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Abstract

The standard model of particle physics (SM) consists of two important pillars; i.e., the
gauge principle and the electroweak symmetry breaking. The SM have been established by the
discoveries of the weak gauge bosons in 1980s and the Higgs boson in 2012. However, still we
cannot explain the phenomena such as dark matter (DM), neutrino oscillation, cosmic inflation
and baryon asymmetry of the Universe (BAU), etc. These problems must be solved by new
physics beyond the SM.

On the other hand, the SM has the minimal Higgs sector with one doublet field, though
there is no principle to explain such a shape of the Higgs sector. The new physics may be
described by introducing an extended Higgs sector. In this case, by exploring the Higgs sector,
it is possible to approach not only the nature of electroweak symmetry breaking but also new
physics. As the experiment at CERN Large Hadron Collider (LHC) is running today, it has
become an urgent task to study Higgs physics.

In this thesis, we focus on the possibility that Higgs physics is related to the cosmological
problems. In addition to current and future collider experiments, we consider testability of some
Higgs-related new physics scenarios by using various space experiments such as observation of
gravitational waves, observation of the cosmic microwave background, direct detection of DM,
etc. This thesis consists of the following three subjects.

In Part III, we discuss two new physics models with extended Higgs sectors, which can
explain tiny neutrino masses and DM at the same time at the TeV scale. We call these models
as “radiative seesaw” models. In radiative seesaw models, a new symmetry imposed to the
model forbids generating neutrino masses at the tree level and explains the stability of DM.
First, we study the scalar sector of the neutrinophilic two Higgs doublet model (νTHDM),
where the neutrinophilic scalar doublet has a small vacuum expectation value (VEV) vν and
give Dirac masses of neutrinos. We consider a possibility that we can explain naturally small
masses of neutrinos by the idea that a small vν is generated at the higher order of perturbation.
In addition to right-handed neutrinos νiR and the second SU(2)L-doublet scalar field Φν which
exist in the original νTHDM, we introduce scalars (η and s02) which do not have VEVs and a
scalar s01, and we impose the global U(1)X symmetry. Although the global U(1)X symmetry
imposed to the model is broken spontaneously by a new VEV of the singlet field s01, there
remains a residual Z2 symmetry. The lightest Z2-odd scalar boson in the model can be a dark
matter candidate. We clarify that our model can explain neutrino data and DM data. We
briefly discuss a possible signature of our model at the LHC.

Second, we consider a radiative seesaw model where the Dirac mass term for neutrinos, the
Majorana mass term for right-handed neutrinos, and the other new fermion masses arise via the
spontaneous breakdown of the U(1)B−L gauge symmetry. We propose the scenario which is an
improved version of the previous work from the view point of the anomaly cancellation. With
appropriate U(1)B−L charge assignments, there exists an unbroken global U(1) symmetry even
after spontaneous breaking of the U(1)B−L symmetry. The global U(1) symmetry stabilizes
the DM, so that we hereafter call it U(1)DM. The Dirac mass term of neutrinos is radiatively
generated at the one-loop level due to the quantum effect of the new particles. Tiny neutrino
masses are then explained by the two-loop diagrams with a Type-I-Seesaw-like mechanism. We
find that the model can satisfy current data from the neutrino oscillation, the lepton flavor
violation, the relic abundance and the direct search for the DM, and the LHC experiment.
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In Part IV, we investigate a simple model to explain inflation, neutrino masses and DM
simultaneously. We propose a Higgs inflation scenario in a radiative seesaw model with an
inert doublet, which originally has been proposed to explain dark matter and neutrino masses.
We study the possibility that the Higgs boson as well as neutral components of the Z2-odd
scalar doublet field can satisfy conditions from slow-roll inflation and vacuum stability up to
the inflation scale. We study this model under the constraints from the current data, and find
parameter regions where additional scalar bosons can play a role of inflatons. They satisfy the
current data from neutrino experiments, the dark matter searches and also from LEP and LHC.
A unique phenomenological prediction appears in the mass spectrum of inert scalar bosons. We
show that this scenario is challenging to be tested at the LHC, but would be well testable at the
International Liner Collider by measuring endpoints of energy distribution of a two jet system
from decay processes of the inert scalar fields produced via pair production.

In Part V, we discuss spectra of gravitational waves which are originated by the strongly first
order phase transition at the electroweak symmetry breaking, which is required for a successful
scenario of electroweak baryogenesis. Such spectra are numerically evaluated without high
temperature expansion in a set of extended scalar sectors with additional N isospin-singlet
fields as a concrete example of renormalizable theories. We find that the produced gravitational
waves can be significant, so that they are detectable at future gravitational wave interferometers
such as DECIGO and BBO. Furthermore, since the spectra strongly depend on N and the mass
of the singlet fields, our results indicate that future detailed observation of gravitational waves
can be in general a useful probe of extended scalar sectors with the first order phase transition.
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Overview

In July 2012, the new particle was discovered at the LHC [1, 2]. It is consistent with the
Higgs boson of the standard model of particle physics (SM) within the error. However, we
cannot explain dark matter (DM) [3, 4], neutrino oscillation [5–13], cosmic inflation [14] and
baryon asymmetry of the Universe (BAU) [3,4,15,16]. To solve these problems, we need a new
physics model beyond the SM.

On the other hand, the SM has the minimal Higgs sector with one doublet field, though there
is no principle to explain such a shape of the Higgs sector. The new physics may be described by
introducing an extended Higgs sector. In this case, by exploring the Higgs sector, it is possible
to approach not only the nature of electroweak symmetry breaking but also new physics. In this
thesis, we focus on the possibility that Higgs physics is related to the cosmological problems.

One of the valuable scenario which can explain DM is known as weakly interactive massive
particle (WIMP). In this scenario, typical scale of DM mass is required O(100)GeV. Because
collider experiments explore such scale, WIMP scenario is known for testable. This scale is also
the scale which explained by Higgs physics.

Standard cosmology is very successful to explain the observations. Additionally, to solve
horizon problem and flatness problem, we need to explain cosmic inflation [14] by introducing
scalar boson so-called inflaton [17]. The paper [18] proposed the model which the Higgs boson
works as an inflaton by introducing the non-minimal coupling ξ so-called Higgs inflation. The
advantage of Higgs inflation is testability via Higgs physics. Cosmic microwave background
(CMB) observation [4] shows us the scenario of Higgs inflation is not excluded.

Among various scenarios of BAU, electroweak baryogenesis (EWBG) [19] is directly con-
nected with physics of the Higgs sector, requiring a strongly first order phase transition (1stOPT)
at the electroweak symmetry breaking (EWSB) and also additional CP violating phases. It is
known that new physics beyond the SM is necessary for EWBG. Such a scenario can be tested
by experimental determination of the property of the Higgs sector. For instance, the condition
of the strongly 1stOPT can predict a significant deviation (order of several tens percent) in the
triple Higgs boson coupling (the hhh coupling) from the SM prediction [20], and the required
CP violating phases lead to appearance of electric dipole moments, etc. At the LHC experi-
ment and its high luminosity one, the measurement of the hhh coupling seems to be challenging.
There is still a hope that in future the hhh coupling could be measured by 13% accuracy [21]
at the upgraded version of the International Linear Collider (ILC).

As the experiment at CERN Large Hadron Collider (LHC) is running today, it has become
an urgent task to study Higgs physics. In addition to current and future collider experiments,
we consider some Higgs-related new physics scenarios by using various space experiments such
as observation of gravitational waves, observation of the cosmic microwave background, direct
detection of DM, etc.

Solving neutrino mass problem in radiative seesaw models

In order to generate tiny masses of neutrinos, various kinds of models have been proposed.
The simplest scenario is so called the seesaw mechanism, where the tiny neutrino masses are
generated at the tree level by introducing very heavy particles, such as right-handed neutri-
nos [22], a complex triplet scalar field [23], or a complex triplet fermion field [24]. There are
new physics models with extended Higgs sectors, which can explain tiny neutrino masses and



4

DM at the same time at the TeV scale, so-called “radiative seesaw” models. In radiative seesaw
models, a new symmetry imposed to the model forbids generating neutrino masses at the tree
level and explains the stability of DM [25–27]. Such radiative seesaw models are explained by
multi-Higgs structure.

We can constrain radiative seesaw models by using experimental data from the neutrino
oscillation, the lepton flavor violation, the relic abundance and the direct search for the DM,
and the LHC experiment. Furthermore, we can derive predictions of models.

Higgs inflation and a radiative seesaw model

There are some theoretical problems in the simplest Higgs inflation model. When we calcu-
late the running coupling constant of the Higgs self-coupling, the critical energy scale is around
1010 GeV due to the contribution of the top quark [28]. The vacuum is difficult to be stable up
to the inflation scale ΛI. This problem can be solved in two Higgs doublet models [29], because
the loop effect of additional scalar bosons weakens the top-loop contribution in the running
coupling constants [30]. Perturbative unitarity is also violated at the energy scale ΛU = MP

ξ

by the Higgs-gauge scattering processes [31]. This problem is solved by a heavy additional real
singlet scalar boson which does not interact with gauge fields as shown by [32].

On the other hand, such Higgs inflation models with extended Higgs sector are also testable.
Because we can obtain the prediction for mass spectrum at the TeV scale by analyzing the
renormalization group equations of running coupling constants which satisfying data of CMB
observation. The prediction at the TeV scale would be testable at current and future collider
experiments.

Gravitational waves from electroweak phase transition

As a possible alternative method to test the strongly 1stOPT, we may be able to utilize
future observation of gravitational waves (GWs) [33]. On February 11th, the first direct detec-
tion of GWs emitted by the merger of black holes at Advanced LIGO [34] was reported [35].
Furthermore, a number of observatories such as KAGRA [36], Advanced VIRGO [37] are trying
to detect them. The target frequencies of GWs correspond to those from astronomical phe-
nomena such as the binary of neutron stars, black holes, etc. Once the GWs will be detected
in the near future, the era of GW astronomy will come true. Spectroscopy of GWs will make
it possible to explore phenomena at the very early stage of the Universe, such as a strongly
1stOPT, cosmic inflation, topological defects like cosmic strings, domain wall, etc.

GWs originated from the strongly 1stOPT have been discussed in a model independent way
in Refs. [33,38–45]. In the effective theory approach with higher order operators the possibility
of detecting such GWs was studied by Delaunay et al. [46]. Apreda et al. evaluated spectra of
GWs from the strongly 1stOPT due to thermal loop effects in the minimal supersymmetric SM
(MSSM) [47], although such a scenario was already excluded by the LHC data. Espinosa et
al. studied spectra of GWs in extended scalar sectors with the O(N) symmetry [48, 49]. GWs
from the non-thermal 1stOPT were investigated in singlet extensions of the SM [50] and the
MSSM [47] and in the left-right symmetric model [51].

Organization

This thesis is organized as follows. In Part II, we first review about the Higgs physics in the
SM, and problems in the SM. We then discuss phenomena of DM, neutrino oscillation, cosmic
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inflation and BAU. In Part III, we discuss radiative seesaw models that can explain tiny neutrino
masses and DM at the same time. In Part IV, we investigate a model to explain inflation in
a framework of radiative seesaw model. In Part V, we discuss spectra of gravitational waves
which are originated by the strongly first order phase transition at the electroweak symmetry
breaking, which is required for a successful scenario of electroweak baryogenesis. We show that
future detailed observation of gravitational waves can be in general a useful probe of extended
scalar sectors with the first order phase transition.





Part II

Beyond the standard model
phenomena

7





Chapter 1

Higgs physics in the standard model

In this chapter, we review the SM. In particular, we focus on the Higgs sector in the SM.
We first discuss how all the masses of the SM particles are generated. Second, the bounds of
the Higgs boson mass are discussed. Third, how to calculate the decay rates of the Higgs boson
is shown. Finally, the production of the Higgs boson at LHC is shown.

1.1 The standard model

After the spontaneous breaking of the SU(2)L × U(1)Y gauge symmetry, the Higgs boson,
weak gauge bosons and fermions obtain their masses in the Higgs potential, the kinetic term
of the Higgs doublet field and the Yukawa interactions, respectively. The charge assignments
for the SM particles under the SU(3)c×SU(2)L×U(1)Y gauge symmetry is shown in Fig. 1.1.
The Lagrangian of the standard model is given by

LSM = LYM + Lf + LHiggs + LY. (1.1)

1.1.1 The Yang-Mills sector

The Lagrangian of a gauge-invariant kinetic energy term for Gα
ν (α = 1−8), W a

ν (a = 1−3)
and Bν is

LYM = −1

4
Gα
µνG

µν
α − 1

4
W a
µνW

µν
a − 1

4
BµνB

µν , (1.2)

where

Gα
µν = ∂µG

α
ν − ∂νG

α
µ − gsfαβγG

β
µG

γ
ν , (1.3)

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gεabcW

b
µW

c
ν , (1.4)

Bµν = ∂µBν − ∂νBµ. (1.5)

QiL uiR diR LiL ℓiR Φ

SU(3)C 3 3 3 1 1 1
SU(2)L 2 1 1 2 1 2
U(1)Y

1
6

2
3

−1
3

−1
2

−1 1
2

Table 1.1: Particle contents and its charge assignments in the SM.
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10 CHAPTER 1. HIGGS PHYSICS IN THE STANDARD MODEL

We define Gα
ν , W

a
ν and Bν as SU(3)C, SU(2)I and U(1)Y gauge fields, respectively. In this basis,

the covariant derivative is

Dµ = ∂µ + igST
αGα

µ + igT aW a
µ + ig′

Y

2
Bµ. (1.6)

1.1.2 The fermion sector

The Lagrangian of fermion sector is given by

Lf =
(
QiL uiR diR LiL ℓiR

)
γµ


(i∂µ − gsT

αGα
µ)

QiL

uiR
diR


(i∂µ − gT aW a

µ − g′ Y
2
Bµ)LiL

(i∂µ − g′ Y
2
Bµ)ℓiR

 , (1.7)

where QiL ≡
(
uiL
diL

)
, LiL ≡

(
νiL
ℓiL

)
.

1.1.3 The Higgs sector

The SM has the minimal Higgs sector with one SU(2)L doublet field. The Lagrangian of
Higgs sector is

LHiggs = |DµΦ|2 − VSM(Φ), (1.8)

with the Higgs potential in the standard model given by

VSM(Φ) = −µ2(Φ†Φ) +
1

2
λ(Φ†Φ)2, (1.9)

where the Higgs doublet field Φ can be parametrized as

Φ =

(
w+

1√
2
(v + h+ iz)

)
(1.10)

with w± and z are the NG bosons which are absorbed by longitudinal components ofW+ boson
and Z boson, respectively, and v ≃ 246 GeV is VEV of Φ. By imposing the vacuum condition

∂VSM
∂h

∣∣∣∣
h→0

= 0, (1.11)

we obtain

µ2 =
λ

2
v2. (1.12)

Then, the mass of the physical neutral Higgs boson h is obtained as

m2
h = λv2. (1.13)
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By electroweak symmetry breaking, the mass terms of the weak gauge bosons are derived as

|DµΦ|2 →
∣∣∣∣(−igσa2 W a

µ − ig′
1

2
Bµ

)
Φ

∣∣∣∣2 (1.14)

=
1

8

∣∣∣∣( gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) −gW 3
µ + g′Bµ

)(
0
v

)∣∣∣∣2 (1.15)

=
1

8
v2g2

[
(W 1

µ)
2 + (W 2

µ)
2
]

(1.16)

+
1

8
v2(g′Bµ − gW 3

µ)(g
′Bµ − gW 3µ) (1.17)

=

(
1

2
vg

)2

W+
µ W

−µ +
1

8
v2(W 3

µ , Bµ)

(
g2 −gg′

−gg′ g′2

)(
W 3µ

Bµ

)
(1.18)

=

(
1

2
vg

)2

W+
µ W

−µ +
1

8
[gW 3

µ − g′Bµ]
2 + 0[g′W 3

µ + gBµ]
2. (1.19)

The charged gauge bosons W± and the neutral gauge bosons are obtained by W±
µ ≡ (W 1

µ ∓
iW 2

µ)/, Zµ = (gW 3
µ − g′Bµ)/

√
g2 + g′2, Aµ = (g′W 3

µ + gBµ)/
√
g2 + g′2. The masses of W± and

Z are

mW =
1

2
vg, mZ =

1

2
v
√
g2 + g′2, (1.20)

and the photon A is massless.

1.1.4 The Yukawa interaction

Finally, Yukawa interactions are

LY ≡ −
(
Y ij
u Y ij

d Y ij
ℓ

)QiLΦ̃ujR + h.c.
QiLΦdjR + h.c.
LiLΦℓjR + h.c.

 , (1.21)

where Φ̃ ≡ iσ2Φ∗. After electroweak symmetry breaking,

LY → − v√
2

(
Y ij
u ūiLujR + Y ij

d d̄iLdjR + Y ij
ℓ ℓ̄iLℓjR + h.c.

)
(1.22)

≡ −(muūu+mdd̄d+mℓℓ̄ℓ) (1.23)

The fermion masses are writen as

mf =
1√
2
vY ij

f . (1.24)

1.1.5 Relation between mass and coupling of particles

As shown in above results, we obtain the universal relation between coupling and masses

mi ∝ v. (1.25)
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1.2 Predictions to the Higgs boson from the standard

model

1.2.1 Bounds from perturbative unitarity

From the conservation of probability

< a|a > = | < b|S|a > |2 (1.26)

= < a|S†|b >< b|S|a > (1.27)

= < a|S†S|a >, (1.28)

we obtain a consequence of the unitarity of the S-matrix S†S = 1. Inserting S = 1 + iT (T is
the part due to interactions), we have

−i(T − T †) = T †T. (1.29)

Namely,

−i < a|(T − T †)|a > = < a|T †T |a >, (1.30)

−i[M − M ∗] =
∑
n

∫
d
∏
n

M ∗M , (1.31)

2ImM =
∑
n

∫
d
∏
n

|M |2. (1.32)

where, ∫
d
∏
n

=

(
n∏
i=1

∫
d3pi
(2π)3

1

2Ei

)
(2π)4δ(4)(pA + pB −

∑
i

pi). (1.33)

From the relation∫
dσ =

1

2EA2EB|vA − vB|

(
n∏
i=1

∫
d3pi
(2π)3

1

2Ei

)
|M (pA, pB → {pi})|2(2π)4δ(4)(pA + pB −

∑
i

pi),

σtot =
1

4pcmEcm

∫
d
∏
n

|M |2, (1.34)

we obtain

ImM = 2pcmEcmσtot. (1.35)

This relation is known as the optical theorem.

For the case of two particles in the final state(
dσ

dΩ

)
cm

=
|M |2

64π2E2
cm

, (1.36)
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we obtain

σtot > (σ =)

∫
dΩ

|M |2

64π2E2
cm

(1.37)

=

∫
d(cos θ)

2π|M |2

4E2
cm16π

2
(1.38)

=
1

s

∫
d(cos θ)

|M |2

8π
. (1.39)

Then, Eq. (1.35) is

ImM ≃ s

2
σtot (1.40)

>

∫
d(cos θ)

|M |2

16π
. (1.41)

On the other hand, we define the partial wave amplitude aJ as

M (s, t) = 16π
∑
J

(2J + 1)aJ(s)PJ(cos θ). (1.42)

Then, Eq. (1.41) is

16π
∑
J

(2J + 1)ImaJPJ(cos θ) > 16π
∑
J,J ′

(2J + 1)(2J ′ + 1)a†JaJ ′

∫
d(cos θ)P †

J(cos θ)PJ ′(cos θ)

= 16π
∑
J

(2J + 1)2|aJ |2
2δJ,J ′

2J + 1
,

ImaJPJ(cos θ) > 2|aJ |2,

Re(aJ)
2 +

(
Im(aJ)−

1

2

)2

<

(
1

2

)2

. (1.43)

In order keep perturbativity, we require that the absolute value of the eigenvalues of the s-wave
amplitudes are at most of the order of the unity:

|aJ | < amax. (1.44)

We take amax = 1 in this section.
By calculating the partial wave amplitude for elastic scattering of longitudinally polarized

gauge bosons, perturbativity condition (Eq. (1.44)) give the prediction of the upper bound of
Higgs mass as shown in Fig. 1.1.

1.2.2 Bounds from triviality and vacuum stability

The renormalization group equation of Higgs self coupling is approximately given by

βλ ≡
dλ(µ)

dµ
≃ 12λ2

16π2
. (1.45)
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Figure 1.1: A sketch of the energy (s/m2
h) dependence of the partial wave amplitude for elastic

scattering of longitudinally polarized W± bosons |a0(W+
LW

−
L →W+

LW
−
L )| for two choice of the

Higgs boson mass (mh ≃ 1TeV (above), 300GeV (below)). The Higgs boson mass is constrained
by perturbative unitarity.

When we fix the scale at v = 246GeV, we obtain energy dependence of Higgs self coupling,

λ(µ) =
λ(v)

1− 3λ(v)
4π2 ln

(
µ
v

) . (1.46)

In the limit of µ≪ v,

λ(µ) =
λ(v)

ln
(

e

(µ/v)3λ(v)/4π
2

) ≃ λ(v)

ln∞
→ 0+. (1.47)

On the other hand, in the limit of µ≫ v, we obtain the energy scale Λ, which satisfy

λ(Λ) = ∞. (1.48)

Then, we obtain

1− 3λ(v)

4π2
ln

(
Λ

v

)
= 0,

Λ = v exp

(
4π2

3λ

)
,

= v exp

(
4π2v2

3m2
H

)
. (1.49)
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Figure 1.2: The triviality bound: Cutoff
scale Λ [GeV] depends on Higgs boson
mass mh [GeV] from Eq. (1.45).
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Figure 1.3: Vacuum stability bound:
Cutoff scale Λ [GeV] depends on Higgs
boson mass mh [GeV].

The cutoff scale in the SM is determined by Higgs boson mass as shown in Fig. 1.2.
The one-loop renormalization group equations involving the contribution of fermions and

gauge bosons are given by [52]

β(λ) =
1

16π2
[12λ2 − 12y4t + 12y2t λ+

9

4
g4 +

6

4
g2g′2 +

3

4
g′4 − 9λg2 − 3λg′2],

β(gs) = 6
−7g3s
16π2

, β(g) =
−3g3

16π2
, β(g′) =

7g′3

16π2
, β(yt) =

yt
16π2

[
9

2
y2t − 8g2s −

9

4
g2 − 17

12
g′2
]
,

The cutoff scale satisfying λ(Λ) = 0 is calculated by above conditions Eq. (1.50). The condition
of vacuum stability

λ(µ) > 0 (1.50)

give the lower bound of Higgs mass as shown in Fig. 1.3.

1.2.3 Decays of the Higgs boson

We calculate the decay rates of the Higgs boson. There are various decay modes of the
Higgs boson; h → ff̄(f = t, b, c, s, µ, τ); h → V V, V ∗V (V = W,Z); h → γγ, gg; h → Zγ. We
define functions

f(τi) =

arcsin2
√

1
τi

(τi ≥ 1)

−1
4

[
ln 1+

√
1−τi

1−
√
1−τi

− iπ
]2

(τi < 1)
,

g(τi) =


√
τi − 1 arcsin

√
1
τi

(τi ≥ 1)

1
2

√
1− τi

[
ln 1+

√
1−τi

1−
√
1−τi

− iπ
]

(τi < 1)
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f t b c s µ τ

Ncf 3 3 3 3 1 1
ef

2
3

−1
3

2
3

−1
3

-1 -1
T 3L
f

1
2

-1
2

1
2

−1
2

−1
2

−1
2

Table 1.2: Fermion charge assignments.

where τi ≡ (2mi/mh)
2, λi ≡ (2mi/mz)

2. In Table. 1.2, we show the color factor Ncf , the
electromagnetic charge of the final state fermion ef and the third component of the isospin
T 3L
f . The decay rates of the Higgs boson decaying into the fermion pair h→ ff̄ are given by

Γ(h→ ff̄) =
Ncfg

2

32π

m2
fmH

m2
w

(1− τf )
3
2 . (1.51)

The decay rates of the Higgs boson decaying into the gauge boson pair h → W+W− or
h→ ZZ are given by

Γ(h→W+W−) =
g2

64π

m3
H

m2
w

√
1− τw(1− τw +

3

4
τ 2w), (1.52)

Γ(h→ ZZ) =
g2

128π

m3
H

m2
w

√
1− τz(1− τz +

3

4
τ 2z ). (1.53)

On the other hand, the decay modes of h→ W ∗W or h→ Z∗Z is given by

Γ(h→ W ∗W ) =
g4mH

512π3
F

(
mw

mH

){
3 W ∗ → tb not allowed,

4 W ∗ → tb allowed,
(1.54)

Γ(h→ Z∗Z) =
g4mH

2048π3

7− 40
3
sin2 θw + 160

9
sin4 θw

cos4 θw
F

(
mz

mH

)
, (1.55)

where

F (x) = −|1− x2|
(
47

2
x2 − 13

2
+

1

x2

)
+ 3(1− 6x2 + 4x4)| lnx|

+
3(1− 8x2 + 20x4)√

4x2 − 1
cos−1

(
3x2 − 1

2x3

)
. (1.56)

There re one-loop induced decay processes, such as h→ γγ, h→ gg and h→ Zγ. These decay
rates can be given by

Γ(h→ γγ) =
α2g2

1024π3

m3
H

m2
w

∣∣∣∣∣∑
f

Ncfe
2
fFf + Fw

∣∣∣∣∣
2

, (1.57)

Γ(h→ gg) =
α2
sg

2

512π3

m3
H

m2
w

∣∣∣∣∣∑
f

Ff

∣∣∣∣∣
2

, (1.58)

Γ(h→ Zγ) =
α2g2

512π3

m3
H

m2
w

∣∣∣∣∣∑
f

Af + Aw

∣∣∣∣∣
2(

1− m2
z

m2
H

)
, (1.59)
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Figure 1.4: The decay branching ratio of the SM Higgs boson as a function of SM Higgs mass.

where Fs = τs[1− τsf(τs)], Ff = −2τf [1 + (1− τf )f(τf )], FV = 2 + 3τV + 3τV (2− τV )f(τV ),

Af =
−2Ncfef (T

3L
f − 2ef sin

2 θw)

sin θw cos θw
[I1(τf , λf )− I2(τf , λf )],

Aw = − cot θw

{
4(3− tan2 θw)I2(τw, λw) +

[(
1 +

2

τw

)
tan2 θw −

(
5 +

2

τw

)]
I1(τw, λw)

}
,

I1(τi, λi) =
τiλi

2(τi − λi)
+

τ 2i λ
2
i

2(τi − λi)2
[f(τi)− f(λi)] +

τ 2i λi
(τi − λi)2

[g(τi)− g(λi)],

I2(τi, λi) = −τi − λi
2(τiλi)

[f(τi)− f(λi)].

The result of the decay branching ratio is shown in Fig. 1.4.

1.2.4 Production of the Higgs boson at LHC

The production cross section of SM Higgs boson at 14TeV pp-collider is shown in Fig. 1.5.
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Chapter 2

Dark matter

2.1 Evidences of DM

We consider an astronomical] object with the orbital velocity v and the mass m which is
separated by a distance R from the center of a galaxy with the mass M . The equilibrium of
forces of gravity and centripetal force is given by

G
mM

r2
=
mv2

r
. (2.1)

We obtain the orbital velocity as v =
√
GM/r.

If we consider the cace that a galaxy is uniform density ρ and the size R0, we obtain the
mass of a galaxy as the function of R:

M(R) =

{
4
3
πR3

0ρ ≡M0 (for R > R0),
M0

R3
0
R3 (for R < R0).

(2.2)

Then, the orbital velocity v of an astronomical] object is predicted by

v(R) ∝

{√
1
r
(for R > R0),

r (for R < R0).
(2.3)

This prediction show us that the rotational speed v(R) behave as
√
1/r.

However, this prediction is not consistent with the observation which reported by V. Rubin
and K. Ford in 1970. The observed rotational speed is a constant value v ≃ 230km s−1. This
observation show us that there are unknown source of gravity, so called dark matter (DM).
Furthermore, there are other various observations which suggest the evidence of DM.

2.2 Constraints of primordial black holes as dark matter
The recent estimation of the amount of DM trapped in stars at their birth have shown the

best constraints come from white dwarfs or a neutron stars in globular clusters which exclude
the DM consisting entirely of primordial black holes (PBHs) in the mass range 1016−3×1022g,
with the strongest constraint on the fraction ΩPBH = ΩDM ≳ 10−2 being in the range of PBH
masses 1017 − 1018g [53]. Furthermore, Ref. [54] have shown the constraint of the PBH DM

19
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with masses in the range of 2×10−9M⊙−10−7M⊙. They claim that PBHs in these mass ranges
cannot make up the entirety of the DM, thus closing a full order of magnitude in the allowed
mass range for PBH DM.

2.3 WIMP hypothesis
We understand the properties of DM as

• almost no interacting with the photon, DM itself and other fermions,

• non-relativistic,

• relic abundance is observed as ΩDM = 0.1198± 0.0026.

In the hypothesis of weakly interacting massive particles (WIMPs), DMs are explained as
particles with no electric charge, stable and DM masses are O(100)GeV.

Dark matter stability by new symmetries In this thesis, we consider three scenarios of
dark matter stability which explained by discrete symmetry, global U(1) symmetry and gauge
symmetry.

2.4 The calculation of relic abundance of dark matter

We review the calculation of relic abundance of dark matter. This section is based on [55–58].

The Boltzmann equation The Boltzmann equation is given by

dn

dt
+ 3H n = −⟨σeffv⟩ (n2 − n2

EQ). (2.4)

By the definition Y ≡ n/s, we obtain

s
dY

dt
= n2 − nEQ = s2(Y 2 − Y 2

EQ). (2.5)

During the radiation dominated epoch, the energy density is given by ρR = (π2/30)g∗T
4. By

the definition of the scaled inverse temperature x ≡ m/T , the Friedmann equation for flat
Universe H2 = (8π/3m2

P )ρ gives

t = H−1 = 0.301 g−1/2
∗

mP

T 2
= 0.301 g−1/2

∗
mP

m2
x2. (2.6)

Then, the Boltzmann equation is written by

dY (x)

dx
=

−x ⟨σeffv⟩ (x) s
1.67 g

1/2
∗

m2

mP

(Y (x)2 − YEQ(x)
2). (2.7)

For the case of relativistic particles s = (2π2/45)g∗sT
3, we obtain

dY (x)

dx
=

−g∗sm mP ⟨σeffv⟩ (x)
3.807 g

1/2
∗ x2

(Y (x)2 − YEQ(x)
2). (2.8)
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Figure 2.1: The freeze out of a massive particle species. The dashed line is the actual abundance
Y (x), and the solid line is the equilibrium abundance YEQ(x). Each curbs are normalized by
Y (x = 1).

Freeze out In the non-relativistic regimes (x ≫ 3), the Boltzmann equation is written by
approximately

dY

dx
= −λx−n−2(Y 2 − Y 2

EQ), (2.9)

where

λ = 0.264
g∗s

g
1/2
∗
mPmDMσ0, (2.10)

YEQ = 0.145
g∗
g∗s

x
3
2 e−x(for x≫ 3). (2.11)

By solving this equation, we obtain the behavior which is shown in Fig. 2.1.

Relic abundance The freeze out point is given in terms of x:

xf = ln
0.038 g mP mDM ⟨σeffv⟩ (xf )

g
1/2
∗ x

1/2
f

, (2.12)

where mp = 1.22× 1019GeV and g∗ is total number of effectively relativistic degrees of freedom
at the time of freeze out. Eq. (2.12) is usually solved iteratively. By the definition of

J(xf ) =

∫ ∞

xf

⟨σeffv⟩ (x)
x2

dx, (2.13)

we obtain the relic abundance

Ωh2 ≃ 1.07× 109 GeV−1

g
1/2
∗ mPJ(xf )

. (2.14)
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The thermally-averaged annihilation cross section tomes velocity We write the ther-
mal average of the annihilation cross section as

⟨σeffv⟩ =
A

n2
EQ

, (2.15)

where

nEQ =
∑
i

gi
(2π)3

∫
d3pi exp

(
−Ei
T

)
=

T

2π2

∑
i

gi m
2
i K2

(mi

T

)
, (2.16)

A =
T

32π4

∑
i, j

∫ ∞

(mi+mj)2
ds gi gj pij Wij→kl K1

(√
s

T

)
. (2.17)

where mi (i = 1, · · · , N) is masses, gi is internal degrees of freedom (statistical weights), Ka is
the modified Bessel function of the second kind of order a and

pij =

√
s− (mi +mj)2

√
s− (mi −mj)2

2
√
s

(2.18)

is the momentum of i-th (or j-th) particle in the center-of-mass frame of i-th and j-th particles
pair. A dimensionless Lorents invariant, related to the (unpolarized) cross section is given by
Wij→kl, pi/j. In particular, the contribution of a two-body final state can be written as

Wij→kl =
pkl

16π2 gi gj Skl
√
s

∑
internalDF

∫
| M (ij → kl) |2dΩ, (2.19)

where pkl is the final center-of-mass momentum, Skl is a symmetry factor equal to 2 for identical
final particles and to 1 otherwise, and the integration is over the outgoing directions of one of
the final particles.

By using

σij→kl =
1

64π2s

pkl
pij

∑
internalDF

∫
| M (ij → kl) |2dΩ, (2.20)

We obtain

⟨σeffv⟩ =
T

32π4n2
EQ

∑
i,j

∫ ∞

(mi+mj)2
ds

[s− (mi +mj)
2][s− (mi −mj)

2] σij→kl

Skl
√
s

=
1

8 T
[∑

im
2
i K2

(
mi

T

)]2 ∑
i,j

∫ ∞

(mi+mj)2
ds

[s− (mi +mj)
2][s− (mi −mj)

2] σij→kl

Skl
√
s

K1

(√
s

T

)
.

When we determine a model, we can calculate the relic abundance.
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Neutrino oscillation

3.1 Experimental data of neutrino masses and mixing
It has been well established that neutrinos have nonzero masses as shown in the neutrino

oscillation measurements [5–13] although they are massless particles in the standard model (SM)
of particle physics. Experimental data of neutrino oscillation is measured as

∆m2
21 = 7.46× 10−5eV2, |∆m2

32| = 2.51× 10−3eV2,

sin2 θ23 = 1, sin2 θ13 = 0.09, tan2 θ12 = 0.427. (3.1)

We cannot explain these data in the framework of the SM. We review the models which can
explain the origin of neutrino masses.

3.2 Mechanisms of neutrino mass generation
To explain neutrino masses, we introduce right-handed neutrinos νR as shown in Table. 3.1.

There are two possible mass terms for neutrinos the Dirac type ν̄LνR and the Majorana type
¯(νR)cνR. As shown in the following, we consider each cases.

νR

SU(2)L 1
U(1)Y 0

Table 3.1: The right-handed neutrino.

3.2.1 Dirac neutrino

Dirac mass term of the neutrinos is given by

Lν-Yukawa = − yνL iσ2 Φ
∗ νR + h.c. (3.2)

= − yν(νL, ℓL)

(
0 1
−1 0

) (
ϕ−

ϕ0

)
νR + h.c. (3.3)

= − yν
(
νLϕ

0
ννR − ℓLϕ

−
ν νR

)
+ h.c. (3.4)

= − v√
2
yν νL νR + h.c. (3.5)

≡ −mD(νLνR + νRνL). (3.6)

23
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To explain observed tiny neutrino masses, this case require unnatural tiny Yukawa couplings.

3.2.2 Type-I seesaw with Majorana neutrino

Since the scale of neutrino masses is much different from that of the other fermion masses,
they might be generated by a different mechanism from the one for the other fermions. In
addition, neutrinos are unique fermions, because these are neutral. Therefore, we can consider
the case satisfying νR = νcR. Then, Majorana mass term which violates lepton number is given
by

1

2
mM(νR)cνR. (3.7)

Usually, the possibility that neutrinos are Majorana fermions is utilized as a characteristic
feature of the neutrino masses. The most popular example is the seesaw mechanism [59] where
very heavy right-handed Majorana neutrinos are introduced:

Lν-Yukawa = −1

2
(mD νL νR +mD νcL ν

c
R +mMνcL νR) − 1

2
(mD νcR ν

c
L +mD νR νL +mMνR ν

c
L)

= −1

2

(
νL νcL

) ( 0 mD

mD mM

) (
νcR
νR

)
− 1

2

(
νcR νR

) ( 0 mD

mD mM

) (
νL
νcL

)
= −1

2
LM Rc − 1

2
RcM L, (3.8)

where L ≡
(
νL
νcL

)
, R ≡

(
νR
νcR

)
and M ≡

(
0 mD

mD mM

)
. (From definitions νL(R) ≡ PL(R) ν,

νc ≡ C νT , we obtain the relation (νL(R))
c = νcR(L). ) By diagonarizing Eq. (3.8), neutrino

masses are given by

mν ≃
m2
D

mM

, mN ≃ mM . (3.9)

By the hierarchy of mM >> mD, we can explain tiny neutrino masses. Therefore, this model
predict very heavy Majorana neutrinos. If these particles have the masses mN ≃ 10−14GeV to
explain mν ≃ 0.1eV, we can explain Yukawa coupling as natural scale as yν ≃ 1. However, it
may be difficult to test such heavy νR.

Figure 3.1: Type-I seesaw model.
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3.2.3 The neutrinophilic two Higgs doublet model

The neutrinophilic two Higgs doublet model (νTHDM) is a new physics model where neu-
trinos are regarded as Dirac fermions. The second SU(2)L-doublet scalar field Φν which couples
only with right-handed neutrinos νR was first introduced in Ref. [60] for Majorana neutrinos.
Phenomenology in the model of Majorana neutrinos is discussed in Ref. [61, 62].

The neutrinophilic doublet field is also utilized for Dirac neutrinos [63] where a sponta-
neously broken Z2 parity is introduced in order to achieve the neutrinophilic property. Small-
ness of neutrino masses are explained by a tiny vacuum expectation value (VEV) ⟨Φν⟩ = vν
of the neutrinophilic scalar without extremely small Yukawa coupling constant for neutrinos.
Instead of the Z2 parity, the model in Ref. [64] uses a global U(1)X symmetry that is softly
broken in the scalar potential. The U(1)X symmetry forbids Majorana mass terms of νR, and
then neutrinos are Dirac fermions1. We refer to the model in Ref. [64] as the νTHDM.

In the most simplest νTHDM, we introduce the Dirac right-handed neutrino νR and the
neutrinophilic scalar doublet Φν , as shown in Table. 3.2. A global U(1)X symmetry is intro-
duced, under which Φν and νiR have the same nonzero charge while the SM particles have no
charge.

νR Φν =

(
ϕ+
ν

ϕ0
ν

)
SU(2)L 1 2
U(1)Y 0 1

2

Global U(1)X 1 1

Table 3.2: Particle contents and its charge assignments in the νTHDM.

The Yukawa interaction Yukawa interaction is given by

Lν-Yukawa = − (yν)ℓiLℓ iσ2Φ
∗
ν νiR + h.c. (3.10)

= − (yν)ℓi(νℓL, ℓℓL)

(
0 1
−1 0

) (
ϕ−
ν

ϕ0
ν

)
νiR + h.c. (3.11)

= − (yν)ℓi
(
νℓLϕ

0
ννiR − ℓℓLϕ

−
ν νiR

)
+ h.c. (3.12)

= − vν√
2
(yν)ℓi νℓL νiR + h.c., (3.13)

where ℓ(= e, µ, τ) denotes the lepton flavor and σi (i = 1-3) are the Pauli matrices. Since
Majorana mass terms (νiR)

c νiR are forbidden by the global U(1)X symmetry, there appears an
accidental conservation of the lepton number where lepton numbers of Φν and νiR are 0 and 1,
respectively.

Then, neutrino mass matrix in the lepton flavor basis (ℓ = e, µ, ν) is defined by

(mν)ℓi =
vν√
2
(yν)ℓi. (3.14)

1Since the Majorana mass terms of νR can also be acceptable as soft breaking terms of the U(1)X , the lepton
number conservation may be imposed to the Lagrangian.
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By diagonalizing, we obtain

U †
MNSmν = diag(m1,m2,m3), (3.15)

where Maki-Nakagawa-Sakata (MNS) matrix [65] is given by

UMNS =

1 0 0
0 c23 s23
0 −s23 c23

  c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

  c12 s12 0
−s12 c12 0
0 0 1

 . (3.16)

In the mass eigenstate (i=1,2,3): Lν-Yukawa = −mi(U
†
MNS)iℓνℓL νiR + h.c., we can construct

Dirac neutrinos νi =

(
νiR

(U †
MNS)iℓνℓL

)
.

We can see from Eq. (3.14) that smallness of mi is explained by the smallness of vν(≪ v).
This is the scenario of νTHDM.

The scalar potential If the VEV vν is generated spontaneously, a CP-odd scalar ϕ0
νi becomes

massless as a Nambu-Goldstone boson with respect to the breaking of U(1)X , where ϕ0
ν =

(vν + ϕ0
νr + iϕ0

νi)/
√
2. In addition, a CP-even neutral scalar ϕ0

νr has a small mass (∝ vν ≪ v).
Therefore, the scenario of the spontaneous breaking of U(1)X is not allowed by the measurement
of the invisible decay of the Z boson. The scalar potential is given by 2

V (νTHDM) = −µ2
Φ1Φ

†Φ + µ2
Φ2Φ

†
νΦν −

(
µ2
Φ12Φ

†
νΦ + h.c.

)
+ λΦ1(Φ

†Φ)2 + λΦ2(Φ
†
νΦν)

2 + λΦ12(Φ
†Φ)(Φ†

νΦν) + λ′Φ12(Φ
†Φν)(Φ

†
νΦ).(3.19)

We can take µ2
Φ12 positive and real without loss of generality by the rephasing of Φν . Here, we

take µ2
Φ1 > 0, µ2

Φ2 > 0.

The VEV of ϕ0
ν is induced by µ2

Φ12 which break U(1)X softly. Since the term does not breaks
the lepton number conservation, neutrinos are still Dirac particles. When we take vν ≪ v, we
obtain two VEVs

v ≃ µΦ1√
λΦ1

, vν ≃
2v µ2

Φ12

2µ2
Φ2 + (λΦ12 + λ′Φ12)v

2 . (3.20)

When we take µΦ2 ≃ v, we obtain vν ≃ µ2
Φ12/v. Then, µΦ12/v ≃ 10−6 is required by taking

yν ≃ andmν ≃ 0.1eV. In such a simplest model, parameter tuning is required. Stability of the
tiny vν is discussed in Refs. [62,66]. In our model presented in Chap. 6, µΦ12/v becomes small
because µ2

Φ12 is generated at the one-loop level.

2In general 2HDM, we can write terms

V (THDM) →
(
λ5(Φ

†Φν)
2 + h.c.

)
(3.17)

+
(
λ6(Φ

†Φ)(Φ†Φν) + h.c.
)
+
(
λ7(Φ

†
νΦν)(Φ

†Φν) + h.c.
)
. (3.18)

However, these terms are forbidden by the global U(1)X symmetry.
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3.3 Loop suppression scenarios

We consider loop suppression scenario which explained bym-loop induced dimension (5+2n)
operator (n ≧ 0)

Leff =
cij

Λ2n+1
νiLν

j
L(ϕ

0ϕ0)n+1 (3.21)

which are induced by quantum effect. In such scenarios, the size of neutrino masses from
the operator with the mass dimension (2n + 1), which arises from a m-loop diagram, can be
estimated as [67]

(mν)ij = c′ij
⟨
ϕ0
⟩( 1

16π

)m(⟨ϕ0⟩
Λ

)2n+1

. (3.22)

We can explain loop suppressed neutrino masses.
The radiative seesaw scenario is an alternative way to explain tiny neutrino masses, where

they are radiatively induced at the one loop level or at the three loop level by introducing
Z2-odd scalar fields and Z2-odd right-handed neutrinos [25–27]. For radiative seesaw models
which are invariant under the unbroken discrete Z2 symmetry, we can explain DM and neutrino
masses at the same time.

3.4 The Ma model

Especially, we consider a minimal model which proposed by the paper [26]. In this model,
we introduce Z2-odd scalar doublet Φ2 and right handed neutrinos (νR)i (i = 1−3). The Z2-odd
lightest neutral particle can be a dark matter candidate.

The Higgs potential which is same as IDM is given by

VIDM(Φ1, Φ2) = µ2
1|Φ1|2 + µ2

2|Φ2|2 +
1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 (3.23)

+λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

1

2
λ5[(Φ

†
1Φ2)

2 + h.c.].

When we assume µ2
1 <0 and µ2

2 > 0, Φ1 obtains the vacuum expectation value (VEV) v
(=
√
−2µ2

1/λ1), while Φ2, which has the odd-quantum number of the Z2 symmetry, cannot get
the VEV. Mass eigenstates of the scalar bosons are the SM-like Z2-even Higgs scalar boson h,
the Z2-odd CP-even scalar boson H, the Z2-odd CP-odd scalar boson A and Z2-odd charged
scalar bosons H±. Masses of these scalar bosons are given by

m2
h = λ1v

2, m2
H± = µ2

2 +
1

2
λ3v

2, m2
H,A = µ2

2 +
1

2
(λ3 + λ4 ± λ5)v

2. (3.24)

The constraints of vacuum stability is given by

λ1 > 0, λ2 > 0,
√
λ1λ2 + λ3 + λ4 + λ5 > 0, (3.25)

and we here impose the conditions of triviality

λi < 2π. (3.26)
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The Yukawa interaction for leptons and the Majorana mass term are given by

LMa−Yukawa = LSM−Yukawa + hij (LL)iΦ
c
2 (νR)j + h.c., (3.27)

LMajorana =
1

2
Mi (νR)ci (νR)i + h.c. , (3.28)

where the superscript c denotes the charge conjugation. Neutrino masses are generated at the
loop level by

(mν)ij =
∑
k

hikhjkMk

16 π2

[
m2
H

m2
H −M2

k

ln
m2
H

M2
k

− m2
A

m2
A −M2

k

ln
m2
A

M2
k

]
(3.29)

=
λ5v

2

8π2

∑
k

hikhjkMk

m2
0 −M2

k

[
1− M2

k

m2
0 −M2

k

ln
m2

0

M2
k

]
, (3.30)

where m2
0 = (m2

H +m2
A)/2.

The neutrino oscillation data Eq. (3.1) is explained by neutrino Yukawa coupling constants
hik in this model. Neutrino mass of the flavor basis (mν)ij is diagonalized by MNS matrix

UMNS as U †
MNSmν U

∗
MNS = diag(m1e

iα1 , m2e
iα2 , m3e

iα3). Here, we impose normal hierarchy and
m1 = 0, δ = 0, α1−3 = 0 as input parameter.



Chapter 4

Inflation

The standard cosmology is a very successful model to explain the expansion of the Universe,
the abundances of the light elements and the cosmic microwave background. However, we need
inflation to solve horizon problem and flatness problem. In general, the inflation is explained by
the exponential expansion [14]. But, we do not know the detail of the inflation. The scenario of
slow-roll inflation [17] can be realized by a scalar particle, so-called the inflaton. If the inflation
potential is given, parameters for the slow-roll inflation can be calculated.

We consider one possibility of inflation scenarios, the Higgs inflation scenario [18], where
Higgs boson plays a role of inflaton. In this model, we introduce the coupling term of the Higgs
field Φ with gravity as ξΦ†ΦR (R is the Ricci scalar). Then, its coupling is too large ξ ≃ 105

from the primordial power spectrum of the curvature perturbation . Slow-roll parameters which
are calculated by the inflation potential must satisfy the data from the Planck experiment [4].
The inflation scale (ΛI = MP/

√
ξ for the Higgs inflation scenario) is also calculated from

the inflation potential. Constraints of the slow-roll inflation scenario can be satisfied with
experiments. Especially, the data from the Planck experiment [4] support the Higgs inflation
scenario.

4.1 Inconsistency between big-bang cosmology and ob-

servations

The Friedmann equation is given by

H2 =
8πG

3
ρ− k

R2
(4.1)

where H ≡ Ṙ/R is Hubble parameter. By introducing density parameter Ω ≡ ρ/ρc (ρc ≡
3H2/8πG is the critical density), we obtain

k

H2R2
= Ω− 1. (4.2)

The flat Universe satisfy Ω = 1. Observed data of flatness show

|Ω0 − 1| ≤ 0.2. (4.3)

29
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When we take Ω = Ωr + Ωm + ΩΛ(Ωr ≡ ρr/ρc , Ωm ≡ ρm/ρc , ΩΛ ≡ ρΛ/ρc) and ρ =
ρr + ρm + ρΛ(ρr ≡ ρr,0/R

4 , ρm ≡ ρm,0R
3 , ρΛ ≡ ρΛ,0), we obtain

H2

H2
0

=
Ωr,0

R4
+

Ωm,0

R3
+

1− Ω0

R2
+ ΩΛ,0 (4.4)

Ω− 1 =
R2(Ω0 − 1)

Ωr,0 + Ωm,0R + (1− Ω0)R2 + ΩΛ,0R4
(4.5)

by using R0 ≡ 1. At Planck time tP = 5.391× 10−44sec (R(tP ) = 2× 10−32),

ΩP − 1 ≃ R2(Ω0−1)
Ωr,0

(4.6)

≤ (2×10−32)2×0.2
8.4×10−5 (4.7)

≤ O(10−60). (4.8)

In the standard cosmology, we cannot explain this flatness naturally.
On the other hand, we define temperature fluctuation of the cosmic microwave background:(

δT

T

)2

≡ l(l + 1)

2π
Cl. (4.9)

where l (∼ 180◦/θ) is multipole, Cl is defined as partial wave expansion of temperature corre-
lation function of two points

C(θ) ≡ 1

4π

∞∑
l=0

(2l + 1)ClPl(cos θ), (4.10)

where Cl is partial wave amplitude and Pl(cos θ) is Legendre polynomial. CMB temperature
fluctuation δT/T is observed at each l (namely, θ). In the region l < 100 (θ > 2◦), we observed

δT

T
≃ 10−5(θ > 2◦). (4.11)

At the last scattering period, two points A and B are separated by the distance dH(tls). At
present, we observe as the distance (1+ zls)dH(tls) where zls ≃ 1000 and 1+ zls = R(t0)/R(tls).
When we observe two points of the distance dp(tls → tt0), the casual region θ is explained as

AB = (1 + zls)dH(tls) > dp(tls → tt0)θ, (4.12)

θ <
(1 + zls)dH(tls)

dp(tls → tt0)
. (4.13)

The relation
dp(tls → tt0) = 0.98dH(t0) (4.14)

show us

θ <
(1 + zls)dH(tls)

dH(t0)
(4.15)

<
1000× 0.4Mpc

14000Mps
(4.16)

< 2◦. (4.17)
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In the standard cosmology, we cannot explain why two points are almost same property outside
casual region.

To solve flatness problem and horizon problem, we need to explain inflation [14].

4.2 Slow-roll inflation

Models of inflation are explained by introducing scalar boson so-called inflaton [17] In the
models of slow-roll inflation, the homogeneous evolution of the inflaton field φ is governed by
the equation of motion

φ̈+ 3Hφ̇+ V (φ) = 0, (4.18)

and the Friedmann equation

H2 =
1

3M2
P

, (4.19)

where H = ȧ/a is the Hubble parameter, M2
P = (8πG)−1/2 is the reduced Planck mass, and

V (φ) is the scalar potential. On the other hand, the slow-roll parameters are defined by

ϵ ≡ M2
P

2

(
dV/dφ

V

)2

, (4.20)

η ≡ M2
P

d2V/dφ2

V
. (4.21)

Necessary conditions for the slow-roll scenario are ϵ≪ 1 and |η| ≪ 1.

4.3 Constraints from the cosmic microwave background

data

It is convenient to expand the power spectra of curvature and tensor perturbations around
a pivot scale k0 as

PR = As

(
k
k0

)ns−1+ 1
2

dns
d ln k

ln k
k0

+ 1
3!

d2ns
d ln k2

(ln kk0)
2+···

, Pt = At

(
k

k0

)nt+
1
2

dnt
d ln k

ln k
k0

+···

,(4.22)

whereAs (At) is the scalar (tensor) amplitude and ns (nt), dns/d ln k (dnt/d ln k) and d
2ns/d ln k

2

are the scalar (tensor) spectral index, the running of the scalar (tensor) spectral index, and
the running of the running of the scalar spectral index, respectively. From the scalar potential,
the parameters of the scalar and tensor power spectra may be calculated approximately in the
framework of the slow-roll approximation by evaluating the following equations at the value of
the inflation field φ0. The number of e-folding before the end of inflation, N0, at which the
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pivot scale k0 becomes

N0 =

∫ tend

t0

dtH (4.23)

=

∫ φend

φ0

dφ

φ̇
H (4.24)

=
1

M2
P

∫ φ0

φend

V Vφdφ (4.25)

=
1

MP

∫ φ0

φend

dφ√
2ϵ
, (4.26)

where the field value at the end of inflation φend is given by

max{ϵ(φend), |η(φend)|} = 1. (4.27)

From the e-folding number 50 < N0 < 60 constrained by the Planck experiment [4], the field
value at the initial of inflation φ0 is determined. Then, we can calculate ns, r and As, as

As ≡
V (φ0)

24πM4
P ϵ(φ0)

, (4.28)

ns ≡ 1− 6ϵ+ 2η, r ≡ 16ϵ. (4.29)

At the pivot scale k0 = 0.05Mpc−1, the scalar amplitude As and the spectral index ns of the
base ΛCDM model are constrained by the Planck 2015 data as [4]

As = 2.196+0.080
−0.078)× 10−9, ns = 0.9655± 0.0062 (68% CL, Planck TT+lowP), (4.30)

assuming dns/d ln k = d2ns/d ln k
2 = r = 0. The Planck 2015 have shown upper bound on the

r for the ΛCDM+r model as [4]

r0.002 < 0.10(95% CL, Planck TT+lowP), (4.31)

r0.002 < 0.11(95% CL, Planck TT+lowP+lensing), (4.32)

r0.002 < 0.11(95% CL, Planck TT+lowP+BAO), (4.33)

r0.002 < 0.10(95% CL, Planck TT,TE,EE+lowP). (4.34)

4.4 Higgs inflation

Higgs inflation is realized by introducing the non-minimal gravitational coupling ξ [18]. The
scalar sector of SM, coupled to gravity is given by

LJ√
−gJ

= |DµH|2 − µ2H†H − λ(H†H)2 − M2
P

2
R− ξH†HR (4.35)

=
1

2
(∂µh)

2 − λ

4
(h2 − v2)2 − M2

P

2
R− 1

2
ξh2R. (4.36)

where Higgs field is unitary gauge H = (1/
√
2)
(
0 h+ v

)T
and R is Ricci scalar.
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By making conformal transformation from Jordan frame to the Einstein frame gEµν = Ω2gJµν ;
Ω2 = 1 + ξh2/M2

P , it is possible to get rid of non-minimal coupling

LE√
−gE

→ 1

Ω2

1

2
(∂µh)

2 +
1

Ω4

3ξ2h2

M2
P

(∂µh)
2 − 1

Ω4

λ

4
(h2 − v2)2

+
1

Ω2

1

8

[
2g2(v + h)2W+

µ W
−µ + (g2 + g′2)(v + h)2ZµZ

µ
]
− M2

P

2
R̂. (4.37)

where R = Ω−2R̂+ 6Ω−3Ω:µνg
Eµν . Then, we define each part of this Lagrangian as

Lkin ≡ 1

Ω2

1

2
(∂µh)

2 +
1

Ω4

3ξ2h2

M2
P

(∂µh)
2, Lscalar(≡ −V ) ≡ − 1

Ω4

λ

4
(h2 − v2)2,

Lgauge ≡
1

Ω2

1

8

[
2g2(v + h)2W+

µ W
−µ + (g2 + g′2)(v + h)2ZµZ

µ
]
, Lgrav ≡ −M

2
P

2
R̂.

With the redefinition of the field

dχ

dh
=

√
Ω2 + 6ξ2h2

M2
P

Ω4
, (4.38)

the kinetic term is canonically normalized Lkin = (∂µχ)
2/2. At the electro-weak scale (Ω2 ≃ 1,

h ≃ χ), it is same as Higgs potential of SM

V (χ) =
λ

4
(χ2 − v2)2. (4.39)

In the limit of h≫MP/
√
ξ
(
h ≃ (MP/

√
ξ) exp(χ/

√
6MP )

)
, the scalar potential is given by

V (χ) =
λM4

P

4ξ2

(
1 + exp

(
− 2χ√

6MP

))−2

(4.40)

This potential is behave as V (χ→ ∞) = λM4
P/4ξ

2.
To explain observation of CMB, we evaluate slow-roll parameter

ϵ =
M2

P

2

(
dV/dχ

V

)2

≃ 4M4
P

3ξ2h4
, η =M2

P

d2V/dχ2

V
≃ −4M2

P

3ξh2
. (4.41)

Slow-roll end ϵend ≃ 1 gives the field value at the end of inflation

hend ≃
(
4

3

) 1
4 MP√

ξ
≃ 1.07

MP√
ξ
. (4.42)

The e-folding number is given by

N0 ≡
∫ h0

hend

1

M2
P

V

dV/dh

(
dχ

dh

)2

dh (4.43)

≃ 6

8

h20 − h2end
M2

P/ξ
. (4.44)
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When the value of 50 < N < 60, initial value of the field is given by

h0 ≃ 9.4
MP√
ξ
. (4.45)

On the other hand, the scalar amplitude (4.29) satisfying the constraint of Planck (4.30) give

ξ ≃ 49000
√
λ. (4.46)

In this relation, observable parameter is given by

ns ≡ 1 + 2η − 6ϵ ≃ 0.97, r ≡ 16ϵ ≃ 0.0033. (4.47)
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Baryon asymmetry of the Universe

Baryon asymmetry of the Universe [68] is known as one of the beyond the SM phenomena.
Among various scenarios of BAU, electroweak baryogenesis (EWBG) [19] is directly connected
with physics of the Higgs sector, requiring a strongly first order phase transition (1stOPT) at
the electroweak symmetry breaking (EWSB) and also additional CP violating phases. Such
a scenario can be tested by experimental determination of the property of the Higgs sector.
For instance, the condition of the strongly 1stOPT can predict a significant deviation (order
of several tens percent) in the triple Higgs boson coupling (the hhh coupling) from the SM
prediction [20], and the required CP violating phases lead to appearance of electric dipole
moments, etc. At the LHC experiment and its high luminosity one, the measurement of the
hhh coupling seems to be challenging. There is still a hope that in future the hhh coupling
could be measured by 13% accuracy [21] at the upgraded version of the International Linear
Collider (ILC).

5.1 Baryon number

5.1.1 Definition of baryon asymmetry

The baryon asymmetry is characterized by the ratio of the baryon number to entropy

nB
s

≡ nb − nb̄
s

(5.1)

where s is the entropy density and nb (nb̄) is the (anti)baryon number density. The photon
density nγ is related to s by s = 7.04nγ at present. We can determine Eq. (5.1) by the value of
η ≡ nB/nγ.

5.1.2 Observations

When the ratio of proton and neutron is freezeout (nn/np)freezeout ≃ 1/7, 4He mass fraction
Yp ≡ ρ4He/ρB is fixed as

Yp ≃ 4mNn4He

mN(nn + np)
(5.2)

≃
2
(
nn

np

)
freezeout(

nn

np

)
freezeout

+ 1
(We take n4He =

nn
2

and mN ≃ mp ≃ mn) (5.3)

≃ 0.25. (5.4)
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Figure 5.1: The abundances of 4He, D, 3He and 7Li as predicted by the standard model of
Big-Bang nucleosynthesis. The narrow vertical band indicates the CMB measure of the cosmic
baryon density, while the wider band indicates the BBN concordance range (both at 95% CL).
This figure is quoted by [68].

The abundances of 4He, D, 3He and 7Li as predicted by the standard model of Big-Bang
nucleosynthesis is shown in Fig. 5.1. To explain the light-elements abundances within the
framework of the standard big-bang nucleosynthesis, it is required that η ≃ 10−10. Thus, we
obtain [68]

nB
s

≃ O(10−10). (5.5)

5.2 Sakharov’s three condition

To explain the BAU, Sakharov’s three conditions [15] must be satisfied:

• baryon number violation,

• C and CP violation,

• departure from equilibrium.

In the framework of the SM, the observed Higgs mass cannot satisfy these conditions. Therefore,
we need new physics by the extension from SM.
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5.3 Scenarios for baryogenesis
There are some scenarios to solve this problem. For example, Leptogenesis, EWBG, etc.

5.3.1 Leptogenesis

A scenario of Leptogenesis [69] is realized by the seesaw mechanism. Indeed, the seesaw
mechanism requires that violated lepton number provides in general new CP violating phases
in the neutrino Yukawa interactions and decay out of equilibrium. Thus, all three Sakharov’s
conditions are naturally fulfilled in this scenario. A review paper of Leptogenesis is [70].

5.3.2 Electroweak baryogenesis

For a scenario of EWBG [19], Sakharov’s three conditions are satisfied sphaleron process, CP
violating phases and strongly first order phase transition (1stOPT) [71]. One of the necessary
conditions [15] to generate BAU is the departure from thermal equilibrium. To satisfy this
condition (the so-called sphaleron decoupling condition), the baryon number changing sphaleron
interaction must quickly decouple in the broken phase, which is described by

Γsph(T ) ≲ H(T ), (5.6)

where Γsph(T ) is the reaction rate of the sphaleron process and H(T ) is the Hubble parameter
at T . Γsph(T ) can be obtained by demanding that the baryon number changing rate in the
broken phase [72]

Γ(T )sph ≡ − 1

B

dB

dt
≃ 13Nf

4 · 32π2

ω−

α3
W

N e−Esph/T , (5.7)

where Nf is number of generation, αW = αem/ sin
2 θ(mZ), ω− is the negative mode of the

fluctuations around sphaleron, N represents the translational and rotational zero-mode fac-
tors of the fluctuations about the sphaleron, and the sphaleron energy is denoted as Esph =
4πφ(T )E(T )/g2. Then, Eq. (5.6) can be translated into the condition of a strongly 1stOPT

φc
Tc

> ζsph(Tc), (5.8)

where φc gives the broken phase minimum at the critical temperature Tc, and ζsph is given
by [73]

ζsph(T ) ≡
g2

4πE(T )

[
42.97 + lnN + ln

(
ω−

mW

)
− 1

2
ln

(
g∗

106.75

)
− 2 ln

(
T

100 GeV

)]
. (5.9)

As an example, ζsph ≃ 1.24 in the SM [73], 0.9 in the MSSM [73] and 1.1-1.2 in the real
singlet-extended standard model [74]. As shown in these results, we can take typically ζsph ≃ 1.

5.4 First order electroweak phase transition

5.4.1 Electroweak phase transition

For the case of 1stOPT, the effective potential of finite temperature have degenerate vacuum
ϕ = 0(≡ ϕS), ϕc(≡ ϕB) at the critical temperature T = Tc, as shown in Fig. 5.2. The true
vacuum depending on the temperature is the non-continuous behavior in this case. For the case
of second order phase transition, the true vacuum depending on the temperature is continuous
behavior.
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Figure 5.2: Behavior of EWPT for the case of 1stOPT. The effective potential of finite tem-
perature depends on the temperature vs order parameter.

5.4.2 First order electroweak phase transition for two Higgs doublet
model

The condition of strongly 1st order EWPT is realized by the non-decoupling effect due to
the additional scalar. Furthermore, we can test such scenario by measuring the deviation of the
triple Higgs boson coupling. In this section, we consider the two Higgs doublet model (2HDM)
as the example, based on [20,75–77].

Effective potential at zero temperature

The Higgs potential of the 2HDM is given by

V 2HDM
tree = m2

1|Φ1|2 +m2
2|Φ2|2 − (m2

3Φ
†
1Φ2 + h.c.)

+
1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

[
1

2
λ5(Φ

†
1Φ2)

2 + h.c.

]
.

where m2
1−3 are parameters with its mass dimension two, and λ1−5 is the self-coupling constants

of the scalar bosons. After the EWSB, the Higgs doublets are parametrized as

Φ1 =

(
w±

1√
2
(v1 + h+ i z1)

)
, Φ2 =

(
H+

1√
2
(v2 +H0 + iA0)

)
(5.10)

where ω± and z are Nambu-Goldstone bosons and v (≃ 246 GeV) is the vacuum expectation
value (VEV). The mass of h is set as mh = 125 GeV.

One-loop effective potential at zero temperature We parametrize m2
3 and the Higgs

VEVs as

M2 ≡ m2
3

sin β cos β
, ⟨Φ1⟩ =

(
0

1√
2
φ1

)
=

(
0

1√
2
φ cos β

)
, ⟨Φ2⟩ =

(
0

1√
2
φ2

)
=

(
0

1√
2
φ sin β

)
,(5.11)

and we take sin(β − α) = −1, tan β = 1, then

M2 = 2m2
3, ⟨Φ1⟩ = ⟨Φ2⟩ =

(
0
1
2
φ

)
. (5.12)
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For simplicity, we assume

λ1 = λ2 ≡ λ, m1 = m2 ≡ m. (5.13)

The mass formula of additional scalar bosons are given by

m2
H = M2 +

1

2
(λ− (λ3 + λ4 + λ5))v

2 =M2 +m2
h − (λ3 + λ4 + λ5)v

2, (5.14)

m2
A = M2 − λ5v

2, m2
H± =M2 − 1

2
(λ4 + λ5)v

2. (5.15)

We consider the case of degenerate additional scalar bosons mΦ = mH = mA = m±
H .

The one-loop effective potential at zero temperature is given by

Veff(φ, T = 0) = V0(φ) + ∆V1(φ) + V c.t.(φ). (5.16)

The tree level potential V0(φ) and the one-loop potential ∆V1(φ) are given by

V0(φ) = −µ
2

2
φ2 +

λ

8
φ4, (5.17)

∆V1(φ) =
∑
i

ni
64 π2

M4
i (φ)

{
ln
M2

i (φ)

Q2
− ci −∆

}
, (5.18)

where ci=3/2, ∆ = 1
ϵ
− γ + ln 4π, Mi(φ) and ni are the field-dependent mass and the degrees

of freedom for each particles Fi, respectively

nW±
L
= 4, nZL

= 2, nγL = 2, nW±
T
= 2, nZT

= 1, nγT = 1, nt = −12, nb = −12,

(5.19)

and Q is the renormalization scale. The counter term of the dimension full parameter µ2 is
given by

V c.t.(φ) = −1

2
δµ2φ2. (5.20)

If we define the renormalized vacuum expectation value v, the renormalized mass of the
Higgs boson mh at the one loop level by the following three conditions (DR renormalization
scheme),

0 ≡ ∂Veff(φ, T = 0)

∂φ

∣∣∣∣
φ=v

, m2
h ≡

∂2Veff(φ, T = 0)

∂φ2

∣∣∣∣
φ=v

,

we obtain

lnQ2 =

∑
i ni

(
∂M2

i (φ)

∂φ

∣∣
φ=v

)2
lnm2

i∑
i ni

(
∂M2

i (φ)

∂φ

∣∣
φ=v

)2 , δµ2 =
∑
i

nim
2
i

32π2v

∂M2
i (φ)

∂φ

∣∣∣∣
φ=v

(
ln
m2
i

Q2
− 1

)
,

where mi is the physical mass of the i-th particle running in the loop.
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Thus, the tree potential V0(φ) and the renormalized one-loop potential ∆V1(φ) are obtained
as

V0(φ) =
m2
h

8v2
(φ2 − v2)2, (5.21)

∆V1(φ) =
∑

i=W±,Z,γ,t,b

ni
64 π2

(
2m2

iM
2
i (φ) +M4

i (φ)

{
ln
M2

i (φ)

m2
i

− 3

2

}
+ {M4

i (φ)− 2m2
iM

2
i (φ)} ln

m2
i

Q2

)

+
∑
Φ

1

64 π2

(
2m2

Φ(M
2
Φ(φ)−M2) +M4

Φ(φ)

{
ln
M2

Φ(φ)

m2
Φ

− 3

2

}
+ {M4

Φ(φ)− 2m2
Φ(M

2
Φ(φ)−M2)} ln m

2
Φ

Q2

)
.

(5.22)

Here, we have neglected the one loop contribution of the Higgs boson.
The renormalized triple Higgs boson coupling is calculated at the one loop level in SM as

λ2HDM
hhh ≡ ∂3Veff(φ, T = 0)

∂φ3

∣∣∣∣
φ=v

=
3m2

h

v

{
1 +

m4
H

12π2m2
hv

2

(
1− M2

m2
H

)3

+
m4
A

12π2m2
hv

2

(
1− M2

m2
A

)3

+
m4
H±

6π2m2
hv

2

(
1− M2

m2
H±

)3

− Nctm
4
t

3π2m2
hv

2

}
(5.23)

The triple Higgs boson coupling at one-loop in the SM λSMhhh is approximately given by [75]

λSMhhh =
3m2

h

v

(
1− m4

t

π2m2
hv

2

)
. (5.24)

Then, deviation of the triple Higgs boson coupling from the SM is defined by

∆λhhh
λSMhhh

=
λ2HDM
hhh

λSMhhh
− 1. (5.25)

The behavior of ∆λhhh/λ
SM
hhh is shown in Fig. 5.3.

Effective potential at finite temperature

When we consider a ring-improved effective potential by replacing the field-dependent
masses in Eq. (9.5) as [78]

M2
i (φ) →M2

i (φ, T ) =M2
i (φ) + Πi(T ), (5.26)

where Πi(T ) is the finite temperature contribution to the self-energies, field dependent masses
of the gauge bosons in the one-loop contribution at zero temperature are replaced by thermally
corrected ones

∆V1(φ) → ∆V1(φ, T ). (5.27)

The thermally corrected field-dependent masses of the gauge bosons are explained by

M2(L,T )
g (φ, T ) =

φ2

4


g2

g2

g2 gg′

gg′ g′2

+ aL,Tg T 2


g2

g2

g2

g′2

 (5.28)
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Figure 5.3: The decoupling behavior of ∆λhhh/λ
SM
hhh. The mass of the heavy Higgs bosons

mΦ ≡ mH = mA = mH± is given by m2
Φ = λv2 +M2. This figure is based on [75,76].

in the (W+,W−,W 3, B) basis with aLg = 2 (11/6 in the absecce of the second Higgs doublet),
aTg = 0. Notice that only the self-energy for the longitudinal modes of the gauge bosons receive
thermal corrections. The field-dependent masses of fermions do not receive thermal corrections,

M2
t,b(φ) = m2

t,b

φ2

v2
. (5.29)

The thermally corrected field-dependent mass of the singlet scalars are explained by

M2
Φ(φ, T ) =M2 − 1

2
m2
h + (m2

Φ −M2 +
1

2
m2
h)
φ2

v2
, (5.30)

where ΠΦ(T ) = (T 2/12v2)(6m2
W± + 3m2

Z + 5m2
h + 4m2

Φ −M2 + 6m2
t + 6m2

b).
The effective potential at finite temperatures is given at the one-loop level by

Veff(φ, T ) = V0(φ) + ∆V1(φ, T ) + ∆VT (φ, T ). (5.31)

The finite-temperature contribution to the effective potential is written as

∆VT (φ, T ) =
T 4

2π2

 ∑
i=W±,Z,γ,S

niIB(a
2
i ) +

∑
i=t,b

niIF(a
2
i )

 (5.32)

where IB,F(a
2
i ) ≡

∫∞
0
dx x2 ln

(
1∓ exp

(
−
√
x2 + a2i

))
with ai = Mi(φ, T )/T . If we take a2 ≪

1, we can understand the behavior of IB,F(a
2
i ) approximately:

IB(a
2) = −π

4

45
+
π2

12
a2 − π

6
(a2)3/2 − a4

32

(
ln
a2

αB

− 3

2

)
+

ζ(3)

96(2π)2
a6 − ζ(5)

256(2π)4
a8 + · · · ,(5.33)

IF(a
2) =

7π4

360
− π2

24
a2 − a4

32

(
ln
a2

αF

− 3

2

)
+

7ζ(3)

96(2π)2
a6 − 31ζ(5)

256(2π)4
a8 + · · · , (5.34)
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where, lnαB = 2 ln(4π)− 2γE ≃ 3.91, lnαF = 2 ln π − 2γE ≃ 1.14 and γE is Euler constant.
We can calculate ϕc/Tc on each (M,mΦ) from above effective potential as shown in Fig. 5.4.
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Figure 5.4: The allowed region which satisfy φc/Tc > 1, where EWBG can be viable with the
strongly 1stOPT on the plane of mΦ and M Contours for the deviation in the hhh coupling
from the SM prediction are also shown. Bounds from vacuum stability is also shown. This
figure is based on [20].
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Chapter 6

Neutrinophilic two Higgs doublet model

If the neutrinophilic scalars in the νTHDM exist within the experimentally accessible en-
ergy scale (namely the TeV-scale), decays of the neutrinophilic charged scalar into leptons can
provide direct information on the neutrino mass matrix because it is proportional to the matrix
of new Yukawa coupling constants for the neutrinophilic scalar field [64, 79]. In such a case,
the smallness of a new VEV which is relevant to Dirac neutrino masses is interpreted by the
smallness of a soft-breaking parameter of the global U(1)X symmetry. Because lepton number
violation which is caused by masses of the Majorana neutrinos has not been discovered, it is
worth considering the possibility that neutrinos are not Majorana fermions but Dirac fermions
similarly to charged fermions. It seems then better to have a suppression mechanism for the
soft-breaking parameter by extending the νTHDM with TeV scale particles including a dark
matter candidate. The existence of dark matter has also been established in cosmological
observations [1, 3], and it is an important guideline for constructing new physics models.

The reason why the neutrino masses are tiny can be explained by a mechanism that the
interaction of neutrinos with the SM Higgs boson is generated via a loop diagram involving a
dark matter candidate in the loop while the interaction is forbidden at the tree level [25–27,80–
85]. Notice that smallness of neutrino masses in such radiative mechanisms does not require
new particles to be very heavy. Similarly, if neutrino masses arise from a new VEV, smallness
of neutrino masses can be explained by assuming that the VEV is generated at the loop level
by utilizing a dark matter candidate [86]. In this paper, we extend the νTHDM such that the
new VEV is generated at the one-loop level (see also Ref. [87]) where a dark matter candidate
is involved in the loop.

This chapter is organized as follows. The νTHDM is extended in Sec. 6.1 such that a small
VEV is generated via the one-loop diagram which involving a dark matter candidate in the
loop. Section 6.2 is devoted to discussion on phenomenology in the extended νTHDM. We
conclude in Sec. 6.3. This chapter is based on [88].

6.1 An extension of the νTHDM

Since we try to generate µ2
Φ12 in Eq. (3.19) at the loop level, it does not appear in the

Lagrangian. Then the U(1)X symmetry should be broken spontaneously. For the spontaneous
breaking, we rely on an additional scalar s01 which is a singlet field under the SM gauge group.
Similarly to the singlet Majoron model [89] where a VEV of a singlet field spontaneously
breaks the lepton number conservation by two units, the Nambu-Goldstone boson from s01 is

45
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νiR Φν =

(
ϕ+
ν

ϕ0
ν

)
η =

(
η+

η0

)
s01 s02

SU(2)L 1 2 2 1 1
U(1)Y 0 1/2 1/2 0 0

Global U(1)X 3 3 3/2 1 1/2

Table 6.1: New particles which are added to the SM in our model.

acceptable [89]; the Nambu-Goldstone boson couples first with only neutrinos among fermions.
If U(1)X-charges of Φν and s01 are 3 and 1, respectively, a dimension-5 operator (s01)

3Φ†
νΦ is

allowed by the U(1)X symmetry although Φ†
νΦ is forbidden. Then, µ2

Φ12 is generated from the
dimension-5 operator with the VEV of s01. In this paper, we show the simplest realization of
the dimension-5 operator at the one-loop level where dark matter candidates are involved in
the loop.

Table 6.1 is the list of new particles added to the SM. In the table, νiR and Φν are the
particles which exist in the νTHDM. The U(1)X symmetry is spontaneously broken by the
VEV of s01. We take a scenario where η and s02 do not have VEVs. Since their U(1)X-charges
are half-integers while the one for s01 is an integer, a Z2 symmetry remains unbroken after the
U(1)X breaking. Here, η and s02 are Z2-odd particles. The Z2 symmetry stabilizes the lightest
Z2-odd particle which can be a dark matter candidate.

The Yukawa interaction in this model is identical to those in the νTHDM (see Eq. (3.13)).
The scalar potential in this model is expressed as

V = −µ2
s1|s01|2 + µ2

s2|s02|2 − µ2
Φ1Φ

†Φ + µ2
Φ2Φ

†
νΦν + µ2

ηη
†η

−
(
µ s0∗1 (s02)

2 + h.c.
)

+
(
λsΦ1η s

0∗
1 (s02)

∗Φ†η + h.c.
)
+
(
λsΦ2η s

0
1s

0
2Φ

†
νη + h.c.

)
+ · · · . (6.1)

Only the relevant parts to our discussion are presented in Eq. (6.1). The other terms are
shown in Appendix. Parameters µ, λsΦ1η, and λsΦ2η are taken to be real and positive values by
rephasing of scalar fields without loss of generality. At the tree level, vν , v, and vs (=

√
2⟨s01⟩)

are given by

vν = 0,

(
v2

v2s

)
=

2

4λs1λΦ1 − λ2s1Φ1

(
2λs1 −λs1Φ1

−λs1Φ1 2λΦ1

)(
µ2
Φ1

µ2
s1

)
. (6.2)

The Z2-odd scalar fields (η and s02) result in the following particles: two CP-even neutral
scalars (H0

1 and H0
2), two CP-odd neutral ones (A0

1 and A0
2), and a pair of charged ones (H±).

It is clear that H± = η±. When H0
1 (or A0

1) is lighter than H±, the neutral one becomes the
dark matter candidate. On the other hand, from Z2-even scalar fields (Φ, Φν , and s

0
1), we have

three CP-even particles (h0, H0, and H0
ν ), two CP-odd ones (A0

ν and a massless z02), and a
pair of charged scalars (H±

ν ). The mixings between ϕ0
ν and others are ignored because we take

vν/v ≪ 1 and vν/vs ≪ 1. Then, Φν provides H0
ν (= ϕ0

νr), A
0
ν (= ϕ0

νi), and H
±
ν (= ϕ±

ν ). It is
easy to see that z02 = s01i, where s

0
1 = (vs + s01r + is01i) /

√
2. The formulae of scalar mixings and

scalar masses are presented in Appendix. Hereafter, we assume that scalar fields in Table 6.1
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Figure 6.1: The one-loop diagram of the leading contribution to (µ2
Φ12)eff [Φ

†
νΦ] with respect to

µ, λsΦ1η, and λsΦ2η.

are almost mass eigenstates just for simplicity, which is achieved when λsΦ1η and λs1Φ1 are
small.

By using cubic and quartic interactions shown in Eq. (6.1), the interaction Φ†
νΦ is obtained

with the one-loop diagram in Fig. 6.1. The coefficient (µ2
Φ12)eff of the interaction is calculated

as

(µ2
Φ12)eff =

µλsΦ1η λsΦ2η v
3
s

32
√
2π2(m2

η −m2
s2)

(
1−

m2
η

m2
η −m2

s2

ln
m2
η

m2
s2

)
, (6.3)

where m2
η ≡ µ2

η +
{(
λΦ1η + λ′Φ1η

)
v2 + λs1ηv

2
s

}
/2, m2

s2 ≡ µ2
s2 + (λs2Φ1v

2 + λs12v
2
s) /2. Ignoring

loop corrections to terms which exist at the tree-level, we finally arrive at

vν =
v (µ2

Φ12)eff
m2
H0

ν

, (6.4)

where m2
H0

ν
≡ µ2

Φ2+(λΦ12+λ
′
Φ12)v

2/2+λs1Φ2v
2
s/2 which is the mass of H0

ν (= ϕ0
νr). For example,

we have mν = O(0.1) eV for ms2 = O(10)GeV (as the dark matter mass), vs ∼ mη ∼ mHν
=

O(100)GeV, µ = O(1)GeV, yν = O(10−4), and λsΦ1η ∼ λsΦ2η = O(10−2).

6.2 Phenomenology
Hereafter, we take the following values of parameters as an example:

(yν)ℓi ∼ 10−4, λsΦ1η = λsΦ2η = 10−2, µ = 1GeV, vs = 300GeV,

mH0
ν
= mA0

ν
= m

H±
ν
= 300GeV, mH0

2
= 230GeV, mH0

1
= 60GeV.

(6.5)

These values can satisfy constraints from the ρ parameter, searches of lepton flavor violating
processes, the relic abundance of dark matter, and direct searches for dark matter. In order to
satisfy ρ ≃ 1, particles which come from an SU(2) multiplet have a common mass. IfH0

1 ≃ η0r for
example, we take mH± ∼ mA0

1
∼ mH0

1
. Since yν is not assumed to be very large, contributions

of H±
ν to lepton flavor violating decays of charged leptons are negligible. For example, the
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Figure 6.2: A possible signature of our model at the LHC.

branching ratio BR(µ→ eγ) [64] is proportional to |(yνy†ν)µe|2 and becomes about 10−22 which
is much smaller than the current bound at the MEG experiment [90]: BR(µ→ eγ) < 5.7×10−13

at the 90% confidence level.

6.2.1 Dark matter

We assume that the mixing between s02 and η
0 is negligible for simplicity, which corresponds

to the case λsΦ1η ≪ 1. Then, the dark matter candidate H0
1 is dominantly made from s02r

or η0r . We also assume that λs12|s01|2|s02|2 and λs1η|s01|2(η†η) are negligible in order to avoid
H0

1H0
1 → z02z

0
2 which would reduce the dark matter abundance too much. Notice that these

coupling constants (λs12 and λs1η) are not used in the loop diagram in Fig. 6.1. When H0
1 ≃ s02r,

the H0
1 is similar to the real singlet dark matter in Ref. [91]. Experimental constraints on the

singlet dark matter can be found e.g. in Ref. [92]. We see that 53GeV ≲ mH0
1
≲ 64GeV and

90GeV ≲ mH0
1
are allowed. On the other hand, when H0

1 ≃ η0r , the dark matter is similar to

the one in the so-called inert doublet model [29, 93]. See e.g. Refs. [94, 95] for experimental
constraints on the inert doublet model. It is shown that 45GeV ≲ mH0

1
≲ 80GeV is allowed.

In order to suppress the scattering of H0
1 on nuclei mediated by the Z boson, sufficient splitting

of mH0
1
and mA0

1
is required: mA0

1
−mH0

1
≳ 100 keV (See e.g. Ref. [95]). Values of mH0

1
and mH0

2

in Eq. (6.5) are obtained by using mη = 60GeV and ms = 231GeV in Eqs. (A.11) and (A.12)
in Appendix, and then these values of mη and ms give mA0

1
−mH0

1
≃ 400 keV.

Since we discuss in the next subsection a possible collider signature where H0
ν decays into

H0
1, a light dark matter (mH0

1
≃ mh0/2) is interesting such that H0

ν (and H±
ν ) can also be light.

We take mH0
1
= 60GeV as an example for both cases, H0

1 ≃ s02r and H0
1 ≃ η0r .

6.2.2 Collider

In the νTHDM as well as in our model, the neutrino mass matrix mν is simply proportional
to yν . The flavor structure of H+

ν → ℓLνR (summed over the neutrinos) is predicted [64] by
using current information onmν obtained by neutrino oscillation measurements. The prediction
enables the νTHDM to be tested at collider experiments. Since this advantage should not be
spoiled, H±

ν → H0
1H± (H±H0

2) should be forbidden for H0
1 ≃ s02r (H0

1 ≃ η0r). Therefore, we
assume that mH± satisfies m

H±
ν
≤ mH0

1
+mH± for H0

1 ≃ s02r or mH±
ν
≤ mH± +mH0

2
for H0

1 ≃ η0r ;
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for example, mH± = 250GeV (100GeV) for H0
1 ≃ s02r (η

0
r).

The process in Fig. 6.2 would be a characteristic collider signature of our model. Notice
that the process utilizes two coupling constants (λsΦ1η and λsΦ2η) which appear also in Fig. 6.1.
Thus, the process indicates that µ2

Φ12Φ
†
νΦ is radiatively generated with a contribution of dark

matter. In the original νTHDM in comparison, H0
ν decays into νν for the case withmH0

ν
= m

H±
ν
.

In order to observe the process in Fig. 6.2, the partial decay width Γ(H0
ν → H0

1H0
2) should be

larger than Γ(H0
ν → νν). Using our benchmark values, we have

Γ(H0
ν → νν) =

tr(y†νyν)mH0
ν

16π
≃ 60 eV, (6.6)

Γ(H0
ν → H0

1H0
2) =

λ2sΦ2ηv
2
s

64πmH0
ν

√√√√1−
(mH0

2
+mH0

1
)2

m2
H0

ν

√√√√1−
(mH0

2
−mH0

1
)2

m2
H0

ν

≃ 30 keV. (6.7)

Then, H0
ν decays into H0

1H0
2 dominantly1. If yν is large enough for µ → eγ to be discovered

in near future, the process in Fig. 6.2 becomes very rare because H0
ν → νν is the dominant

channel. Next, when the mixings between Z2-odd particles are negligible, H0
2 can decay only

into H0
1h

0 via λsΦ1η because H0
2 → H0

1H
0 is kinematically forbidden for the values in Eq. (6.5).

Thus, even if λsΦ1η is rather small, the branching ratio for H0
2 → H0

1h
0 can be almost 100%.

As a result, the process in Fig. 6.2 can be free from the one-loop suppression and smallness of
coupling constants (yν , λsΦ1η, and λsΦ2η) which are used to suppress vν . The cross section of
pp→ H+

ν H
0
ν +H

−
ν H

0
ν for the masses in Eq. (6.5) is 7 fb at the LHC with

√
s = 14TeV. The SM

background events come from tt, WZ, and tb. Cross sections for pp → tt, W+Z +W−Z, and
tb+ tb at the LHC with

√
s = 14TeV are 833 pb [96], 55.4 pb [97], and 3.91 pb [98], respectively.

Detailed analysis on kinematic cuts of the background events is beyond the scope of this paper.
If Nature chooses a parameter set for which the process in Fig. 6.2 is not possible, the

deviation from the νTHDM would be the increase of new scalar particles which might be
discovered directly and/or change predictions in the νTHDM about e.g. h0 → γγ.

6.3 Conclusions and discussion
The νTHDM is a new physics model where masses of Dirac neutrinos are generated by a

VEV (vν) of the second SU(2)L-doublet scalar field Φν which has a Yukawa interaction with
only νR because of a global U(1)X symmetry in the Lagrangian. We have presented a simple
extension of the νTHDM by introducing the third SU(2)L-doublet scalar field η and two neutral
SU(2)L singlet fields (s01 and s02). Although the global U(1)X is broken by a VEV of s01, there
remains a residual Z2 symmetry under which η and s02 are Z2-odd particles. These Z2-odd
particles provide a dark matter candidate. The vν for neutrino masses can be suppressed
without requiring very heavy particles because the VEV is generated at the one-loop level.

A possible signature of the deviation from the νTHDM at the LHC is ℓjbjb��ET via pp →
H+
ν H

0
ν followed by H+

ν → ℓν and H0
ν → H0

1H0
2 → H0

1H0
1h

0 → H0
1H0

1bb. Coupling constants
which control H0

ν → H0
1H0

2 and H0
2 → H0

1h
0 are the ones used in the one-loop diagram which

is the key to generate vν .

1Cascade decay of A0
ν results in H0

1H0
1z

0
2 which is invisible similarly to A0

ν → νν.





Chapter 7

Neutrino mass and dark matter from
gauged U(1)B−L breaking

If νR are introduced to the standard model of particle physics (SM), there are two possible
mass terms for neutrinos (See e.g., Ref. [99]), the Dirac type νLνR and the Majorana type
(νR)

cνR. In radiative seesaw models (See e.g., Refs. [25–27,81,86,88,100]), an ad hoc unbroken
Z2 symmetry forbids generating neutrino masses at the tree level and explains the dark mat-
ter (DM) stability. A model in Ref. [100] was constructed such that the breaking of the U(1)B−L

gauge symmetry gives a residual symmetry for the DM stability and the Majorana neutrino
mass of νR. However, the anomaly cancelation for the U(1)B−L gauge symmetry requires to
introduce more additional fermions except for particles for the radiative neutrino mass.

In this chapter, we propose a new model which is an improved version of the model in
Ref. [100] from the view point of the anomaly cancellation. With appropriate U(1)B−L charge
assignments, there exists an unbroken global U(1) symmetry even after the breakdown of the
U(1)B−L symmetry. The global U(1) symmetry stabilizes the DM, so that we hereafter call it
U(1)DM. In our work, the DM candidate is a new scalar boson. Furthermore, the Dirac mass
term of neutrinos is radiatively generated at the one-loop level due to the quantum effect of
the new particles. Tiny neutrino masses are explained by the two-loop diagrams with a Type-
I-Seesaw-like mechanism. We find that the model can satisfy current data from the neutrino
oscillation, the lepton flavor violation (LFV), the relic abundance and the direct search for the
DM, and the LHC experiment. This chapter is based on [101].

7.1 Model

We introduce new particles which listed in Table 7.1. We determine assignment of U(1)B−L

charges from conditions for cancellation of the [U(1)B−L]× [gravity]2 and [U(1)B−L]
3 anomalies;

3− 1

3
NνR

− 2

3
Nψ = 0, (7.1)

3− 1

27
NνR

+

(
−2x2 − 4

3
x− 8

27

)
Nψ = 0, (7.2)

where Nψ is the number of ψRi (the same as the number of ψLi), and NνR
is the number of νRa.

There are four solutions as presented in Table 7.2. Except for Case III, the U(1)B−L charges
of some new particles are irrational numbers while the U(1)B−L symmetry is spontaneously
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σ0 (νR)a (ψL)i (ψR)i η s0

SU(2)I 1 1 1 1 2 1
U(1)Y 0 0 0 0 1/2 0

U(1)B−L 2/3 −1/3 x+ 2/3 x x+ 1 x+ 1
Spin 0 1/2 1/2 1/2 0 0

Table 7.1: Particle contents in this model. Indices i and a run from 1 to Nψ and from 1 to NνR ,
respectively.

Case I Case II Case III Case IV

Nψ 1 2 3 4
NνR

7 5 3 1

x 2
√
3−1
3

√
6−1
3

1
3

√
3−1
3

Table 7.2: Sets of Nψ, NνR
and x, for which the U(1)B−L gauge symmetry is free from anomaly.

broken by the vacuum expectation value (VEV) of σ0 whose U(1)B−L charge is a rational num-
ber. Therefore, the irrational charges are conserved, and the lightest particle with an irrational
U(1)B−L charge becomes stable so that the particle can be regarded as a DM candidate. In this
chapter, we take Case IV as an example.

In addition to the SM one, the new Yukawa interactions are given by

LY = −(yR)i (νR)i (νR)
c
i (σ

0)∗ − (yψ)i (ψR)i (ψL)i (σ
0)∗ − hij (ψL)i (νR)j s

0 − fℓi (LL)ℓ (ψR)i η̃ + h.c.,(7.3)

where η̃ ≡ iσ2 η
∗. The scalar potential in our model is the same as that in the previous

model [100]:

V (Φ, σ, η, s) = −µ2
ϕΦ

†Φ + µ2
s|s0|2 + µ2

ηη
†η − µ2

σ|σ0|2 + µ3 (s
0 η†Φ + h.c.)

+ λϕ
(
Φ†Φ

)2
+ λs|s0|4 + λη

(
η†η
)2

+ λσ|σ0|4 + λsσ|s0|2|σ0|2

+ λsη|s0|2η†η + λsϕ|s0|2Φ†Φ + λση|σ0|2η†η + λσϕ|σ0|2Φ†Φ

+ λϕϕ(η
†η)(Φ†Φ) + ληϕ(η

†Φ)(Φ†η). (7.4)

Neutral scalar fields are given by ϕ0 = 1√
2
(ϕ0

r+izϕ), σ
0 = 1√

2
(σ0

r+izσ), η
0 = 1√

2
(η0r+iη

0
i ), s

0 =
1√
2
(s0r + is0i ). Two scalar fields ϕ0 and σ0 obtain VEVs vϕ [=

√
2 ⟨ϕ0⟩ = 246GeV] and vσ [=√

2 ⟨σ0⟩]. The VEV vσ provides a mass of the U(1)B−L gauge boson Z ′ as mZ′ = (2/3)gB−Lvσ,
where gB−L is the U(1)B−L gauge coupling constant. After the gauge symmetry breaking with
vϕ and vσ, we can confirm in Eqs. (7.3) and (7.4) that there is a residual global U(1)DM

symmetry, for which irrational U(1)B−L-charged particles (η, s0, ψLi, and ψRi) have the same
U(1)DM-charge while the other particles are neutral.

Two CP-even scalar particles h0 and H0 are obtained by ϕ0-σ0 mixing as sin 2θ0 = 2λσϕvϕvσ
/(m2

H0 −m2
h0). Two neutral complex scalars η0 and s0 are obtained by η0-s0 mixing as sin 2θ′0 =
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√
2µ3vϕ/(m

2
H0

2
−m2

H0
1
). Scalar masses are given by

m2
h0,H0 = λϕv

2
ϕ + λσv

2
σ ∓

√(
λϕv2ϕ − λσv2σ

)2
+ λ2σϕv

2
ϕv

2
σ, (7.5)

m2
H0

1,H0
2

=
1

2

(
m2
η +m2

s ∓
√(

m2
η −m2

s

)2
+ 2µ2

3v
2
ϕ

)
, (7.6)

where m2
η = µ2

η + (λϕϕ + ληϕ) v
2
ϕ/2 + λσηv

2
σ/2, m

2
s = µ2

s + λsϕv
2
ϕ/2 + λsσv

2
σ/2. The mass of the

charged scalar η± is m2
η± = m2

η − ληϕ v
2
σ/2. Nambu-Goldstone bosons zϕ and zσ are absorbed

by Z and Z ′ bosons, respectively.

7.2 Phenomenology

7.2.1 Neutrino masses

Tiny neutrino masses are generated by two-loop diagrams in Fig. 7.1 [100]. The mass matrix
mν is expressed in the flavor basis as

(mν)ℓℓ′ =

(
1

16π2

)2∑
i,j,a

fℓi hia (mR)a (h
T )aj (f

T )jℓ′
[
(I1)ija + (I2)ija

]
, (7.7)

where explicit formulas of (I1)ija and (I2)ija are shown in Ref. [101]. The neutrino mass matrix
(mν)ℓℓ′ is diagonalized by a unitary matrix UMNS, the so-called Maki-Nakagawa-Sakata (MNS)
matrix [65], as U †

MNSmν U
∗
MNS = diag(m1e

iα1 , m2e
iα2 , m3e

iα3). We take mi (i = 1-3) to be real
and positive values. Two differences of three phases αi are physical Majorana phases. In our
analysis, the following values [6, 9, 12] obtained by neutrino oscillation measurements are used
in order to search for a benchmark point of model parameters:

sin2 2θ23 = 1, sin2 2θ13 = 0.09, tan2 θ12 = 0.427, δ = 0,
{
α1, α2, α3

}
=
{
0, 0, 0

}
,

m1 = 10−4 eV,∆m2
21 = 7.46× 10−5 eV2,∆m2

32 = +2.51× 10−3 eV2,where ∆m2
ij ≡ m2

i −m2
j .

By using an ansatz [101] for the structure of Yukawa matrix fℓi, we found a benchmark
point as

f =

 1.79 −2.49 −1.97 2.56
−1.82 1.10 1.30 −0.818
1.40 −0.598 −0.905 0.222

× 10−2, h =
(
0.7 0.8 0.9 1

)T
,

{
gB−L, mZ′

}
=
{
0.1, 4TeV

}
,{

mh0 , mH0 , cos θ0
}
=
{
125GeV, 1TeV, 1

}
,
{
mH0

1
, mH0

2
, cos θ′0

}
=
{
60GeV, 450GeV, 0.05

}
,

mη± = 420GeV, (mR)1 = 250GeV,{
mψ1

, mψ2
, mψ3

, mψ4

}
=
{
650GeV, 750GeV, 850GeV, 950GeV

}
.

The values of {mh0 , mH0 , cos θ0} correspond to λϕ ≃ 0.13, λσ ≃ 2.8 × 10−4 and λσϕ = 0.
The values of {mH0

1
, mH0

2
, cos θ′0} and mη± can be produced by ms ≃ 60GeV, mη ≃ 450GeV,

µ3 ≃ 57GeV and ληϕ ≃ 0.86.
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Figure 7.1: Two-loop diagrams for tiny neutrino masses in this model. Bold (red) lines are
propagators of particles of irrational U(1)B−L charges.

7.2.2 Lepton flavor violation

We consider the condition of the LFV decays of charged leptons. The charged scalar η±

contributes to the branching ratio (BR) of µ→ eγ whose formula have been calculated [102]. At
the benchmark point, we have BR(µ→ eγ) = 6.1× 10−14 which satisfies the current constraint
BR(µ→ eγ) < 5.7× 10−13 (90% C.L.) [103].

7.2.3 Dark matter

In our model, the scalar H0
1 turns out to be the DM candidate due to the following reason.

If the DM is the fermion ψ1, it annihilates into a pair of SM particles via the s-channel process
mediated by h0 and H0. Even for a maximal mixing cos θ0 = 1/

√
2 [104], the observed abun-

dance of the DM [4] requires vσ ≲ 10TeV. The current constraint from direct searches of the
DM [105] requires larger vσ in order to suppress the Z ′ contribution.

The scalar DM H0
1 at the benchmark point is dominantly made from s0 which is a gauge-

singlet field under the SM gauge group, because of the tiny mixing cos θ′0 = 0.05. The an-
nihilation of H0

1 into a pair of the SM particles is dominantly caused by the s-channel scalar
mediation via h0 [106] because H0 is assumed to be heavy. The coupling constant λH0

1H0
1h

0 for

the λH0
1H0

1h
0 vϕH0

1H0∗
1 h

0 interaction controls the annihilation cross section, the invisible decay

h0 → H0
1H0∗

1 in the case of kinematically accessible, and the h0 contribution to the spin-
independent scattering cross section σSI on a nucleon. In Ref. [107], for example, we see that
H0

1 with mH0
1
= 60GeV and λH0

1H0
1h

0 ∼ 10−3 can satisfy constraints from the relic abundance of

the DM and the invisible decay of h0. We see also that the h0 contribution to σSI is small enough
to satisfy the current constraint σSI < 9.2× 10−46 cm2 for mDM = 60GeV [105]. Although the
scattering of H0

1 on a nucleon is mediated also by the Z ′ boson in this model, the contribution
can be suppressed by taking a large vσ. The benchmark point corresponds to vσ = 60TeV and
gives about 6.6 × 10−47 cm2 for the scattering cross section via Z ′, which is smaller than the
current constraint [105] by an order of magnitude. Thus, the constraint from the direct search
of the DM is also satisfied at the benchmark point.
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q q ℓ ℓ νLνL νRνR ψ1ψ1 ψ2ψ2 ψ3ψ3 ψ4ψ4 H0
1H0∗

1 H0
2H0∗

2 η+η−

0.21 0.32 0.16 0.0059 0.046 0.045 0.044 0.043 0.041 0.038 0.039

Table 7.3: Branching ratios of Z ′ decays.

7.2.4 Z’ and νR search

The LEP-II bound mZ′/gB−L ≳ 7TeV [108] is satisfied at the benchmark point because of
mZ′/gB−L = 40TeV which we take for a sufficient suppression of σSI for the direct search of the
DM. The production cross section of Z ′ with gB−L = 0.1 and mZ′ = 4TeV is about 0.3 fb at the
LHC with

√
s = 14TeV [109]. Notice that the current bound mZ′ ≳ 3TeV at the LHC [110] is

for the case where the gauge coupling for Z ′ is the same as the one for Z, namely gB−L ≃ 0.7.
Decay branching ratios of Z ′ are shown at the benchmark point in Table 7.3. Decays of ψi are
dominated by ψi → νRH0

1 with the Yukawa coupling constants hi1 because yℓi for ψi → ℓ±η∓

are small in order to satisfy the µ → eγ constraint. The H0
2 (≃ η0) decays into h0H0

1 via the
trilinear coupling constant µ3. The main decay mode of η± is η± → W±H0

1 through the mixing
θ′0 between η0 and s0.

The νR decay into H0 is forbidden because it is heavier than νR at the benchmark point.
Since the B−L charge of νR is rather small, νR is not produced directly from Z ′. However, νR
can be produced through the decays of ψi. As a result, about 18% of Z ′ produces νR. For
νR → Wℓ (56%) followed by the hadronic decay of W (68%), the νR would be reconstructed.
In this model, an invariant mass of a pair of the reconstructed νR is not at mZ′ in contrast with
a naive model where only three νR with B−L = −1 are introduced to the SM. This feature of
νR also enables us to distinguish this model from the previous model in Ref. [100] where νR
with B−L = 1 can be directly produced by the Z ′ decay.

7.3 Conclusions

We have improved the model in Ref. [100] by considering anomaly cancellation of the
U(1)B−L gauge symmetry. We have shown that there are four anomaly-free cases of B−L
charge assignment, and three of them have an unbroken global U(1)DM symmetry. The U(1)DM

guarantees that the lightest U(1)DM-charged particle is stable such that it can be regarded as
a DM candidate. The spontaneous breaking of the U(1)B−L symmetry generates the Majorana
mass term of νR and masses of new fermions ψ. In addition, the Dirac mass term of neutrinos
is generated at the one-loop level where the DM candidate involved in the loop. Tiny neutrino
masses are obtained at the two-loop level.

The case of the fermion DM is excluded, and the lightest U(1)DM-charged scalar H0
1 should

be the DM in this model. We have found a benchmark point of model parameters which
satisfies current constraints from neutrino oscillation data, lepton flavor violation searches, the
relic abundance of the DM, direct searches for the DM, and the LHC experiments. In such
radiative seesaw models, νR would be produced at the LHC. In our model, νR cannot be directly
produced by the Z ′ decay, but can be produced by the cascade decay Z ′ → ψiψi → νRνRH0

1H0∗
1 .

By the unusual B−L charge of νR, the invariant mass distribution of νRνR does not take a peak
at mZ′ , which could be a characteristic signal.





Part IV

Higgs inflation in a radiative seesaw
model
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Chapter 8

Higgs inflation in a radiative seesaw model

There are some theoretical problems in the simplest Higgs inflation model [18]. When we
calculate the running coupling constant of the Higgs self-coupling, the critical energy scale is
around 1010 GeV due to the contribution of the top quark [28]. The vacuum is difficult to be
stable up to the inflation scale ΛI. This problem can be solved in two Higgs doublet models [29].
Because the loop effect of additional scalar bosons weakens the top-loop contribution in the
running coupling constants [30]. Perturbative unitarity is also violated at the energy scale
ΛU = MP/ξ by the Higgs-gauge scattering processes [31]. This problem is solved by a heavy
additional real singlet scalar boson which does not interact with gauge fields as shown by [32].

In this chapter, we explain not only dark matter, neutrino masses but also inflation. We show
a radiative seesaw scenario with the multi-Higgs structure, which was proposed by E. Ma [26],
is constrained by the inflation condition. We discuss the testability of the characteristic mass
spectrum at the collider experiments. This chapter is based on [111].

8.1 Model

In our model, we introduce the second scalar doublet Φ2, right handed neutrinos ν iR (i =
1− 3) and real singlet scalar σ and impose quantum numbers under the an unbroken discrete
Z2 symmetry shown in Table 8.1.

The Yukawa interaction for leptons and the Majorana mass term are given by

LYukawa = YℓLLΦ1ℓR + YνLLΦ
c
2νR + h.c. , LMajorana =

1

2
Mk

R(ν
k
R)

cνkR, (8.1)

where the superscript c denotes the charge conjugation. In the Feynman diagram in Fig. 8.1,
which is explained by Ref. [26], the extra lightest neutral particle can be a dark matter candidate

QL uR dR LL ℓR Φ1 Φ2 νR σ

SU(3)C 3 3 3 1 1 1 1 1 1
SU(2)I 2 1 1 2 1 2 2 1 1
U(1)Y

1
6

2
3

−1
3

−1
2

−1 1
2

1
2

0 0
Z2 1 1 1 1 1 1 −1 −1 −1

Table 8.1: Particle contents and their quantum charges.
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Figure 8.1: The Feynman diagram for tiny neutrino masses.

by Z2 symmetry. We can explain neutrino masses at the loop level by

(mν)ij =
∑
k

(Yν)
k
i (Yν)

k
jM

k
R

16π2

[
m2
H

m2
H −

(
Mk

R

)2 ln m2
H(

Mk
R

)2 − m2
A

m2
A −

(
Mk

R

)2 ln m2
A(

Mk
R

)2
]
. (8.2)

The neutrino oscillation data is explained by neutrino Yukawa coupling constants (Yν)
k
i , which

satisfy (Yν)
k
i (Yν)

k
j/M

k
R ≃ O(10−7) GeV−1.

The Higgs potential is given by

VJ =
1

2

(
1 +

2ξ1|Φ1|2 + 2ξ2|Φ2|2 + ζσ2

M2
P

)
M2

PR

+ µ2
1|Φ1|2 + µ2

2|Φ2|2 + µ2
σσ

2 + µσϕ[σ(Φ
†
1Φ2)

2 + h.c.] +
1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λσσ

4

+ λ3|Φ1|2|Φ2|2 + λ4(Φ
†
1Φ2)(Φ

†
2Φ1) +

1

2
λ5[(Φ

†
1Φ2)

2 + h.c.] + λσ1|Φ1|2σ2 + λσ2|Φ2|2σ2.(8.3)

When we assume µ2
1 <0 and µ2

2 > 0, Φ1 obtains the vacuum expectation value (VEV) v
(=
√
−2µ2

1/λ1), while Φ2, which has the odd-quantum number of the Z2 symmetry, cannot get
the VEV. Mass eigenstates of the scalar bosons are the SM-like Z2-even Higgs scalar boson h,
the Z2-odd CP-even scalar boson H, the Z2-odd CP-odd scalar boson A and Z2-odd charged
scalar bosons H±. Masses of these scalar bosons are given in Ref. [26]; m2

h = λ1v
2, m2

H =
µ2
2 + (λ3 + λ4 + λ5)v

2/2, m2
A = µ2

2 + (λ3 + λ4 − λ5)v
2/2, m2

H± = µ2
2 + λ3v

2/2. As the Z2-odd
neutral singlet scalar σ is constrained by perturbative unitarity [112]: mσ ≤ ΛU , we assume that
mσ is heavy enough, so that it gives an insignificant effect on phenomenology. For simplicity,
we take µσϕ = λσ1 = λσ2 = 0 and ξ1 ≃ ξ2 ≪ ζ. We study parameter regions which satisfy the
conditions of vacuum stability and perturbative unitarity.

8.2 Constraints on the parameters
The Higgs potential in the Einstein frame is given by

VE =
VJ
Ω4

=
M4

P

8

λ1h
4
1 + λ2h

4
2 + λσσ

4 + 2{λ3 + λ4 + λ5 cos(2θ)}h21h22 + λσ1h
2
1σ

2 + λσ2h
2
2σ

2

(M2
P + ξ1h21 + ξ2h22 + ζσ2)2

,(8.4)
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where

Ω2 = 1 +
2ξ1|Φ1|2 + 2ξ2|Φ2|2 + ζσ2

M2
P

, Φ1 =

(
0
h1

)
, Φ2 =

(
0

h2e
iθ

)
. (8.5)

For small field values Ω2 ≃ 1, the potential is the same as Jordan frame for the initial
Higgs field (VE ≃ VJ). On the other hand, for large fields values Ω2 ≫ 1, we define φ ≡√

3/2MP lnΩ2, r2 ≡ h2/h1, rσ ≡ σ/h1. For stabilizing r2, rσ as a finite value, we need to
impose following condition:

λ1λ2 − (λ3 + λ4)
2 > 0. (8.6)

This is the constraint from the inflation on our model because the heavy particle σ dominantly
plays a role of inflaton.

The CP-odd boson A is assumed to be the lightest Z2-odd particle; i.e., the dark matter
candidate. When we change the sign of the coupling constant λ5, the similar discussion can be
applied for the case of the CP-even boson H to be the lightest. As λ5 can be sizable which
is not constrained from the inflation, the dominant scattering process is AN → AN (N is a
nucleon) where the standard model-like Higgs boson is propagating. We can avoid the process
AN → HN kinematically, and the cross section is consistent with the current direct search
results for dark matter. As shown in [113,114], the cross section of AN → AN process is

σ(AN → AN) ≃ λ2hAA
4m4

h

m2
N

π(mA +mN)2
f 2
N , (8.7)

where λhAA ≡ λ3 + λ4 − λ5, fN ≡
∑

qmNfTq + (2/9)mNfTG and mN is the mass of nucleon,
where fTu + fTd = 0.056, fTs = 0 [115] and fTG = 0.944 [116]. To satisfy the data of the dark
matter relic abundance from the Planck experiment [4] and the data of the upper bound on
the scattering cross section for AN → AN from the experiments σ ≃ 2 × 10−45cm2 [117, 118],
the coupling constant λhAA is required to satisfy

λhAA ≲ 0.036, (8.8)

at the electroweak scale. When λ5 is not small, the co-annihilation process AH → XX via the
Z boson does not contribute to the dark matter relic abundance. This case is the same as the
singlet scalar dark matter model [107, 119]. On the other hand, to avoid the current invisible
decay h → AA kinematically [120, 121], mA must be bigger than mh/2. To satisfy these dark
matter conditions, we require

63 GeV ≲ mA ≲ 66 GeV. (8.9)

Take into account the above conditions, the vacuum stability condition

λ1 > 0, λ2 > 0,
√
λ1λ2 + λ3 +min[0, λ4 + λ5, λ4 − λ5] > 0, (8.10)

and the conditions of triviality λi ≲ 2π, we analyze the renormalization group equations [52].
In Fig. 8.2, running of the scalar coupling constants is shown between the electroweak scale
and the inflation scale. In Table 8.2, we show the values of the scalar coupling constants at the
scales of O(102) GeV and O(1017) GeV, which satisfy the conditions of the dark matter and
the inflation. From this parameter set, mass spectrum of the scalar bosons is constrained by

mH ≲ 100 GeV, 142 GeV ≲ mH± ≲ 146 GeV. (8.11)
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Figure 8.2: Running of the scalar coupling constants. Red (solid), blue (dashed), brown (dot-
dashed), green (dotted) and black (long-dashed) curves show λ1, λ2, λ3, |λ4| and λ5, respectively.

λ1 λ2 λ3 λ4 λ5
102 GeV 0.262 0.335 0.514 −0.503 4.35×10−3

1017 GeV 1.74 6.28 6.60 −3.30 5.57×10−3

Table 8.2: The possible parameter set which satisfies constraints from the inflation condition
and the dark matter data at the scales of 102 GeV and 1017 GeV.

8.3 Collider Phenomenology
In this scenario, mH± is about 140 GeV. This value satisfies the lower bound from the LEP

experiment [122,123]. From the measurement of the Z boson decay width, mH +mA is greater
than mZ [122,124]. Moreover, the direct detection of dark matter at LEP give a constraint on
HA pair production [124]. Because of the constraint from the inflation mH ≲ 100 GeV, the
mass difference between the two inert scalar bosons is allowed only in a narrow region [122,124]:

mH −mA < 8 GeV. (8.12)

In Ref. [125], the collider phenomenology in the inert doublet model is discussed at the
LHC with

√
s = 14 TeV. According to their work, the process of qq → Z → HA→ Z(∗)AA→

ℓ+ℓ−AA is dominant. They chose the mass difference of inert neutral scalar bosons to be 10,
50 and 70 GeV. As mA is 65 GeV in our model, if the mass difference becomes large, inflation
condition Eq. (8.6) cannot be satisfied. On the contrary, if the mass difference become small,
the signal is also small (S/

√
B = 0.02). Therefore, the model is difficult to be tested at the

LHC.
Let us discuss the signals ofH,A andH± at the ILC with

√
s = 500 GeV. In this analysis, we

use Calchep 2.5.6 for numerical evaluation [126]. The detail which contains background analysis
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Figure 8.3: The signal of HA production
at the ILC.

Figure 8.4: The signal of H+H− produc-
tion at the ILC.
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AAjj. In our parameter set, the end-
point in the Ejj distribution is estimated at
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of inert doublet model is disused in the paper [127] which is applicable to our model. First, the
dominant signal of the HA production process is e+e− → Z∗ → HA→ AAZ∗ → AAjj (j: jet,
Z∗: off-shell Z boson) shown in Fig. 8.3. The final state is two jets with a missing momentum.
The energy of the two-jet system Ejj satisfies the following equation because of the kinematical
constraint given as

m2
H −m2

A

4m2
H

(√
s−

√
s− 4m2

H

)
< Ejj <

m2
H −m2

A

4m2
H

(√
s+

√
s− 4m2

H

)
. (8.13)

When the center of mass energy is
√
s = 500 GeV, Ejj is evaluated by using our parameter set

as 0.28 GeV < Ejj < 15 GeV. The distribution of Ejj of the cross section for this prosecc is
shown in Fig. 8.5. We expect that mH and mA can be measured by using the endpoints in the
Ejj distribution at the ILC after the background reduction.
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Next, the dominant signal of the H+H− production process is e+e− → Z∗(γ∗) → H+H− →
W+(∗)W−(∗)AA → jjlνAA (W±(∗) is off-shell W boson) as shown in Fig. 8.4. The final state
of this process is a charged lepton and two jets with the missing momentum. From the same
discussion, the energy of the two-jet system, Ejj is constrained as

m2
H± −m2

A

4m2
H±

(√
s−

√
s− 4mH±

)
< Ejj <

m2
H± −m2

A

4m2
H±

(√
s+

√
s− 4mH±

)
. (8.14)

When the center of mass energy is
√
s = 500 GeV, Ejj is evaluated by using our parameter

set as 17 GeV < Ejj < 180 GeV. The distribution of Ejj of the cross section for this process
is shown in Fig. 8.6. We expect that mH± and mA can be measured by using the endpoints
in the Ejj distribution at the ILC after the background reduction. Backgrounds could also be
reduced by imposing kinematic cuts. We can measure mH± and mA by observing the endpoints
in the Ejj distribution at the ILC.

8.4 Conclusion
In the original Higgs inflation scenario, it would be difficult to satisfy perturbative unitarity

and vacuum stability. These problems can be solved by considering multi-Higgs models. In the
framework of the radiative seesaw scenario with the multi-Higgs structure, we can explain not
only dark matter, neutrino masses but also inflation. This scenario would be testable at the
ILC by measuring the energy distribution of the inert scalar pair production.
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Chapter 9

O(N) scalar singlet model

As a possible alternative method to test the strongly 1stOPT, we may be able to utilize fu-
ture observation of gravitational waves (GWs) [33]. On February 11th, the first direct detection
of GWs emitted by the merger of black holes at Advanced LIGO [34] was reported [35]. Fur-
thermore, a number of observatories such as KAGRA [36], Advanced VIRGO [37] are trying to
detect them. The target frequencies of GWs correspond to those from astronomical phenomena
such as the binary of neutron stars, black holes, etc.. Once the GWs are detected in the near
future, the era of GW astronomy will come true. Spectroscopy of GWs will make it possible to
explore phenomena at the very early stage of the Universe, such as a strongly 1stOPT, cosmic
inflation, topological defects like cosmic strings, domain wall, etc.

GWs originated from the strongly 1stOPT have been discussed in a model independent way
in Refs. [38,40–42,44]. In the effective theory approach with higher order operators the possibil-
ity of detecting such GWs was studied by Delaunay et al. [46]. Apreda et al. evaluated spectra
of GWs from the strongly 1stOPT due to thermal loop effects in the minimal supersymmetric
SM (MSSM) [47], although such a scenario was already excluded by the LHC data. Espinosa et
al. studied spectra of GWs in extended scalar sectors with the O(N) symmetry [48, 49]. GWs
from the non-thermal 1stOPT were investigated in singlet extensions of the SM [50] and the
MSSM [47] and in the left-right symmetric model [51].

In this chapter, we discuss the possibility that future detailed observation of GWs is useful
not only to test the electroweak 1stOPT but also as a probe of extended scalar sectors and
further the physics behind. To this end, we evaluate spectra of GWs from the strongly 1stOPT
at the EWSB in a set of extended scalar sectors with additional N isospin-singlet fields as an
example of renormalizable theories which can cause the 1stOPT thermally. We find that the
relic density of the produced GWs can be so significant that they are detectable at future GW
interferometers such as DECIGO [128] and BBO [129]. The spectra depend on N and the mass
of the additional scalar fields. We conclude that GWs can be a useful probe of physics behind
the Higgs sector. This chapter is based on [130].

67
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9.1 Model

9.1.1 Tree level scalar potential

We consider a set of extensions of the SM with additional N isospin-singlet scalars S⃗ =
(S1, S2, · · · , SN)T invariant under an O(N) symmetry,

V0(Φ, S⃗) = VSM(Φ) +
µ2
S

2
|S⃗|2 + λS

4
|S⃗|4 + λΦS

2
|Φ|2|S⃗|2,

where VSM is the Higgs potential of the SM. After the EWSB, the SM Higgs doublet is
parametrized as

Φ =

(
ω+

1√
2
(v + h+ iz)

)
where ω± and z are Nambu-Goldstone bosons and v (≃ 246 GeV) is the vacuum expectation
value (VEV). The O(N) symmetry is assumed not to be spontaneously broken. The mass of h
is set as mh = 125 GeV, and the common mass of Si is given at the tree level by

m2
S = µ2

S +
λΦS
2
v2. (9.1)

We take mS, µ
2
S and λS as input free parameters in the scalar sector.

9.1.2 Theoretical constraints

The conditions for vacuum stability are given by

λ > 0, λS > 0,
√

2λλS + λΦS > 0. (9.2)

As for the constraint from perturbative unitarity for the S-wave amplitudes of two body elastic
scatterings of longitudinally polarized weak bosons and all scalar bosons of the model, we obtain
the strongest bound as

3λ+ (N + 2)λS +
√
{3λ− (N + 2)λS}2 + 4Nλ2ΦS < 16π. (9.3)

For the derivation of the above constraint, see Appendix. C.

9.2 One loop effective potential at zero temperature

9.2.1 Renormalized effective potential

Order parameters are given by

⟨Φ⟩ = 1√
2
φ,

⟨
S⃗
⟩
= 0. (9.4)

The one-loop effective potential at zero temperature is given by

Veff(φ, T = 0) = V0(φ) + ∆V1(φ) + V c.t.(φ). (9.5)
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The tree level potential V0(φ) and the one-loop potential ∆V1(φ) are given by

V0(φ) = −µ
2

2
φ2 +

λ

8
φ4, ∆V1(φ) =

∑
i

ni
64 π2

M4
i (φ)

{
ln
M2

i (φ)

Q2
− ci −∆

}
, (9.6)

where ci=3/2, ∆ = 1/ϵ− γ+ ln 4π, Mi(φ) and ni are the field-dependent mass and the degrees
of freedom for each particles Fi, respectively

nW±
L
= 4, nZL

= 2, nγL = 2,

nW±
T
= 2, nZT

= 1, nγT = 1,

nt = −12, nb = −12, nS = N, (9.7)

and Q is the renormalization scale. The counter term of the dimension full parameter µ2 is
given by

V c.t.(φ) = −1

2
δµ2φ2. (9.8)

If we define the renormalized vacuum expectation value v, the renormalized mass of the
Higgs boson mh and the renormalized Higgs self-coupling at the one loop level by the following
three conditions (DR renormalization scheme),

0 ≡ ∂Veff(φ, T = 0)

∂φ

∣∣∣∣
φ=v

, m2
h ≡

∂2Veff(φ, T = 0)

∂φ2

∣∣∣∣
φ=v

, (9.9)

we obtain

lnQ2 =

∑
i ni

(
∂M2

i (φ)

∂φ

∣∣
φ=v

)2
lnm2

i∑
i ni

(
∂M2

i (φ)

∂φ

∣∣
φ=v

)2 , δµ2 =
∑
i

nim
2
i

32π2v

∂M2
i (φ)

∂φ

∣∣∣∣
φ=v

(
ln
m2
i

Q2
− 1

)
, (9.10)

where mi is the physical mass of the i-th particle running in the loop.

Thus, the tree level potential V0(φ) and the renormalized one-loop potential ∆V1(φ) are
obtained as

V0(φ) =
m2
h

8v2
(φ2 − v2)2, (9.11)

∆V1(φ) =
∑

i=W±,Z,γ,t,b

ni
64 π2

(
2m2

iM
2
i (φ) +M4

i (φ)

{
ln
M2

i (φ)

m2
i

− 3

2

}
+ {M4

i (φ)− 2m2
iM

2
i (φ)} ln

m2
i

Q2

)

+
N

64 π2

(
2m2

S(M
2
S(φ)− µ2

S) +M4
S(φ)

{
ln
M2

S(φ)

m2
S

− 3

2

}
+ {M4

S(φ)− 2m2
S(M

2
S(φ)− µ2

S)} ln
m2
S

Q2

)
.

(9.12)

Here, we have neglected the one loop contribution of the Higgs boson.
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9.2.2 Triple Higgs boson coupling

The renormalized triple Higgs boson coupling is calculated at the one loop level in our model
as

λhhh ≡
∂3Veff(φ, T = 0)

∂φ3

∣∣∣∣
φ=v

=
3m2

h

v

{
1− 1

π2

m4
t

v2m2
h

+
N

12π2

m4
S

v2m2
h

(
1− µ2

S

m2
S

)3
}
. (9.13)

There are two sources for the physical common mass mS of the scalar fields Si, as shown in
Eq. (9.1). If mS is large because of a large value of µS, the one loop correction in Eq. (9.13)
decouples in the large mass limit. Instead, if µS is relatively small as v, the one loop contribution
does not decouple and a quartic powerlike contribution for the mass remains in λhhh [75]. On
the other hand, the triple Higgs boson coupling at one-loop in SM λSMhhh is approximately given
by [75]

λSMhhh =
3m2

h

v

(
1− m4

t

π2m2
hv

2

)
. (9.14)

Then, deviation of the triple Higgs boson coupling is defined by

∆λhhh
λSMhhh

=
λhhh
λSMhhh

− 1. (9.15)

9.3 One loop effective potential at finite temperature

9.3.1 Thermal mass

When we consider a ring-improved effective potential by replacing the field-dependent
masses in Eq. (9.5) as [78]

M2
i (φ) →M2

i (φ, T ) =M2
i (φ) + Πi(T ), (9.16)

where Πi(T ) is the finite temperature contribution to the self-energies, field dependent masses
of the gauge bosons in the one-loop contribution at zero temperature are replaced by thermally
corrected ones,

∆V1(φ) → ∆V1(φ, T ). (9.17)

The thermally corrected field-dependent masses of the gauge bosons are explained by

M2(L,T )
g (φ, T ) =

φ2

4


g2

g2

g2 gg′

gg′ g′2

+ aL,Tg T 2


g2

g2

g2

g′2

 (9.18)
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in the (W+,W−,W 3, B) basis with aLg = 11/6, aTg = 0. Notice that only the self-energy for
the longitudinal modes of the gauge bosons receive thermal corrections. The field-dependent
masses of fermions do not receive thermal corrections,

M2
t,b(φ) = m2

t,b

φ2

v2
. (9.19)

The thermally corrected field-dependent mass of the singlet scalars are explained by

M2
S(φ, T ) = (m2

S − µ2
S)
φ2

v2
+ µ2

S +ΠS(T ), (9.20)

where

ΠS(T ) =
T 2

12v2
[(N + 2)λSv

2 + 4(m2
S − µ2

S)]. (9.21)

9.3.2 Effective potential at finite temperature

The effective potential at finite temperatures is given at the one-loop level by

Veff(φ, T ) = V0(φ) + ∆V1(φ, T ) + ∆VT (φ, T ). (9.22)

The finite-temperature contribution to the effective potential is written as

∆VT (φ, T ) =
T 4

2π2

 ∑
i=W±,Z,γ,S

niIB(a
2
i ) +

∑
i=t,b

niIF(a
2
i )

 (9.23)

where

IB,F(a
2
i ) ≡

∫ ∞

0

dx x2 ln

[
1∓ exp

(
−
√
x2 + a2i

)]
, (9.24)

with ai =Mi(φ, T )/T .

9.3.3 First order electroweak phase transition

We can calculate φc/Tc numerically without using high temperature expansion by using the
ring-improved finite temperature effective potential in Eq. (9.22). We show the region which
satisfies both φc/Tc > 1 and Γ/H4|T=Tt ≃ 1 (discussed in Sec. 9.3.4), where EWBG can be
viable with the strongly 1stOPT on the plane of N and mS in Fig. 9.1 (left) and on the plane
of
√
µ2
S and mS in Fig. 9.1 (right). In Fig. 9.1 (left), to obtain maximal non-decoupling effects,

we set µ2
S to be 0. In Fig. 9.1 (right), we show the results for N = 12. We also show contour

plots for the deviation in the hhh coupling from the SM prediction.
We find that, as indicated in Ref. [20] in the case of the two Higgs doublet model (2HDM),

significant deviations in the hhh coupling appear in the allowed region of the strongly 1stOPT.
Notice that the scenario of the 2HDM in Ref. [20] corresponds to N = 4 in our model [?]. We
emphasize that the correlation between the strongly 1stOPT and the large deviation in the hhh
coupling is a common feature of the models where the condition of quick sphaleron decoupling
is satisfied by the thermal loop effects of additional scalar bosons. This property can be utilized
to test scenarios of EWBG by measuring the hhh coupling at the ILC as we already pointed
out.
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Figure 9.1: The allowed region which satisfies both φc/Tc > 1 and Γ/H4|T=Tt ≃ 1, where
EWBG can be viable with the strongly 1stOPT on the plane of N and mS in the left figure and
on the plane of

√
µ2
S and mS in the right figure. We set µ2

S = 0 for the left figure, and N = 12
for the right figure. Contours for the deviation in the hhh coupling from the SM prediction are
also shown in both figures. Bounds from vacuum stability and perturbative unitarity are also
shown for λS = 0.

9.3.4 Characteristic parameters of phase transition

On the other hand, characteristic parameters of phase transition can be also calculated from
the effective potential in Eq. (9.22). The parameter α is the ratio of the false-vacuum energy
density ϵ(T ) and the thermal energy density ρrad(T ) in the symmetric phase by

α ≡ ϵ(Tt)

ρrad(Tt)

and

ϵ(T ) ≡ −∆Veff(φB(T ), T ) + T
∂∆Veff(φB(T ), T )

∂T
,

where ∆Veff(φ(T ), T ) is the free energy density with respect to that of the symmetric phase,
and φB(T ) is the broken phase minimum at T . The radiation energy density is given by
ρrad(T ) = (π2/30)g∗(T )T

4.

The parameter β is defined as

β ≡ −dSE
dt

∣∣∣∣
t=tt

≃ 1

Γ

dΓ

dt

∣∣∣∣∣
t=tt

,
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Figure 9.2: The allowed region on (α, β̃) plane which satisfies both φc/Tc > 1 and Γ/H4|T=Tt ≃
1 in Fig. fig1. We set µ2

S = 0 for the left figure, and N = 12 for the right figure.

where tt is the phase transition time, SE(T ) ≃ S3(T )/T with S3 being the three dimensional
Euclidean action,

S3 ≡
∫
d3r

[
1

2
(∇⃗φ)2 + Veff(φ, T )

]
,

and Γ = Γ0(T ) exp[−SE(T )] is the rate of variation of the bubble nucleation rate with Γ0(T ) ∝
T 4. We then obtain the normalized dimensionless parameter as

β̃ ≡ β

Ht

= Tt
d

dT

(
S3(T )

T

) ∣∣∣∣∣
T=Tt

.

When the phase transition is complete; i.e.,

Γ

H4

∣∣∣∣
T=Tt

≃ 1, (9.25)

we obtain S3(Tt)/Tt = 4 ln(Tt/Ht) ≃ 140− 150.

In Fig. 9.2 (left), the allowed region on (α, β̃)-plane which satisfies both φc/Tc > 1 and
Γ/H4|T=Tt ≃ 1 in Fig. fig1. We set µ2

S = 0 for the left figure, and N = 12 for the right figure.
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9.4 Gravitational waves from electroweak phase transi-

tion

9.4.1 The relic abundance of gravitational waves

The relic abundance of GWs from the electroweak 1stOPT is composed of the contributions
from bubble collisions and the turbulence in the plasma as [38]

ΩGW(f)h2 = Ωcoll(f)h
2 + Ωturb(f)h

2.

If the electroweak phase transition is strongly first order, for instance, the kinetic energy stored
in the Higgs field and the bulk motion of the plasma is partially released into gravitational
waves. This happens mostly at the end of the phase transition, when collisions break the
spherical symmetry of the individual Higgs field bubbles. This possibility was systematically
analyzed in papers [33, 39]. In our analysis, we employ the results of Ref. [39] for the bubble
collision contribution

Ωcoll(f)h
2 = Ω̃collh

2 ×


(

f

f̃coll

)2.8
(for f < f̃coll)(

f

f̃coll

)−1

(for f > f̃coll)
,

where the energy density1 is obtained as

Ω̃collh
2 ≃ 1.1× 10−6κ2

(
Ht

β

)2(
α

1 + α

)2(
v3b

0.24 + v3b

)(
100

gt∗

)1/3

,

at the peak frequency given by

f̃coll ≃ 5.2× 10−3mHz

(
β

Ht

)(
Tt

100GeV

)(
gt∗
100

)1/6

.

When bubbles collide, the plasma is stirred up at a length scale comparable to the size of the
colliding bubbles. Larger bubbles are more energetic than smaller ones, and indeed it can be

1Because β−1 is the order of typical time scale, Einstein equation □hµν = 16πG(ρµνkin+ · · · ) gives the relation
ḣµν ≃ 16πGρµνkin/β. Then, the energy density of gravitational waves is written as

ρ∗GW ≡ ḣ2

32πG
≃ 8πGρ2kin

β2
. (9.26)

The relic abundance of gravitational waves is

Ω∗
GW ≡ ρ∗GW

ρ∗tot
=

8πGρ2kin
β2

1

(ρ∗vac + ρ∗rad)
2

3H2
∗

8πG

≃ κ2
(
H∗

β

)2(
α

α+ 1

)
, (9.27)

where we use 3H2
∗/8πG = ρ∗rad + ρ∗vac = ρ∗tot, α = ρ∗vac/ρ

∗
rad, κ = ρkin/ρvac. Exact forma of Ω∗

GW is calculated
by numerical calculation.
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shown that the most part of the kinetic energy involved in the process is released at the largest
length scale in the system, namely the radius of the largest bubbles at the end of the transition.
Once the large eddies have formed, after a few revolutions they decay into smaller ones, thus
giving rise to the usual turbulent energy cascade. For such the plasma turbulence contribution,
we use [131]

Ωturb(f)h
2 = Ω̃turbh

2 ×


(

f

f̃turb

)2
(for f < f̃turb)(

f

f̃turb

)−3.5

(for f > f̃turb)
,

where the energy density is evaluated as

Ω̃turbh
2 ≃ 1.4× 10−4u5sv

2
b

(
Ht

β

)2(
100

gt∗

)1/3

,

at the peak frequency given by

f̃turb ≃ 3.4× 10−3mHz
us
vb

(
β

Ht

)(
Tt

100GeV

)(
gt∗
100

)1/6

.

The bubble wall velocity vb(α), the turbulent fluid velocity us(α) and the efficiency factor κ(α)
are given in Ref. [33], and gt∗ (= g∗(Tt)) is the total number of effective degree of freedom at
the transition temperature Tt. Ht is the Hubble parameter at Tt in the radiation dominant
Universe.

9.4.2 Predicted spectra of gravitational waves

In Fig. 9.3 (left), the predicted spectra of GWs are shown as a function of the frequency for
N = 1, 4, 12, 24 and 60 with

√
µ2
s = 0 in the O(N) singlet model. For each N , mS is taken

its maximal value under the condition of the complete phase transition given in Eq. (9.25).
These sets of (N,mS) are all in the allowed region shown in Fig. 9.1, where EWBG is possible.
Curves of expected experimental sensitivities for GWs at eLISA, DECIGO/BBO and Ultimate-
DECIGO are also shown [132, 133]. Estimated foreground noise from white dwarf binaries in
Ref. [134] are also shown. One can see that for larger N the strength of GWs is more significant
and the spectra are within the observable reach of DECIGO/BBO. Even for smaller values of
mS or for the case of N = 1, the spectra may be able to be observed at Ultimate-DECIGO.
There is a strong correlation between the strength of the GWs and the value of φc/Tc (hence,

∆λ
O(N)
hhh /λSMhhh).

In Fig. 9.3 (right), we show the predictions of the model for N = 1, 4, 12, 24 and 60 with
various mS with

√
µ2
s = 0 on the (α, β̃) plane under the conditions of φc/Tc > 1 and the

complete phase transition. We set Tt = 100 GeV, as the result is not very sensitive to Tt.
Regions of expected experimental sensitivity at eLISA, DECIGO/BBO and Ultimate-DECIGO
are also shown. One can see that different sets of (N,mS) corresponds to different points on the
(α, β̃) plane. Therefore, future GW observation experiments can be a probe of distinguishing
various models of the electroweak 1stOPT.
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Figure 9.3: (Left) Spectra of GWs in the O(N) singlet model with expected experimental
sensitivities at the future GW interferometers, eLISA, DECIGO/BBO and Ultimate-DECIGO
(U-DECIGO) are shown for

√
µ2
S = 0. The bound from non-observation of the energy density

of extra radiation is indicated by ∆Nν ≳ 1 [135,136], and the estimated foreground noise from
the white dwarf binaries is also shown. (Right) Predictions of the model on the (α, β̃) plane
with various N and mS assuming

√
µ2
S = 0 and Tt = 100 GeV are shown with regions of

expected experimental sensitivity at the future GW interferometers.

9.5 Conclusion
We have investigated spectra of GWs which come from the strongly electroweak 1stOPT,

which is required for a successful scenario of EWBG in a set of extended scalar sectors with
additional N isospin-singlet fields as a concrete example of renormalizable theories. The hhh
coupling also has been evaluated at the one loop level in these models. The produced GWs can
be significant, so that they are detectable at future GW interferometers such as DECIGO and
BBO. Furthermore, since the spectra strongly depend on N and mS, we conclude that future
detailed observation of GWs can be generally useful as a probe of extended scalar sectors with
the 1stOPT.
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In Part III, we have discussed two radiation seesaw models that can explain tiny neutrino
masses and DM at the same time. First, we have presented a simple extension of the νTHDM
by introducing the third SU(2)L-doublet scalar field η and two neutral SU(2)L singlet fields (s01
and s02). Although the global U(1)X is broken by a VEV of s01, there remains a residual Z2

symmetry under which η and s02 are Z2-odd particles. These Z2-odd particles provide a dark
matter candidate. The vν for neutrino masses can be suppressed without requiring very heavy
particles because the VEV is generated at the one-loop level. Second, we have improved the
model in Ref. [100] by considering anomaly cancellation of the U(1)B−L gauge symmetry. We
have shown that there are four anomaly-free cases of B−L charge assignment, and three of them
have an unbroken global U(1)DM symmetry. The U(1)DM guarantees that the lightest U(1)DM-
charged particle is stable such that it can be regarded as a DM candidate. The spontaneous
breaking of the U(1)B−L symmetry generates the Majorana mass term of νR and masses of
new fermions ψ. In addition, the Dirac mass term of neutrinos is generated at the one-loop
level where the DM candidate involved in the loop. Tiny neutrino masses are obtained at the
two-loop level.

In Part IV, we have investigated a simple model to explain inflation, neutrino masses and DM
simultaneously. We have shown that this scenario would be testable at the ILC by measuring
the energy distribution of the inert scalar pair production.

In Part V, we have discussed spectra of GWs which are originated by the strongly first
order phase transition at the electroweak symmetry breaking, which is required for a successful
scenario of electroweak baryogenesis. We have shown the produced GWs can be significant. we
conclude that future detailed observation of GWs can be generally useful as a probe of extended
scalar sectors with the 1stOPT.

In this thesis, we have discussed particle phenomenology, in particular in the field where
Higgs physics is related to beyond the standard model. We have investigated new physics
models which can solve beyond the SM phenomena such as neutrino oscillation, DM, BAU and
cosmic inflation. We have considered testability of particle theory by using space experiments
such as observations of GWs, observations of the CMB, direct detection of DM, etc. in addition
to future collider experiments. The new physics may be described by introducing an extended
Higgs sector. In this case, by exploring the Higgs sector, it is possible to approach not only the
nature of electroweak symmetry breaking but also new physics.
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Appendix A

Neutrinophilic two Higgs doublet model

A.1 Scalar Potential

The scalar potential V is given by

V = V2 + V3 + V4, (A.1)

V2 = −µ2
s1|s01|2 + µ2

s2|s02|2 − µ2
Φ1Φ

†Φ + µ2
Φ2Φ

†
νΦν + µ2

ηη
†η, (A.2)

V3 = −µ s0∗1 (s02)
2 + h.c., (A.3)

V4 = λs1|s01|4 + λs2|s02|4 + λs12|s01|2|s02|2

+ λΦ1(Φ
†Φ)2 + λΦ2(Φ

†
νΦν)

2 + λη(η
†η)2

+ λΦ12(Φ
†Φ)(Φ†

νΦν) + λΦ1η(Φ
†Φ)(η†η) + λΦ2η(Φ

†
νΦν)(η

†η)

+ λ′Φ12(Φ
†Φν)(Φ

†
νΦ) + λ′Φ1η(Φ

†η)(η†Φ) + λ′Φ2η(Φ
†
νη)(η

†Φν)

+
(
λΦ12η(Φ

†
νη)(Φ

†η) + h.c.
)

+ λs1Φ1|s01|2(Φ†Φ) + λs1Φ2|s01|2(Φ†
νΦν) + λs1η|s01|2(η†η)

+ λs2Φ1|s02|2(Φ†Φ) + λs2Φ2|s02|2(Φ†
νΦν) + λs2η|s02|2(η†η)

+
(
λsΦ1η s

0∗
1 (s02)

∗Φ†η + h.c.
)
+
(
λsΦ2η s

0
1s

0
2Φ

†
νη + h.c.

)
. (A.4)

Actually, the following simplified V4 is sufficient for our discussion:

V4(simplified) = λΦ1(Φ
†Φ)2 + λs2|s02|4 + λs2Φ1|s02|2(Φ†Φ)

+ λη(η
†η)2 + λΦ1η(Φ

†Φ)(η†η) + λΦ2η(Φ
†η)(η†Φ)

+ λs1|s01|4 + λΦ2(Φ
†
νΦν)

2

+
(
λsΦ1η s

0∗
1 (s02)

∗Φ†η + h.c.
)
+
(
λsΦ2η s

0
1s

0
2Φ

†
νη + h.c.

)
. (A.5)

A.2 Masses of Scalar Bosons

Scalar fields are decomposed as follows: ϕ0 = (v + ϕ0
r + iϕ0

i ) , ϕ
0
ν =

1√
2
(vν + ϕ0

νr + iϕ0
νi) /

√
2,

s01 = (vs + s01r + is01i) /
√
2, η0 = (η0r + iη0i ) /

√
2, s02 = (s02r + is02i) /

√
2. We ignore vν in the

following formulae.
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The mass matrix for (s02r, η
0
r) is obtained as

M2
H =

m2
s2 −

√
2µvs

1

2
λsΦ1η v vs

1

2
λsΦ1η v vs m2

η

 , (A.6)

where m2
s2 ≡ µ2

s2 + (λs2Φ1v
2 + λs12v

2
s) /2 and m2

η ≡ µ2
η +
{(
λΦ1η + λ′Φ1η

)
v2 + λs1ηv

2
s

}
/2. On the

other hand, The mass matrix for (s02i, η
0
i ) results in

M2
A =

m2
s2 +

√
2µvs

1

2
λsΦ1η v vs

1

2
λsΦ1η v vs m2

η

. (A.7)

Notice that the difference between M2
H and M2

A exists only in the (1, 1) element as (M2
A)11 =

(M2
H)11 + 2

√
2µvs. Mass eigenstates (H0

1 and H0
2) of Z2-odd CP-even scalar bosons are given

by (H0
1

H0
2

)
=

(
cos θ′0 − sin θ′0
sin θ′0 cos θ′0

)(
s02r
η0r

)
, tan(2θ′0) =

λsΦ1η v vs
m2
η −m2

s2 +
√
2µvs

, (A.8)

while mass eigenstates (H0
1 and H0

2) of Z2-odd CP-odd scalar bosons are obtained as(A0
1

A0
2

)
=

(
cos θ′A − sin θ′A
sin θ′A cos θ′A

)(
s02i
η0i

)
, tan(2θ′A) =

λsΦ1η v vs
m2
η −m2

s2 −
√
2µvs

. (A.9)

The mass eigenstate H± of Z2-odd charged scalar boson is identical to η±:

H± = η±. (A.10)

Masses of these Z2-odd scalar bosons are calculated as

m2
H0

1
=

1

2

{
m2
η +m2

s2 −
√
2µvs −

√(
m2
η −m2

s2 +
√
2µvs

)2
+ λ2sΦ1η v

2v2s

}
, (A.11)

m2
H0

2
=

1

2

{
m2
η +m2

s2 −
√
2µvs +

√(
m2
η −m2

s2 +
√
2µvs

)2
+ λ2sΦ1η v

2v2s

}
, (A.12)

m2
A0

1
=

1

2

{
m2
η +m2

s2 +
√
2µvs −

√(
m2
η −m2

s2 −
√
2µvs

)2
+ λ2sΦ1η v

2v2s

}
, (A.13)

m2
A0

2
=

1

2

{
m2
η +m2

s2 +
√
2µvs +

√(
m2
η −m2

s2 −
√
2µvs

)2
+ λ2sΦ1η v

2v2s

}
, (A.14)

m2
H± = m2

η −
1

2
λ′Φ1ηv

2. (A.15)

Next, the mass matrix for (ϕ0
r, s

0
1r) is given by

M2
H =

(
2λΦ1v

2 λs1Φ1 v vs
λs1Φ1 v vs 2λs1v

2
s

)
. (A.16)
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Notice that ϕ0
νr does not mix with them when we ignore vν . Mass eigenstates (h0, H0, and H0

ν )
of Z2-even CP-even scalar bosons are given by(

h0

H0

)
=

(
cos θ0 − sin θ0
sin θ0 cos θ0

)(
ϕ0
r

s01r

)
, tan(2θ0) =

λs1Φ1 v vs
λs1v2s − λΦ1v2

, (A.17)

H0
ν = ϕ0

νr. (A.18)

The Nambu-Goldstone boson z02 for the U(1)X breaking, a Z2-even CP-odd scalar boson A0
ν ,

and the Z2-even charged scalar boson H±
ν are defined as follows:

z02 = s01i, A0
ν = ϕ0

νi, H±
ν = ϕ±

ν . (A.19)

Masses of these Z2-even scalar bosons are calculated as

m2
h0 = λs1v

2
s + λΦ1v

2 −
√
{λs1v2s − λΦ1v2}2 + λ2s1Φ1 v

2 v2s , (A.20)

m2
H0 = λs1v

2
s + λΦ1v

2 +

√
{λs1v2s − λΦ1v2}2 + λ2s1Φ1 v

2 v2s , (A.21)

m2
z02

= 0, (A.22)

m2
H0

ν
= m2

A0
ν

= µ2
Φ2 +

1

2

{
(λΦ12 + λ′Φ12)v

2 + λs1Φ2v
2
s

}
, (A.23)

m2
H±

ν
= µ2

Φ2 +
1

2

{
λΦ12v

2 + λs1Φ2v
2
s

}
. (A.24)





Appendix B

Neutrino mass and dark matter from
gauged U(1)B−L breaking

B.1 Loop Integration

A loop function (I1)ija in eq. (7.7) can be expressed as

(I1)ija ≡ −
(8π2 sin 2θ′0)

2mψi
mψj

(mR)
2
a

[∫
d4p

(2π)4
1

p2 −m2
ψi

{
1

p2 −m2
H0

1

− 1

p2 −m2
H0

2

}]

×

[∫
d4q

(2π)4
1

q2 −m2
ψj

{
1

q2 −m2
H0

1

− 1

q2 −m2
H0

2

}]

=
mψi

mψj
(m2

H0
1
−m2

H0
2
)2 sin2 2θ′0

4(mR)
2
a

{
C0(0, 0,mψi

,m2
H0

1
,m2

H0
2
)

×C0(0, 0,mψj
,m2

H0
1
,m2

H0
2
)
}
, (B.1)

where the C0 function [137] is given by

C0(0, 0,m
2
0,m

2
1,m

2
2)

≡ 1

(m2
0 −m2

1)(m
2
1 −m2

2)(m
2
2 −m2

0)

{
m2

0m
2
1 ln

m2
0

m2
1

+m2
1m

2
2 ln

m2
1

m2
2

+m2
2m

2
0 ln

m2
2

m2
0

}
. (B.2)

On the other hand, another loop function (I2)ija in eq. (7.7) is given by

(I2)ija ≡ (8π2 sin 2θ′0)
2mψi

mψj

×
∫∫

d4p

(2π)4
d4q

(2π)4

{
1

p2 −m2
H0

1

− 1

p2 −m2
H0

2

}
1

p2 −m2
ψi

× 1

(p+ q)2 − (mR)
2
a

{
1

q2 −m2
H0

1

− 1

q2 −m2
H0

2

}
1

q2 −m2
ψj

= (8π2 sin 2θ′0)
2mψi

mψj

×
[
I(mH0

1
,mψi

|mH0
1
,mψj

|(mR)a)− I(mH0
1
,mψi

|mH0
2
,mψj

|(mR)a)

− I(mH0
2
,mψi

|mH0
1
,mψj

|(mR)a) + I(mH0
2
,mψi

|mH0
2
,mψj

|(mR)a)
]
, (B.3)

87



88APPENDIX B. NEUTRINOMASS ANDDARKMATTER FROMGAUGED U(1)B−L BREAKING

where

I(m11,m12, · · · ,m1n1
|m21,m22, · · · ,m2n2

|m31,m32, · · · ,m3n3
)

≡
∫
d4pE
(2π)4

∫
d4qE
(2π)4

n1∏
i=1

n2∏
j=1

n3∏
k=1

1

p2E +m2
1i

1

q2E +m2
2j

1

(pE + qE)
2 +m2

3k

. (B.4)

We can use the following results [?]:

I(m11,m12|m21,m22|m3)

=
I(m12|m22|m3)− I(m11|m22|m3)− I(m12|m21|m3) + I(m11|m21|m3)

(16π2)2(m2
11 −m2

12)(m
2
21 −m2

22)
, (B.5)

I(m1|m2|m3) = −m2
1 f

(
m2

2

m2
1

,
m2

3

m2
1

)
−m2

2 f

(
m2

1

m2
2

,
m2

3

m2
2

)
−m2

3 f

(
m2

1

m2
3

,
m2

2

m2
3

)
, (B.6)

where

f(x, y) ≡ − 1

2
(lnx)(ln y)− 1

2

(
x+ y − 1

D

)
×
{
Li2

(
−x−
y+

)
+ Li2

(
−y−
x+

)
− Li2

(
−x+
y−

)
− Li2

(
−y+
x−

)
+ Li2

(
y − x

x−

)
+ Li2

(
x− y

y−

)
− Li2

(
y − x

x+

)
− Li2

(
x− y

y+

)}
, (B.7)

and

D ≡
√

1− 2(x+ y) + (x− y)2, (B.8)

x± ≡ 1

2
(1− x+ y ±D) , y± ≡ 1

2
(1 + x− y ±D) , (B.9)

and the dilog function Li2(x) is defined as

Li2(x) ≡ −
∫ x

0

dt
ln(1− t)

t
. (B.10)

B.2 Ansatz for benchmark point

In eq. (7.7), let us define the following symmetric matrix as

Aij ≡
∑
a

hia(mR)a(h
T )aj

{
(I1)ija + (I2)ija

}
. (B.11)

We can diagonalize Aij by an orthogonal matrix X as

XAXT = diag(a1, a2, a3, a4). (B.12)
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It is clear that a Yukawa matrix fℓi of the following structure satisfies constraints from neutrino
oscillation data:

f = 16π2 UMNS


√

m1

|a1| 0 0 0

0
√

m2

|a2| 0 0

0 0
√

m3

|a3| 0

X, (B.13)

where Majorana phases are given by αi = arg(ai). We used

X =


0.520 −0.520 −0.474 0.484
−0.712 −0.284 0.165 0.621
−0.425 −0.476 −0.522 −0.566
0.206 −0.650 0.689 −0.244

 , (B.14)

where 0 < a4 < a1 < a2 < a3. The ordering of eigenvalues ai is preferred to suppress yℓi (in order
to satisfy a constraint from µ → eγ search) for the normal mass ordering for neutrinos (m1 <
m2 < m3). With this ansatz, small neutrino masses are preferred to suppress BR(µ→ eγ).





Appendix C

O(N) scalar singlet model

C.1 Vacuum stability

Due to the SU(2)L×U(1)Y and O(N) symmetries, one can parametrize the modulus space
as

⟨Φ⟩ = 1√
2

(
0
ϕ

)
, ⟨S⟩ =

 0
...
ϕS

 . (C.1)

whithout loss of generality. Then we obtain

V0[ϕ, ϕS] = −µ
2

2
ϕ2 +

µ2
S

2
ϕ2
S +

λ

8
ϕ4 +

λS
4
ϕ4
S +

λΦS
4
ϕ2ϕ2

S. (C.2)

Necessary conditions to avoid a potential unbounded from below are

λ > 0, λS > 0. (C.3)

Then the scalar potential is written as

V0[ϕ, ϕS] = −µ
2

2
ϕ2 +

µ2
S

2
ϕ2
S

+

(√
λ

8
ϕ2 +

√
8

λ

λΦS
4
ϕ2
S

)2

+

(
λS
4

− λ2ΦS
2λ

)
ϕ4
S. (C.4)

For vacuum stability, we must require√
2λλS + λΦS > 0. (C.5)

C.2 Perturbative unitarity
In the basis of

u =
1√
2
(
√
2w+w−, zz, hh, S1S1, S2S2, S3S3, · · · ), (C.6)
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the transition matrix of the s-wave amplitude in the high energy limit (s ≫ mh,mS) is given
by

t0 = − 1

32π



4λ
√
2λ

√
2λ

√
2λΦS

√
2λΦS

√
2λΦS · · ·√

2λ 3λ λ λΦS λΦS λΦS · · ·√
2λ λ 3λ λΦS λΦS λΦS · · ·√

2λΦS λΦS λΦS 6λS 2λS 2λS · · ·√
2λΦS λΦS λΦS 2λS 6λS 2λS · · ·√
2λΦS λΦS λΦS 2λS 2λS 6λS · · ·
...

...
...

...
...

...
. . .


. (C.7)

The eigenvalues of the above matrix are

ai = − λ

16π
,−λS

8π
,−λΦS

16π
,− 1

32π

[
{3λ+ (N + 2)λS} ∓

√
{3λ− (N + 2)λS}2 + 4Nλ2ΦS

]
. (C.8)

In order keep perturbativity, we require that the absolute value of the eigenvalues of the s-wave
amplitudes are at most of the order of the unity:

|ai| < amax. (C.9)

We take amax = 1/2 in our analysis.
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