj)? (2.18)

pij = 2\/5

is the momentum of i-th (or j-th) particle in the center-of-mass frame of i-th and j-th particles
pair. A dimensionless Lorents invariant, related to the (unpolarized) cross section is given by
Wij—i, pisj- In particular, the contribution of a two-body final state can be written as

Wyon — P — 3 /|,///z]—>kl)\d9 (2.19)

1672
9i gj internalDF

where py; is the final center-of-mass momentum, Sy; is a symmetry factor equal to 2 for identical
final particles and to 1 otherwise, and the integration is over the outgoing directions of one of
the final particles.

By using
1
Oij—ki = — /I A (i — Kl) |*dS, (2.20)
647T28 pl] internal DF
We obtain
[s — (m; +m;)?][s — (m; —m;)?] oy
(Oerv) = YR Z/ ( J) Il ( ])] vkl
327T nEQ Iy (mi+m;)? Skl\/g

ST z/mzw e ()

When we determine a model, we can calculate the relic abundance.



Chapter 3
Neutrino oscillation

3.1 Experimental data of neutrino masses and mixing

It has been well established that neutrinos have nonzero masses as shown in the neutrino
oscillation measurements [5-13] although they are massless particles in the standard model (SM)
of particle physics. Experimental data of neutrino oscillation is measured as

Am2, = 7.46x 107%V2,  |Am,| = 2.51 x 10-%eV?2,
sinfy; = 1, sin?6;3=0.09, tan®6;, = 0.427. (3.1)

We cannot explain these data in the framework of the SM. We review the models which can
explain the origin of neutrino masses.

3.2 Mechanisms of neutrino mass generation

To explain neutrino masses, we introduce right-handed neutrinos vg as shown in Table. 3.1.
There are two possible mass terms for neutrinos the Dirac type vy vg and the Majorana type
(vr)¢vR. As shown in the following, we consider each cases.

| [ vr ]
SUQ)., | 1
U)y | 0

Table 3.1: The right-handed neutrino.

3.2.1 Dirac neutrino

Dirac mass term of the neutrinos is given by

Lovaawa = —Y,Lioy® vy +he, (3.2)
_ 0 1 -
= —y, (TLobvy — (1o, vy) +hoc. (3.4)
v __
= 5 Y, VL Vg + h.c. (3.5)
= —mp(VLVr + VrVL). (3.6)

23
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To explain observed tiny neutrino masses, this case require unnatural tiny Yukawa couplings.

3.2.2 Type-I seesaw with Majorana neutrino

Since the scale of neutrino masses is much different from that of the other fermion masses,
they might be generated by a different mechanism from the one for the other fermions. In
addition, neutrinos are unique fermions, because these are neutral. Therefore, we can consider
the case satisfying vp = v;. Then, Majorana mass term which violates lepton number is given
by

%TTLM(I/R)CVR. (37)

Usually, the possibility that neutrinos are Majorana fermions is utilized as a characteristic
feature of the neutrino masses. The most popular example is the seesaw mechanism [59] where
very heavy right-handed Majorana neutrinos are introduced:

1 — _ 1 _
ﬁ,,_yukawa = —E(mDV_LI/R—FmDI/EVIC%—FmMVEI/R)—§<mDVIC%VE+mDEVL+mMﬁVE)
. 1 — = 0 mp I/f% 1 — 0 mp vy,
T2 (VL UL) (mD mM) <I/R) 2 (VR VR) <mD my VL
1— 1 —
= 5 LMR - RML, (3.8)

R mp Muy
v = Cv', we obtain the relation (vypg))¢ = V- ) By diagonarizing Eq. (3.8), neutrino
masses are given by

where L = (Zﬁ), R = (Zf) and M = ( X mD). (From definitions vip) = Prr) v,
L

2
mp

m, =~ my = mpr. (39)

N
By the hierarchy of m,; >> mp, we can explain tiny neutrino masses. Therefore, this model
predict very heavy Majorana neutrinos. If these particles have the masses my ~ 10711GeV to
explain m, ~ 0.1eV, we can explain Yukawa coupling as natural scale as y, ~ 1. However, it
may be difficult to test such heavy vg.

() (@)

V1, 149

']/R VR.

Figure 3.1: Type-I seesaw model.
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3.2.3 The neutrinophilic two Higgs doublet model

The neutrinophilic two Higgs doublet model (v THDM) is a new physics model where neu-
trinos are regarded as Dirac fermions. The second SU(2)-doublet scalar field ®,, which couples
only with right-handed neutrinos vg was first introduced in Ref. [60] for Majorana neutrinos.
Phenomenology in the model of Majorana neutrinos is discussed in Ref. [61,62].

The neutrinophilic doublet field is also utilized for Dirac neutrinos [63] where a sponta-
neously broken Z, parity is introduced in order to achieve the neutrinophilic property. Small-
ness of neutrino masses are explained by a tiny vacuum expectation value (VEV) (®,) = v,
of the neutrinophilic scalar without extremely small Yukawa coupling constant for neutrinos.
Instead of the Z, parity, the model in Ref. [64] uses a global U(1)y symmetry that is softly
broken in the scalar potential. The U(1)y symmetry forbids Majorana mass terms of vg, and
then neutrinos are Dirac fermions'. We refer to the model in Ref. [64] as the Y THDM.

In the most simplest ¥THDM, we introduce the Dirac right-handed neutrino vz and the
neutrinophilic scalar doublet ®,, as shown in Table. 3.2. A global U(1)x symmetry is intro-
duced, under which ®, and v;; have the same nonzero charge while the SM particles have no

charge.
+
@)

SU(2)L, 1 2
Ul)y 0 3
Global U(1)x || 1 1

Table 3.2: Particle contents and its charge assignments in the vTHDM.

The Yukawa interaction Yukawa interaction is given by

['u—Yukawa = - (y,,)z@L_e 109 (I)Z V,p + h.c. (310)
——5— (0 1 »
= —W,)a(Wr, ler) (_1 0) (2(3) v;p + h.c. (3.11)
= - (?/u)éi (m¢8ViR - @Qg’/m) +h.c. (3-12)
Uy —
= - E (Y, )ei Vir Vi + hc, (3.13)

where (= e, u,7) denotes the lepton flavor and o; (i = 1-3) are the Pauli matrices. Since
Majorana mass terms (v,,)¢ v;p are forbidden by the global U(1)x symmetry, there appears an
accidental conservation of the lepton number where lepton numbers of ®, and v;z are 0 and 1,
respectively.
Then, neutrino mass matrix in the lepton flavor basis (¢ = e, i, v) is defined by
UV

(my,)ei = 7 (Y )es- (3.14)

1Since the Majorana mass terms of v can also be acceptable as soft breaking terms of the U(1)x, the lepton
number conservation may be imposed to the Lagrangian.
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By diagonalizing, we obtain
UllL/[NSmV = dia‘g(mlv ma, m3)7 (3].5)

where Maki-Nakagawa-Sakata (MNS) matrix [65] is given by

1 0 0 C13 0 813671.6 C12 s O
UMNS = 0 Co3 S93 0 1 0 —S12 C12 0 . (316)
0 —S93 Ca3 —813615 0 C13 0 0 1
In the mass eigenstate (1=1,2,3): L, vukawa = —mi(U;(/[NS)iML v;p + h.c., we can construct
. . Vi
Dirac neutrinos v; = ( t i )
(Uhins)iever

We can see from Eq. (3.14) that smallness of m; is explained by the smallness of v, (< v).
This is the scenario of ¥THDM.

The scalar potential If the VEV v, is generated spontaneously, a CP-odd scalar ¢, becomes
massless as a Nambu-Goldstone boson with respect to the breaking of U(1)x, where ¢2 =
(v, + ¢ +1i¢%.)/v/2. In addition, a CP-even neutral scalar ¢°, has a small mass (o v, < v).
Therefore, the scenario of the spontaneous breaking of U(1) x is not allowed by the measurement

of the invisible decay of the Z boson. The scalar potential is given by 2

VTN — 3 0T + 113, ] D, — (Néuq’i@ + h-C-)
+ A1 (BT)2 + Ago (D] D,)? + N1 (PTR) (DT D) 4+ Ny o (DT D) (D] D) (3.19)

We can take p2,, positive and real without loss of generality by the rephasing of ®,. Here, we
take p3, > 0, uz, > 0.

The VEV of ¢? is induced by p3,, which break U(1)x softly. Since the term does not breaks
the lepton number conservation, neutrinos are still Dirac particles. When we take v, < v, we
obtain two VEVs

%31 v~ 20 N<21>12
vV )\c1>17 Y 2#?}2 + (>\<I>12 + )‘21>12)U2

(Va4

(3.20)

When we take pgs >~ v, we obtain v, ~ p2,,/v. Then, ug2/v ~ 107¢ is required by taking
Yy, =~ andm, =~ 0.1eV. In such a simplest model, parameter tuning is required. Stability of the
tiny v, is discussed in Refs. [62,66]. In our model presented in Chap. 6, fig,5/v becomes small
because 3, is generated at the one-loop level.

2In general 2HDM, we can write terms

yITHDM) Ly (\5(27®,)? + hc.) (3.17)
+ (N6(@T2)(@7®D,) + h.c.) + (A7(D]2,)(2T®,) + h.c.). (3.18)

However, these terms are forbidden by the global U(1)x symmetry.
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3.3 Loop suppression scenarios

We consider loop suppression scenario which explained by m-loop induced dimension (5+2n)
operator (n = 0)

Cij i J n
"Zﬁf = Agnj_H VLV%/(¢O¢O) i (321>

which are induced by quantum effect. In such scenarios, the size of neutrino masses from
the operator with the mass dimension (2n + 1), which arises from a m-loop diagram, can be

estimated as [67]
(mu)i; = ¢ (¢°) (%)m (%\ﬁ)%ﬂ. (3.22)

We can explain loop suppressed neutrino masses.

The radiative seesaw scenario is an alternative way to explain tiny neutrino masses, where
they are radiatively induced at the one loop level or at the three loop level by introducing
Zy-odd scalar fields and Z»-odd right-handed neutrinos [25-27]. For radiative seesaw models
which are invariant under the unbroken discrete Z, symmetry, we can explain DM and neutrino
masses at the same time.

3.4 The Ma model

Especially, we consider a minimal model which proposed by the paper [26]. In this model,
we introduce Z»-odd scalar doublet @, and right handed neutrinos (vg); (i = 1—3). The Zs-odd
lightest neutral particle can be a dark matter candidate.

The Higgs potential which is same as IDM is given by

1 1
Viom(®1, @2) = 43| ®1]* + p3|D2| + §>\1|q)1|4 + §>\2|q)2|4 + A3 |1 [*|@o (3.23)
1
(D10, (BLDy) + §A5[(<1>I<1>2)2 + h.cl.

When we assume p? <0 and p2 > 0, ®; obtains the vacuum expectation value (VEV) v
(= \/—2u%/\1), while @5, which has the odd-quantum number of the Z; symmetry, cannot get
the VEV. Mass eigenstates of the scalar bosons are the SM-like Z5-even Higgs scalar boson h,
the Zs-odd CP-even scalar boson H, the Z;-odd CP-odd scalar boson A and Z-odd charged
scalar bosons H*. Masses of these scalar bosons are given by

1 1
mi = )\1’02, m?{i = Iu% + 5)\3’02, m%LA = ,u% -+ 5(}\3 + )\4 + )\5)?)2. (324)

The constraints of vacuum stability is given by
AL >0, >0,/ A+ A3+ A0+ A5 >0, (325)
and we here impose the conditions of triviality

\; < 2. (3.26)
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The Yukawa interaction for leptons and the Majorana mass term are given by

Lota—vukawa = LSM—vukawa + Rij (L1)i 5 (VR); + h.c., (3.27)
1
»CMajorana = 5 Mz (l/R)f (VR)i + h.c. s (328)

where the superscript ¢ denotes the charge conjugation. Neutrino masses are generated at the
loop level by

Dl M, m2 m? oy m3
N = I 2 _ In 24 3.29
(m)y = 3 5.2 mi— M2 M? mE—ME M2 (3.29)
)\57)2 hikhjkMk M,? mg
- | SRR (3.30)
872 ;mg—]\/[,f mid — M} M}

where m3 = (m% +m?%)/2.

The neutrino oscillation data Eq. (3.1) is explained by neutrino Yukawa coupling constants
hi, in this model. Neutrino mass of the flavor basis (m,);; is diagonalized by MNS matrix
Uning as UJ/INS m, Uying = diag(me’®, mqe™2, mase™?). Here, we impose normal hierarchy and
my =0,0 =0,a;_3 = 0 as input parameter.



Chapter 4

Inflation

The standard cosmology is a very successful model to explain the expansion of the Universe,
the abundances of the light elements and the cosmic microwave background. However, we need
inflation to solve horizon problem and flatness problem. In general, the inflation is explained by
the exponential expansion [14]. But, we do not know the detail of the inflation. The scenario of
slow-roll inflation [17] can be realized by a scalar particle, so-called the inflaton. If the inflation
potential is given, parameters for the slow-roll inflation can be calculated.

We consider one possibility of inflation scenarios, the Higgs inflation scenario [18], where
Higgs boson plays a role of inflaton. In this model, we introduce the coupling term of the Higgs
field ® with gravity as EOT®R (R is the Ricci scalar). Then, its coupling is too large £ ~ 10°
from the primordial power spectrum of the curvature perturbation . Slow-roll parameters which
are calculated by the inflation potential must satisfy the data from the Planck experiment [4].
The inflation scale (A; = Mp/+/€ for the Higgs inflation scenario) is also calculated from
the inflation potential. Constraints of the slow-roll inflation scenario can be satisfied with
experiments. Especially, the data from the Planck experiment [4] support the Higgs inflation
scenario.

4.1 Inconsistency between big-bang cosmology and ob-
servations

The Friedmann equation is given by

1 k
g ot R’
H* = 3 5 (4.1)

where H = R/R is Hubble parameter. By introducing density parameter Q = p/p. (p. =
3H?/87(G is the critical density), we obtain

k

The flat Universe satisfy {2 = 1. Observed data of flatness show
00— 1] < 0.2. (4.3)

29
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When we take Q@ = Q. + Qp + QA (2 = pr/pe s Qo = Pm/pe , QO = pa/pe) and p =
Pr + pm + palpr = pro/RY L pm = pmoR?, pa = pao), we obtain

H? Qo Qo 1—0Q
mo ot T (4.4
2(0 — 1
0N-1 = (S — 1) (4.5)

Qo+ QmoR + (1 — Q0)RZ 1 Qp oR!
by using Ry = 1. At Planck time tp = 5.391 x 10™*sec (R(tp) = 2 x 10732),

R2(Q0—
Qp—1 o g0l (4.6)
(2x10732)2x0.2
— ><8.4><10*;< 7
< 0(1079). (4.8)

In the standard cosmology, we cannot explain this flatness naturally.
On the other hand, we define temperature fluctuation of the cosmic microwave background:

(5—T>2 _ D (4.9)

T 2T

where [ (~ 180°/6) is multipole, C; is defined as partial wave expansion of temperature corre-
lation function of two points

o0

1
— Y (2l+1)C1P(cosb), (4.10)
—0

4
I

) =

where () is partial wave amplitude and Pj(cosf) is Legendre polynomial. CMB temperature
fluctuation §7'/T is observed at each [ (namely, 6). In the region I < 100 (6 > 2°), we observed
oT
— ~107°(0 > 2°). (4.11)
T
At the last scattering period, two points A and B are separated by the distance dy(t;5). At
present, we observe as the distance (14 z;5)dg (t;5) where z;s ~ 1000 and 1+ 2z = R(to)/R(t;s).
When we observe two points of the distance d,(t;; — t,), the casual region 6 is explained as

AB = (1 + le)dH(tls) > dp(tls — tto)97 (412)
0 (L4 215)dn (t15) (4.13)
dp(tls — tto)

The relation

dy(tis = t,) = 0.98dy (to) (4.14)
show us
0 (L+ 21)di (ts) (4.15)
du(to)
1000 x 0.4Mpc
4.1

14000 M ps (4.16)

< 2% (4.17)
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In the standard cosmology, we cannot explain why two points are almost same property outside
casual region.

To solve flatness problem and horizon problem, we need to explain inflation [14].

4.2 Slow-roll inflation

Models of inflation are explained by introducing scalar boson so-called inflaton [17] In the
models of slow-roll inflation, the homogeneous evolution of the inflaton field ¢ is governed by
the equation of motion

G+3Hp+V(p) =0, (4.18)
and the Friedmann equation
P—— (4.19)
3ME’ '

where H = a/a is the Hubble parameter, M2 = (87G)~%/2 is the reduced Planck mass, and
V(¢) is the scalar potential. On the other hand, the slow-roll parameters are defined by

M2 (dV/dp\?
_ avjdyp 4.2
= (M) (4.20)
PV /d?
n = M}%#. (4.21)

Necessary conditions for the slow-roll scenario are € < 1 and |n| < 1.

4.3 Constraints from the cosmic microwave background
data

It is convenient to expand the power spectra of curvature and tensor perturbations around
a pivot scale kg as

1 dn k
ne—141dns qn kg 1 dins (g g2y g\ s amE g
A, (4.22)

32(% :As <k_k0) kg " 31 dn k2 ’ Q@t _ k_
0

where A, (A;) is the scalar (tensor) amplitude and n, (n;), dns/dInk (dn;/dIn k) and d*n,/d In k?
are the scalar (tensor) spectral index, the running of the scalar (tensor) spectral index, and
the running of the running of the scalar spectral index, respectively. From the scalar potential,
the parameters of the scalar and tensor power spectra may be calculated approximately in the
framework of the slow-roll approximation by evaluating the following equations at the value of
the inflation field ¢y. The number of e-folding before the end of inflation, Ny, at which the
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pivot scale ky becomes

tend
Ny = / dt H (4.23)
to
Pend d
= / ) (4.24)
¥o ¥
! " VV,d 4.95
- m \/<Pend v 90 ( ' )
1 ¥o d(p
MP Pend \/% ( )
where the field value at the end of inflation .,q is given by
HIaX{E(Soend)a |77(906nd)’} =1 (427)

From the e-folding number 50 < Ny < 60 constrained by the Planck experiment [4], the field
value at the initial of inflation ¢q is determined. Then, we can calculate ng, r and A,, as

— V(¢o)
* T 247 Mpe(po)’
ns=1—06e+2n, r=16e. (4.29)

(4.28)

At the pivot scale ky = 0.05Mpc~!, the scalar amplitude A, and the spectral index n, of the
base ACDM model are constrained by the Planck 2015 data as [4]

Ay =2.19670059) x 1072, n, = 0.9655 + 0.0062 (68% CL, Planck TT-+lowP),  (4.30)

assuming dn,/dInk = d’ng/dInk? = r = 0. The Planck 2015 have shown upper bound on the
r for the ACDM+r model as [4]

Fo002 < 0.10(95% CL, Planck TT+lowP), (4.31)
r0.002 < 0.11(95% CL, Planck TT+lowP-lensing), (4.32)
Fo.00s < 0.11(95% CL, Planck TT+lowP+BAO), (4.33)
ro.002 < 0.10(95% CL, Planck TT,TE,EE+lowP). (4.34)

4.4 Higgs inflation

Higgs inflation is realized by introducing the non-minimal gravitational coupling £ [18]. The
scalar sector of SM, coupled to gravity is given by

2
£y = = D, H|* — (*H'H — \(H'H)? — %R —¢H'HR (4.35)
-9
1 2 A 2 2\2 MIQD 1 2
_ 2 ERNATY S B A e S , 4,
5 (0uh)? = S(h* = 0?)? — LR — _en’R (4.36)

where Higgs field is unitary gauge H = (1/1/2) (0 h + U)T and R is Ricci scalar.
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By making conformal transformation from Jordan frame to the Einstein frame gfy =Q? g;{l,;
0% =1+ &h? /M3, it is possible to get rid of non-minimal coupling

L 11 1 362R2 1A

2 - N2 N2
— — Q22(ah) ol (0uh)* = i 7 (W* =)
11
- Q28[29 (v+h)*WIW ™ + (g +g’2)(v+h)ZZ“]——R (4.37)

where R = Q7R + 6Q73Q,,,¢"*. Then, we define each part of this Lagrangian as

11 1 3¢2n? B 1A
Ekin = Q2 2(8 h) Q4 M2 (8 h) ‘Cscalar<: —V) = —@1012 — '02)2,
1 — P . M3
Egauge — QQ 8 [29 (U + h) W W + (9 + g )(U + h) Z Z } 'Cgrav == _TR

With the redefinition of the field

6£2h2
d_X B Q2 + M123

7 TR (4.38)

the kinetic term is canonically normalized Ly, = (9,x)?/2. At the electro-weak scale (Q* ~ 1,
h ~ x), it is same as Higgs potential of SM

(x? —v?)*. (4.39)

NP

V(x) =

In the limit of h > Mp//€ (h ~ (Mp//€) exp(x/V6Mp)), the scalar potential is given by

)\M 4 2Y ) ) -2
1% 1+e — 4.40
% T4 ( P < V6Mp (4.40)
This potential is behave as V(x — oco) = AM B /4€2.
To explain observation of CMB, we evaluate slow-roll parameter

M2 (dV]dx\>  4M? ,2V/dx®  AM?
=— | —] ~ =M ~ — . 4.41
‘=5 < v geept 1T NPTy 3Eh? a41)
Slow-roll end €., >~ 1 gives the field value at the end of inflation
1
4\* M M
Pend =~ (-) “L~10r=E. (4.42)
3) V¢ Ve
The e-folding number is given by
ho 1 V dx 2
N, = ——— =] dh 4.4
0 he M dV/dh (dh) (4.43)
~ 8 %. (4.44)

T8 M3JE
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When the value of 50 < N < 60, initial value of the field is given by

ho =~ 9.4%. (4.45)

On the other hand, the scalar amplitude (4.29) satisfying the constraint of Planck (4.30) give
€ ~ 49000V/\. (4.46)

In this relation, observable parameter is given by

ng =1+42n—6e ~0.97, r = 16e ~0.0033. (4.47)



Chapter 5

Baryon asymmetry of the Universe

Baryon asymmetry of the Universe [68] is known as one of the beyond the SM phenomena.
Among various scenarios of BAU, electroweak baryogenesis (EWBG) [19] is directly connected
with physics of the Higgs sector, requiring a strongly first order phase transition (1stOPT) at
the electroweak symmetry breaking (EWSB) and also additional CP violating phases. Such
a scenario can be tested by experimental determination of the property of the Higgs sector.
For instance, the condition of the strongly 1stOPT can predict a significant deviation (order
of several tens percent) in the triple Higgs boson coupling (the hhh coupling) from the SM
prediction [20], and the required CP violating phases lead to appearance of electric dipole
moments, etc. At the LHC experiment and its high luminosity one, the measurement of the
hhh coupling seems to be challenging. There is still a hope that in future the hhh coupling
could be measured by 13% accuracy [21] at the upgraded version of the International Linear
Collider (ILC).

5.1 Baryon number

5.1.1 Definition of baryon asymmetry

The baryon asymmetry is characterized by the ratio of the baryon number to entropy
np ny —ng

— = (5.1)

S S

where s is the entropy density and n, (nj) is the (anti)baryon number density. The photon
density n., is related to s by s = 7.04n., at present. We can determine Eq. (5.1) by the value of

n=ng/n,.
5.1.2 Observations

When the ratio of proton and neutron is freezeout (n,,/n,)treezeont =~ 1/7, *He mass fraction
Y, = page/pp is fixed as

4
y, ~ _dmanime (5:2)
my(n, +ny)
2 (Z—”) n
~ P / freezeout (We take Nage = _n and my =My = mn) (53)
(n_n) +1 2
"0 / freezeout
~ (.25. (54)
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Figure 5.1: The abundances of *He, D, *He and “Li as predicted by the standard model of
Big-Bang nucleosynthesis. The narrow vertical band indicates the CMB measure of the cosmic
baryon density, while the wider band indicates the BBN concordance range (both at 95% CL).
This figure is quoted by [68].

The abundances of *He, D, ®He and “Li as predicted by the standard model of Big-Bang
nucleosynthesis is shown in Fig. 5.1. To explain the light-elements abundances within the
framework of the standard big-bang nucleosynthesis, it is required that n ~ 107!°. Thus, we
obtain [68]

"?B ~ 0(1071). (5.5)

5.2 Sakharov’s three condition
To explain the BAU, Sakharov’s three conditions [15] must be satisfied:

e baryon number violation,
e C and CP violation,
e departure from equilibrium.

In the framework of the SM, the observed Higgs mass cannot satisfy these conditions. Therefore,
we need new physics by the extension from SM.
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5.3 Scenarios for baryogenesis

There are some scenarios to solve this problem. For example, Leptogenesis, EWBG, etc.

5.3.1 Leptogenesis

A scenario of Leptogenesis [69] is realized by the seesaw mechanism. Indeed, the seesaw
mechanism requires that violated lepton number provides in general new CP violating phases
in the neutrino Yukawa interactions and decay out of equilibrium. Thus, all three Sakharov’s
conditions are naturally fulfilled in this scenario. A review paper of Leptogenesis is [70].

5.3.2 Electroweak baryogenesis

For a scenario of EWBG [19], Sakharov’s three conditions are satisfied sphaleron process, CP
violating phases and strongly first order phase transition (1stOPT) [71]. One of the necessary
conditions [15] to generate BAU is the departure from thermal equilibrium. To satisfy this
condition (the so-called sphaleron decoupling condition), the baryon number changing sphaleron
interaction must quickly decouple in the broken phase, which is described by

Popn(T) S H(T), (5.6)

where I'spn(7') is the reaction rate of the sphaleron process and H(T') is the Hubble parameter
at T. DI'spn(T") can be obtained by demanding that the baryon number changing rate in the
broken phase [72]

14BN @ g
Bdt  4-32n%al; ’
where N; is number of generation, ay = Qem/sin®f(myz), w_ is the negative mode of the
fluctuations around sphaleron, N represents the translational and rotational zero-mode fac-

tors of the fluctuations about the sphaleron, and the sphaleron energy is denoted as Eq,, =
Arp(T)E(T)/ga. Then, Eq. (5.6) can be translated into the condition of a strongly 1stOPT

% > Gopn(Te), (5.8)

where ¢, gives the broken phase minimum at the critical temperature 7, and (s p is given
by [73]

go w_ 1 Js T
ity = 2 [nor e (22) L8 ) o ()] o

As an example, (pn >~ 1.24 in the SM [73], 0.9 in the MSSM [73] and 1.1-1.2 in the real
singlet-extended standard model [74]. As shown in these results, we can take typically (pn = 1.

I(T)sph = —

(5.7)

5.4 First order electroweak phase transition

5.4.1 Electroweak phase transition

For the case of 1stOPT, the effective potential of finite temperature have degenerate vacuum
¢ = 0(= ¢s), (= ¢p) at the critical temperature T' = T, as shown in Fig. 5.2. The true
vacuum depending on the temperature is the non-continuous behavior in this case. For the case
of second order phase transition, the true vacuum depending on the temperature is continuous
behavior.
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Figure 5.2: Behavior of EWPT for the case of 1stOPT. The effective potential of finite tem-
perature depends on the temperature vs order parameter.

5.4.2 First order electroweak phase transition for two Higgs doublet
model

The condition of strongly 1st order EWPT is realized by the non-decoupling effect due to
the additional scalar. Furthermore, we can test such scenario by measuring the deviation of the
triple Higgs boson coupling. In this section, we consider the two Higgs doublet model (2HDM)
as the example, based on [20,75-77].

Effective potential at zero temperature

The Higgs potential of the 2HDM is given by

2HDM
‘/tree

= mi®|* + mi|Dy|* — (MEPI Dy + hoc)

1 1 1
+ §A1|<1>1|4 + §A2|(I>2|4 + A3 Dy 2| Do ] + Ay (DT Do) (DLD,) + [§A5(<1>1<1>2)2 +he|.

where m?_, are parameters with its mass dimension two, and A;_j5 is the self-coupling constants
of the scalar bosons. After the EWSB, the Higgs doublets are parametrized as

wt HT
@1 = (%(vl +h+ izl)> o Pe= <¢i§(v2 + H + iAO)> (5.10)

where w* and z are Nambu-Goldstone bosons and v (=~ 246 GeV) is the vacuum expectation
value (VEV). The mass of h is set as m;, = 125 GeV.

One-loop effective potential at zero temperature We parametrize m2 and the Higgs
VEVs as

2 0 0 0 0
= (1) = (tes) . @ = (1) = (s )10
and we take sin(f —a) = —1,tan § = 1, then

M? =2m2, () = (D)) = (1s0) : (5.12)
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For simplicity, we assume
M= =N, my=mog=m. (5.13)

The mass formula of additional scalar bosons are given by

1
mi = M+ 5(/\ — A3+ M4+ A)v? = M2 +m2 — (A3 + Ay + Xs)07, (5.14)
1
m%y = M?—)\v?, mi. =M — 5()\4 + As)v2. (5.15)

We consider the case of degenerate additional scalar bosons me = my = my = mﬁ.
The one-loop effective potential at zero temperature is given by

Ver(p, T = 0) = Vo(p) + AVi() + V" (9). (5.16)
The tree level potential Vy(p) and the one-loop potential AV;(yp) are given by

0 A

Voly) = =5¢" + 3¢ (5.17)
AVile) = 3 i {m M - - a (5.18)

where ¢;=3/2, A = % — v+ Indr, M;(¢) and n; are the field-dependent mass and the degrees

of freedom for each particles Fj;, respectively

Nyt = 4, ngz, =2, n, =2, Nyt = 2, ngz, =1, ny, =1 n=-12, ny=—-12,
(5.19)

and @ is the renormalization scale. The counter term of the dimension full parameter p? is
given by

1
Vet (p) = —50p%¢” (5.20)
If we define the renormalized vacuum expectation value v, the renormalized mass of the

Higgs boson my, at the one loop level by the following three conditions (DR renormalization
scheme),

o Mo T=0)| Ve, T =0)
- 890 ) h — 8902 )
p=v p=v
we obtain
OMZ(p) 2
) > nl( 8;7 ‘(p:v) Inm? 9 nim? OMZ(p) m?
InQ* = 5 5u:Z 5 In——-1],
S n, (8M8+2(¢)‘ ) — 32m%v Oy |, Q
i o le=v

where m; is the physical mass of the i-th particle running in the loop.
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Thus, the tree potential Vy(¢) and the renormalized one-loop potential AV; () are obtained

as
2
Yoly) = %(@2 -0 (5.21)
= v 2772 4 M2(e) 3 4 0 o m?
A= izwiz,z,%t,b 647 (2mi M) + M) {ln m? 2} + 1M () = 2m; M; ()} In QQ)
+Z¢: 6417T2 <2m%q>(M§>(‘P) — M?) + Mg () {ln]\/‘[;gp) — 3} M) — 2m2 (M2 (p) — M?)} In Tg;)
(5.22)

Here, we have neglected the one loop contribution of the Higgs boson.
The renormalized triple Higgs boson coupling is calculated at the one loop level in SM as

\2HDM — PVesi(p, T = 0)

hhh = 3
Op o
:Lmi 1+m7%f 1f%2 3+L 1f%2 3+ My 1fM2 37 Ne,mi

v 12m2miv? m? 12m2miv? m? 672m3v? mi . 3m2m3v?

(5.23)
The triple Higgs boson coupling at one-loop in the SM AJM is approximately given by [75]
3m? my

A = —2(1—- 55— . 5.24

hhh v ﬂ_gm]leg ( )

Then, deviation of the triple Higgs boson coupling from the SM is defined by

2HDM
A)\hhh o )‘hhh
SM SM
)‘hhh /\hhh

—1. (5.25)

The behavior of AXgu, /AN, is shown in Fig. 5.3.
Effective potential at finite temperature
When we consider a ring-improved effective potential by replacing the field-dependent
masses in Eq. (9.5) as [7§]
M (p) = M (¢, T) = M () + IL(T), (5.26)

where II;(7) is the finite temperature contribution to the self-energies, field dependent masses
of the gauge bosons in the one-loop contribution at zero temperature are replaced by thermally
corrected ones

AVi(p) = AVi(e, T). (5.27)
The thermally corrected field-dependent masses of the gauge bosons are explained by
g’ g’
w2 ¢ N ]
4 9 99 I g

g g/ 9/2 g/2
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Figure 5.3: The decoupling behavior of AXyu,/APM . The mass of the heavy Higgs bosons
Mme = my = my = my+ is given by m3 = \v? + M?. This figure is based on [75,76].

in the (W, W=, W3, B) basis with a} =2 (11/6 in the absecce of the second Higgs doublet),

agT = 0. Notice that only the self-energy for the longitudinal modes of the gauge bosons receive

thermal corrections. The field-dependent masses of fermions do not receive thermal corrections,

2 2 ¥
My () = mip - (5.29)
The thermally corrected field-dependent mass of the singlet scalars are explained by
1 1 2
M3(p,T) = M? = S} + (m}, = M* + Smi) 5,
2 2 v?

where g (T) = (T%/120%)(6m3,+ + 3m3, + 5mj, + 4m3 — M? + 6m] + 6m3).

The effective potential at finite temperatures is given at the one-loop level by

Ver(p, T) = Volp) + AVi(e, T) + AVr(p, T). (5.31)

The finite-temperature contribution to the effective potential is written as

(5.30)

AVr(p,T) I > nds(al) + > nilv(al) (5.32)

272 ,
i=W=*,Z~,8 i=t,b

where Igp(a?) = [;° dza? In <1 F exp (—\/x2 + a?)) with a; = M;(o,T)/T. If we take a® <

2

1, we can understand the behavior of I p(a;) approximately:

Lo Yoa 3 <) ¢(5)
In(a®) = "~ T 2 Te2pe_ & (% 2 6 8 .
5(@) 50t s e T 2) Teeart T meeaie T

Tt 72 at a® 3 7¢(3) 31¢(5)
In(a®) = & T 22 (L2 6 _ T\ 84 ... .34
F(a®) 360 24@ % <naF 2) + 96(2#)2(1 256(2%)4a + , (5.34)
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where, Inag = 2In(47) — 29 ~ 3.91,Inar = 2In7 — 275 ~ 1.14 and g is Euler constant.
We can calculate ¢./T, on each (M, mg) from above effective potential as shown in Fig. 5.4.
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Figure 5.4: The allowed region which satisfy ¢./T. > 1, where EWBG can be viable with the
strongly 1stOPT on the plane of mge and M Contours for the deviation in the hhh coupling
from the SM prediction are also shown. Bounds from vacuum stability is also shown. This
figure is based on [20].
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Chapter 6

Neutrinophilic two Higgs doublet model

If the neutrinophilic scalars in the ¥ THDM exist within the experimentally accessible en-
ergy scale (namely the TeV-scale), decays of the neutrinophilic charged scalar into leptons can
provide direct information on the neutrino mass matrix because it is proportional to the matrix
of new Yukawa coupling constants for the neutrinophilic scalar field [64,79]. In such a case,
the smallness of a new VEV which is relevant to Dirac neutrino masses is interpreted by the
smallness of a soft-breaking parameter of the global U(1)y symmetry. Because lepton number
violation which is caused by masses of the Majorana neutrinos has not been discovered, it is
worth considering the possibility that neutrinos are not Majorana fermions but Dirac fermions
similarly to charged fermions. It seems then better to have a suppression mechanism for the
soft-breaking parameter by extending the v¥THDM with TeV scale particles including a dark
matter candidate. The existence of dark matter has also been established in cosmological
observations [1, 3], and it is an important guideline for constructing new physics models.

The reason why the neutrino masses are tiny can be explained by a mechanism that the
interaction of neutrinos with the SM Higgs boson is generated via a loop diagram involving a
dark matter candidate in the loop while the interaction is forbidden at the tree level [25-27,80—
85]. Notice that smallness of neutrino masses in such radiative mechanisms does not require
new particles to be very heavy. Similarly, if neutrino masses arise from a new VEV, smallness
of neutrino masses can be explained by assuming that the VEV is generated at the loop level
by utilizing a dark matter candidate [86]. In this paper, we extend the ¥THDM such that the
new VEV is generated at the one-loop level (see also Ref. [87]) where a dark matter candidate
is involved in the loop.

This chapter is organized as follows. The ¥THDM is extended in Sec. 6.1 such that a small
VEV is generated via the one-loop diagram which involving a dark matter candidate in the
loop. Section 6.2 is devoted to discussion on phenomenology in the extended YTHDM. We
conclude in Sec. 6.3. This chapter is based on [88].

6.1 An extension of the Y THDM

Since we try to generate u%,, in Eq. (3.19) at the loop level, it does not appear in the
Lagrangian. Then the U(1)x symmetry should be broken spontaneously. For the spontaneous
breaking, we rely on an additional scalar s{ which is a singlet field under the SM gauge group.
Similarly to the singlet Majoron model [89] where a VEV of a singlet field spontaneously

breaks the lepton number conservation by two units, the Nambu-Goldstone boson from s? is

45
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_ (o _ (" 0 0

Vip | ®v= <¢g> n= (770> 51 52

SU(2)L 1 2 2 11
Ul)y 0 1/2 1/2 0] 0
Global U(1)x | 3 | 3 | 32 | 1] 1)2

Table 6.1: New particles which are added to the SM in our model.

acceptable [89]; the Nambu-Goldstone boson couples first with only neutrinos among fermions.
If U(1)x-charges of ®, and s{ are 3 and 1, respectively, a dimension-5 operator (s9)*®1® is
allowed by the U(1)x symmetry although ®!® is forbidden. Then, u2,, is generated from the
dimension-5 operator with the VEV of s?. In this paper, we show the simplest realization of
the dimension-5 operator at the one-loop level where dark matter candidates are involved in
the loop.

Table 6.1 is the list of new particles added to the SM. In the table, v, and ®, are the
particles which exist in the ¥YTHDM. The U(1)yx symmetry is spontaneously broken by the
VEV of sY. We take a scenario where n and s do not have VEVs. Since their U(1)x-charges
are half-integers while the one for s! is an integer, a Z» symmetry remains unbroken after the
U(1)x breaking. Here, n and s are Z,-odd particles. The Z, symmetry stabilizes the lightest
Z-odd particle which can be a dark matter candidate.

The Yukawa interaction in this model is identical to those in the ¥THDM (see Eq. (3.13)).
The scalar potential in this model is expressed as

Vo= —p2y|SUP + pdy|)? — 1 @7 + 13, @1, + i
— (s (s9)? + hoe.)
+ ()\Sq,m s[l)*(sg)*CIDTn + h.c.) + ()‘s@n s(l)sgcbln + h.c.) 4+ (6.1)

Only the relevant parts to our discussion are presented in Eq. (6.1). The other terms are
shown in Appendix. Parameters y, Aso1,, and Asp2, are taken to be real and positive values by

rephasing of scalar fields without loss of generality. At the tree level, v,, v, and v, (= v/2(s9))

are given by
2 2 201 — s F
vy =0, (”2> - . ( ! ”’1) (“‘51) . (6.2)
C AAs1Ae1 — ASip1 \—As1e1 2Aan P

The Zs-odd scalar fields ( and s9) result in the following particles: two CP-even neutral
scalars (H{ and HY), two CP-odd neutral ones (A? and A39), and a pair of charged ones (H*).
It is clear that H* = n*. When H? (or AY) is lighter than H*, the neutral one becomes the
dark matter candidate. On the other hand, from Z;-even scalar fields (®, ®,, and s), we have
three CP-even particles (h°, H° and H?), two CP-odd ones (A% and a massless z3), and a
pair of charged scalars (HF). The mixings between ¢° and others are ignored because we take
v,/v < 1 and v, /vy < 1. Then, ®, provides H? (= ¢°.), A% (= ¢%,), and HE (= ¢F). Tt is
easy to see that z§ = s{;, where s? = (v, + s9, +is%;) /v/2. The formulae of scalar mixings and
scalar masses are presented in Appendix. Hereafter, we assume that scalar fields in Table 6.1




6.2. PHENOMENOLOGY 47
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Figure 6.1: The one-loop diagram of the leading contribution to (u2,)es [®§®] with respect to
s >\5<I>1777 and )\5@277'

are almost mass eigenstates just for simplicity, which is achieved when A1, and Age1 are
small.

By using cubic and quartic interactions shown in Eq. (6.1), the interaction ®® is obtained
with the one-loop diagram in Fig. 6.1. The coefficient (u3,)e of the interaction is calculated
as

2 2
2 1% )‘s@ln )\s<1>2n US ( mn mn >
= 1 In , 6.3
(Has)er 32\/§7T2(m37 —m?) m2—mi M (6.3)

where m? = 7 + {()@177 + Npyy) 02 + )\517;1)3}/2, m%, = 12y + (As2010? + As1202) /2. Ignoring
loop corrections to terms which exist at the tree-level, we finally arrive at

2
v =Y (/ﬁmz)eﬂ”’ (6.4)

v 2

where m3, = 130+ (Aa12+Np12)0?/24 As10202 /2 which is the mass of H) (= ¢),). For example,

we have m, = 0(0.1)eV for mg, = O(10) GeV (as the dark matter mass), v, ~ m, ~ my =
O(100) GeV, = O(1) GeV, y, = O(107*), and A4y, ~ Ao, = O(1072).

6.2 Phenomenology

Hereafter, we take the following values of parameters as an example:

(o)ei ~ 1074 N1y = Aoy = 1077, 1 =1GeV, v, =300GeV,

Myy = Mg = mpy= = 300GeV, My = 230 GeV, My = 60 GeV. (6.5)
These values can satisfy constraints from the p parameter, searches of lepton flavor violating
processes, the relic abundance of dark matter, and direct searches for dark matter. In order to
satisfy p ~ 1, particles which come from an SU(2) multiplet have a common mass. If H? ~ n° for
example, we take m,. ~ m A9 ™ My Since y, is not assumed to be very large, contributions
of HF to lepton flavor violating decays of charged leptons are negligible. For example, the
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Figure 6.2: A possible signature of our model at the LHC.

branching ratio BR(u — ev) [64] is proportional to |(y,4}),..|> and becomes about 10~2? which
is much smaller than the current bound at the MEG experiment [90]: BR(u — ey) < 5.7x 10713

at the 90 % confidence level.

6.2.1 Dark matter

We assume that the mixing between s and 7° is negligible for simplicity, which corresponds
to the case A, < 1. Then, the dark matter candidate H{ is dominantly made from s3,
or n%. We also assume that Aga|s)|?[s5]? and Aq,|sY|(nin) are negligible in order to avoid
HOH? — 2920 which would reduce the dark matter abundance too much. Notice that these
coupling constants (As12 and Ag1,,) are not used in the loop diagram in Fig. 6.1. When H ~ s3 |
the H{ is similar to the real singlet dark matter in Ref. [91]. Experimental constraints on the

singlet dark matter can be found e.g. in Ref. [92]. We see that 53 GeV < m,,, < 64 GeV and
1
90 GeV < m,, are allowed. On the other hand, when H{ ~ 77, the dark matter is similar to

the one in the so-called inert doublet model [29,93]. See e.g. Refs. [94,95] for experimental
constraints on the inert doublet model. It is shown that 45GeV < m,,, < 80GeV is allowed.
1

In order to suppress the scattering of H{ on nuclei mediated by the Z boson, sufficient splitting
of m,,, and m o is required: m o —m, o 2 100keV (See e.g. Ref. [95]). Values of My and my

1 1 1 1 1 2
in Eq. (6.5) are obtained by using m, = 60 GeV and m, = 231 GeV in Egs. (A.11) and (A.12)
in Appendix, and then these values of m, and m; give m ;o —m,, ~ 400keV.

Since we discuss in the next subsection a possible collider signature where H decays into
HY, alight dark matter (m,,, ~ m,,/2) is interesting such that H) (and H;F) can also be light.
1

We take My = 60 GeV as an example for both cases, H! ~ s9 and H} ~ n?.

6.2.2 Collider

In the vYTHDM as well as in our model, the neutrino mass matrix m,, is simply proportional
to y,. The flavor structure of H}Y — {rvg (summed over the neutrinos) is predicted [64] by
using current information on m,, obtained by neutrino oscillation measurements. The prediction
enables the ¥THDM to be tested at collider experiments. Since this advantage should not be
spoiled, H¥ — HOH* (H*HY) should be forbidden for H? ~ s (H? ~ n°). Therefore, we

; 0~ 0 0 ~ 0.
assume that m, . satisfies My < Mo My for Hj ~ s;, or My < Mgps My for HY ~ n);
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for example, m,. = 250 GeV (100 GeV) for HY ~ s (n?).

The process in Fig. 6.2 would be a characteristic collider signature of our model. Notice
that the process utilizes two coupling constants <)‘s<1>177 and /\5<I>277) which appear also in Fig. 6.1.
Thus, the process indicates that u2,,®!® is radiatively generated with a contribution of dark
matter. In the original YTHDM in comparison, H? decays into vv for the case with m HO = My

In order to observe the process in Fig. 6.2, the partial decay width I'(H? — HYH9) should be
larger than T'(H? — vv). Using our benchmark values, we have

tr(yjy, )m
L(H) = vp) = % ~ 60eV, (6.6)
A2, 02 (M0 +My0)° (M = My0)?
D(H? — HIHY) = Jﬁ 1 _ Y| i Mo 30keV. (6.7)
T Mg My

Then, H? decays into H{HY dominantly!. If y, is large enough for  — ey to be discovered
in near future, the process in Fig. 6.2 becomes very rare because H — v is the dominant
channel. Next, when the mixings between Z,-odd particles are negligible, H9 can decay only
into H{AY via Asp1y Decause HI — HYHY is kinematically forbidden for the values in Eq. (6.5).
Thus, even if Ay, is rather small, the branching ratio for H§ — H{h" can be almost 100 %.
As a result, the process in Fig. 6.2 can be free from the one-loop suppression and smallness of
coupling constants (y,, A.p1,, and A.gy,) which are used to suppress v,. The cross section of
pp — HIH?+ H; HY for the masses in Eq. (6.5) is 7fb at the LHC with /s = 14 TeV. The SM
background events come from tf, W2, and tb. Cross sections for pp — tf, WTZ + W~Z, and
th+1b at the LHC with /s = 14 TeV are 833 pb [96], 55.4pb [97], and 3.91 pb [98], respectively.
Detailed analysis on kinematic cuts of the background events is beyond the scope of this paper.

If Nature chooses a parameter set for which the process in Fig. 6.2 is not possible, the
deviation from the ¥THDM would be the increase of new scalar particles which might be
discovered directly and/or change predictions in the Y THDM about e.g. h® — 7.

6.3 Conclusions and discussion

The YTHDM is a new physics model where masses of Dirac neutrinos are generated by a
VEV (v,) of the second SU(2).-doublet scalar field ®, which has a Yukawa interaction with
only vr because of a global U(1)x symmetry in the Lagrangian. We have presented a simple
extension of the Y THDM by introducing the third SU(2).-doublet scalar field  and two neutral
SU(2);, singlet fields (s and s3). Although the global U(1)x is broken by a VEV of sY, there
remains a residual Z, symmetry under which 7 and s are Z,-odd particles. These Zy-odd
particles provide a dark matter candidate. The v, for neutrino masses can be suppressed
without requiring very heavy particles because the VEV is generated at the one-loop level.

A possible signature of the deviation from the vTHDM at the LHC is ZjbjbET via pp —
H} H? followed by H} — (v and HO — HIHS — HIHIR® — HIHIbb. Coupling constants
which control HY — HIHY and HY — HYRY are the ones used in the one-loop diagram which
is the key to generate v,,.

LCascade decay of AY results in H{H)z) which is invisible similarly to A% — vp.






Chapter 7

Neutrino mass and dark matter from
gauged U(1)p_; breaking

If v are introduced to the standard model of particle physics (SM), there are two possible
mass terms for neutrinos (See e.g., Ref. [99]), the Dirac type 7 vr and the Majorana type
(vg)vg. In radiative seesaw models (See e.g., Refs. [25-27,81,86,88,100]), an ad hoc unbroken
Z5 symmetry forbids generating neutrino masses at the tree level and explains the dark mat-
ter (DM) stability. A model in Ref. [100] was constructed such that the breaking of the U(1)p_y,
gauge symmetry gives a residual symmetry for the DM stability and the Majorana neutrino
mass of v,. However, the anomaly cancelation for the U(1)g_p, gauge symmetry requires to
introduce more additional fermions except for particles for the radiative neutrino mass.

In this chapter, we propose a new model which is an improved version of the model in
Ref. [100] from the view point of the anomaly cancellation. With appropriate U(1)g_1, charge
assignments, there exists an unbroken global U(1) symmetry even after the breakdown of the
U(1)p_r, symmetry. The global U(1) symmetry stabilizes the DM, so that we hereafter call it
U(1)pum. In our work, the DM candidate is a new scalar boson. Furthermore, the Dirac mass
term of neutrinos is radiatively generated at the one-loop level due to the quantum effect of
the new particles. Tiny neutrino masses are explained by the two-loop diagrams with a Type-
[-Seesaw-like mechanism. We find that the model can satisfy current data from the neutrino
oscillation, the lepton flavor violation (LFV), the relic abundance and the direct search for the
DM, and the LHC experiment. This chapter is based on [101].

7.1 Model

We introduce new particles which listed in Table 7.1. We determine assignment of U(1)p_,
charges from conditions for cancellation of the [U(1)p_r] x [gravity]* and [U(1)p_r]* anomalies;

1 2
3= 5N, — 5Ny =0, (7.1)
1 4 8
N, (-2 S 2N, = 2
3 5 R+( 7' 57 27) » 0, (7.2)

where N, is the number of 95, (the same as the number of ¢;,), and N, is the number of v,
There are four solutions as presented in Table 7.2. Except for Case 111, the U(1)g_r, charges
of some new particles are irrational numbers while the U(1)g_1, symmetry is spontaneously
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0 | (vr)a | ()i | (WR)i| 7 s”

SUe); [T | 1 1 1 2 1
Uy [0 | 0 0 0 | 1/2 | 0
Spin |0 | 12| 12 [ 12| 0© 0

Table 7.1: Particle contents in this model. Indices ¢ and a run from 1 to Ny and from 1 to N,,,,
respectively.

Case I | Case Il | Case III | Case IV
Ny 1 2 3 4
NZ,R 7 5 3 1
T 2v3-1 V6—1 1 V31
3 3 3 3

Table 7.2: Sets of Ny, N, and x, for which the U(1)p_1, gauge symmetry is free from anomaly.

broken by the vacuum expectation value (VEV) of 0° whose U(1)g_r, charge is a rational num-
ber. Therefore, the irrational charges are conserved, and the lightest particle with an irrational
U(1)p_r, charge becomes stable so that the particle can be regarded as a DM candidate. In this
chapter, we take Case IV as an example.

In addition to the SM one, the new Yukawa interactions are given by

Ly = —(yr)i p)i Wr)i (0°)" = ()i Wr)i (¥r)i (0°)" = hij (Yr)i (V) 8° = fu (Lr)e (Yr)i7 + hec.,(7.3)

where 11 = io,n*. The scalar potential in our model is the same as that in the previous
model [100]:
V(®,0,m,8) = —pg®'®+ p2|s°1 + pin'n — 13|01 + iy (80t @ + hec.)

Ao (B10)7 + A5l + Ay (011)” 4 Ao lo®]* + Aeo 52002
)\Sn]so\znTn + Ao | S°POTD + )\Un|<70|277T77 + Mool P 0T D
Aos (1) (DT®) + A (' @) (DTn).

+ + +

(7.4)

Neutral scalar fields are given by ¢° = \%(qﬁ?%—izd}), o0 = \/Li(a?—i-izo), n’ = \/Li(n?—l—in?), sV =

\/%(52 +1is?). Two scalar fields ¢° and o° obtain VEVs v, [= v2(¢°) = 246 GeV] and v, [=

V2 (c%)]. The VEV v, provides a mass of the U(1)p_r, gauge boson Z’ as m, = (2/3)gg_1v,,
where gg_; is the U(1)p_1, gauge coupling constant. After the gauge symmetry breaking with
v, and v,, we can confirm in Eqgs. (7.3) and (7.4) that there is a residual global U(1)pu
symmetry, for which irrational U(1)p_r-charged particles (n, s°, ¥, and 1p;) have the same
U(1)pm-charge while the other particles are neutral.

Two CP-even scalar particles h” and H° are obtained by ¢%-0° mixing as sin 26y = 2\,4v sVo
/(m3,0 —m3,). Two neutral complex scalars ° and s° are obtained by 7°-s° mixing as sin 26f, =
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V2p3v,/(m2,0 — m2,). Scalar masses are given by
2 1

Mo go = ApUh + AUy T \/ (Apv3 — A v2) + A2 vgv2, (7.5)

1
migﬂg = 3 (m +m? F \/ —m2) g 2,u§vi) : (7.6)

where my = 2 + (Agp + Ao) V5/2 + Aoy /2, M2 = pZ + Aepv3/2 + Asov} /2. The mass of the
charged scalar n7 is m%i = m?? — Ao v2/2. Nambu-Goldstone bosons z, and z, are absorbed
by Z and Z' bosons, respectively.

7.2 Phenomenology

7.2.1 Neutrino masses

Tiny neutrino masses are generated by two-loop diagrams in Fig. 7.1 [100]. The mass matrix
m,, is expressed in the flavor basis as

(mu)gg/ = (16171'2) Z fﬁi Ria (mR)a (hT>aj (f )jf’ [(Il)zja + (I2>z'ja ) (77)

27,4

where explicit formulas of (11),;, and (I5),;, are shown in Ref. [101]. The neutrino mass matrix
(M) gpr 18 dlagonahzed by a unitary matrix Uyns, the so-called Maki-Nakagawa-Sakata (MNS)
matrix [65], as U g my Uiing = diag(mye®, myei®, mgei@s). We take m; (i = 1-3) to be real
and positive values. Two differences of three phases «; are physical Majorana phases. In our
analysis, the following values [6,9, 12] obtained by neutrino oscillation measurements are used
in order to search for a benchmark point of model parameters:

sin® 2003 = 1, sin®26;3 = 0.09, tan®61, =0.427, §=0, {ai, oz, a3} ={0, 0,0},
my = 10""eV,Am3, = 7.46 x 107°eV? Am3, = +2.51 x 10%eV? where AmZ, =m] — m?

By using an ansatz [101] for the structure of Yukawa matrix fy;, we found a benchmark
point as

1.79  —249 —197  2.56 .
f=1-18 1.10 130  —0.818 | x 107>, A= (0.7 0.8 0.9 1)
1.40 —0.598 —0.905 0.222
{98_1, my} ={0.1, 4TeV},
{mpo, mupo, costy} = {125GeV, 1TeV, 1}, {myy, mypn, cosfy} = {60 GeV, 450 GeV, 0.05},
m,+ = 420GeV, (mg)1 = 250 GeV,
{my,, my,, my,, my,} = {650 GeV, 750 GeV, 850 GeV, 950 GeV }.

The values of {m,,, my0, cosf} correspond to A\, >~ 0.13, A\, ~ 2.8 x 107" and A,y = 0.
The values of {m,,, m,,, cost} and m,. can be produced by m; ~ 60 GeV, m, ~ 450 GeV,
ps ~ 57GeV and A4 ~ 0.86.
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Figure 7.1: Two-loop diagrams for tiny neutrino masses in this model. Bold (red) lines are
propagators of particles of irrational U(1)g_y, charges.

7.2.2 Lepton flavor violation

We consider the condition of the LFV decays of charged leptons. The charged scalar n*
contributes to the branching ratio (BR) of i — ey whose formula have been calculated [102]. At
the benchmark point, we have BR(u — ey) = 6.1 x 107! which satisfies the current constraint
BR(p — ey) < 5.7 x 1071 (90% C.L.) [103].

7.2.3 Dark matter

In our model, the scalar HY turns out to be the DM candidate due to the following reason.
If the DM is the fermion ), it annihilates into a pair of SM particles via the s-channel process
mediated by h° and H°. Even for a maximal mixing cosfy = 1/v/2 [104], the observed abun-
dance of the DM [4] requires v, < 10TeV. The current constraint from direct searches of the
DM [105] requires larger v, in order to suppress the Z’ contribution.

The scalar DM H? at the benchmark point is dominantly made from s° which is a gauge-
singlet field under the SM gauge group, because of the tiny mixing cosf;, = 0.05. The an-
nihilation of H{ into a pair of the SM particles is dominantly caused by the s-channel scalar
mediation via h° [106] because H® is assumed to be heavy. The coupling constant )\H?H?ho for
the Ayo0s010 v HYHY R interaction controls the annihilation cross section, the invisible decay
hY — HIHY* in the case of kinematically accessible, and the h° contribution to the spin-
independent scattering cross section ogr on a nucleon. In Ref. [107], for example, we see that
HY with My = 60 GeV and )\H?H? Lo ~ 1072 can satisfy constraints from the relic abundance of

the DM and the invisible decay of h°. We see also that the hY contribution to og; is small enough
to satisfy the current constraint og; < 9.2 x 107% cm? for myp,, = 60 GeV [105]. Although the
scattering of H{ on a nucleon is mediated also by the Z’ boson in this model, the contribution
can be suppressed by taking a large v,. The benchmark point corresponds to v, = 60 TeV and
gives about 6.6 x 10747 cm? for the scattering cross section via Z’, which is smaller than the
current constraint [105] by an order of magnitude. Thus, the constraint from the direct search
of the DM is also satisfied at the benchmark point.
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qq 00| vop | vplg | Uitn | Yot | sts | daths | HYMYT | HIHST | 0T
021 | 032 | 0.16 | 0.0059 | 0.046 | 0.045 | 0.044 | 0.043 | 0.04L | 0.038 | 0.039

Table 7.3: Branching ratios of Z’ decays.

7.2.4 7’ and vy search

The LEP-II bound m,, /gg_;, 2 7TeV [108] is satisfied at the benchmark point because of
My /g1, = 40 TeV which we take for a sufficient suppression of og; for the direct search of the
DM. The production cross section of Z’ with gg_; = 0.1 and m,, = 4TeV is about 0.3 fb at the
LHC with /s = 14 TeV [109]. Notice that the current bound m,, = 3 TeV at the LHC [110] is
for the case where the gauge coupling for Z’ is the same as the one for Z, namely gp_; ~ 0.7.
Decay branching ratios of Z" are shown at the benchmark point in Table 7.3. Decays of 1); are
dominated by ; — vpH? with the Yukawa coupling constants h;; because y,; for v; — (=n7
are small in order to satisfy the u — ey constraint. The H9 (=~ n°) decays into h°H? via the
trilinear coupling constant y;. The main decay mode of n* is n* — WEH! through the mixing
0} between n° and s°.

The v, decay into H is forbidden because it is heavier than vy at the benchmark point.
Since the B—L charge of vy, is rather small, v, is not produced directly from Z'. However, v,
can be produced through the decays of 1;. As a result, about 18 % of Z’ produces vy. For
vp — W (56 %) followed by the hadronic decay of W (68 %), the v would be reconstructed.
In this model, an invariant mass of a pair of the reconstructed vy is not at m,, in contrast with
a naive model where only three v, with B—L = —1 are introduced to the SM. This feature of
Vg also enables us to distinguish this model from the previous model in Ref. [100] where vg
with B—L =1 can be directly produced by the Z’ decay.

7.3 Conclusions

We have improved the model in Ref. [100] by considering anomaly cancellation of the
U(1)p_r gauge symmetry. We have shown that there are four anomaly-free cases of B—L
charge assignment, and three of them have an unbroken global U(1)py symmetry. The U(1)py
guarantees that the lightest U(1)py-charged particle is stable such that it can be regarded as
a DM candidate. The spontaneous breaking of the U(1)p_1, symmetry generates the Majorana
mass term of v, and masses of new fermions ¢. In addition, the Dirac mass term of neutrinos
is generated at the one-loop level where the DM candidate involved in the loop. Tiny neutrino
masses are obtained at the two-loop level.

The case of the fermion DM is excluded, and the lightest U(1)py-charged scalar H{ should
be the DM in this model. We have found a benchmark point of model parameters which
satisfies current constraints from neutrino oscillation data, lepton flavor violation searches, the
relic abundance of the DM, direct searches for the DM, and the LHC experiments. In such
radiative seesaw models, v, would be produced at the LHC. In our model, v cannot be directly
produced by the Z’ decay, but can be produced by the cascade decay Z' — );p; — VRV HYHY*.
By the unusual B—L charge of v, the invariant mass distribution of vy does not take a peak
at m,,, which could be a characteristic signal.
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Chapter 8

Higgs inflation in a radiative seesaw model

There are some theoretical problems in the simplest Higgs inflation model [18]. When we
calculate the running coupling constant of the Higgs self-coupling, the critical energy scale is
around 10’ GeV due to the contribution of the top quark [28]. The vacuum is difficult to be
stable up to the inflation scale A;. This problem can be solved in two Higgs doublet models [29].
Because the loop effect of additional scalar bosons weakens the top-loop contribution in the
running coupling constants [30]. Perturbative unitarity is also violated at the energy scale
Ay = Mp/¢ by the Higgs-gauge scattering processes [31]. This problem is solved by a heavy
additional real singlet scalar boson which does not interact with gauge fields as shown by [32].

In this chapter, we explain not only dark matter, neutrino masses but also inflation. We show
a radiative seesaw scenario with the multi-Higgs structure, which was proposed by E. Ma [26],
is constrained by the inflation condition. We discuss the testability of the characteristic mass
spectrum at the collider experiments. This chapter is based on [111].

8.1 Model

In our model, we introduce the second scalar doublet ®,, right handed neutrinos v (i =
1 — 3) and real singlet scalar ¢ and impose quantum numbers under the an unbroken discrete
Zo symmetry shown in Table 8.1.

The Yukawa interaction for leptons and the Majorana mass term are given by

_ — 1
EYukawa == YvELL(I)lgR + YVLLq)gVR + h.c. ) ‘CMajorana == éMjlz(V]k%)CV]k%:? (81)

where the superscript ¢ denotes the charge conjugation. In the Feynman diagram in Fig. 8.1,
which is explained by Ref. [26], the extra lightest neutral particle can be a dark matter candidate

Qr |ug |dp | Ly | IR O | Py Vp | O
SU(3)C 3 3 3 1 1 1 1 1 1
SU(Q)I 2 1 1 2 1 2 2 1 1
Uy |5 (3 [~5[4[-1[3 [1 [0 [0
o 1 1 1 1 1 1 -1 ]|-11]-1

Table 8.1: Particle contents and their quantum charges.

59



60 CHAPTER 8. HIGGS INFLATION IN A RADIATIVE SEESAW MODEL
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Figure 8.1: The Feynman diagram for tiny neutrino masses.

by Z; symmetry. We can explain neutrino masses at the loop level by

(Y)F(Y,)k M 7 7 y y
(mw )iy = Z 16 S 2 - 2 mkH? 2 - 2 mzf 2 (8:2)
% g my — (Mp)™  (ME)” mi— (ME)” (Mp)

The neutrino oscillation data is explained by neutrino Yukawa coupling constants (Y;)¥, which
satisfy (Y,)F(Y,)5/Mf ~ O(1077) GeV~1.
The Higgs potential is given by

1 26, |®1 7 + 26,| D52 2
_(1+ &[P1[* + 26[Po|* + Co

Vi =
! 2 M2

) MR
1 1
+ 12D+ Do) + 1207 + pogo(BID,)2 + hc] + §A1\®1|4 + §A2\®2|4 + Ao
1
+ A3 Dy | Do) + (DT Do) (BIDy) + §A5[(q>§q>2)2 + h.c] 4 Ao1|P1]20% 4 Apo| D5 |*018.3)

When we assume p? <0 and p2 > 0, ®; obtains the vacuum expectation value (VEV) v
(= \/—2u2/\1), while @5, which has the odd-quantum number of the Z; symmetry, cannot get
the VEV. Mass eigenstates of the scalar bosons are the SM-like Z5-even Higgs scalar boson h,
the Zs-odd CP-even scalar boson H, the Z;-odd CP-odd scalar boson A and Z-odd charged
scalar bosons H*. Masses of these scalar bosons are given in Ref. [26]; m? = \jv?, m% =
w34 (A + M+ As)v?/2, m4 = 3+ (A3 + A — A5)v?/2, mi. = p3 + A3v?/2. As the Zs-odd
neutral singlet scalar o is constrained by perturbative unitarity [112]: m, < Ay, we assume that
m, is heavy enough, so that it gives an insignificant effect on phenomenology. For simplicity,
we take sy = Ag1 = A2 = 0 and & >~ & <K (. We study parameter regions which satisfy the
conditions of vacuum stability and perturbative unitarity.

8.2 Constraints on the parameters
The Higgs potential in the Einstein frame is given by

~ Vi ME MR A A + Apot 4 2{X5 + Ay + A5 c08(20) }hihi + Apihio? + Apah3o”
ot 8 (MB + &1h? + §ohi + (o?)?

Vi ,(8.4)
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where
251‘(1)1\2 + 252‘<I)2|2 + (o?

0 0
S o () 0o (1) 6

For small field values Q2 ~ 1, the potential is the same as Jordan frame for the initial
Higgs field (Vg ~ Vj). On the other hand, for large fields values Q% > 1, we define ¢ =
\/%Mp InQ?% ry = hy/hy, 7o = o/hy. For stabilizing 75, r, as a finite value, we need to
impose following condition:

02 =1+

MAz — (A3 +A)? > 0. (8.6)

This is the constraint from the inflation on our model because the heavy particle o dominantly
plays a role of inflaton.

The CP-odd boson A is assumed to be the lightest Zy-odd particle; i.e., the dark matter
candidate. When we change the sign of the coupling constant A5, the similar discussion can be
applied for the case of the CP-even boson H to be the lightest. As A5 can be sizable which
is not constrained from the inflation, the dominant scattering process is AN — AN (N is a
nucleon) where the standard model-like Higgs boson is propagating. We can avoid the process
AN — HN kinematically, and the cross section is consistent with the current direct search
results for dark matter. As shown in [113,114], the cross section of AN — AN process is

Araa my 2

AN — AN) ~ 8.7
0-( ) 4m;11 7T(mA + mN)2 fN7 ( )
where Apaa = A3+ M — X5, fv = Zq my frq + (2/9)mn fre and my is the mass of nucleon,
where fr, + frqa = 0.056, frs =0 [115] and frq = 0.944 [116]. To satisfy the data of the dark
matter relic abundance from the Planck experiment [4] and the data of the upper bound on
the scattering cross section for AN — AN from the experiments o ~ 2 x 10™%cm? [117,118],

the coupling constant A\,44 is required to satisfy

Anaa < 0.036, (8.8)

at the electroweak scale. When A5 is not small, the co-annihilation process AH — X X via the
Z boson does not contribute to the dark matter relic abundance. This case is the same as the
singlet scalar dark matter model [107,119]. On the other hand, to avoid the current invisible
decay h — AA kinematically [120,121], m4 must be bigger than my, /2. To satisfy these dark
matter conditions, we require

63 GeV <my <66 GeV. (8.9)
Take into account the above conditions, the vacuum stability condition
A >0, Ay >0, v/ Adg 4 As + minf0, Ay + As, Ay — As] > 0, (8.10)
and the conditions of triviality A; < 27, we analyze the renormalization group equations [52].

In Fig. 8.2, running of the scalar coupling constants is shown between the electroweak scale
and the inflation scale. In Table 8.2, we show the values of the scalar coupling constants at the

scales of O(10%) GeV and O(10'7) GeV, which satisfy the conditions of the dark matter and
the inflation. From this parameter set, mass spectrum of the scalar bosons is constrained by

my <100 GeV, 142 GeV < my+ < 146 GeV. (8.11)
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100 10° 1% 10" 10 10"
Energy scale [GeV]

Figure 8.2: Running of the scalar coupling constants. Red (solid), blue (dashed), brown (dot-
dashed), green (dotted) and black (long-dashed) curves show A1, Ay, Az, |\4| and A5, respectively.

Ap Ao A3 A4 s
102 GeV [0.262 | 0.335 | 0.514 | —0.503 4.35x 101
10" GeV|1.74 1628 |6.60 | —3.30]5.57x1071

Table 8.2: The possible parameter set which satisfies constraints from the inflation condition
and the dark matter data at the scales of 10> GeV and 107 GeV.

8.3 Collider Phenomenology

In this scenario, my+ is about 140 GeV. This value satisfies the lower bound from the LEP
experiment [122,123]. From the measurement of the Z boson decay width, my + my is greater
than my [122,124]. Moreover, the direct detection of dark matter at LEP give a constraint on
H A pair production [124]. Because of the constraint from the inflation my < 100 GeV, the

mass difference between the two inert scalar bosons is allowed only in a narrow region [122,124]:
mg —my < 8 GeV. (8.12)

In Ref. [125], the collider phenomenology in the inert doublet model is discussed at the
LHC with /s = 14 TeV. According to their work, the process of qg — Z — HA — Z®AA —
(¢~ AA is dominant. They chose the mass difference of inert neutral scalar bosons to be 10,
50 and 70 GeV. As m4 is 65 GeV in our model, if the mass difference becomes large, inflation
condition Eq. (8.6) cannot be satisfied. On the contrary, if the mass difference become small,
the signal is also small (S/v/B = 0.02). Therefore, the model is difficult to be tested at the
LHC.

Let us discuss the signals of H, A and H* at the ILC with /s = 500 GeV. In this analysis, we
use Calchep 2.5.6 for numerical evaluation [126]. The detail which contains background analysis
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Figure 8.6: The distribution of FEj; for
the cross section for ete™ — HTH~ —
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Figure 8.5: The distribution of £j; for the
cross section for ete™ — HA — AAZ* —
AAjj. In our parameter set, the end-

point in the Ej; distribution is estimated at
0.28 GeV < E;; < 15 GeV. This value cor-
responds to my = 67 GeV, my = 65 GeV.

is estimated at 17 GeV < Ej; < 180 GeV.
This value corresponds to my+ = 140 GeV,
ma = 65 GeV.

of inert doublet model is disused in the paper [127] which is applicable to our model. First, the
dominant signal of the HA production process is ete™ — Z* - HA — AAZ* — AAjj (j: jet,
Z*: off-shell Z boson) shown in Fig. 8.3. The final state is two jets with a missing momentum.
The energy of the two-jet system E;; satisfies the following equation because of the kinematical

constraint given as
2
A <\/§+ \/s—4m§{) :

i A (8.13)
i ?{

4mH (\/_— s —4mH) < Ejj <
When the center of mass energy is /s = 500 GeV, E;; is evaluated by using our parameter set
as 0.28 GeV < E;; < 15 GeV. The distribution of Ej; of the cross section for this prosecc is
shown in Fig. 8.5. We expect that my and m,4 can be measured by using the endpoints in the
E;; distribution at the ILC after the background reduction.
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Next, the dominant signal of the H™ H~ production process is ete”™ — Z*(v*) - HTH™ —
WHOW-MAA — jilvAA (W is off-shell W boson) as shown in Fig. 8.4. The final state
of this process is a charged lepton and two jets with the missing momentum. From the same
discussion, the energy of the two-jet system, E}; is constrained as

mie —mj mie —m} (V5 + V5 — dmpz) . (8.14)

H*

(\/_ Vs — 4mHi) < Ejj < 4m

4m? ot
When the center of mass energy is /s = 500 GeV, Ej; is evaluated by using our parameter
set as 17 GeV < E;; < 180 GeV. The distribution of E;; of the cross section for this process
is shown in Fig. 8.6. We expect that my+ and my4 can be measured by using the endpoints
in the L}j; distribution at the ILC after the background reduction. Backgrounds could also be
reduced by imposing kinematic cuts. We can measure my+ and my4 by observing the endpoints
in the F;; distribution at the ILC.

8.4 Conclusion

In the original Higgs inflation scenario, it would be difficult to satisfy perturbative unitarity
and vacuum stability. These problems can be solved by considering multi-Higgs models. In the
framework of the radiative seesaw scenario with the multi-Higgs structure, we can explain not
only dark matter, neutrino masses but also inflation. This scenario would be testable at the
ILC by measuring the energy distribution of the inert scalar pair production.
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Chapter 9

O(N) scalar singlet model

As a possible alternative method to test the strongly 1stOPT, we may be able to utilize fu-
ture observation of gravitational waves (GWs) [33]. On February 11th, the first direct detection
of GWs emitted by the merger of black holes at Advanced LIGO [34] was reported [35]. Fur-
thermore, a number of observatories such as KAGRA [36], Advanced VIRGO [37] are trying to
detect them. The target frequencies of GWs correspond to those from astronomical phenomena
such as the binary of neutron stars, black holes, etc.. Once the GWs are detected in the near
future, the era of GW astronomy will come true. Spectroscopy of GWs will make it possible to
explore phenomena at the very early stage of the Universe, such as a strongly 1stOPT, cosmic
inflation, topological defects like cosmic strings, domain wall, etc.

GWs originated from the strongly 1stOPT have been discussed in a model independent way
in Refs. [38,40-42,44]. In the effective theory approach with higher order operators the possibil-
ity of detecting such GWs was studied by Delaunay et al. [46]. Apreda et al. evaluated spectra
of GWs from the strongly 1stOPT due to thermal loop effects in the minimal supersymmetric
SM (MSSM) [47], although such a scenario was already excluded by the LHC data. Espinosa et
al. studied spectra of GWs in extended scalar sectors with the O(N) symmetry [48,49]. GWs
from the non-thermal 1stOPT were investigated in singlet extensions of the SM [50] and the
MSSM [47] and in the left-right symmetric model [51].

In this chapter, we discuss the possibility that future detailed observation of GWs is useful
not only to test the electroweak 1stOPT but also as a probe of extended scalar sectors and
further the physics behind. To this end, we evaluate spectra of GWs from the strongly 1stOPT
at the EWSB in a set of extended scalar sectors with additional N isospin-singlet fields as an
example of renormalizable theories which can cause the 1stOPT thermally. We find that the
relic density of the produced GWs can be so significant that they are detectable at future GW
interferometers such as DECIGO [128] and BBO [129]. The spectra depend on N and the mass
of the additional scalar fields. We conclude that GWs can be a useful probe of physics behind
the Higgs sector. This chapter is based on [130].

67
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9.1 Model

9.1.1 Tree level scalar potential

We consider a set of extensions of the SM with additional N isospin-singlet scalars S =
(81,89, -+, Sy)T invariant under an O(N) symmetry,

. P VI | .
Vo(@, §) = Vau (@) + 2|5 + S5 + =2 2|2

where Vgy is the Higgs potential of the SM. After the EWSB, the SM Higgs doublet is
parametrized as

o= W
B+ h+iz)

where w* and z are Nambu-Goldstone bosons and v (=~ 246 GeV) is the vacuum expectation
value (VEV). The O(N) symmetry is assumed not to be spontaneously broken. The mass of h
is set as my, = 125 GeV, and the common mass of S; is given at the tree level by

Aps

We take mg, p% and Ag as input free parameters in the scalar sector.

9.1.2 Theoretical constraints

The conditions for vacuum stability are given by

A > 0, Ag > 0, +/ 2A\s + Aapg > 0. (92)

As for the constraint from perturbative unitarity for the S-wave amplitudes of two body elastic
scatterings of longitudinally polarized weak bosons and all scalar bosons of the model, we obtain
the strongest bound as

BA+ (N + 2 + 1/ {3) — (N +2)As)? + ANAZg < 167 (9.3)
For the derivation of the above constraint, see Appendix. C.

9.2 One loop effective potential at zero temperature

9.2.1 Renormalized effective potential

Order parameters are given by

(@) = %@, <§> — 0. (9.4)

The one-loop effective potential at zero temperature is given by

Veir(p, T = 0) = Vo) + AVi(@) + V(o). (9.5)
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The tree level potential V() and the one-loop potential AV;(y) are given by

2

2 by ; :
Volp) = —%902 +3¢ ANlp) =) JﬂzMﬂ‘P) {hl Mé;o) —¢i— A} : (9:6)

where ¢;=3/2, A = 1/e — v+ Indm, M;(¢) and n; are the field-dependent mass and the degrees
of freedom for each particles Fj, respectively

Ny = 4, ngz, =2, n, =2,

Nyt = 2, ng.=1, n, =1,
ng = N, (97)

I

|
—_
»

ng = —12, Ty

and @ is the renormalization scale. The counter term of the dimension full parameter p? is
given by

1
Vet(p) = —5017¢" (9-8)

If we define the renormalized vacuum expectation value v, the renormalized mass of the
Higgs boson m;, and the renormalized Higgs self-coupling at the one loop level by the following
three conditions (DR renormalization scheme),

8%3(907 T = O)
dp

82‘/63(90a T = O)

0
0p?

, (9.9)

p=v

2 __
3 mh =
p=v

we obtain

D (8M6+Z‘p) :v>21n m; nim? OM?(p) m?
In Q2 _ ¥ (5,&2 _ Z ) i (1 i
p=v

n
(are, ~ 32120 Oy @
Zi nl( |<p:v) ¢

O

- 1) . (9.10)

where m; is the physical mass of the ¢-th particle running in the loop.
Thus, the tree level potential V5(p) and the renormalized one-loop potential AVi(p) are
obtained as

m
Volp) =g a(#” = %), (9.11)
i M? 3 2
AVl = 3w <2m?M§((p) M) {m % - 2} +{M;(¢) — 2mI M} (¢)} In 752>
i=W*,Zytb i

Ms(p) 3} + {M3(¢) — 2m%(M2(p) — p%)} In Z;g) :

m% 2
(9.12)

N
Forms (2343 — ) + M) {1

Here, we have neglected the one loop contribution of the Higgs boson.
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9.2.2 Triple Higgs boson coupling

The renormalized triple Higgs boson coupling is calculated at the one loop level in our model

as
83%5(()@7 T = O)
Ahhh = 953
<p p=v
Im2 1 4 N 4 2\ 3
_ Ty S () (9.13)
v m2vim; o 1272 v?m; mg

There are two sources for the physical common mass mg of the scalar fields S;, as shown in
Eq. (9.1). If mg is large because of a large value of ug, the one loop correction in Eq. (9.13)
decouples in the large mass limit. Instead, if g is relatively small as v, the one loop contribution
does not decouple and a quartic powerlike contribution for the mass remains in Ay, [75]. On
the other hand, the triple Higgs boson coupling at one-loop in SM A\?M is approximately given

by [75]
3m? ms
Mg = =2 (1 — ——L— . 9.14
hhh v ( 7r2mi1ﬂ ) ( )
Then, deviation of the triple Higgs boson coupling is defined by
ANphh Anin

SM ~— \SM
)‘hhh /\hhh

1 (9.15)

9.3 One loop effective potential at finite temperature

9.3.1 Thermal mass

When we consider a ring-improved effective potential by replacing the field-dependent
masses in Eq. (9.5) as [7§]

M7 () = M} (o, T) = M7 (¢) + I1(T), (9.16)

where 11;(7") is the finite temperature contribution to the self-energies, field dependent masses
of the gauge bosons in the one-loop contribution at zero temperature are replaced by thermally
corrected ones,

AVi(p) = AVi(e, T). (9.17)

The thermally corrected field-dependent masses of the gauge bosons are explained by

g° 9’

p? ?
M) =T s e T (9.18)

99" ¢* g
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in the (W*, W=, W?, B) basis with a} = 11/6, a] = 0. Notice that only the self-energy for
the longitudinal modes of the gauge bosons receive thermal corrections. The field-dependent
masses of fermions do not receive thermal corrections,

M2y () = m2, P 9.19
ab(%p) mt,b,UQ' (9.19)

The thermally corrected field-dependent mass of the singlet scalars are explained by

2
2
Mo, T) = (i — )55 + iy + Ts(T), (9.20)
where
T? 2 2 2
Is(T) = 202 [(N 4 2)A\sv* + 4(mg — u3)]. (9.21)

9.3.2 Effective potential at finite temperature

The effective potential at finite temperatures is given at the one-loop level by
Ver(o, T) = Vo(p) + AVi(p, T) + AVr(p, T). (9.22)

The finite-temperature contribution to the effective potential is written as

AVy(p,T) E > mids(af) + ) nils(al) (9.23)

272 .
=W+, 77,5 i=t,b

Igp(al) = / dz 2* In [1 Fexp (—\/x2 + af)] : (9.24)
0

with a; = M;(p,T)/T.

where

9.3.3 First order electroweak phase transition

We can calculate ¢./T. numerically without using high temperature expansion by using the
ring-improved finite temperature effective potential in Eq. (9.22). We show the region which
satisfies both ./T, > 1 and I'/H*|p—7, ~ 1 (discussed in Sec. 9.3.4), where EWBG can be
viable with the strongly 1stOPT on the plane of N and mg in Fig. 9.1 (left) and on the plane
of \/[L_% and mg in Fig. 9.1 (right). In Fig. 9.1 (left), to obtain maximal non-decoupling effects,
we set p% to be 0. In Fig. 9.1 (right), we show the results for N = 12. We also show contour
plots for the deviation in the hhh coupling from the SM prediction.

We find that, as indicated in Ref. [20] in the case of the two Higgs doublet model (2HDM),
significant deviations in the hhh coupling appear in the allowed region of the strongly 1stOPT.
Notice that the scenario of the 2HDM in Ref. [20] corresponds to N = 4 in our model [?]. We
emphasize that the correlation between the strongly 1stOPT and the large deviation in the hhh
coupling is a common feature of the models where the condition of quick sphaleron decoupling
is satisfied by the thermal loop effects of additional scalar bosons. This property can be utilized
to test scenarios of EWBG by measuring the Ahh coupling at the ILC as we already pointed
out.
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Figure 9.1: The allowed region which satisfies both ¢./T. > 1 and I'/H*|7—7, ~ 1, where
EWBG can be viable with the strongly 1stOPT on the plane of N and mg in the left figure and
on the plane of \/@ and mg in the right figure. We set p% = 0 for the left figure, and N = 12
for the right figure. Contours for the deviation in the hhh coupling from the SM prediction are
also shown in both figures. Bounds from vacuum stability and perturbative unitarity are also
shown for Ag = 0.

9.3.4 Characteristic parameters of phase transition

On the other hand, characteristic parameters of phase transition can be also calculated from
the effective potential in Eq. (9.22). The parameter « is the ratio of the false-vacuum energy
density €(T') and the thermal energy density praq(7") in the symmetric phase by

e(Ty)
Prad (ﬂ)

a =

and

aAV;BH((PB (T)7 T)
oT ’

e(T) = —AVeg(ep(T), T)+ T

where AV.g(o(T),T) is the free energy density with respect to that of the symmetric phase,
and @p(T) is the broken phase minimum at 7. The radiation energy density is given by
praa(T) = (7°/30)g.(T)T*.

The parameter ( is defined as

T
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Figure 9.2: The allowed region on («a, 3) plane which satisfies both o./T. > 1 and '/ H*|p—7, ~
1 in Fig. figl. We set u% = 0 for the left figure, and N = 12 for the right figure.

where ¢, is the phase transition time, Sg(7T) ~ S3(T")/T with S3 being the three dimensional
Euclidean action,

Sy = / i B(w)z + veﬁ(so,ﬂ} ,

and I' = T'o(T") exp[—Sg(T)] is the rate of variation of the bubble nucleation rate with I'g(7") o
T*. We then obtain the normalized dimensionless parameter as

Bzﬁzﬂﬁ(&gU

T=T,
When the phase transition is complete; i.e.,

r

T=T;

we obtain S3(7;)/T; = 41n(T}/H;) ~ 140 — 150.

In Fig. 9.2 (left), the allowed region on («, f)-plane which satisfies both ¢./T. > 1 and
[/H*7—7, ~ 1 in Fig. figl. We set u% = 0 for the left figure, and N = 12 for the right figure.
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9.4 Gravitational waves from electroweak phase transi-
tion
9.4.1 The relic abundance of gravitational waves

The relic abundance of GWs from the electroweak 1stOPT is composed of the contributions
from bubble collisions and the turbulence in the plasma as [3§]

ng(f)hQ = Qcoll(f)h2 + Qturb(f)hQ'

If the electroweak phase transition is strongly first order, for instance, the kinetic energy stored
in the Higgs field and the bulk motion of the plasma is partially released into gravitational
waves. This happens mostly at the end of the phase transition, when collisions break the
spherical symmetry of the individual Higgs field bubbles. This possibility was systematically
analyzed in papers [33,39]. In our analysis, we employ the results of Ref. [39] for the bubble
collision contribution

<flf >2.8 (for f < f~coll)
()" or > )

where the energy density! is obtained as

~ H. 2 2 3 10 1/3
Qeonh? ~ 1.1 x 1079:2 [ =L a i3 100 :
B 1+« 0.24 + v} gt

at the peak frequency given by

z _ B T g \"°
ol ~52x107%mHz | = | [ ——— x .
Jeot o Z(Ht 100GeV / \ 100

When bubbles collide, the plasma is stirred up at a length scale comparable to the size of the
colliding bubbles. Larger bubbles are more energetic than smaller ones, and indeed it can be

n%

'Because 87! is the order of typical time scale, Einstein equation Oh* = 167G (plin + - -+ ) gives the relation
h*" ~16wGpll /5. Then, the energy density of gravitational waves is written as

h? N 8rGpi.,

p— ~ 2
Pcw 397G 52 (9 6)

The relic abundance of gravitational waves is

N Paw _ 3mGpii, 1 3H?
oW p:ot 62 (p:k/ac + p;(ad)2 8nG

:KQ(};*)Q(ail), (9.27)

where we use 3H2/87G = pl.q + Prac = Piots @ = Prac/Prads K = Pkin/Pvac- Exact forma of Q. is calculated
by numerical calculation.
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shown that the most part of the kinetic energy involved in the process is released at the largest
length scale in the system, namely the radius of the largest bubbles at the end of the transition.
Once the large eddies have formed, after a few revolutions they decay into smaller ones, thus
giving rise to the usual turbulent energy cascade. For such the plasma turbulence contribution,
we use [131]

2
0 i for f < four
Qturb(f)h2 - Qturbh2 X Efturb) ( t b)

) o £ > fun)

where the energy density is evaluated as

- HN\? 7100\ 3
Quunh? ~ 1.4 x 10~ 0} (—t) < t) :
B gt

at the peak frequency given by

r — Us ﬂ T;f gt 1/6
wb = 3.4 X 10 mHz—= | — - :
Joart 2 3.4 5 10" iz (Ht> (100Ge\/> (100

The bubble wall velocity v,(a), the turbulent fluid velocity us(a) and the efficiency factor ()
are given in Ref. [33], and ¢% (= ¢.(T})) is the total number of effective degree of freedom at
the transition temperature 7;. H; is the Hubble parameter at T; in the radiation dominant
Universe.

9.4.2 Predicted spectra of gravitational waves

In Fig. 9.3 (left), the predicted spectra of GWs are shown as a function of the frequency for
N =1, 4, 12, 24 and 60 with \/,Tg = 0 in the O(N) singlet model. For each N, mg is taken
its maximal value under the condition of the complete phase transition given in Eq. (9.25).
These sets of (IV,mg) are all in the allowed region shown in Fig. 9.1, where EWBG is possible.
Curves of expected experimental sensitivities for GWs at eLISA, DECIGO/BBO and Ultimate-
DECIGO are also shown [132,133]. Estimated foreground noise from white dwarf binaries in
Ref. [134] are also shown. One can see that for larger N the strength of GWs is more significant
and the spectra are within the observable reach of DECIGO/BBO. Even for smaller values of
mg or for the case of N = 1, the spectra may be able to be observed at Ultimate-DECIGO.
There is a strong correlation between the strength of the GWs and the value of ¢./T. (hence,
DR IA)-

In Fig. 9.3 (right), we show the predictions of the model for N = 1, 4, 12, 24 and 60 with
various mg with /2 = 0 on the (a, 3) plane under the conditions of ¢./T, > 1 and the
complete phase transition. We set T; = 100 GeV, as the result is not very sensitive to 7T;.
Regions of expected experimental sensitivity at eLISA, DECIGO/BBO and Ultimate-DECIGO
are also shown. One can see that different sets of (N, mg) corresponds to different points on the
(v, 5) plane. Therefore, future GW observation experiments can be a probe of distinguishing
various models of the electroweak 1stOPT.
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Figure 9.3: (Left) Spectra of GWs in the O(N) singlet model with expected experimental
sensitivities at the future GW interferometers, eLISA, DECIGO/BBO and Ultimate-DECIGO
(U-DECIGO) are shown for \/;7 = 0. The bound from non-observation of the energy density
of extra radiation is indicated by AN, = 1 [135,136], and the estimated foreground noise from
the white dwarf binaries is also shown. (Right) Predictions of the model on the (cv, 5) plane
with various N and mg assuming \/u% = 0 and 7, = 100 GeV are shown with regions of

expected experimental sensitivity at the future GW interferometers.

9.5 Conclusion

We have investigated spectra of GWs which come from the strongly electroweak 1stOPT,
which is required for a successful scenario of EWBG in a set of extended scalar sectors with
additional N isospin-singlet fields as a concrete example of renormalizable theories. The hhh
coupling also has been evaluated at the one loop level in these models. The produced GWs can
be significant, so that they are detectable at future GW interferometers such as DECIGO and
BBO. Furthermore, since the spectra strongly depend on N and mg, we conclude that future

detailed observation of GWs can be generally useful as a probe of extended scalar sectors with
the 1stOPT.
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In Part III, we have discussed two radiation seesaw models that can explain tiny neutrino
masses and DM at the same time. First, we have presented a simple extension of the v THDM
by introducing the third SU(2);-doublet scalar field n and two neutral SU(2);, singlet fields (s!
and s9). Although the global U(1)y is broken by a VEV of s, there remains a residual Z,
symmetry under which 1 and s are Z-odd particles. These Zy-odd particles provide a dark
matter candidate. The v, for neutrino masses can be suppressed without requiring very heavy
particles because the VEV is generated at the one-loop level. Second, we have improved the
model in Ref. [100] by considering anomaly cancellation of the U(1)g_, gauge symmetry. We
have shown that there are four anomaly-free cases of B—L charge assignment, and three of them
have an unbroken global U(1)py symmetry. The U(1)py guarantees that the lightest U(1)py-
charged particle is stable such that it can be regarded as a DM candidate. The spontaneous
breaking of the U(1)g_1, symmetry generates the Majorana mass term of v, and masses of
new fermions ¢. In addition, the Dirac mass term of neutrinos is generated at the one-loop
level where the DM candidate involved in the loop. Tiny neutrino masses are obtained at the
two-loop level.

In Part IV, we have investigated a simple model to explain inflation, neutrino masses and DM
simultaneously. We have shown that this scenario would be testable at the ILC by measuring
the energy distribution of the inert scalar pair production.

In Part V, we have discussed spectra of GWs which are originated by the strongly first
order phase transition at the electroweak symmetry breaking, which is required for a successful
scenario of electroweak baryogenesis. We have shown the produced GWs can be significant. we
conclude that future detailed observation of GWs can be generally useful as a probe of extended
scalar sectors with the 1stOPT.

In this thesis, we have discussed particle phenomenology, in particular in the field where
Higgs physics is related to beyond the standard model. We have investigated new physics
models which can solve beyond the SM phenomena such as neutrino oscillation, DM, BAU and
cosmic inflation. We have considered testability of particle theory by using space experiments
such as observations of GWs, observations of the CMB, direct detection of DM, etc. in addition
to future collider experiments. The new physics may be described by introducing an extended
Higgs sector. In this case, by exploring the Higgs sector, it is possible to approach not only the
nature of electroweak symmetry breaking but also new physics.
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Appendix A

Neutrinophilic two Higgs doublet model

A.1 Scalar Potential

The scalar potential V' is given by

Vo= VL+Vs+V, (A1)
Vo = —p2|sUP 4 pl 9P — p3 @10 + 43,00 @, +Mn7] 7, (A.2)
Vi = —ust(s9)*+h.c., (A.3)
Vi = Aa|s* + Ago|s9* + )\512|so|2]so 2
+ A1 (PTP)2 4 Ago (P D,)% + N, (n'n)?
T

(
+ Ap12(DTP) (D)D) + Ag1, (BTP) (nn) + >\q>2n(q>T‘I) )(n'n)
+ Xp1o(D1D,) (R]D) + Ny, (BT1) (@) + Ao, (BF1) (0 @,)
+ (A@lgn(@Tn)((I)T )+ h.C.)
+ Xatan |89 2 (DT@) + Asran] sT2(@]@,) + Ay |57 (')
+ Ai2an | 8512 (T®) + Asaan| 512 (DT D) + Aszn55]*(n'n)
+ ()\sqm, s9*(s9)* @y + h.c. ) ()\S(I,Qn s9s9®Tn + h.c. ) (A.4)

Actually, the following simplified Vj is sufficient for our discussion:

Vi(simplified) = Ag1(®T0)? + Ao|s5|* 4+ N jop| 552 (OTD)
+ X (') + X1y (21 D) (11'7) + Aazy (@) (' D)
+ a1 [89] ! 4 Aga (D], )2
+ ()‘séln s9*(s9)* @y + h.c.) + ()‘s<1>2n s959®1 1 4 h.c. ). (A.5)

A.2 Masses of Scalar Bosons

Scalar fields are decomposed as follows: ¢° = (v + ¢} +i¢?) , ¢) = 75 (v, + ¢, + id);) /V2,

S? = (US + Sl'r + 2811) /\/_ T] (777' + an ) /\/_ 32 - (Sg'r + 7/822) /\/_ We lgnore Uy in the
following formulae.
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The mass matrix for (s9,.,7°) is obtained as

1
s2 T \/i,uvs _)\sfbl VU
5)\@177 v, m;
where m?%, = pZy + (A1 + A1207) /2 and m? = p2 + {()\qm, + Np1y) 02+ As1pv? }/2 On the

other hand, The mass matrix for (s5,,79) results in

1
2
m2y + V2 vy = Aa1y v,
5/\8@177 VU, m,

Notice that the difference between M3 and M3 exists only in the (1,1) element as (M%) =
(M2)11 + 2v/2 v, Mass eigenstates (HY and H9) of Zo-odd CP-even scalar bosons are given

by
HY cost —sind.\ (55, Asd1py VU,
(%O B (sin o cos 0'0) ( 20) - tan(20) = ’ (A8)
2 0 0 Ty m; — My, + \/ﬁ,uvs

n

while mass eigenstates (H) and H3) of Zs-odd CP-odd scalar bosons are obtained as

0 / o / 0‘
(Al) = (CQS Q/A S ,QA) (825) , tan(20)) = Asain U0 (A.9)

Ag Sin GA COS QA nz m — ms2 \/_ MU

The mass eigenstate H* of Zy-odd charged scalar boson is identical to n:
HE =n*. (A.10)

Masses of these Z5-odd scalar bosons are calculated as

m;? _ 1 {m +m2y — V2, — \/( 2 m2, + V2w, ) + Ay, V202 } (A.11)
My = {m +m?, — V2 po, + \/ —m2, + V2 u0,)’ + Apy, V202 } (A.12)
My = %{m m?%, + V2, — \/(m?7 —m?, — \/ipwsf + A2gy, V202 }, (A.13)
myy = %{m +mZ + V2 pu, + \/ m2, — V2 uw,)’ + Mgy, V202 }, (A.14)
my. = m;— )\ipln v?. (A.15)

Next, the mass matrix for (¢!, s,) is given by

2
M2 = (}\2>\<1>1U )\slmvvs) ‘ (A.16)

2
s1®1 UV Us 2/\51U5
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Notice that ¢2. does not mix with them when we ignore v,. Mass eigenstates (h°, H°, and H?)
of Zs-even CP-even scalar bosons are given by

ho Ccos 90 — sin (90 Qﬁg )\51<I>1 v,
<HO) - (Sin Oy cosby > <8(1)r) ,  tan(260y) = m, (A.17)
B = dur (A.18)

The Nambu-Goldstone boson 29 for the U(1)x breaking, a Zy-even CP-odd scalar boson A%,
and the Zs-even charged scalar boson HF are defined as follows:

Zg = S(I)ia AB = gia Hit = (sz/[ <A19)

Masses of these Z5-even scalar bosons are calculated as

mio = Aav2 + Ag10° — \/{)\Sw — X102} + A2 4, 0202, (A.20)
My = Aav2+ Ag1v” + \/{)\slv2 Ao102}° + A2 o, 02 02, (A.21)
1
qug = mig = figy + 5{()@12 + Nppo)0? + /\slcpgvz}, (A.23)

1
mi]} = ppy + D) {A<1>12“2 + )‘sl<1>2vs2,} . (A.24)






Appendix B

Neutrino mass and dark matter from
gauged U(1)p_; breaking

B.1 Loop Integration

A loop function (1), in eq. (7.7) can be expressed as

(1) = _(87?2 sin 26’6)2m¢im¢j / d*p 1 1 1
(mp)? @r)ip? —mi, | P2 —miy P —miy

o / diq 1 1 _ 1
@2m)*q? —mi, | ¢ — mi[l P — m;g

2 2 V2 4in2 9g
My, My, (M350 — M3 )" sin” 260
- ) 41(mR)2 : {Co(o,o,m¢i,m§{9,m3{3)
xC’o(0,0,mlpj,mgi(l),m?{g)}, (B.1)
where the Cj function [137] is given by
Co(0,0,m2, m3, m3)

1 ma m? m3
= In =28 4 mim In % + mimdIn 2 L. (B.2
o g =y o g i i a2 (B2

On the other hand, another loop function (I3);;, in eq. (7.7) is given by

(I)ija = (877 sin26p)°my, my,
/ / d4p d4 1 1 1
PP —mi PP —mig | PP —mg

1 1 1
2 2 2
(p—l—q) (mg)? {q — M q2—m7-tg}92—m¢j

= (87%sin 26))> My, My,

X I(myga mwi\mﬂ?, m¢j|(mR)a) - [(mH?, mwi‘myga mwj‘(mR)a)

= L(myg, my, [myge, my, [(mg)a) + 1(mgg, my, My, my, [(mg)a) |, (B.3)
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where

I(myy,myg, - yMp, Mgy, Mgy, -+ Mo, |m31,m32,--- 7m3n3)

ny MNg TL3

d*pg /d 15 1 1
) B.4
/ HHH +m11 QE —I—m2 (Pp +ap)? +m§k (B4

i=1 j=1 k= 1pE

We can use the following results [?]:

I(mn; m12|m21,m22|m3)
I(mm\m22|m3) - [(m11|m22\m3) - [(m12|m21]m3) + [(mn‘mm‘m:&)

(16772)2(771%1 - m%2)(m%1 - m§2)

m2 m m2 m m2 m?2
I(my|mglms) = —m%f(m;m_?’) Qf( mS) _m?;f(ﬁé7_§)> (B.6)

1 M m3’ mj 3 M3
where
1
fley) = —5(nz)(ny) - - ( l‘y) )
X{Lb( ) ¥ LIQ( ) (_) L12( y+>
y T
+L12( )+ < ) L12<y_$)—Lig<x_y)}, (B.7)
Tt Y+
and
D = V1-2@+y)+(z—y)? (B-8)
1
Ty = 5(1—ac—|—y:i:D), yi55(1+x—y:i:D), (B.9)
and the dilog function Lis(x) is defined as
 In(1 —
Lis(z) = — / dt y (B.10)
0
B.2 Ansatz for benchmark point
In eq. (7.7), let us define the following symmetric matrix as
> hia(mR)a(hT)aj{(h)z‘ja + (fz)z'ja}- (B.11)

We can diagonalize A;; by an orthogonal matrix X as

XAXT = diag(al,ag,ag,a4). (Bl?)
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It is clear that a Yukawa matrix fy; of the following structure satisfies constraints from neutrino
oscillation data:

w0 0 0
f = 167°Uuns| O w0 0]X, (B.13)
0 0 s ()

where Majorana phases are given by «; = arg(a;). We used

0.520 —0.520 —-0.474 0.484
—0.712 —-0.284 0.165 0.621
X = —0.425 —0.476 —0.522 —0.566 |’ (B-14)

0.206 —0.650 0.689 —0.244

where 0 < a4 < a; < ay < az. The ordering of eigenvalues a; is preferred to suppress y,; (in order
to satisfy a constraint from p — ey search) for the normal mass ordering for neutrinos (m; <
msy < m3). With this ansatz, small neutrino masses are preferred to suppress BR(u — e7).






Appendix C

O(N) scalar singlet model

C.1 Vacuum stability

Due to the SU(2), x U(1)y and O(N) symmetries, one can parametrize the modulus space

as

whithout loss of generality. Then we obtain

2 2
L i A As Aos
Volo. os] = =507 + 0% + 20"+ ok + S0
2 2 8 4
Necessary conditions to avoid a potential unbounded from below are
A>0, Ag>0.

Then the scalar potential is written as

2 2
Volg, ¢s) = =56 + E2 %

2
Aos o As  Aig
(\NZ -3 ) (55

For vacuum stability, we must require

V2A g + Aeg > 0.
C.2 Perturbative unitarity

In the basis of

1
u = E(\/ﬁuﬁw_, 2z, hh, 8151, 5252, 5353, ),
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the transition matrix of the s-wave amplitude in the high energy limit (s > my, mg) is given
by

AN V22X V22X V2Xes V2Xdes V2Xes

V22 34 A Ao Ao Aos

V2A A 3\ Ao oS Aos -

toz—L V2 es Aes Aas  6GAg 2Ms 2 s oo | (C.7)
BT Vhas des Aes 2\ 6As 20 -

V2 es Aes  Aes  2)s 2Xs 6As

The eigenvalues of the above matrix are

A As  Aaes

" T on & Ton

o (B (Y 22s) T BN (V201 + AN ()

In order keep perturbativity, we require that the absolute value of the eigenvalues of the s-wave
amplitudes are at most of the order of the unity:

la;| < amax- (C.9)

We take apmax = 1/2 in our analysis.
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