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Abstract

In July 2012, a new boson has been discovered at Large Hadron Collider (LHC) in CERN. The
mass and spin turned out to be 126 GeV and 0. Therefore, the new boson must be the scalar
boson. Moreover, its couplings to the Standard Model (SM) particles are in good agreement
with the SM predictions of the Higgs boson. These results indicate that the property of this
scalar boson is very close to that of the Higgs boson in the SM. Thereby the SM has been
confirmed its correctness within the uncertainty of the current data. There is no signal for the
new particle until now.

On the other hand, it is also well known that several phenomenological problems remain
in the SM. For example, the existence of dark matter, the tiny mass of the neutrinos and the
baryon number assymetry of the Universe (BAU). These problems cannot be explained in the
framework of the SM. Therefore, the SM must be extended to solve these problems.

Moreover, the hierarchy problem is known as the theoretical problem of the SM. The
quadratic divergence in the radiative correction to the Higgs boson mass appears because
the Higgs boson is the scalar particle. Supersymmertic extended models are considered as
the attractive candidate which can solve the hierarchy problem. In these class of models, the
scalar particles are naturally justified by the supersymmetry. In additions to this, the quadratic
divergence from supersymmetric particles cancel the that of the SM particle when the super-
symmetry doesn’t break, so that the hirarchy problem can be solved. As an alternative solution,
there is a new paradigm which can solve the hierarchy problem, such as technicolour models
and composite Higgs models. In these scenarios, the Higgs boson is not the elementary particle
rather than the composite particle. At the high energy scale, the hierarchy problem disappears
because there is no scalar boson.

In this thesis, we make a study on the ideas based on the Higgs boson as the composite
particle. One is the supersymmetric QCD scenario and one is the composite Higgs scenario.

First, we report our study [1] based on the supersymmetric QCD theory. In this model,
thanks to a new supersymmetric gauge symmetry which exists higer than the electroweak scale,
the extended Higgs sector appears as the composite state of the fundamental fields in the new
gauge symmetry at the low-energy effective theory. Interestingly, three phenomenological prob-
lems mentioned above can be solved at the TeV scale new physics in this model, simultaneously.
The existence of the extra scalar bosons which strongky couple to the SM-like Higgs boson en-
hances the first order electroweak phase transition. This is the neccesary condition for realizing
the BAU. Moreover, thanks to the unbroken Z2 symmetry, the dark matter and neutrino mass
problems can be explained, simultaneously, in the framework of the radiative seesaw scenario.
We have also discussed the testability of this model at future collider experiments.

Second, we report our study [2] based on the composite Higgs theory. In these models, the
Higgs bosons appear as the Nambu-Goldstone bosons (NBGs) which are originated from the
breakdown of the global symmetry G at a higher scale than the electroweak scale. The exact
NGBs cannot have the mass by the shift symmetry. However, these NGBs must get the mass
because the observed Higgs boson has the mass. By the Coleman-Weinberg mechanism, these
particles obtain the mass so that they are called the pseudo Nambu-Goldsotne bosons (pNBGs).
In the composite Higgs models, the breaking pattern of the global symmetly G leads various
models with extended Higgs sectors to the low-energy effective theory. The simplest model is the
minimal composite Higgs models (MCHMs). In the MCHMs, the global symmetry G = SO(5)
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breaks into H = SO(4) by a certain strong dynamics at the scale f . The breaking scale f is
highter than the electroweak scale ∼ 100 GeV. The number of the NGBs is 4 corresponding to
the degrees of freedom of the SM Higgs doublet. The gauge boson and Higgs boson coupling
deviation only depends on G/H. On the other hand, the deviation patterns of the Higgs
boson couplings to charged fermions and Higgs boson itself depends on representation of the
matter field in SO(5). These deiviations areo parametrized by one parameter, so-called the
compositeness parameter ξ. We list the deviation patterns of the variation models of the
MCHM.

We investigate the single and double Higgs boson production of the MCHM and constraints
on the model parameter. The production cross sections and the signal strengths significantly
differ from the SM predictions due to the diviations of the Higgs boson coupling constants. We
discuss the possibility to distinguish the MCHMs from other new physics models.

In addtion to the MCHMs, we investigate a next-to-minimal composite Higgs model with
composite doublet and composite singlet scalar. We also discuss the collider phenomenology of
this model.

The composite Higgs model is an analogy of the quantum chromodynamics (QCD). The
realistic pNGB is pions in the QCD. The chiral symmetry SU(2)L × SU(2)R is broken into
the vectorial SU(2). After that, three pions appear as the pNGBs, π+, π0, π−. The source of
the small pion masses are the explicit breaking of the chiral symmetry. When we calculate
pion scattering process ππ → ππ, this amplitude would diverge at high enegies. However,
the measured observable did not diverge because a new particle contribution unitalizes the
scattering amplitude at high energy, which is known as the rho meson. In the MCHMs, the
logitudinal modes of the weak gauge bosons WL, ZL can be identified as pions. The weak gauge
boson scattering amplitude in the MCHMs also diverges due to the non-vanishing compositeness
parameter ξ, which differs from the SM prediction. We here assume that this process should
be stabilized by the new introduced particle like the rho meson in the QCD. We can estimate
its mass scale by extracting phase shift imformation.

As a phenomenological application of the framework of the composite Higgs models, we
investigate the diphoton excess at 750 GeV at the LHC. At the end of 2015, the diphoton
singnal around 750 GeV has been found at the LHC experiments. We consider that this
anomaly would be the new particle. The composite Higgs models with extended Higgs sectors
could contain such particle and explain this phenomena [3].

As a result, we study two scenarios whose Higgs sectors are composed of the fundamental
particles at high energy with/without supersymmetry (SUSY). In the model based on spe-
cific choice of SUSY QCD gauge symmetry, the gauge coupling of the new symmetry behaves
asymptotic free like that of realistic QCD, SU(3)C . The extended Higgs sector appears at the
low energy effective theory. We propose new model with an additional discrete symmetry. In
this model, the dark matter, the neutrino mass, and the baryon number asymmetry problems
can be solved, simultaneously. We also investigate non-SUSY model. In this model, the Higgs
boson appears as a pNGB which is accompanied by the global symmetry breakdown at high
energy. The MCHM and its several variation models contain a minimal Higgs sector corre-
sponding to the SM Higgs sector. The deviation pattern of the Higgs boson couplings in the
MCHMs can be distinguished each other at future collider experiments. They also affect the
Higgs pair production processes. This would be utilized to test the models. As an analogy of
QCD dynamics, weak gauge boson scattering amplitude in the MCHMs should be stabilized
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by the new particle. We can estimate its mass scale by using phase shift beyond the reach
of current experiments. The diphoton excess at 750 GeV could be explained by the extended
composite Higgs models
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Chapter 1

Introduction

The SM is the most successful model in describing the high energy collider experiments below
the electroweak scale ∼ 100 GeV. The SM is based on the gauge principle and the spontaneous
symmetry breaking. The gauge principle defines the interactions among the elemenrary particles
and forbid the masses of fermions and gauge bosons. The SM gauge symmetry is SU(3)C ×
SU(2)L × U(1)Y . However, we already know that these particles have non-zero mass. In order
to obtain the particle masses, the spontaneous symmetry breaking is required. The electroweak
symmetry SU(2)L×U(1)Y is broken into the electromagnetic symmetry U(1)EM by the vacuum
expectation value (VEV), denoted by v, of the SM Higgs doublet. After that, charged fermions,
weak gauge bosons, and the Higgs boson masses are proportional to the VEV v. The Higgs
boson mass was strongly constrained by several experiments [4], but it not have been discovered
for a long time. At long last, in July 2012, a new boson has been discovered at a mass of 126
GeV at LHC [5]. Its spin and parity is also measured and turned out to be 0+ [6]. The coupling
of the new scalar boson to the SM paricles is comfirmed to the SM Higgs boson predictions
within the error. Therefore, the new scalar boson is identified to the SM-like Higgs boson. The
SM is very successful until now.

However, there are many room and hints to consider the new physics beyond the SM.
For example, the existence of dark matter, tiny masses of the neutrinos and the BAU as
phenomenological problems. These problems cannot be solved in the SM. There is no dark
matter candidate, the neutrino mass is exactly zero because there is no right-handed neutrinos,
baryon asymmetry of the Universe cannot be generated. Therefore, the SM must be extended
to solve these problems.

On the other hand, as the theoretical problem, the hierarchy problem is well-known one.
If the SM is valid at very high-energy scale (e.g. Planck scale ∼ 1019GeV), a very large
difference in the radiative corrections to the Higgs boson masss appears in order to obtain the
appropriate physical Higgs boson mass as O(1038GeV2) − O(1038GeV2) ≃ (100GeV)2 . The
supersymmetric extension is a promissing candidate which can solve the hierarchy problem.
New particles whose spin differs 1/2 from SM particles appear and these effects cancel the SM
contributions, exactly. In addition to this, models based on SUSY usually contain extended
Higgs sectors. For example, the minimal supersymmetric standard model (MSSM) contains
two Higgs doublets with opposite hypercharge, Y = ±1/2. Therefore, the Higgs sector of the
MSSM is the two Higgs doublet model. The SM Higgs sector is extended by the requirement
of SUSY. The another solution of the hierarchy problem is the Higgs boson as the composite
particle. In these class of scenarios, the Higgs bosons are not elementary particles. At the

1



2 CHAPTER 1. INTRODUCTION

high-energy scale, the Higgs bosons are deomposed into the fundamental elementary particle
and there is no scalar particle. Therefore, the hierarchy problem disappears.

Throughout this thesis, we consider two paradigm whose Higgs bosons appears as the com-
posite particle. One is based on a model with the supersymmetric QCD theory. One is based
on a model with the composite Higgs scenario.

First, we study the supersymmetric QCD model which could explain the hierarchy model
[1]. In the realistic QCD, SU(3)C , its gauge coupling constant behaves asymptotically free and
would become strong around the QCD scale ∼ 200 MeV. Naively speaking, below the QCD
scale, quarks are cofined each other by the strong QCD dynamics. The typical these bound state
is the pion, π+, π0, π−. We propose a new model which contains the supersymmetric QCD-like
gauge symmetry. Its gauge coupling also behaves asymptotically free and would become strong
around the TeV scale. The new fundamental fields of the new gauge symmetry are confined,
like pions. The model based on the supersymmetric SU(2)H gauge theory leads an extended
Higgs sector as a low-energy effective theory. In this model, three phenomenenological problems
can be explained, simultaneously. The first order electroweak phase transition, the necessary
condition for the baryon number asymmetry of the Universe, can be realized by the existence of
many extra scalar bosons. By introducing an additional unboken discrete Z2 symmetry, there
are some DM candidates, the tiny neutrino masses are generated by the loop-induces diagrams.
Interestingly, these problems are realized by the TeV scale physics. Therefore, the model would
be tested by future high energy experiments.

As an alternative scenario to solve or avoid the hierarchy problem, the Higgs boson is
considered as a composite particle which consist of elementary particle in very high-energy
scale. There are several scenarios along this line, thecnicolour models [7], little Higgs models
[8], and composite Higgs models [9]. In this thesis, we focus on the composite HIggs models
with the minimal and extended Higgs sectors [2]. Such class of models, the Higgs boson appears
as the NGB which is originated from the breaking of the global symmetry G to its subgroup
H. This subgroup H is larger than the SM gauge group at least SU(2)L × U(1)Y because the
portion of the subgroup is gauged and becomes the SM gauge group. We here omit the remnant
part of H. We demand two conditions to set of G/H, the subgroup H should have the custodial
symmetry in order to satisfy electroweak precision data and the Higgs sector after breakdown of
the global symmetry G should contains one doublet at least. The minimal model is the minimal
composite Higgs model (MCHM). In this model, the global symmetry is SO(5) and it breaks
into SO(4) at the scale f which is higer than the SM VEV. The breaking scale f is an analogy
of fπ in the QCD. The number of the broken generator is dim(SO(5)/SO(4)) = 4 correspoding
to the degrees of freedom of the SM Higgs doublet. Therefore, this model contains only one
composite Higgs doublet. In this sense, the MCHM is called minimal model. We assume that
the particle content is exactly equal to that of the SM, all fermions and gauge bosons. The scalar
potential is generated by the Coleman-Weinberg mechanism through the contrinbutions of the
SU(2)L gauge bosons and the top quark, dominantly. The coupling constants of the composite
Higgs boson to the SM particles deviate from the SM prediction. Especially, the Higgs-gauge
boson coupling uniquely deviates if we choose SO(5)/SO(4) as G/H. These deviations are
parametrised by one characteristic parameter, the compositeness parameter ξ = v2/f 2. This
parameter is always smaller than 1. If we take the SM limit as ξ → 0 (= f → ∞), all Higgs
boson couplings in the MCHM become the SM values. Then, the coupling constants of the
Higgs boson to the fermions and itself depend on the representation of the SM matter field
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in SO(5). Therefore, there are several variation models. We classify these MCHM variation
models, list the MCHMs Higgs coupling constants, and discuss how to distinguish models at
the international linear collider (ILC).

In addition to this, we study how to extract the higher resonance scale at the LHC. In the
SM, thanks to the existence of the SM Higgs boson, the perturbative unitarity of the vector
boson scattering process W+W− → W+W− is conserved. However, as we mentioned, the
gauge-Higgs coupling constant deviates from the SM value and it violates unitarity. A similar
phenomena is likely to occur in the ππ scattering because we identify the logitudinal mode of
the weak gauge bosons as pion. Practically, the unitarity is maintained by a new vector particle,
the rho meson. Hence, we introduce such new particle to the MCHM and estimate this energy
scale by extracting the phase shift imformation.

We study the double Higgs production via gluon and vector boson fusion process at the LHC
and the ILC. The double Higgs boson production process is very important to test the new
physics models. We investigate three typical cases, the gluon fusion, the vector boson fusion,
and the Z strahlung process. The gluon fusion process is a dominant contribution at hadron
colliders. As mentioned above, in the MCHMs, the Higgs boson coupling constants deviates
from the SM predictions. Therefore, the production cross section should be changed by these
effects. In addition to this, in the MCHMs, higher dimensional operators appear, which absent
in the SM. This effect plays an important role in the gluon fusion process. The vector boson
fusion (VBF) and the Z strahlung process contribute in the LHC and the ILC. Due to deviations
of the Higgs boson couplings, these two process show the charactaristic energy dependence. Its
interesting energy dependence could be distinguished at future lepton collider exoeriments.

We also investigate a non-minimal model, composite singlet model. In this model, the global
SO(6) symmetry is broken into SO(5) and one Higgs doublet and one singlet field appear. We
discuss the collider phenomenology of this mode along the discussion fof the MCHMs.

Finally, we discuss an application of the framework of the extended composite Higgs models
to the diphoton excess at the LHC. At the end of 2015, the signal of the diphoton excess at
750 GeV had found. This signal may come from a new particle with the mass 750 GeV. We
want to explain this phenomena by relatively simple way. We introduce a neautral singlet and
(multiply) charged scalar particles. By this simple setup, diphoton excess could be explained
[3].





Chapter 2

The standard model (Review)

We briefly review the SM. The SM Lagrangian is invariant under SU(3)C × SU(2)L × U(1)Y .
The portion of the gauge symmetry SU(2)L×U(1)Y is broken into U(1)EM by the VEV of the
Higgs doublet, this is called the electroweak symmetry breaking (EWSB). In the SM, there is
only one Higgs doublet. After the EWSB, the masses of quarks, charged leptons, weak gauge
bosons, and the Higgs boson are proportional to the SM Higgs VEV v.

2.1 The Lagragian of the standard model

The particle content of the SM is shown in Table 2.1.

SU(3)C SU(2)L U(1)Y

Qi
L 3 2 +1/6

uiR 3 1 +2/3
diR 3 1 −1/3
Li

L 1 2 −1/2
eiL 1 1 −1
Gλ 8 1 0
Wα 1 3 0
B 1 1 0

Φ 1 2 +1/2

Table 2.1: SM particle content.

where we define the electric charge Q as Q = T3 + Y and superscript i = 1-3 means family
indices.

The SM gauge invariant Lagrangian can be expressed as

LSM = Lkin + LYukawa − VHiggs . (2.1)

Lkin means the kinetic terms of the SM particles, LYukawa means the Yukawa interactions be-
tween the Higgs doublet and fermions, and VHiggs is the Higgs potential.

5



6 CHAPTER 2. THE STANDARD MODEL (REVIEW)

2.2 Fermion and Gauge boson masses
As mentioned above, charged fermions and weak gauge bosons obtain their masses after the
spontaneous symmetry breakdown by the Higgs doublet VEV. We can parametrize the VEV v
as

Φ =

(
ω+

1√
2
(v + h+ iz)

)
. (2.2)

Fermion masses come from LYukawa;

LYukawa = −
[
Q

i

LY
ij
u Φ̃ujR +Q

i

LY
ij
d ΦdjR + L

i

LY
ij
e ΦejR + h.c.

]
(2.3)

where Φ̃ is a charge conjugation of the SM doublet, Φ̃ = iσ2Φ, and Y ’s are Yukawa matrices.
In general, the Yukawa matrices are not diagonal one. Fortunately, we can always rotate these
three matirces in the family index space, independently. Therefore, the Yukawa matrices are
always diagonalized without loss of generality;

Y ij
u = diag(Y 1

u , Y
2
u , Y

3
u ), Y ij

d = diag(Y 1
d , Y

2
d , Y

3
d ), Y ij

e = diag(Y 1
e , Y

2
e , Y

3
e ). (2.4)

By expanding the component field, the fermion mass is given by

mf =
Yf√
2
v. (2.5)

Gauge boson masses are obtained by the kinetic term. The relevant terms are

Lgauge mass
kin = |DµΦ|2 . (2.6)

Dµ is convariant derivative for the Higgs doublet;

Dµ = ∂µ − ig
1

2
τ⃗ · W⃗µ − ig′

1

2
Bµ , (2.7)

where g (g′) is the gauge coupling of the SU(2)L (U(1)Y ), and τ1,2,3 is the Pauli Matrices.
The mass basis gauge boson eigenstates are written in the linear combination of the gauge

basis;

W± =
1√
2

(
W 1 ∓ iW 2

)
,(

Z
A

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

B

)
. (2.8)

where θW is the Weinberg (or Weak) angle, tan θW = g′/g. Then we get the gauge boson masses
as

mW =
1

2
gv,

mZ =
1

2

√
g2 + g′2 v,

mA = 0 . (2.9)

The phoron mass mA is forbidden by the U(1)EM symmetry. As we can see, fermions and gauge
boson masses are proportional to the VEV v.
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2.3 The standard model Higgs sector
The Higgs potential of the SM takes very simple form

VSM = −µ2
0|Φ|2 + λ

(
|Φ|2

)2
. (2.10)

We here assume that −µ2
0 is negative. After using the stationary condition,

∂VSM
∂h

∣∣∣∣
h=0

= 0 → µ2
0 = λv2 , (2.11)

the SM Higgs boson mass around the VEV is

m2
h = 2λv2 . (2.12)

The Higgs boson mass is also proportional to v.

2.4 Decay of the standard model Higgs boson
The SM Higgs boson branching ration is the function of the Higgs boson mass, Figure 2.1.

bb WW

ΤΤ

cc

gg ZZ

ΓΓ ZΓ

100 110 120 130 140 150 160
0.001

0.005
0.010

0.050
0.100

0.500
1.000

mh GeV

B
R
Hh
®

X
X
L

Figure 2.1: The SM Higgs boson braching ratio.

We already know the Higgs boson mass is 126 GeV. Therefore, the dominant channel is
h→ bb̄ . The numerical calculation beyond leading order contributions is shown in Appendix.

2.5 Beyond/Behind the Higgs sector
The SM Higgs sector with only one doublet is the minimal one for providing particle masses.
However, there is no principle to forbid the extended Higgs sectors containing more than two
doublets and/or more larger representation (triplet, fiveplet, septet, · · · ). The SM Higgs sector
is just an assumption. For example, two Higgs doublet model (2HDM) is one of the promissing
candidate describing New physics. Moreover, as we glance, the mass term −µ2 in the Higgs
sector is negative. This is also just an assumption. In addition to this, we do not know the
origin of the Higgs force λ. We do not understand the essence of the Higgs sector at all. We
consider two case to make clear the mystery of the Higgs sector.
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2.5.1 The hierarchy problem and its solutions

The most well-known theoretical problem in the SM is the hierarchy problem. The Planck scale
is a typical energy scale of the garavitatinal interaction.

MP = G
−1/2
N ∼ 1019 GeV. (2.13)

where GN is the gravitational constant. From this viewpoint, the mass parameter µ2
0, the only

dimensionful parameter in the SM, should be of order O(1019) GeV. At this time, if the planck
scale is the cutoff scale in a theory, the radiative corrections to the SM Higgs boson mass is
also of order O(1019) GeV.

On the other hand, from the gauge boson and the SM Higgs boson masses, the renormalized
parameter µ2 in the SM Higgs potential should be of order O(1002) GeV2;

µ2 ∼ µ2
0 − Λ2 =

[
O(1038)−O(1038)

]
GeV2 ∼ O(1002)GeV2 (2.14)

There is a dramatic cancellation. This is so-called gauge hierarchy prpblem.
There are several mechanism which can solve or avoid this problem. One is supersymmetry

(SUSY). This is the symmetry between fermion and boson. Such class of the models, new
particles appear with 1/2 from the SM particle. If SUSY is conserved, the SM particle and its
partner have the same mass. Thanks to the existence of supersymmetric particle, the quadratic
divergence disappear.

One is the Higgs boson as composite particle. The quadratic divergence to the scalar boson
does not appear when we compute radiative corrections to fermion and gauge boson masses by
chiral symmetry and gauge symmetry. Throughout this thesis, we consider these two cases.

2.5.2 Origin of the Higgs sector : Supersymmetry strong dynamics

First, we consider the supersymmetric strong dynamics with confinment. This scenario is
based on the supersymmetric QCD theory. Previous work is called minimal supersymmetric
fat Higgs model. ”Fat Higgs” means that the lightesr Higgs boson mass (the SM-like Higgs
boson mass mh at that time) is heavy mh ≥ 200 GeV. The Higgs potential is generated by
the composite statesof the fundamental field in supersymmetric QCD. The Higgs sector of
this model is nMSSM. However, the discovered Higgs boson mass is 126 GeV. Then, original
motivation of this model is already excluded. We use this idea. By introducing the discrete
symmetry, the lightest Higgs boson mass can be 126 gev and solve phenomenological problem
which we mentioned.

2.5.3 Origin of the Higgs sector : non-Supersymmetry strong dy-
namics

Second, we consider the composite higgs scenario . In such class of scenario, we assume that
there is a QCD-ike strong dynamics at higher energy scale. This dynamics is not supersymmetric
one. The Higgs boson appears as the Nambu-Goldstone boson (NGB) after the global symmetry
breaking. These boson are not exact NGB since the discovered Higgs boson has mass. Therefore,
they are called pseudo NGB (pNGB). In the nature, the pion in QCD is the well-known pNGB.
The global symmetry SU(2)L× SU(2)R is broken into the vectrial SU(2) and three NGBs will
appear, π±, π0 at the low energy scale. Then, we consider that if we investigate the property of
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the low energy effective theory such class of scenarios, we can unveil the mystery behind/beyond
the Higgs sector.





Chapter 3

The Higgs boson
as a Composite state with supersymme-
try

We want to explain three phenomenological problems in the SM, the dark matter, the tiny
neutrino masses, and the baryon number asymmetry of the Universe. Especially, we expect
that these phenomena are related to the Higgs physics because such new physics are described
at TeV scale and possibly tested at future collider experiments. For exmaple, we consider a
neutrino mass generation scenario by the loop quantum effects [10, 11, 12, 13, 14, 15], called
the radiative seesaw scenarios. There is a class of models with an additional Z2 symmetry
[12, 13, 14, 15]. Thanks to the Z2 symmetry, the tree-level diagrams are forbidden and the
neutrino masses are generated by loop-level diagrams. Therefore, the neutrino masses could
naturally small by the loop suppression factor. In addition to this, the lightest Z2-odd particle
can be a dark matter candidate because the discrete Z2 symmetry ensures the stability of the
dark matter. The simplest example along this line is the Ma model. In this model, the Z2-odd
scalar doublet (inert doublet) and the Z2-odd right-handed neutrinos. The lightest Z2-odd
particle, a neutral component of the inert doublet or the right-handed neutrino can be the dark
matter candidate. The neutrino masses are generated by one-loop diagram. On the other hand,
the Aoki-Kanemura-Seto model contains two Z2-even doublets, one Z2-odd neutral singlet and
one Z2-odd charged singlet, and the Z2-odd right-handed neutrinos. In this model, the neutrino
masses are generated by three-loop diagrams and the lightest Z2-odd particle can be the dark
matter. Moreover, the electroweak phase transition can be realized, simultaneously due to the
contributions from extra scalars.

These radiative seesaw scenarios seem to be an artificial model. In order to realize the
electroweak phase transition, some of the introduced couplings should be of order one. Such
large couplings leads the Landau pole below the Planck scale or the GUT scale, and the model
is only valid below the Landau pole. This indicates that there is a more fundamental theory
above the Landau pole, which leads the low-energy effective theory. We propose a simple model
which can explain the DM, the tiny neutrino masses, and the BAU in the low-energy effective
theory (BAU).

In this chapter, we discuss the supersymmetric QCD theory. In this class of models, the new
gauge coupling constant diverges at the low-energy scale and the low-energy effective theory is
described by the composite states of the fundamental fields on the new gauge symmetry. The

11
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simplest model is based on the colour number Nc = 2 and the flavour number Nf = 3. The
minimal supersymmetric fat Higgs model [16] is an application of this setup. We impose an
additional discrete Z2 symmetry. We propose a new model which can explain dark matter, tiny
neutrino massse, and the baryon asymmetry of the Universe, simultaneously. This chapter is
based on [1].

3.1 The supersymmetric SU(2)H gauge theory with the

discrete symmetry

3.1.1 The Higgs potential

At high energy scale, there are six fundamental doublet fields (Nf = 3) under new SU(2)H
gauge symmetry. Below the scale ΛH , the Higgs potential appears as the composite state of

SU(3)C SU(2)L U(1)Y Z2(
T1
T2

)
1 2 0 +1

T3 1 1 +1/2 +1
T4 1 1 −1/2 +1
T5 1 1 +1/2 −1
T6 1 1 −1/2 −1
NR 1 1 0 −1

Table 3.1: The SM charges and Z2 parity assignment on the fundamental fields, T ’s.

T ’s. As we discuss below, the unbroken Z2 symmetry is introduced to explain tiny neutrino mass
and dark matter problems and we also introduce the Z2-odd right-handed neutrino superfield
to explain the neutrino masses.

The tree-level superpotential, invariant under all gauge symmetry and Z2 parity, is written
as

Wtree = m1T1T2 +m3T3T4 +m5T5T6 . (3.1)

At the very high energy scale, the SU(2)H gauge coupling behaves asymptotic free, like realistic
QCD gauge coupling constant. Below the confinement scale, denoted by ΛH , the gauge coupling
becomes strong. The composite chiral superfields are discribed in such low-energy theory as

H ′
ij = TiTj . (3.2)

We can write the dynamically generated superpotential by these chiral superfields as

Wdyn = − 1

Λ3
ϵijkℓmnH ′

ijH
′
kℓH

′
mn (3.3)

where Λ is a dynamical scale [17]. Therefore, the effective superpotential is

Weff =Wtree +Wdyn

=Wdyn + 4πΛH(m1Hij +m3Hkℓ +m5Hmn) (3.4)
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with

Hij ≃
1

4πΛH

TiTj . (3.5)

We cannot determine the dynamically generated scale Λ. However, by using the naive
dimensional analysis [18], the effective superpotential can be written as

Weff ≃ 4πHijHkℓHmn + 4πΛH(m1Hij +m3Hkℓ +m5Hmn) . (3.6)

The basic concept is the same as the minimal SUSY fat Higgs model [16]. In general, there
are fifteen composite fields at the low-energy theory in this model setup. However, in the
minimal SUSY fat Higgs model, the authors introduce additional superfields and symmetries in
order to limit the low-energy Higgs sector to the nMSSM one. In our model, all fifteen composite
chiral superfields contribute to the theory because we do not impose such restrictions.

The composite Higgs fields are identified as shown in Table 3.2. The superfields Hu, Hd are
the MSSM Higgs doublets and others are the exotic superfields.

SU(3)L SU(2)L U(1)Y Z2

Hd =

(
H14

H24

)
1 2 −1/2 +1

Hu =

(
H13

H23

)
1 2 +1/2 +1

Φd =

(
H15

H25

)
1 2 −1/2 −1

Φu =

(
H16

H26

)
1 2 +1/2 −1

Ω− = H46 1 1 −1 −1
Ω+ = H35 1 1 +1 −1

N = H56, NΦ = H34, NΩ = H12 1 1 0 +1
ζ = H36, η = H45 1 1 0 −1

Table 3.2: The composite Higgs sector

The low energy effective superpotential in the Higgs sector is

Weff = λN
(
Hu ·Hd + v20

)
+ λNΦ

(
Φu · Φd + v2Φ

)
+ λNΩ

(
Ω+Ω− + v2Ω

)
+ λ (ζHd · Φu + ηHu · Φd − Ω+Hd · Φd − Ω−Hu · Φu −NNΦNΩ) , (3.7)
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and the relevant part of the soft SUSY breaking Lagrangin is

−Lsoft = m2
Hu
H†

uHu +m2
Hd
H†

dHd +m2
Φu
Φ†

uΦu +m2
Φd
Φ†

dΦd

+m2
NN

∗N +m2
NΦ
N∗

ΦNΦ +m2
NΩ
N∗

ΩNΩ

+m2
Ω+

Ω∗
+Ω+ +m2

Ω−Ω
∗
−Ω− +m2

ζζ
∗ζ +m2

ηη
∗η

+ λ
{
Cv20N + CΦv

2
ΦNΦ + CΩv

2
ΩNΩ + h.c.

}
+ {BµHu ·Hd +BΦµΦΦu · Φd +BΩµΩ (Ω+Ω− + ζη) + h.c.}

+ λ
{
ANHu ·HdN + ANΦ

Φu · ΦdNΦ + ANΩ
(Ω+Ω− − ζη)NΩ

+ AζHd · Φuζ + AηHu · ϕdη + AΩ−Hu · ΦuΩ− + AΩ+Hd · ΦdΩ+ + h.c.
}

+

{
m2

ζηη
∗ζ +

B2
ζ

2
ζ2 +

B2
η

2
η2 + h.c.

}
(3.8)

where the dimensionless coupling λ becomes 4π at the confinement scale. The mass paramers
of µ, µΦ, µΩ are described by

µ ≡ λ⟨N⟩, µΦ ≡ λ⟨NΦ⟩, µΩ ≡ λ⟨NΩ⟩. (3.9)

In our model, Z2-even neutral superfields NΩ and NΦ are irrelevant to discussion. Then, we
omit. After that, the effective Z2-even Higgs sector is identical with that of the nearly-minimal
supersymmetric standard model (nMSSM) [19].

In order to explain the tiny neutrino mass and the dark matter problem in the framework
of the radiative seesaw scenario, we introduce following terms to the effective superpotential

WN = yiNN
c
RLiΦu + hiNN

c
RE

c
iΩ− +

MR

2
N c

RN
c
R +

κ

2
NN c

RN
c
R . (3.10)

where Li and Ec
i are the left-handed lepton doublets and the right-handed lepton singlet,

repectively.

3.1.2 The lightest Higgs boson mass

The lightest Higgs boson (= the SM-like Higgs boson) mass is estimated as

m2
h ≃ m2

Z cos2 2β +
λ2v2

2
sin2 2β + δmh (3.11)

where δmh comes from loop corrections. In order to realize the first order phase transition, λ
should be large. Therefore, we need large tan β value.

3.1.3 Neutrino mass : Hybrid radiative seesaw scenario

In our scenario, the neutrino masses are generated by one-loop nad three-loop diagrams shown
in Figure 3.1 and Figure 3.2. These types of diagrams are shown in [12] and [14].

The neutrino masses in the flavour basis (i, j = e, µ, τ) is represented as

(mν)ij = m
(one)
ij +m

(three)
ij . (3.12)
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Figure 3.1: One-loop diagram

Figure 3.2: Three-loop diagrams

One-loop diagram contribution is evaluated as

m
(one)
ij =

yiNy
j
N

(4π)2
{
(O0)

1α (O0)
1αmνR − (O0)

5α (O0)
5αmνR

}
B0(m

2
Φα
,m2

νR
) (3.13)



16CHAPTER 3. THE HIGGS BOSONAS A COMPOSITE STATEWITH SUPERSYMMETRY

and three-loop diagram contribution is evaluated as

m
(three)
ij =

λ4v2uy
i
Ey

j
Eh

i
Nh

j
NmνR

(4π)6
sin4 β

×
(
U∗
+

)
4γ
(U+)4γ

(
U∗
+

)
4δ
(U+)4δ

{
(O0)2ρ (O0)2ρ − (O0)6ρ (O0)6ρ

}
× F (m2

νR
,m2

Φρ
;m2

ei
,m2

Φ±
γ
;m2

ej
,m2

H± ,m2
Φ±

δ
)

+2
λ2yiEy

j
Eh

i
Nh

j
NmνRm

±
Φγ
m±

Φδ

(4π)6

× (V ∗
L )2α (VL)2α (V

∗
L )2β (VL)2β (U

∗
L)2γ (UL)2γ (U

∗
L)2δ (UL)2δ

×
{
(O0)3ρ (O0)3ρ − (O0)7ρ (O0)7ρ

}
F (m2

νR
,m2

Φρ
;m2

χ̃± ,m
2
ẽRi
,m2

Φ̃γ
;m2

χ̃± ,m2
ẽRj
,m2

Φ̃±
δ
)

(3.14)

where B0 is finite part of the one-loop scalar B0 function with external momentum square
p2 = 0

B0(m
2
1,m

2
2) = −

m2
1 logm

2
1 −m2

2 logm
2
2

m2
1 −m2

2

, (3.15)

the loop function F is

F (M2,m2
Φ;m

2
ϕ1,m

2
Ω1;m

2
χ2,m

2
ϕ2,m

2
Ω2)

=
(4π)6

i

∫
dDk

(2π)D
1

k2 −M2

1

k2 −m2
Φ

∫
dDp

(2π)D
/p

p2 −m2
χ1

1

p2 −m2
ϕ1

1

(k + p)2 −m2
Ω1

×
∫

dDq

(2π)D
−q/

(−q)2 −m2
χ2

1

(−q)2 −m2
ϕ2

1

(k + (−q))2 −m2
Ω2

(3.16)

The mixing matrices O0, U+, UL, UR, and VL are defined as

Φeven
u

ζeven

Φeven
d

ηeven

Φodd
u

ζodd

Φodd
d

ηodd


= O0



Φ1

Φ2

Φ3

Φ4

Φ5

Φ6

Φ7

Φ8


,


Φ+

u

Ω+(
Φ−

d

)∗(
Ω−

d

)∗
 = U+


Φ+

1

Φ+
2

Φ+
3

Φ+
4

 ,

(
Φ̃−

d

Ω̃−

)
= UL

(
Φ̃−

1L

Φ̃−
2L

)
,

 (
Φ̃+

u

)∗(
Ω̃+

)∗
 = UR

(
Φ̃−

1R

Φ̃−
2R

)
,

(
W̃

H̃−
d

)
= VL

(
χ̃−
1L

χ̃−
2L

)
,

(3.17)

where the superscript ”even” (”odd”) means CP-even (CP-odd) neutral scalar components, Φi’s
express the mass eigenstates of the Z2-odd neutral scalrs, Φ±

i ,Ω± are charged scalar components
in the Z2-odd sector, Φ̃±

i , Ω̃± are the fermionic fields of their chiral superfields and their mass
eigenstates are Φ̃−

iL,iR, W̃ (H̃d) is the wino (the Higgsino) as same as in the MSSM and χ̃ are
their mass eigenstates.
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3.1.4 The dark matter : Multi-Component DM scenario

There are many dark matter candidate in thie model. The additional unbroken Z2 symmetry
and R-parity ensure the stability of them. Therefore, three cases are considered; (Z2, Rp) =
(+,−), (−,+), (−,−). In our model, we can idetify these cadidates as the lightest neutralino,
the right-handed neutrino and the right-handed sneutrino. For simplicity, the dark matter
candidate with (Z2, Rp) = (+,−) is much heavier in order to decay into the right-handed
neutrino and the right-handed sneutrino. Then, it cannot become the dark matter candidate.
We here choose the dark matter as right-handed neutrino νR and sneutrino ν̃R. The relic
abundance is expressed by

ΩDM = ΩνR + Ων̃R ≃ 0.12 . (3.18)

The DM annihilation processes are shown in Figure 3.3.

Figure 3.3: The left and center diargrams are dominant contributions to the dark matter
annihilation processes. The right diagram is the dark matter number conversion process. N is
the Z2-even neutral singlet and it mix with the netral component of the neutral component of
the doublet.

In order to reproduce the measured DM relic abundance ΩDM ≃ 0.12, we set the masses
of νR and ν̃R as mνR = mν̃R ≃ mh/2. In this case, the s-channel resoncance enhances the
annihilation production cross section and thus the experimental data can be satisfied. Along
this line, the relic abundance of our model is determined by the coupling constant κ and the
mixing parameter among N and Hd. The DM number convesion process is also important to
reproduce the observed relic abundance [20].

The numerical evaluation of the DM abundance is obtained by calculating the Boltzmann
equations as

dY

dx
= 0.264g1/2∗

(
µRMP

x2

){
− ⟨σνv⟩

(
Y 2 − Y 2

eq

)
− ⟨σνν̃v⟩

(
Y 2 − Ỹ 2

Y 2
eq

Ỹ 2
eq

)
+ ⟨σν̃νv⟩

(
Ỹ 2 − Y 2

Ỹ 2
eq

Y 2
eq

)}
dỸ

dx
= 0.264g1/2∗

(
µRMP

x2

){
− ⟨σν̃v⟩

(
Ỹ 2 − Ỹ 2

eq

)
− ⟨σν̃νv⟩

(
Ỹ 2 − Y 2

Ỹ 2
eq

Y 2
eq

)
+ ⟨σνν̃v⟩

(
Y 2 − Ỹ 2

Y 2
eq

Ỹ 2
eq

)}
. (3.19)
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In above equations, the raios of particle number density of νR and ν̃R to the entropy density
are denoted by Y and Ỹ , g∗ is the effective degrees of freedom in the thermal equilibrium, x is
the dimensionless inverse temperature x = µR/T , µR is the reduced mass in the two component
DM system defined by µ−1

R = m−1
νR

+ m−1
ν̃R
, MP is the Planck mass scale, ⟨σv⟩ is the thermal

averaged cross section, the cross sections σν , σν̃ , σν̃ν , σνν̃ correspond to the process of νRνR → bb̄,
ν̃Rν̃R → bb̄, νRνR → ν̃Rν̃R and ν̃Rν̃R → νRνR.

3.1.5 First order electroweak phase trasition

The first order electroweak phase transition is the necessary condition for the electroweak
baryogenesis. This condition is written as

φC

TC
≳ 1 . (3.20)

In the SM, in order to satisfy this condition, the SM Higgs boson mass must be lighter than
about 60 GeV. However, the SM Higgs boson mass is much heavier, 125 GeV. In our model, the
extra scalar bosons which strongly couple to the SM-like Higgs boson enhance φC/TC . Moreover,
such non-decoupling effect significantly contributes to the Higgs boson triple coupling λhhh [21].

3.1.6 Falvour violating process

The right-hahded neutrino contribute to the flavour violationg process, µ → eγ and µ →
eee. These experimental values strongly constrain the model parameter space. The relevant
diagrams are shown in Figure 3.4.

Figure 3.4: The flavour violationg processes contribute to µ → eγ (left) and µ → eee (right)
from the right-handed neutrino.

The Z2-even SUSY sector generally contribute to the LFV process. In our model, we
assume that the off-diagonal components of the squarks and sleptons are zero and thus their
contributions vanish.

3.1.7 Benchmark scenario

We discuss our benchmark scenario which can explain the first order electroweak phase transi-
tion, the neutrino oscillation data, and the relic abundance of the DM, simultaneously.

First, we discuss the first order electroweak phase transition. In order to satisfy φC/TC ≳ 1
by the mechanism by [22], the coupling λ is λ = 1.8. This coupling enhances φC/TC and
contributes to the Higgs triple coupling and h→ γγ.

Second, in our model, one-loop and three-loop diagram contribute to the neutrino oscillation.
The solar and atmospheric neutrino mass differences are dominated by one-loop and three-loop



3.2. CONCLUSION 19

diagram, respectively. In this benchmark scenario, the neutrino mass hierarchy pattern is the
normal hierarchy m1 < m2 < m3. In the case of the inverted hierarchy m1 > m2 > m3,
the LFV experimental data is difficult to be satisfied with only one right-handed neutrino.
By intorducing more than two right-handed neutrinos, this condition could be relaxed. The
experimental constrains [23] are

2.28× 10−3eV2 <|m2
3 −m2

1| < 2.70× 10−3eV2 ,

7.0× 10−5eV2 <m2
2 −m2

1 < 8.1× 10−5eV2 ,

0.27 < sin2 θ12 < 0.34,

0.34 < sin2 θ23 < 0.67,

0.016 < sin2 θ13 < 0.030. (3.21)

Third, the DM cadidates in our model are the right-handed neutrino and sneutrino. The
annihilation processes, shown in , occurs by the Z2-even neutral scalar bosons, including the
SM-like Higgs boson. Such scenario is called the Higgs portal DM scenario. A constrain from the
DM direct detection experiment, the XENON100 [24] and LUX100 [25], can be satisfied because
the right-handed neutrino and sneutrino are SU(2)L gauge singlets. The spin-independent cross
section via the Z2-even neutral scalar bosons N and Hd, σ

SI
νR

and σSI
ν̃R
, are evaluated as

σSI
νR

= 3.1× 10−46 cm3 ,

σSI
ν̃R

= 7.7× 10−47 cm3 . (3.22)

Therefore, the DM-proton spin-independent cross section si

σDM =
ΩνR

ΩDM

σSI
νR

+
Ων̃R

ΩDM

σSI
ν̃R

= 1.1× 10−46 cm3 . (3.23)

The input parameters for numerical calculation and output parameters (predictions) are
shown in Table 3.3 and Table 3.4. The relic abundance of the DMs as a function of the right-
handed neutrino mass and the relic abundance of the DMs with fixed mass as a function of
x = µR/T are shown in Figure 3.5.

We also calculate the lepton flavour violationg processes. In order to satisfy these experi-
mental constrainrs, we set h1N = 0.

3.2 Conclusion
We have investigated the simple model which explain the problems of the SM, the tiny neutrino
masse, the existence of the DM and the baryon number asymmetry of the Universe. The model
based on the supersymmetric new gauge theory SU(2)H with confinement at the low-energy
scale. In addition to this symmetry, we introduce the unbroken Z2 symmetry and Z2-odd
right-handed neutrino superfield. At the low-energy theory, the extended Higgs sector appears
as a composite states of the fundamental field in SU(2)H . The first order electroweak phase
transition is successfully satisfied when the confinement scale is of order 10 TeV and thus
the non-decoupling effect becomes large. In addition to R-parity, the unbroken Z2 symmetry
ensures the stability of the DM. The tiny neutrino masses and mixing angles are explaind by
the one-loop nad three-loop quantum effect via the right-handed neutrino. We have found the
benchmark scenario whicn explain these phenomenological problems which cannot solve in the
framework of the SM and avoid the experimental constraints.
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Table 3.3: The input parameters in our benchmaek scenario. We define m̄2
Φi

= m2
Φi

+ |µi|2,
where µi = µΦ for Φi = Φu,d and µi = µΩ for Φi = Ω±, ζ, η.

λ, tan β and µ-terms
λ = 1.8, tan β = 15, µ = 250GeV, µΦ = 250GeV, µΩ = −550GeV
Z2-even Higgs sector
mh = 126GeV, mH± = 990GeV, mN = 1050GeV, AN = 2900GeV
Z2-odd Higgs sector
m̄2

Φu
= m̄2

Ω−
= (175GeV)2, m̄2

Φd
= m̄2

Ω+
= m̄2

ζ = (1500GeV)2, m̄2
η = (2000GeV)2,

BΦ = BΩ = Aζ = Aη = AΩ+ = AΩ− = m2
ζη = 0, B2

ζ = (1400GeV)2, B2
η = (700GeV)2

Right-handed neutrino and sneutrino sector
mνR = 63GeV, mν̃R = 65GeV, κ = 0.9,
yN = (3.28i, 6.70i, 1.72i)× 10−6, hN = (0, 0.227, 0.0204)
Other SUSY SM paramerers
mW̃ = 500GeV, mq̃ = mℓ̃ = 5TeV

Table 3.4: Predictions of our benchmark scenario given from Table 3.3.

Non-decoupling effects
φC/TC = 1.3, λhhh/λhhh|SM = 1.2, BR(h→ γγ)/BR(h→ γγ)SM = 0.78
Neutrino masses and mixing angles
(m1,m2,m3) = (0, 0.0084, 0.050)eV, sin2 θ12 = 0.32, sin2 θ23 = 0.50, | sin θ13| 0.14
LFV processes
BR(µ→ eγ) = 3.6× 10−13, BR(µ→ eee) = 5.6× 10−16

Relic abundance of the DMs
ΩνRh

2 = 0.055, Ων̃Rh
2 = 0.065, ΩDMh

2 = ΩνRh
2 + Ων̃Rh

2 = 0.12
Spin-independent DM-proton scattering cross sections
σSI
νR

= 3.1× 10−46 cm3, σSI
ν̃R

= 7.7× 10−47 cm3, σDM = 1.1× 10−46 cm3
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Figure 3.5: (Left) The predictions of the thermal relic abundance of the right-handed neutrino
and senutrino as a function of the mass of the right-handed neutrino mνR . The right-handed
sneutrino mass is taken to bemν̃R = mνR+2 GeV for all parameter region. (Right) The thermal
relic abundence in the benchmark scenario with mνR = 63 GeV.





Chapter 4

The Higgs boson
as a pseudo Nambu-Goldstone boson

4.1 Introduction

The basic idea of composite Higgs models is originally proposed by Georgi and Kaplan [9]. In
this class of models, there is no scalar boson at the very high-energy scale, so that the gauge
hierarchy problem disappears. The Higgs boson appears as a Nambu-Goldstone boson (NGB)
associated with the breakdown of the global symmetry G to its subgroup H. The subgroup H
must contain the SM gauge group, at least SU(2)L × U(1)Y . We here consider that the global
symmetry G is just an approximate symmetry at the high energy scale. We already know that
the SU(3)C gauge symmetry behaves asymptotically free. By the explicit breaking effect of
the shift symmetry, the Higgs boson obtains the mass by one-loop quantum effects via the
gauge bosons and fermions. Therefore, these are called pseudo-NGBs (pNGBs). Thanks to this
dynamics, we could explain the light Higgs boson mass 125 GeV, naturally. The breaking scale
of global symmetry f , which is alologue of the pion decay constant fπ in the QCD, is much
higher than the vacuum expectation value of the SM Higgs field v.

The composite Higgs scenario is an analogue of the QCD and we already know the existence
of the pNGB, pion. The pions are the NGBs originated from the chiral symmetry breaking,
SU(2)L × SU(2)R → SU(2). They obtain masses from the explicit breaking effect of the
chiral symmetry. The theory, describing the pion physics, are well-known one as the chiral
perturbation theory [26]. In the pion scattering process, it is well-known that the perturbative
unitarity will be violated at a certain scale. However, it’s recoverd by an existence of a new
particle, called the rho meson. In this case, the phase shift occurs around the rho meson mass
scale. We expect that there is a new particle whose properties are almost as same as the rho
meson in the QCD and also the phase shift will occurs.

In this thesis, we have investigated the minimal composite Higgs model. This chapter is
based on [2], [3] and some recent development.

4.2 The Minimal Composite Higgs models

The minimal composite Higgs model is the minimal model with one composite Higgs doublet
[27]. In this model, the global symmetry is SO(5) and it breaks into SO(4). The number of
NGB is 4(=dim(SO(5)/SO(4))). It corresponds to the degrees of freedom of the SM Higgs

23
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doublet. The subgroup SO(4)(≃ SU(2)L × SU(2)R) contains the custodial symmetry. Thanks
to the custodial symmetry, the T -parameter does not recieve any large effect. Moreover, the
extra U(1)X symmetry is introduced to reproduce U(1)Y symmetry. The hypercharge Y is
generated by the third component of SU(2)R and U(1)X , Y = TR

3 +X.

4.2.1 Lagrangian

In order to obtain the interacting Lagrangian, we follow the method of [27]. The non-linear
realized Higgs field is expressed as

Σ = Σ0e
Π/f , Σ0 = (0, 0, 0, 0, 1) , Π = −iT âhâ

√
2 , (4.1)

where f is the breaking scale, Σ0 is SO(5) breaking vacuum and T â’s are the broken generators
with corresponding to NGB fields hâ. We can rewrite Σ as

Σ =
sin(h/f)

h
(h1, h2, h3, h4, h cot(h/f)), (4.2)

with h =
√
hâhâ. We here assume that h3 is the physical Higgs field h and choose the unitary

gauge; h1,2,4 → 0, h3 → h

Σ =
sin(h/f)

h
(0, 0, h, 0, h cot(h/f)) . (4.3)

The SO(5)× U(1)X invariant effective Lagrangian is the momentum space is written as

Leff = Lgauge
eff + Lmatter

eff

=
1

2
Pµν

[
ΠX

0 (p)X
µXν +Π0(p)Tr[A

µAν ] + Π1(p)ΣA
µAνΣT

]
+ Lmatter

eff , (4.4)

where Aµ are the SO(5) gauge fields, Aµ = T aAa
µ + T âAâ

µ, T
a’s are unbroken generators in

SO(4), Xµ is the U(1)X gauge field, Π0,1 are the form factor and Pµν is the projection operator,
Pµν = gµν−pµpν/p2. The matter Lagrangian Lmatter

eff depends on the representation of the matter
fields. We discuss Lmatter

eff and classify the variation models of the MCHMs below sections. The
irrelevant part of the gauge Lagrangian is omitted and the remnant part is

Lgauge
eff =

1

2
P µν

[(
ΠX

0 (p) + Π0(p) +
sin2(h/f)

4
Π1(p)

)
BµBν

+

(
ΠX

0 (p) +
sin2(h/f)

4
Π1(p)

)
W aL

µ W aL
ν

+ 2 sin2(h/f)Π1(p)Ĥ
†T aLY ĤW aL

µ Bν

]
, (4.5)

where W aL
µ are the SU(2)L gauge fields, Bµ is the U(1)Y gauge field, Ĥ can be reconstructed

as

Ĥ =
1

h

(
h1 − ih2
h3 − ih4

)
, (4.6)
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and T aL(Y ) is the iegenvalue of Ĥ, T aL(Y ) = 1/2.
At the tree-level, the Higgs boson mass is exactly zero by the shift symmetry of the NGB.

The Higgs potential of the effective SU(2)L ×U(1)Y gauge theory is generated at the one-loop
level as

Veff = V gauge
eff + V fermion

eff , (4.7)

where V gauge
eff denotes the contributions from the SU(2)L gauge boson loops and V fermion

eff denotes
those from the SM matter fermion loops. The gauge boson contirbution is expressed as

V gauge
eff =

9

2

∫
d4p

(2π)4
ln

(
Π0(p) +

1

4
Π1(p) sin

2(h/f)

)
. (4.8)

If we turn off the fermionic fonctribution V fermion
eff , the electroweak symmetry SU(2)L × U(1)Y

is not broken. The explicit form of V fermion
eff , which depends on the matter embedding of the

fermions sector Lmatter
eff , plays an important role for the realistic model building.

After that, the gauge symmetry SU(2)L×U(1)Y is broken by the Coleman-Weinberg mech-
anism, the one-loop quantum effects of the gauge and matter fields. The electroweak symmetry
breaking vacuum is written as

⟨Σ⟩ =
(
0, 0,

√
ξ, 0,

√
1− ξ

)
, (4.9)

where ξ is the compositeness parameter, defining by ξ = sin2(⟨h⟩/f), and ⟨h⟩ is the VEV of h.
By expanding h around the VEV as h→ ⟨h⟩+ ĥ, the effective Lagrangian given in Eq. (4.5)

leads to the interaction terms between the Higgs boson ĥ and the weak bosons. Therefore, we
ontain

Lgauge
eff =

g2v2

4
W+

µ W
−µ +

g2v

2

√
1− ξĥW+

µ W
−µ +

g2(1− 2ξ)

4
ĥ2W+

µ W
−µ

+
g2Zv

2

4
ZµZ

µ +
g2Zv

2

√
1− ξĥZµZ

µ +
g2Z(1− 2ξ)

4
ĥ2ZµZ

µ , (4.10)

where g2Z = g2 + g′2 and the VEV in the SM is defined by v = f
√
ξ (= 246 GeV). The range of

the compositeness parameter is easily understood as 0 < ξ < 1. The coupling deviation pattern
between the gauge bosons and the Higgs boson are determined by the breaking pattern of the
global symmetry, SO(5) → SO(4). The scale factor is obtained by ghV V = gSMhV V

√
1− ξ, it is

independently given by the matter sector.

4.3 Phase shift
In the MCHMs, the gauge-Higgs boson couplings deiviate from the SM predictions; i.e., ghV V =
gSMhV V

√
1− ξ and ghhV V = gSMhhV V (1 − 2ξ). Interestingly, these deviations break perturbative

unitarity of the scattering process WLWL → WLWL, WL denotes the logitudinal mode of the
weak gauge boson. The unitarity argument gives us the constrain on partial wave amplitudes
al in the channel of the angular momentum ℓ:

Re[aℓ]
2 +

(
Im[aℓ]−

1

2

)2

=

(
1

2

)2

, (4.11)
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which means that aℓ is bound on a circle in the complex plane of the radius 1/2 with the centre
at (0, 1/2). It cannot exceed 1/2. We here consider the s-wave amplitude of WLWL → WLWL,

a0 =
GF ξS

16
√
2π

+
GF (m

2
h −M2

W )(1− ξ)
4
√
2π

(
√
S ≫ mh), (4.12)

where
√
S is the centre-of-mass energy of the system. The unitarity bound is expressed as

|a0| ≤ 1
2
. In MCHMs, the non-vanishing compositeness parameter ξ violates the perturbative

unitarity. In Fig. 4.1, we show the unitarity bound on the plane of the
√
S–ξ, the perturbative

unitarity is violated in the region above the solid curve. This limit tells us the larger non-
vanishing ξ gives the smaller

√
S.

Figure 4.1: The unitarity bound as a function of ξ and
√
S given in Eq.(4.12). The region

above the solid curve forbidden by violating perturbative unitarity.

We obtain an important argument from the perturbative unitarity violation. If the obseved
cross section of the WL scattering process becomes larger than the SM prediction, two different
possibilities are considered, (i) at high energies, the electroweak theory becomes a strongly
coupled theory, where we cannot apply the perturbative calculation. (ii) the purterbative
unitarity is recovered by a new resonance state with a broad width. The latter is a similar
situation to the Fermi theory where the cutoff scale is the W boson mass. The case (ii)
corresponds to an analogy of the contribution of the rho meson in the QCD pion effective
theory. Therefore, if we could measure the phase shift imformation of the scattering amplitude
of new resonance, we may extract the imformation of the new resonance.

Next, we discuss the energy scale of the new resonance and how to extract its scale from the
phase shift imformation. There are previous studies [28, 29] which investigated the phase shift
of the scattering process. The energy dependence of the phase shift is unknown. Fortunately,
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the phase shift of the pion svcattering is measured and shown in [29],

δ =


tan−1

[
Γρ

mρ

S

m2
ρ + Γ2

ρ − S

]
for

√
S <

√
m2

ρ + Γ2
ρ,

tan−1

[
Γρ

mρ

S

m2
ρ + Γ2

ρ − S

]
+ π for

√
S ≥

√
m2

ρ + Γ2
ρ,

(4.13)

where mρ and Γρ are the rho meson mass and its total decay width, respectively. By using the
analogy between the pion scattering and the WL scattering, we assume that the same fitting
function (4.13) can be applied to the WL scattering in the MCHMs as in [29].

The phase δ as a function of a0 is defined by

δ ≡ tan−1

[
Im[a0]

Re[a0]

]
= tan−1

[
1

2Re[a0]
±

√
1

4Re[a0]2
− 1

]
, (4.14)

The above equation is given by (4.11), by using the fact that a0 is bound on the circle, not
within the circle. Therefore, this condition is a conservative limit which gives the maximal |a0|.

In Figure. 4.2, by using (4.13) and (4.14), the phase δ is obtained as functions of the new
resonance mass mρ and the compositeness parameter ξ. This figure means that the resonance
state mass mρ can be converted to ξ. The width-to-mass ratio Γρ/mρ are set to be 0.1, 0.2
and 0.3 in the upper-left, upper-right and bottom-left panels, respectively. We note that the
shaded regions in the figures are always on the unitarity circle, and the centre-of-mass energy√
S is just a parameter at this stage. The non-vanishing compositeness parameter ξ violates

the perturbative unitarity. However, as shown in the Figures, the unitarity is recovered by the
new resonance. The maximal value of δ = π/4 in all figures corresponds to (Re[a0], Im[a0]) =
(1/2, 1/2) on the unitarity circle. We also show the phase δ dependence ofmρ with fixed serveral
ξ, shown in Figure 4.3.

Next, we discuss the possibility to measure the phase sfift imformation at current and future
collider experiments. The direct phase extraction from the elastic scattering of WL requrires
very high energy experiments [42]. As an alternative method, we consider the production
process ud̄ → WZ with full leptonic channel at hadron colliders. We assume that the phase
shift of this process is the same that of the WL scattering as stuidied in [29]. The phase δ is
extracted by the angular correlation betweean the charged lepton from W boson decay and the
production plane of WZ [29, 31, 32]. The kinematics is shown in Appendix. From the angular
distribution of the charged lepton from the W boson in ℓℓℓ + /ET final states, we expecte that
the phase shift imformation could be measured.

We here define the rhoduction amplitude of ud̄ → WZ, MProd(Θ;λW , λZ), with λW,Z are
polarizations of W and Z bosons, respectively, with λW,Z = ±1, 0. The production angle Θ
means the scattering angle between incoming u-quark and outgoing W+.
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Figure 4.2: Three panels show new resonance scales predicted by perturbative unitarity, where
a sizable phase shift appears. We take the width-to-mass ratio as Γρ/mρ = 0.1, 0.2 and 0.3 in
the upper-left, upper-right and bottom-left panels, respectively.



4.3. PHASE SHIFT 29

Figure 4.3: The relation between mρ and δ for fixed ξ and Γρ/mρ. Each curve corresponds to
the slice at ξ = 0.05, 0.1 or 0.2 in Fig. 4.2.

The decay amplitudes of W+ → ℓ+νℓ and Z → ℓ+ℓ− are denoted as MW (θ1, ϕ1;λW ) and
MZ(θ2, ϕ2;λZ), respectively, as functions of two polar angles (θ1, θ2) and two azimuthal angles
(ϕ1, ϕ2) of the each final state leptons. The full amplitude is proportional to

dσ(ud̄→ WZ → lνll) ∝

∣∣∣∣∣ ∑
λW ,λZ

MProd(Θ;λW , λZ)MW (θ1, ϕ1;λW )MZ(θ2, ϕ2;λZ)

∣∣∣∣∣
2

. (4.15)

We can identify the logitudinal modes of the vector bosons WL and ZL to the NGBs. The
phase δ would appear the scattering amplitude for WL and ZL. We then introduce the phase
byMProd(Θ; 0, 0)→MProd(Θ; 0, 0)eiδ, and we regard this δ as the phase shift which appears in
WLWL scattering. Therefore, we introduce the phase toMProd(Θ; 0, 0)→MProd(Θ; 0, 0)eiδ, as
mentioned above, we assume that this δ is the same one which appears in theWL scattering. We
show the result the hadronic cross section σ(pp→ WZ → lνll) as a function of the phase δ, with√
s =14, 30, 100 TeV. For numerical computation, we utilize the parton distribution function

(PDF) as MSTW 2008lo [44]. At the point of δ = 0 (corresponding to the SM), the hadronic
cross section is given by σ(14 TeV) ∼ 0.01 pb, σ(30 TeV) ∼ 0.04 pb and σ(100 TeV) ∼ 0.1 pb.

The polarization λW,Z dependence of the decay ampplitudes are expressed as

MW (θ1, ϕ1;λW ) ∝ eiλWϕ1 , MZ(θ2, ϕ2;λZ) ∝ e−iλZϕ2 . (4.16)

Therefore, the phase δ dependence can be estimated from the squared amplitude as

|amplitude|2 ⊃ sin(λWϕ1 − λZϕ2) sin δ for λW ̸= 0, λZ ̸= 0. (4.17)
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Figure 4.4: Total cross section as a function of the phase δ. Solid, dashed and dotted curves
show the case that the center of mass energy is 14 TeV, 30 TeV and 100 TeV, respectively. At
the point of δ = 0, the cross section is given by σ(14 TeV) ∼ 0.01 pb, σ(30 TeV) ∼ 0.04 pb and
σ(100 TeV) ∼ 0.1 pb.

One can easily find that if δ = 0 such correlation disappears. Therefore, we can extract the
phase δ from the direction of charged lepton with ϕ1 or ϕ2. In the following discussion, we focus
on ϕ1, the azimutial angle of the charged lepton from the W+ boson decay.
In order to identify the events, we discuss two ambiguity. One is the misidentification of the
incoming u-quark direction, whose kinematics leads to (Θ, ϕ1, ϕ2) → (π − Θ, π + ϕ1, π + ϕ2).
Therefore, we carry out the phase space integration 0 < cosΘ < 1 or −1 < cosΘ < 0. In other
words, we only pick up a contribution of the definite incoming direction of u-quark. Other is
the neutrino missing energy. We here define the asymmetry at the hadronic level,

A± ≡ |σ+ − σ−|
σ+ + σ−

, σ± ≡ σ(sinϕ1 ≷ 0), (4.18)

where σ+(σ−) is the cross section integrated over 0 < ϕ1 < π (π < ϕ1 < 2π). Consequently, the
direction of the neutrino does not affect. The numerical result as a function of the phase δ for√
s = 14, 30, 100 TeV is shown in Figure 4.5.
The asymmetry at the parton level is defined by

Â± ≡ |σ̂+ − σ̂−|
σ̂+ + σ̂−

, σ̂± ≡ σ̂(sinϕ1 ≷ 0), (4.19)

where σ̂± are parton-level cross sections, which depend on the centre-of-mass energy
√
ŝ of

the subprocess. In Figure 4.6, we show the parton level asymmetry as a function of
√
ŝ with

δ = 0.1, 0.2, 0.3, π/4 and π/2. The maximal values are shown in the figure as red points for
each δ.

The maximal point becomes smaller and smaller for large pahse δ. Therefore, the maximal
point could appear around lower energy. After utilizing the PDF, the asymmetry becomes
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Figure 4.5: The asymmetry A± as a function of δ, where solid, dashed and dotted curves
correspond to the case of the collision energy 14 TeV, 30 TeV and 100 TeV, respectively.

maximal around δ ∼ 0.2 for
√
s = 14 TeV, Figure 4.5. The asymmetry becomes smaller for

larger phases, which can be understood by kinematics as follows. As shown in Fig. 4.6, when
the phase is larger, the value of

√
ŝ where the parton-level asymmetry becomes maximal gets

smaller, and finally goes below the WZ threshold.
In Fig. 4.5, the asymmetry also becomes smaller when the phase is getting smaller. This

behavior is reasonable because a smaller phase shift corresponds to a higher resonance scale so
that we cannot reach such an energy scale. We find that the asymmetry is most sensitive to the
case of δ ∼ 0.2 at LHC with the collision energy 14 TeV. When we extend the collision energy
to 30 TeV and 100 TeV, the sensitivity to a smaller phase increases, as shown by the dashed
and dotted curves in the figure.

Before closing this section, let us discuss the possibility to observe the phase shift in this
channel at future hadron collider experiments. As shown in Fig. 4.4, the non-vanishing phase
predicts larger cross section compared to the SM prediction. The asymmetry is expected to
be observed at future LHC experiments. For example, σ ≃ 0.037 pb with the collision energy
14 TeV when δ ≃ 0.24 (and A± ≃ 0.015). In this case, the statistic error is comparable to
the value of the asymmetry with integrated luminosity 300 fb−1, and thus more statistics is
required. If we accumulate 3000 fb−1 at the high-luminosity phase of future LHC experiment,
the statistics is almost one order of magnitude improved, and thus the phase shift can be
observed. Furthermore, when we consider higher-energy collider experiments such as collision
energies 30 TeV and 100 TeV, the cross section get larger. In the case of the collision energy 30
TeV, the cross section becomes σ ≃ 0.095 fb at δ ≃ 0.018 where the asymmetry is maximally
large. Although the cross section with the collision energy 30 TeV becomes large as compared
to that with 14 TeV, the maximal asymmetry decreases because A± is normalized by the cross
section itself. Thus the higher luminosity is also required in this case. The sensitivity to the
asymmetry is not improved even in the case of the collision energy 100 TeV. Therefore, in
order to observe the asymmetry, the increasing luminosity might be efficient rather than the
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Figure 4.6: Parton-level asymmetry as a function of the center of mass energy
√
ŝ. The asym-

metry is shown for the case of δ = 0.1, 0.2, 0.3, π/4 and π/2, and the red dots represent the
points at which the asymmetry becomes maximally large for each δ.
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increasing collision energy.

It should be noted that for the signal event pp → WZ → lνll there are large background
events. However, since we see the asymmetry, it is not necessary to suppress the SM background
after extracting the events. The efficiency of the event selection for pp→ WZ → lνll is about
70. Although this efficiency makes the statistic error larger, our naive estimation is not largely
affected by the background. An ingenious technique is also helpful to probe the phase shift
in this channel. For example, although we have studied only leptonic decay of Z, larger cross
sections can be achieved by taking hadronic decay modes into account, where the asymmetry
does not decrease since it is induced by the W decay.

Let us finally comment on the future e+e− collision experiments such as ILC in which more
precise measurement can be achieved. For example, the similar procedure can be applied to
e+e− → W+W− → l+νlūd so that information of the phase shift can be extracted from the
kinematics. It might also be possible to apply the same manner to the Higgs-strahlung process.
These cases will be studied elsewhere.

4.4 Fingerprint identification in the MCHMs

As discussed in the previous section, appearance of a new resonance with a relatively broad
width can be the first evidence of composite Higgs scenarios. However, there exists a variety
of MCHMs depending on matter representations so that as the second step we have to narrow
down the MCHMs to a class of specific models by experiments. One of the promising strategies
for this purpose is to fingerprint MCHMs by precisely measuring a set of the Higgs boson
couplings. The precision measurements at the high-luminosity LHC as well as at future e+e−

colliders will be able to provide a strong clue to understand the detail of the MCHMs. In
this section, we demonstrate how to distinguish variations of the MCHMs by patterns of the
deviations from the SM predictions. In order to investigate such deviations, we utilize scale
factors defined by κa ≡ ga/g

SM
a , where ga denote the Higgs boson couplings with the weak

gauge bosons V (V = W,Z), matter fermions and the Higgs boson itself such as a = hV V ,
hhh, htt and hbb. For some of them, we use simple forms as κV ≡ κhV V , κt ≡ κhtt, and
κb ≡ κhbb. We also discuss contact interactions such as hhV V , hhhh, hhtt̄ and hhbb̄, where
we define their couplings as ghhV V , ghhhh, ghhtt and ghhbb. For hhV V and hhhh, we use the
parameters chhV V ≡ ghhV V /g

SM
hhV V and chhhh ≡ ghhhh/g

SM
hhhh. Each MCHM basically predicts a

specific pattern of deviations in these couplings, so that we can distinguish models by detecting
such a pattern by experiments.

As already shown in above section, universal predictions for the scale factors of the Higgs
couplings to the gauge bosons are obtained as κV =

√
1− ξ and chhV V = 1−2ξ in the MCHMs.

It means that the compositeness parameter ξ is determined by the measurement of κV . We
can also test the consistency with the MCHMs by measuring the correlations among κV and
chhV V independent of the detail in matter sector of the MCHMs. For example, in the minimal
supersymmetric SM, κV is reduced by the mixing angle, but chhV V is always unity regardless of
the mixing angle. However, it could be challenging to precisely measure chhV V even at future
collider experiments and should be a task for future colliders [34].

On the other hand, the main contribution to the one-loop effective Higgs potential is driven
by the Yukawa coupling of matter fermions. Therefore, self-couplings of the Higgs boson as well
as the Higgs boson couplings to the matter fermions reflect the matter sector of the MCHMs
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Lmatter
eff . The effective Lagrangian for the matter sector is determined by how the SM matter

fermions are embedded into the SO(5) representations. In the following, we define various
MCHMs according to the matter representations in order, and discuss deviations in Higgs
boson couplings.

First, we introduce the simplest model, so-called MCHM4. In this model, all the matter
fermions are embedded into four-dimensional representations Ψ

(4)
r (r = q, u, d) of SO(5) as

Ψ(4)
q =

(
qL
QL

)
, Ψ(4)

u =

 quR(
uR
d′R

) , Ψ
(4)
d =

 qdR(
u′R
dR

) . (4.20)

Here, qL = (uL, dL)
T , uR, and dR are SM quark SU(2)L doublet, right-handed up-type quark

and right-handed down-type quark, respectively, and the other fields as QL, q
u
R, q

d
R, u

′
R, and d

′
R

are non-dynamical fields so that their contributions are negligible. The relevant matter part of
the effective Lagrangian is given by

Lmatter
eff =

∑
r=q,u,d

Ψ
(4)

r /p
[
Πr

0(p) + Πr
1(p)Γ

iΣi

]
Ψ(4)

r +
∑
r=u,d

Ψ
(4)

q

[
M r

0 (p) +M r
1 (p)Γ

iΣi

]
Ψ(4)

r , (4.21)

where Γi(i = 1, · · · , 5) are gamma matrices in five-dimensional representation of SO(5), and
M ’s are the form factors. The loop contributions of the matter fermion to the Higgs potential
is dominated by the top-quark loop, and it is evaluated in the MCHM4 as

V fermion
eff ≃ −2NC

∫
d4p

(2π)4
[
ln /pΠbL + ln(p2ΠtRΠtL − Π2

tLtR
)
]
, (4.22)

where

ΠtL = ΠbL = Πq
0 +Πq

1 sin(h/f) , ΠtR = Πu
0 − Πu

1 cos(h/f) , ΠtLtR =Mu
1 sin(h/f) , (4.23)

and NC = 3 is the colour number of QCD. Notice that this contribution V fermion
eff depends on

the representation of the quark fields. From Eqs. (4.8) and (4.22), the effective potential given
in Eq. (4.7) can be rewritten as

Veff ≃ α cos(h/f)− β sin2(h/f) , (4.24)

where

α =2NC

∫
d4p

(2π)4

(
Πu

1

Πu
0

− 2
Πq

1

Πq
1

)
,

β =

∫
d4p

(2π)4

(
2NC

|Mu
1 |2

(−p2)(Πq
0 +Πq

1)(Π
u
0 − Πu

q )
− 9

8

Π1

Π0

)
. (4.25)

By the contribution of V fermion
eff , the SU(2)L × U(1)Y is broken at the minimum of the effective

potential Veff. Actually, the vacuum conditions given by,⟨
∂Vh
∂h

⟩
=

sin(⟨h⟩/f)
f

(α + β cos(⟨h⟩/f)) = 0 ,⟨
∂2Vh
∂h2

⟩
=

2β

f 2

(
1− α2

4β2

)
= m2

h > 0 , (4.26)
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are satisfied with sin(⟨h⟩/f) = v/f ̸= 0. The coupling constant for the triple Higgs boson
coupling is predicted as

λhhh ≡
⟨
∂3Vh
∂h3

⟩
=

3m2
h

v

√
1− ξ . (4.27)

Eq. (4.21) also leads to the mass terms of the third generation quarks and these interaction
terms with the Higgs boson as

Leff =M t
1 sin(h/f)t̄t+M b

1 sin(h/f)b̄b

=M t
1

√
ξ

(
1 +

√
1− ξ ĥ

v
− 1

2
ξ
ĥ2

v2
+ · · ·

)
t̄t+M b

1

√
ξ

(
1 +

√
1− ξ ĥ

v
− 1

2
ξ
ĥ2

v2
+ · · ·

)
b̄b

=mtt̄t+
mt

v

√
1− ξĥt̄t− mt

2v2
ξĥ2t̄t+mbb̄b+

mb

v

√
1− ξĥb̄b− mb

2v2
ξĥ2b̄b+ · · · , (4.28)

wheremt andmb are the masses of the top quark and the bottom quark, respectively. It provides
us κt = κb =

√
1− ξ. For the contact interactions of two Higgs bosons and two fermions, their

coupling constants are given by ghhtt = −mtξ/(2v
2) and ghhbb = −mbξ/(2v

2) in the MCHM4

model. We parametrize these couplings as chhtt ≡ ghhtt/(mt/(2v
2)) and chhbb ≡ ghhbb/(mb/(2v

2))
in the following discussions.

Next, we consider variations of MCHMs. There are other representations of SO(5) into
which we can embedd the SM quark fields, such as one-, five-, ten- and fourteen-dimensional
representations and so on. In general, qL = (uL, dL), uR, and dR can be embedded into in-
dividual representations. We already discussed one of the simplest model, MCHM4. Another
simple model is the MCHM5 in which all the quark fields, uL, dL, uR and dR, are embed-
ded into the five-dimensional representations. The detail of the model is given in the Ap-
pendix. The factors κV and chhV V , in the MCHM5 are the same as those in the MCHM4.
On the other hand, the MCHM5 predicts different deviation patterns from the MCHM4 pre-
dictions for the factors κhhh, chhhh, κt, κb chhtt and chhbb. The MCHM4 and MCHM5 predict
(κhhh, chhhh, κt(b), chhtt(hhbb)) ≃ (1 − 1

2
ξ, 1 − 7

3
ξ, 1 − 1

2
ξ,−ξ) and (1 − 3

2
ξ, 1 − 25

3
ξ, 1 − 3

2
ξ,−4ξ),

respectively. If these deviations can be measured prescisely enough, we can distinguish the
MCHM4 and the MCHM5.

Similarly, we can classify the MCHMs by the precision measurements of the deviation pat-
terns in the Higgs boson couplings. In order to demonstrate the classification of the MCHMs,
we consider several models with different representations of the quark fields. The MCHMs
discussed here and the predicted deviation patterns are listed in the Table 4.1. The effective
Lagrangian for the matter sector and the Higgs potential in each models are shown in the Ap-
pendix. In the model named MCHMi-j-k, the quark fields qL = (uL, dL), uR, dR are embedded
into i-, j- and k-dimensional representations, respectively. In the case of i = j = k, we simply
write MCHMi instead of MCHMi-i-i. Patterns of scale factors in various models are partly
studied in Ref. [35]. In this thesis, we make more complete list of the models1 and we add
the predictions on the deviations for additional intereractions such as hhV V , hhhh, hhtt, and

1We cannot make a realistic model for some combinations of the matter representations. For example, in the
model MCHM5-1-10, the electroweak symmetry breaking cannot occur as shown in the Appendix. Therefore we
don’t consider such a model in the analysis of the scale factors.
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hhbb. In the table, we use the functions defined in Ref. [35] as

F3 =
1√
1− ξ

3(1− 2ξ)M t
1 + 2(4− 23ξ + 20ξ2)M t

2

3M t
1 + 2(4− 5ξ)M t

2

,

F4 =
√
1− ξM

t
1 + 2(1− 3ξ)M t

2

M t
1 + 2(1− ξ)M t

2

, F5 =
√

1− ξM
t
1 − (4− 15ξ)M t

2

M t
1 − (4− 5ξ)M t

2

, (4.29)

whereM t
1 andM

t
2 are form factors in effective theories shown in the Appendix, and they cannot

be determined within the framework of the low energy theories. We here additionally introduce

F6 = −4ξ 3M
t
1 + (23− 40ξ)M t

2

3M t
1 + 2(4− 5ξ)M t

2

, F7 = −ξ
M t

1 + 2(7− 9ξ)M t
2

M t
1 + 2(1− ξ)M t

2

,

F8 = −ξM
t
1 − (34− 45ξ)M t

2

M t
1 − (4− 5ξ)M t

2

,

H1 = 1− 3ξ

2
− 5ξ2

8
+

ξ3

3m2
h

[
−21m2

h

16
+

48γ

v2

]
,

H2 = 1− 25ξ

2
+ ξ2 +

ξ3

3m2
h

[
3m2

h +
288γ

v2

]
, (4.30)

where γ is one of the form factors defined in the Appendix. In the models such that two different
form factorsM t

1 andM
t
2 contribute to the scale factor, we examine two typical cases ofM t

1 → 0
or M t

2 → 0 for simplicity. For the form factors H1 and H2, we take the terms up to O(ξ2), and
thus the contribution through the γ term in the potential Eq. (C.9) can be neglected because
it is proportional to ξ3.

In Fig. 4.7, several scale factors are shown as a function of κV which is uniquely determined
by ξ. Upper-left panel of Fig. 4.7 is also shown in Ref. [36] for MCHM4 and MCHM5

2, and our
result is consistent with their one. As seen in the set of figures, we can basically discriminate
some models from the others by the correlations among scale factors. For instance, the models
{A, D, E, F, F’}, which are defined in Tab. 4.1, can be separated from the other models by κb.
These four models are then classified into three sets as {A, E}, {D, F’} and F by measuring κt.
The degeneracy between A and E can be solved by the measurement of λhhh/λ

SM
hhh.

4.5 Double Higgs production at collider experiments

The double Higgs production is an important process which will give us to hint for the essence
of the Higgs sector and new physics effects.

2They also show the case of MCHM5-1-x (x is arbitrary) with additional fermionic resonances [37]. Without
such resonances, the model cannot maintain electroweak symmetry breaking as is the case with MCHM5-1-10

mentioned in Appendix.
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Figure 4.7: Correlations between scale factors. κV is universal for all MCHMs, and thus ξ-
dependence is the same.
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Table 4.1: Scale factors for MCHMs with various matter representations. The labels are used
in Fig. 4.7, where C, H and I are the case of M t

1 → 0, and C’, H’ and I’ are the case of M t
2 → 0.

Label Model κV chhV V κhhh chhhh κt κb chhtt chhbb

A MCHM4

√
1− ξ 1− 2ξ

√
1− ξ 1− 7

3
ξ

√
1− ξ

√
1− ξ −ξ −ξ

B MCHM5

√
1− ξ 1− 2ξ 1−2ξ√

1−ξ

1−28ξ/3+28ξ2/3
1−ξ

1−2ξ√
1−ξ

1−2ξ√
1−ξ

−4ξ −4ξ
B MCHM10

√
1− ξ 1− 2ξ 1−2ξ√

1−ξ

1−28ξ/3+28ξ2/3
1−ξ

1−2ξ√
1−ξ

1−2ξ√
1−ξ

−4ξ −4ξ
C, C’ MCHM14

√
1− ξ 1− 2ξ H1 H2 F3

1−2ξ√
1−ξ

F6 −4ξ

D MCHM5-5-10

√
1− ξ 1− 2ξ 1−2ξ√

1−ξ

1−28ξ/3+28ξ2/3
1−ξ

1−2ξ√
1−ξ

√
1− ξ −4ξ −ξ

E MCHM5-10-10

√
1− ξ 1− 2ξ 1−2ξ√

1−ξ

1−28ξ/3+28ξ2/3
1−ξ

√
1− ξ

√
1− ξ −ξ −ξ

F, F’ MCHM5-14-10

√
1− ξ 1− 2ξ H1 H2 F5

√
1− ξ F8 −ξ

G MCHM10-5-10

√
1− ξ 1− 2ξ 1−2ξ√

1−ξ

1−28ξ/3+28ξ2/3
1−ξ

√
1− ξ 1−2ξ√

1−ξ
−ξ −4ξ

B MCHM10-14-10

√
1− ξ 1− 2ξ H1 H2

1−2ξ√
1−ξ

1−2ξ√
1−ξ

−4ξ −4ξ

B MCHM14-1-10

√
1− ξ 1− 2ξ 1−2ξ√

1−ξ

1−28ξ/3+28ξ2/3
1−ξ

1−2ξ√
1−ξ

1−2ξ√
1−ξ

−4ξ −4ξ
H, H’ MCHM14-5-10

√
1− ξ 1− 2ξ H1 H2 F4

1−2ξ√
1−ξ

F7 −4ξ
B MCHM14-10-10

√
1− ξ 1− 2ξ H1 H2

1−2ξ√
1−ξ

1−2ξ√
1−ξ

−4ξ −4ξ
I, I’ MCHM14-14-10

√
1− ξ 1− 2ξ H1 H2 F3

1−2ξ√
1−ξ

F6 −4ξ

4.5.1 The Decay Branching Raios of the MCHMs

Before discussing the Higgs boson production processes, we calculate the Higgs boson decay
width and branching ratios. The decay width of the MCHMs at the leadnig order are evaluated

ΓLO
MCHM(h→ ff̄) = κ2f · ΓLO

SM(h→ ff̄) ,

ΓLO
MCHM(h→ V ∗V ∗) = κ2V · ΓLO

SM(h→ V ∗V ∗) ,

ΓLO
MCHM(h→ gg) =

α2
Sg

2m3
h

512π3m2
W

∣∣∣∣∣ ∑
q=t,b,c

κq · Fi

∣∣∣∣∣
2

,

ΓLO
MCHM(h→ γγ) =

α2
emg

2

1024π3

m3
h

m2
W

∣∣∣∣∣κV · FW +
∑
ℓ=µ,τ

Fℓ +
∑

q=t,b,c

κq ·NCe
2
qFq

∣∣∣∣∣
2

,

ΓLO
MCHM(h→ Zγ) =

α2
emg

2

512π3

m3
h

m2
W

∣∣∣∣∣κV · AW +
∑

f=t,b,c,τ,µ

κf · AF

∣∣∣∣∣
2

,

(4.31)

where ΓLO
SM is the SM decay width and loop functions FW , Ff=q,ℓ, Af , and AW are found in

[39]. In the following , the fermions whose masses are lighter than the bottom quark are also
intoduced. As mentioned above, when we take the limit ξ → 0, these decay width correspond
to the SM values.

In Figure 4.8, we show the ratios of the Higgs boson branching ratios of the MCHM5 and
MCHM14(M

t
1 = 0) to that of the SM predictions. In the MCHM4, the leading order decay
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width are shifted by the same factor, κ2V = κ2f = 1− ξ. Therefore, the branching ratios of the
MCHM4 are same in the SM. We note that the total Higgs boson decay width is always smaller
than the SM prediction because all scale factors κ’s are less than 1.
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Figure 4.8: The ratios of the branching ratios in MCHM5 and MCHM14 to the SM predictions
as the functions of the compositeness parameter ξ.

4.5.2 Current constraints on the compositeness parameter ξ from
the single Higgs production

The Higgs boson coupling deviations are only described by the compositeness parameter ξ. We
here consider constrains on ξ from current experiments.

In order to extract extract constrains from the LHC Run-I data, we utilize the signal
strength, defined by

µ =
σ(Prod) · BR(h→ XX)

σ(Prod)SM · BR(h→ XX)SM
. (4.32)

The signal strength of the single Higgs production via gluon fusion and vector boson fusion
processes are obtained in [40] as shown in Table 4.2.

We here consider two single Higgs boson production processes, the gluon fusion and the
vector boson fusion process as shown in Figure 4.9.

The gluon fusion cross section of the SM is evaluated as

σSM(pp→ gg → h+X) =

∫ 1

m2
h/s

dτ
dLgg

dτ
σ̂(ŝ = τs) , (4.33)

where dLgg/dτ is the luminocity function of the initial gluons, the cross section for the gluon
fusion gg → h is

σSM(gg → h) =
GFα

2
S

288
√
2π

∣∣∣∣34Ft

(
4m2

t

ŝ

)∣∣∣∣2 , (4.34)
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Table 4.2: The signal strength in various decay modes measured at ATLAS an CMS with
1σ. These values are taken from Table 13 for 10-parameter fit in [40]. µXX

F is denoted as
µXX
F = µXX

ggF+ttH and µXX
V is denoted as µXX

F = µXX
V BF+V H .

ATLAS + CMS ATLAS CMS

µγγ
V 1.05+0.44

−0.41 0.69+0.64
−0.58 1.37+0.62

−0.56

µZZ
V 0.48+1.37

−0.91 0.26+1.60
−0.91 1.44+2.32

−2.30

µWW
V 1.38+0.41

−0.37 1.56+0.52
−0.46 1.08+0.65

−0.58

µττ
V 1.12+0.37

−0.35 1.29+0.58
−0.53 0.87+0.49

−0.45

µbb
V 0.65+0.30

−0.29 0.50+0.39
−0.37 0.85+0.47

−0.44

µγγ
F 1.19+0.28

−0.25 1.31+0.37
−0.34 1.01+0.34

−0.31

µZZ
F 1.44+0.38

−0.34 1.73+0.51
−0.45 0.97+0.54

−0.42

µWW
F 1.00+0.23

−0.20 1.10+0.29
−0.26 0.85+0.28

−0.25

µττ
F 1.10+0.61

−0.58 1.72+1.24
−1.13 0.91+0.69

−0.64

µbb
F 1.09+0.93

−0.89 1.51+1.15
−1.08 0.10+1.83

−1.86

Figure 4.9: The gluon fusion process (left) an the vector boson fusion process (right). We
denote that f and f ′ have the opposite electromagnetic charges.

with ŝ is the centre-of-mass energy of this subprocess, and k is the k-factor for the QCD
correction, k = 3 at the LHC 8 TeV. The gluon fusion cross section of the MCHM is simply
given by

σMCHM(pp→ gg → h+X) = κ2t · σSM(pp→ gg → h+X), (4.35)

because the dominant contribution is the top-loop diagram.
Therefore, the vector boson fusion cross section of the SM can be found in [41],

σSM(pp→W+W− → h+X) = 1.58[pb] . (4.36)

The vector boson fusion cross section of the MCHM is also given by

σMCHM(pp→ W+W− → h+X) = κ2V · σSM(pp→W+W− → h+X) . (4.37)
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The signal strength for µXX
F is given by

µXX
F =

σ(pp→ gg → h) · BR(h→ XX)

σ(pp→ gg → h)SM · BR(h→ XX)SM

= κ2t ·
BR(h→ XX)

BR(h→ XX)SM
. (4.38)

and the signal strength for µXX
V is given by

µXX
V =

σ(pp→W+W− → h) · BR(h→ XX)

σ(pp→W+W− → h)SM · BR(h→ XX)SM

= κ2V ·
BR(h→ XX)

BR(h→ XX)SM
. (4.39)

These results for XX = γγ,WW,ZZ are shown in Figure 4.10 and Figure 4.11.
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Figure 4.10: The signal strength from the gluon fusion process of µγγ
F (upper left), µWW

F (upper
right), and µγγ

F (lower left). The green solid line corresponds to MCHM4, the blue solid line
corresponds to MCHM5, and the red solid line corresponds to MCHM14. The black solid line
is the central value. The shaded regions are 2σ exluded regions.
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Figure 4.11: The signal strength from the gluon fusion process of µγγ
F (upper left), µWW

F (upper
right), and µγγ

F (lower left). The green solid line corresponds to MCHM4, the blue solid line
corresponds to MCHM5, and the red solid line corresponds to MCHM14. The black solid line
is the central value. The shaded regions are 2σ exluded regions.

The shaded regions are already excluded with 2σ CL. From these figures, the compositeness
parameter ξ are constrained for each models as shown in Table 4.3.

4.5.3 Double Higgs procution via the gluon fusion at the LHC

Next, we discuss the double Higgs production at the LHC 14 TeV. In [42], the authos investe-
gated that the double Higgs production at the LHC in the framework of the MCHMs. The
dominant contribution to the double Higgs production at the LHC is gluon fusion process via
the quark loop. The relevant diagrams are shown in Figure 4.12. As mentioned above sec-
tions, the Higgs boson coupling deviates from the SM predictions. In addition to this, in the
MCHMs, there is a new contribution shown in Figure 4.12. This dimension-five operator plays
an important role to the cross section.
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Table 4.3: The constraints on the compositeness parameter for each models.

µγγ
F µγγ

F µγγ
F

MCHM4 ξ < 0.31 ξ < 0.40 ξ < 0.24

MCHM5 ξ < 0.23 ξ < 0.23 ξ < 0.15

MCHM14(M
t
1 = 0) ξ < 0.07 ξ < 0.07 ξ < 0.04

Figure 4.12: Left and center diagrams are SM contributions. Right diagram is a new contribu-
tion in the MCHMs.

The differential cross section of the SM at the parton-level is found in [43],

dσ̂

dt̂
=

G2
Fα

2
S

256(2π)3

[∣∣CSM
△ F△ + CSM

□ F□
∣∣2 + ∣∣CSM

□ G□
∣∣2], (4.40)

where t̂ is the momentum transfer squared from one of the initial gluons to one of the final
Higgs bosons, GF is the Fermi constant, αS is the strong coupling constant, the coefficients of
CSM

△ , CSM
□ are defined as

CSM
△ =

3m2
h

ŝ−m2
h

, CSM
□ = 1, (4.41)

and the definitions of form factors F△, F□, G□ can be found in [43]. In the MCHMs, these
coefficients are modified as

CMCHM
△ =

3m2
h

ŝ−m2
h

κtκhhh +
mt√
2v
chhtt, CMCHM

□ = κ2t . (4.42)

The form factors are the same in the SM. The second term in CMCHM
△ is the effect from the

dimension-5 operator. We investigate MCHM4, MCHM5, and MCHM14 and these scale factors
are shown in Table 4.4. For numerical calculation, we utilized the PDF as MSTW2008lo [44].

The numerical results are shown in Figure 4.13. At the leading order, the hadronic cross
section is

σ(pp→ hh) = 16.3 [fb] (4.43)

The k-factor is taken to be abount 2.4 in [45], then

σ(pp→ hh+X) = 39.1 [fb] . (4.44)
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κt κhhh chhtt

MCHM4 1− 1
2
ξ 1− 1

2
ξ −ξ

MCHM5 1− 3
2
ξ 1− 3

2
ξ −4ξ

MCHM14 1− 4ξ 1− 3
2
ξ −23

2
ξ

Table 4.4: Coupling deviations in the MCHMs by expanding for small ξ.
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Figure 4.13: The pair Higgs production via gluon fusion in several MCHMs.

The SM value corresponds to ξ = 0 for each models. The large difference between around ξ = 0.2
comes from the dimension-five operator. As shown in Table 4.4, chhtt is significantly larger than
that of the MCHM4,5. This effect can be easily understood from the energy dependence of the
parton-level cross section, shown in Figure 4.14. Therefore, the hadronic cross section of the
MCHM14 with large ξ becomes large. At ξ = 0.2, their ratios to the SM value is

σMCHM4

σSM
≃ 0.87,

σMCHM5

σSM
≃ 1.06,

σMCHM14

σSM
≃ 2.33. (4.45)

The most clear mode at the LHC could be the γγbb. Its cross sectino and the signal strength
are shown in Figure 4.15.

4.5.4 Double Higgs procution via the vecor boson fusion at the LHC

The relevant diagrams are shown in Figure 4.16. The energy dependence of this process is
very interesting. These diagrams contain the subprocess WW → hh. It is well kwown that
the energy dependence of WLWL → hh scattering amplitude in the SM disappear as same as
the WLWL → WLWL. However, as we mentioned, the Higgs boson couplings deviate from the
SM value. These deviations violate the perturbative unitarity for each channels. In this case,
the centre-of-mass energy squred dependence ∼ s does not disappear dut to the non-vanihsing
the mocpositeness parameter ξ. The amplitude would diverge at the high nergy scale and the
unitarity may be recovered by heavy resonance contribution. The porduction cross section is
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Figure 4.14: The parton-level cross section of double Higgs production as a function of
√
ŝ of

this subprocess centre-of-mass energy.

shown in Figure 4.17. At the double Higgs production cross section, the degenracy between
MCHM5 and MCHM14 does no resolved. By considering the Higgs boson decay modes, we
could distinguish these models. These results are shown in Figure 4.18 and Figure 4.19.

4.5.5 Double Higgs procution via the vecor boson fusion at the ILC

The ILC can measure the gauge-Higgs coupling deviation κV =
√
1− ξ of the MCHMs at 0.2 %

by ee→ Zh. In addition, the double Higgs production process is important process to explore
the Higgs sector, e.g. the Higgs triple couling. Two dominant contributions are considered
here, Z strahlung process and W fusion process.

Z strahlung process

The Z strahlung diagrams are shown in Figure 4.20. This process can be regarded as the heavy
virtual Z boson decay whose mass corresponds to the centre-of-mass energy

√
s. The Higgs

boson couplings are always suppressed. Therefore, the cross section also suppressed. We can
not distinguish MCHM5 and MCHM14 at this level. The production cross section and their
ratios to the SM values are shown in Figure 4.21. By including several decay modes of the
Higgs boson, the degeneracy is resolved. The results are shown in Figure 4.22 and Figure 4.23.

ee→ ννhh : W fusion + Z strahlung

The double Higgs cross section from ee→ ννhh has interesting energy dependence because W
fusion process Z strahlung process contribute to the cross section. As we mentioned, the Z
strahlung process is always suppressed and the W fusion process is enhanced by the unitarity
violation. Around the centre-of-mass 600 GeV, the domninant contribution is transfered the
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Figure 4.15: The cross section for pp→ hh+X → bbγγ +X and its signale strength.

Figure 4.16: The double Higgs production via the vector boson fusion process.
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Figure 4.17: The cross section for pp→ XXW+W− → XXhh of MCHM4 and MCHM5,14.

Z strahlung to the W fusion. In other words, below 600 GeV, the ratios of the MCHM cross
section ti the SM is less than 1 and above 600 GeV, the ratios of the MCHM cross section ti
the SM is greater than 1. These results are shown in Figure 4.24. The results including the
decay of the double Higgs bosons are shown in Figure 4.25. The signal strength of these modes
are shown in Figure 4.26. In the MCHMs
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Figure 4.18: The cross sectutions for various double Higgs decay modes of MCHM4, MCHM5,
and MCHM14.

4.6 Next-to-minimal model : Composite singlet model

4.6.1 Non-linear Higgs field in SO(6)/SO(5) model (Φ + S)

The non-linear realized Higgs fields Σ in SO(6) are parametrized as

Σ = exp(Π/f) Σ0, Σ0 = (0, 0, 0, 0, 0, 1), Π = −iT âhâ
√
2, (4.46)

and can be written by a unit vector of SO(6)

Σ = sin
ϕ

f

(
h1
ϕ
,
h2
ϕ
,
h3
ϕ
,
h4
ϕ
,
h5
ϕ
, cot

ϕ

f

)
, with ϕ =

√
(hâ)2. (4.47)

where f is a breaking scale of the global symmetry. We choose the unitary gauge, h1, h2, h4 = 0,
and indentify that h3 = h is a physical Higgs field from the doublet and h5 = η is a singlet
field. Therefore, Σ in the cartesian basis becomes

Σ = sin
ϕ

f

(
0, 0,

h

ϕ
, 0,

η

ϕ
, cot

ϕ

f

)
, ϕ2 = h2 + η2 . (4.48)
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Figure 4.19: The signal strength for various double Higgs decay modes of MCHM4, MCHM5,
and MCHM14.

Figure 4.20: The relevant diagrams for Z strahlung processes.

Moreover, a convenient parametrization exists as

h = ϕ cos
ψ

f
, η = ϕ sin

ψ

f
, (4.49)

we obtain Σ in the polar basis

Σ = sin
ϕ

f

(
0, 0, cos

ψ

f
, 0, sin

ψ

f
, cot

ϕ

f

)
(4.50)
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Figure 4.21: The production cross section for ee→ Zhh (left) and its ratios to the SM (right).

The kinetic terms can be decomposed in the polar basis as

Lkin =
f 2

2
(DµΣ)

T (DµΣ) =
1

2
(∂µϕ)

2 +
1

2
sin2 ⟨ϕ⟩

f
(∂µψ)

2 +
g2f 2

4
sin2 ⟨ϕ⟩

f
cos2
⟨ψ⟩
f
W⃗ 2 + · · ·

(4.51)

from the third term, the electroweak symmetry breaking vacuum expectation value is defined
by

v ≡ f sin
⟨ϕ⟩
f

cos
⟨ψ⟩
f
≡ f

√
ξ . (4.52)

4.7 SO(6)/SO(5)

4.7.1 Z2 preserving case

Z2 preserving vacuum

In the Z2 preserving case, the singlet η does not get vev. Then,

h→ ⟨h⟩ ≠ 0, η → ⟨η⟩ = 0 . (4.53)

By substituting them to (4.49),

⟨h⟩ = ⟨ϕ⟩ cos ⟨ψ⟩
f
, 0 = ⟨ϕ⟩ sin ⟨ψ⟩

f
→ ⟨ψ⟩ = 0, ⟨ϕ⟩ = ⟨h⟩ . (4.54)
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Therefore, we obtain

v = f sin
⟨h⟩
f
→ ⟨h⟩ = f sin−1

√
ξ . (4.55)

We idetify that

h→ f sin−1
√
ξ + hcar, η → ηcar, (4.56)

ϕ→ f sin−1
√
ξ + hpol, ψ → ηpol. (4.57)

Next, we normalize the kinetic terms. We extract two derivative terms (hcar, ηcar) and
(hpol, ηpol).

Lkin =
1

2
(∂µhcar)

2 +
1

2

ξ(
sin−1

√
ξ
)2 (∂µηcar)2 + · · · , (4.58)

=
1

2
(∂µhpol)

2 +
1

2
ξ (∂µηpol)

2 + · · · , (4.59)

Then, (4.58) and (4.59) are rewritten by

h→ f sin−1
√
ξ + hcar, η → sin−1

√
ξ√

ξ
ηcar , (4.60)

ϕ→ f sin−1
√
ξ + hpol, ψ → 1√

ξ
ηpol . (4.61)

Kinetic term (Momentum dependent interactions)

From the kinetic terms, the scalar interactions with derivatives are derived.

Lkin =
f 2

2
(DµΣ)

T (DµΣ)

=
1

2
(∂µh)

2

(
1 + 2∆h

h

v
+∆hh

h2

v2
+∆ηη

η2

v2
+ · · ·

)
+

1

2
(∂µη)

2

(
1 + 2Ωh

h

v
+ Ωhh

h2

v2
+ Ωηη

η2

v2
+ · · ·

)
+ (∂µh)(∂

µη)

(
Λη
η

v
+ Λhη

ηh

v2
+ · · ·

)
, (4.62)

with
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Polar Cartesian

∆h 0 0
∆hh 0 0

∆ηη 0 −1 + ξ(
sin−1

√
ξ
)2

Ωh

√
1− ξ

√
1− ξ −

√
ξ

sin−1
√
ξ

Ωhh 1− 2ξ 1− 2ξ +
3ξ

(sin−1
√
ξ)2
−

4
√
(1− ξ)ξ

sin−1
√
ξ

Ωηη 0 −2 +

√
1− ξ
ξ

sin−1
√
ξ +

(sin−1
√
ξ)2

ξ

Λη 0
sin−1

√
ξ√

ξ
−

√
ξ

sin−1
√
ξ

Λhη 0 3− ξ

(sin−1
√
ξ)2

Gauge sector

In order to repreduce U(1)Y hypercharge, U(1)X symmetry is intoduced. Then, the gauge
Lagrangian is

Lgauge
eff =

1

2
P µν

[
ΠX

0 (p)XµXν +Π0(p)Tr [AµAν ] + Π1(p)ΣAµAνΣ
T
]

(4.63)

The SU(2)L, third component of SU(2)R and U(1)X are only gauge. Therefor, the gauge
Lagrangian in the cartesian basis is written as

Lgauge
eff =

1

2
Pµν

[(
ΠX

0 (p) + Π0(p) +
1

4
sin2 ϕ

f
× h2

ϕ2
Π1(p)

)
BµBν

+

(
ΠX

0 (p) +
1

4
sin2 ϕ

f
× h2

ϕ2
Π1(p)

)
W a

µW
a
ν

+ 2 sin2 ϕ

fπ
× h2

ϕ2
Π1(p)Ĥ

†T aLY ĤW aL
µ Bν

]
. (4.64)

with (Note that T aL are 2× 2 matirces.)

Ĥ =

(
−h1 + ih2
h3 + ih4

)
(4.65)

Then, above equation can be rewritten and we here extract Higgs-gauge interaction terms

Lgauge
eff = P µν

[
1

2

(
f 2

4
sin2 ϕ

f
× h2

ϕ2

)
(ZµZν + 2W+

µ W
−
ν )

]
. (4.66)
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By expanding ϕ around the electroweak breaking vacuum, the Higgs-gauge coupling constants
are obtained.

f 2 sin2 ϕ

f
× h2

ϕ2
→ v2 + 2v

√
1− ξ hcar + (1− 2ξ) h2car +

(
−1 +

√
1− ξ
ξ

sin−1
√
ξ

)
η2car

(4.67)

Then, we get

Lgauge
eff ≃ P µν

[
v2

4
VµVν +

v

2

√
1− ξ hcarVµVν +

1

4
(1− 2ξ) h2carVµVν +

1

4
κηηV V η

2
carVµVν

]
.

(4.68)

with

κηηV V = −1 +

√
1− ξ
ξ

sin−1
√
ξ. (4.69)

This result is in agreement with [46].
By substituting

h

ϕ
→ cos

ψ

f
, (4.70)

we also get the polar basis interactions.

f 2 sin2 ϕ

f
cos2

ψ

f
→ v2 + 2v

√
1− ξ hpol + (1− 2ξ) h2pol + (−1) η2pol (4.71)

Then, we get

Lgauge
eff ≃ P µν

[
v2

4
VµVν +

v

2

√
1− ξ hpolVµVν +

1

4
(1− 2ξ) h2polVµVν +

1

4
κηηV V η

2
polVµVν

]
. (4.72)

with

κηηV V = −1. (4.73)

This result is in agreement with [46].

Matter sector

For simplicity, we concentrate on the fermion embedding in the fundamental representation
of SO(6), and only introduce the third generation of quark sector. Of course, other quark
generatoins and the leptonic sector can be always introduced. Their contributions are negligible
since the smallness of contributions to the scalar pontential.

The charge assignment of tL, bL, tR, and bR is as follows

(SU(2)L, SU(2)R)U(1)X : tL(+,−)2/3, bL(−,+)−1/3,

tR(0, 0)2/3, bL(0, 0)−1/3, (4.74)
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The representation is

ΨtL =
1√
2


0
0
−itL
tL
0
0


2/3

, ΨtR =


0
0
0
0
0
tR


2/3

, ΨbL =
1√
2


0
0
ibL
bL
0
0


−1/3

, ΨbR =


0
0
0
0
0
bR


−1/3

,

(4.75)

And we also impose parity,

Pη = diag(1, 1, 1, 1,−1, 1). (4.76)

It ensures the stability of η .

Leff
Matter = ΨtL/pΠ

tL
0 ΨtL + (ΨtLΣ

†)/pΠtL
1 (ΣΨtL)

+ΨbL/pΠ
bL
0 ΨbL + (ΨbLΣ

†)/pΠbL
1 (ΣΨbL)

+ΨtR/pΠ
tR
0 ΨtR + (ΨtRΣ

†)/pΠtR
1 (ΣΨtR)

+ΨbR/pΠ
bR
0 ΨbR + (ΨbRΣ

†)/pΠbR
1 (ΣΨbR)

+ΨqLM
t
0ΨtR + (ΨqLΣ

†)M t
1(ΣΨtR)

+ΨqLM
b
0ΨbR + (ΨqLΣ

†)M b
1(ΣΨbR) + h.c.

=tL/p

[
ΠtL

0 +ΠtL
1

1

2
sin2 ϕ

f
× h2

ϕ2

]
tL + bL/p

[
ΠbL

0 +ΠbL
1

1

2
sin2 ϕ

f
× h2

ϕ2

]
bL

+tR/p

[
ΠtR

0 +ΠtR
1 ×

h2

ϕ2

]
tR + bR/p

[
ΠbR

0 +ΠbR
1 ×

h2

ϕ2

]
bR

+tL

[
iM t

1

1√
2
cos

ϕ

f
sin

ϕ

f
× h

ϕ

]
tR + bL

[
−iM b

1

1√
2
cos

ϕ

f
sin

ϕ

f
× h

ϕ

]
bR + h.c. (4.77)

The Higgs-fermion interctions are

Leff
Matter ∋t̄L

(
M t

1 cos
ϕ

f
sin

ϕ

f
× h

ϕ

)
tR + b̄L

(
M b

1 cos
ϕ

f
sin

ϕ

f
× h

ϕ

)
bR

≃M t,b
1

√
1− ξ

√
ξ q̄L

(
1 +

1− 2ξ√
1− ξ

hcar
v
− 2ξ

h2car
v2

+
1

2
κηηff

η2car
v2

)
qR (4.78)

with

κηηff = −1 + (1− 2ξ) sin−1
√
ξ√

(1− ξ)ξ
. (4.79)

This result is in agreement with [46].
By substituting

h

ϕ
→ cos

ψ

f
, (4.80)
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we also get the polar basis interactions. The Higgs-fermion interctions are

Leff
Matter ∋t̄L

(
M t

1 cos
ϕ

f
sin

ϕ

f
cos

ψ

f

)
tR + b̄L

(
M b

1 cos
ϕ

f
sin

ϕ

f
cos

ψ

f

)
bR

≃M t,b
1

√
1− ξ

√
ξ q̄L

(
1 +

1− 2ξ√
1− ξ

hpol
v
− 2ξ

h2pol
v2

+
1

2
κηηff

η2pol
v2

)
qR (4.81)

with

κηηff = −1 . (4.82)

This result is in agreement with [46].

Scalar potential

The one-loop effective scalar potential is

Veff =V gauge
eff + V fermion

eff

=
9

2

∫
d4p

(2π)4
lnΠW (p)− (2NC)

∫
d4p

(2π)4

[
ln /pΠbL(p) + ln

(
p2ΠtR(p)ΠtL(p)−

∣∣ΠtLtR(p)
∣∣2)]
(4.83)

where

ΠW (p) = Π0(p) +
1

4
Π1(p) sin

2 ϕ

f
× h2

ϕ2
,

ΠtL(p) = ΠtL
0 +ΠtL

1

1

2
sin2 ϕ

f
× h2

ϕ2
,

ΠbL(p) = ΠbL
0 +ΠbL

1

1

2
sin2 ϕ

f
× h2

ϕ2
,

ΠtR(p) = ΠtR
0 +ΠtR

1 cos2
ϕ

f
,

ΠbR(p) = ΠbR
0 +ΠbR

1 cos2
ϕ

f
,

ΠtLtR(p) = +iM t
1

1√
2
sin

ϕ

f
cos

ϕ

f
× h

ϕ
,

ΠbLbR(p) = −iM b
1

1√
2
sin

ϕ

f
cos

ϕ

f
× h

ϕ
. (4.84)
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By expanding logarithmic functions and extracting relevant terms which contain ϕ and h, the
scalar potential becomes

Veff ≃
∫

d4p

(2π)4
9

8

Π1(p)

Π0(p)
sin2 ϕ

f
× h2

ϕ2

−2NC

∫
d4p

(2π)4
log

[
p2
(
ΠtL

0 +ΠtL
1

1

2
sin2 ϕ

f
× h2

ϕ2

)(
ΠtR

0 +ΠtR
1 cos2

ϕ

f

)
−
∣∣M t

1

∣∣2 1√
2
sin2 ϕ

f
cos2

ϕ

f
× h2

ϕ2

]
.

(4.85)

≃
∫

d4p

(2π)4
9

8

Π1(p)

Π0(p)
sin2 ϕ

f
× h2

ϕ2

− 2NC

∫
d4p

(2π)4
log

[
1 +

1

p2ΠtL
0 ΠtR

0

{
p2ΠtL

0 ΠtR
1 cos2

ϕ

f
+

1

2
p2ΠtL

1 ΠtR
0 sin2 ϕ

f
× h2

ϕ2

+

(
1

2
p2ΠtL

1 ΠtR
1 −

∣∣M t
1

∣∣2) sin
ϕ

f
cos2

ϕ

f
× h2

ϕ2

}]

=α cos2
ϕ

f
+ β sin2 ϕ

f
× h2

ϕ2
+ γ sin2 ϕ

f
cos2

ϕ

f
× h2

ϕ2
(4.86)

When we expand above equation without introducing vev up to quartic order, we get

Veff ≃
1

2

−α + β + γ

f 2
h2pol +

1

4

α− β − 4γ

3f 2
h4pol −

1

2

β − γ
f 4ξ

h2polη
2
pol (4.87)

≃1

2

−α + β + γ

f 2
h2car +

1

4

α− β − 4γ

3f 2
h4car

− 1

2

α(sin−1
√
ξ)2

f 2ξ
η2car +

1

4

α(sin−1
√
ξ)4

3f 4ξ2
η4car +

1

2

(2α− β − 4γ)(sin−1
√
ξ)2

3f 4ξ
h2polη

2
pol

(4.88)

(4.89)

Then, by using statinary conditions and

∂2Veff
∂h2phys

= m2
h,

∂2Veff
∂hphys∂ηphys

= 0,

∂2Veff
∂η2phys

= m2
η, (4.90)
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scalar triple couplings are

(Polar, Cartesian) ,

hhh :

(
3m2

h

v

1− 2ξ√
1− ξ

,
3m2

h

v

1− 2ξ√
1− ξ

)
,

hhη : 0,

hηη :

(
−
m2

h − 4m2
η(1− ξ)

2v
√
1− ξ

,
m2

h

2v
−
m2

h + 8m2
η

12v
ξ +O(ξ2)

)
,

ηηη : 0.

(4.91)

and quartic couplings are

(Polar, Cartesian) ,

hhhh :

(
m2

h

v2
3− 28(1− ξ)ξ

1− ξ
,
m2

h

v2
3− 28(1− ξ)ξ

1− ξ

)
,

hhhη : 0,

hhηη :

(−m2
h(5− 6ξ) + 4m2

η(1− ξ)(1− 2ξ)

2v2(1− ξ)
,
m2

h

2v2
−

17m2
h + 4m2

η

6v2
ξ +O(ξ2)

)
,

hηηη : 0,

ηηηη :

(
−
4m2

η

v2
, −

m2
h + 4m2

η

v2
ξ +O(ξ2)

)
,

(4.92)

The scalar couplings are in agreement with [46] except for η4 vertex.

4.7.2 Z2 breaking case : [47]

Next, we consider the Z2 breaking case. The source of this effect comes from fermion em-
bedding. As discussed in above sections, tR and bR are embedded into the eigenvector with
(SU(2)L, SU(2)R) ∼ (0, 0) .

ΨtR =


0
0
0
0
0
tR


2/3

, ΨbR =


0
0
0
0
0
bR


−1/3

(4.93)

There is another eigenvector with same quantum number.

Ψ′
tR

=


0
0
0
0
tR
0


2/3

, Ψ′
bR

=


0
0
0
0
bR
0


−1/3

(4.94)
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Then, the RH up-type quark and the RH down-type quark are modified as

ΨtR → ΨtR + ϵtΨ
′
tR
, ΨbR → ΨbR + ϵbΨ

′
bR
, (4.95)

and normalized multiplets are written explicitly as

Ψθ
qR

=


0
0
0
0

eiδq cos θq qR
sin θq qR

 . (4.96)

The scalar potential of η is controlled by ϵt,b. For simplicity, we set δq = π/2 .

We here also introduce the third generation of the SM leptons and the right-handed neutri-
nos, NR. Their charge assignments are

(SU(2)L, SU(2)R)U(1)X
∼ τL(−,+)−1, τR(0, 0)−1 ,

νL(+,−)0 , NR(0, 0)0 . (4.97)

ΨνL =
1√
2


0
0
−iνL
νL
0


0

, ΨνL =
1√
2


0
0
iτL
τL
0


−1

. (4.98)

and

ΨτR =


0
0
0

eiδτR cos θτR τR
sin θτR τR


−1

, ΨNR
=


0
0
0

eiδNR cos θNR
NR

sin θNR
NR


0

. (4.99)

In the following, we assume δτR = δNR
= π/2.

Gauge sector

The scalar-gauge boson vertices do not recieve any effects.
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Fermion sector

The Z2 breaking Lagrangian is obtained by substituting ΨqR → Ψθ
qR

. The Lagrangian becomes

Leff
Matter = ΨtL/pΠ

tL
0 ΨtL + (ΨtLΣ

†)/pΠtL
1 (ΣΨtL)

+ ΨbL/pΠ
bL
0 ΨbL + (ΨbLΣ

†)/pΠbL
1 (ΣΨbL)

+ ΨνL/pΠ
νL
0 ΨνL + (ΨνLΣ

†)/pΠνL
1 (ΣΨνL)

+ ΨτL/pΠ
τL
0 ΨτL + (ΨτLΣ

†)/pΠτL
1 (ΣΨτL)

+ Ψ
θ

tR
/pΠtR

0 Ψθ
tR

+ (Ψ
θ

tR
Σ†)/pΠtR

1 (ΣΨθ
tR
)

+ Ψ
θ

bR
/pΠbR

0 Ψθ
bR

+ (Ψ
θ

bR
Σ†)/pΠbR

1 (ΣΨθ
bR
)

+ Ψ
θ

NR
/pΠNR

0 Ψθ
NR

+ (Ψ
θ

NR
Σ†)/pΠNR

1 (ΣΨθ
NR

)

+ Ψ
θ

τR
/pΠτR

0 Ψθ
τR

+ (Ψ
θ

τR
Σ†)/pΠτR

1 (ΣΨθ
τR
)

+ ΨqLM
t
0Ψ

θ
tR

+ (ΨqLΣ
†)M t

1(ΣΨ
θ
tR
)

+ ΨqLM
b
0Ψ

θ
bR

+ (ΨqLΣ
†)M b

1(ΣΨ
θ
bR
)

+ ΨνLM
ν
0Ψ

θ
NR

+ (ΨνLΣ
†)M ν

1 (ΣΨ
θ
NR

)

+ ΨτLM
τ
0Ψ

θ
τR

+ (ΨτLΣ
†)M τ

1 (ΣΨ
θ
τR
) + h.c.

= tL/p

[
ΠtL

0 +ΠtL
1

1

2
sin2 ϕ

f
cos2

ψ

f

]
tL

+ bL/p

[
ΠbL

0 +ΠbL
1

1

2
sin2 ϕ

f
cos2

ψ

f

]
bL

+ νL/p

[
ΠνL

0 +ΠνL
1

1

2
sin2 ϕ

f
cos2

ψ

f

]
νL

+ τL/p

[
ΠτL

0 +ΠτL
1

1

2
sin2 ϕ

f
cos2

ψ

f

]
τL

+ tR/p

[
ΠtR

0 +ΠtR
1 cos2

ϕ

f

{
sin2 θt + cos2 θt tan

2 ϕ

f
sin2 ψ

f

}]
tR

+ bR/p

[
ΠbR

0 +ΠbR
1 cos2

ϕ

f

{
sin2 θb + cos2 θb tan

2 ϕ

f
sin2 ψ

f

}]
bR

+ NR/p

[
ΠNR

0 +ΠNR
1 cos2

ϕ

f

{
sin2 θN + cos2 θN tan2 ϕ

f
sin2 ψ

f

}]
NR

+ τR/p

[
ΠτR

0 +ΠτR
1 cos2

ϕ

f

{
sin2 θτ + cos2 θτ tan

2 ϕ

f
sin2 ψ

f

}]
τR

+ tL

[
+iM t

1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θt + cos θt tan

ϕ

f
sin

ψ

f

}]
tR

+ bL

[
−iM b

1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θb + cos θb tan

ϕ

f
sin

ψ

f

}]
bR

+ νL

[
−iMν

1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θN + cos θN tan

ϕ

f
sin

ψ

f

}]
NR

+ τL

[
−iM τ

1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θτ + cos θτ tan

ϕ

f
sin

ψ

f

}]
τR + h.c. (4.100)
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Scalar potential

The one-loop effective scalar potential is

Veff =V gauge
eff + V fermion

eff

=
9

2

∫
d4p

(2π)4
lnΠW (p)− 2NC

∫
d4p

(2π)4

[
ln /pΠbL(p) + ln

(
p2ΠtR(p)ΠtL(p)−

∣∣ΠtLtR(p)
∣∣2)]

− 2

∫
d4p

(2π)4

[
ln /pΠτL(p) + ln

(
p2ΠNR(p)ΠνL(p)−

∣∣ΠνLNR(p)
∣∣2)]

(4.101)

where

ΠW (p) = Π0(p) +
1

4
Π1(p) sin

2 ϕ

f
cos2

ψ

f
,

ΠtL(p) = ΠtL
0 +ΠtL

1

1

2
sin2 ϕ

f
cos2

ψ

f
,

ΠbL(p) = ΠbL
0 +ΠbL

1

1

2
sin2 ϕ

f
cos2

ψ

f
,

ΠνL(p) = ΠνL
0 +ΠνL

1

1

2
sin2 ϕ

f
cos2

ψ

f
,

ΠτL(p) = ΠτL
0 +ΠτL

1

1

2
sin2 ϕ

f
cos2

ψ

f
,

ΠtR(p) = ΠtR
0 +ΠtR

1 cos2
ϕ

f

{
sin2 θt + cos2 θt tan

2 ϕ

f
sin2 ψ

f

}
,

ΠbR(p) = ΠbR
0 +ΠbR

1 cos2
ϕ

f

{
sin2 θb + cos2 θb tan

2 ϕ

f
sin2 ψ

f

}
,

ΠNR(p) = ΠNR
0 +ΠNR

1 cos2
ϕ

f

{
sin2 θN + cos2 θN tan2 ϕ

f
sin2 ψ

f

}
,

ΠτR(p) = ΠτR
0 +ΠτR

1 cos2
ϕ

f

{
sin2 θτ + cos2 θτ tan

2 ϕ

f
sin2 ψ

f

}
,

ΠtLtR(p) = +iM t
1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θ + cos θ tan

ϕ

f
sin

ψ

f

}
,

ΠbLbR(p) = −iM b
1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θ + cos θ tan

ϕ

f
sin

ψ

f

}
,

ΠνLNR(p) = +iM ν
1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θN + cos θN tan

ϕ

f
sin

ψ

f

}
,

ΠτLτR(p) = −iM τ
1

1√
2
sin

ϕ

f
cos

ϕ

f
cos

ψ

f

{
−i sin θτ + cos θτ tan

ϕ

f
sin

ψ

f

}
. (4.102)
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Then,

Veff ≃
∫

d4p

(2π)4
9

8

Π1(p)

Π0(p)
sin2 ϕ

f
cos2

ψ

f

−2NC

∫
d4p

(2π)4
log

[
p2
(
ΠtL

0 +ΠtL
1

1

2
sin2 ϕ

f
cos2

ψ

f

)(
ΠtR

0 +ΠtR
1 cos2

ϕ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

})

− 1

2

∣∣M t
1

∣∣2 sin2 ϕ

f
cos2

ϕ

f
cos2

ψ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

}]
.

(4.103)

≃
∫

d4p

(2π)4
9

8

Π1(p)

Π0(p)
sin2 ϕ

f
cos2

ψ

f

− 2NC

∫
d4p

(2π)4
log

[
1 +

1

p2ΠtL
0 ΠtR

0{
p2ΠtL

0 ΠtR
1 cos2

ϕ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

}
+

1

2
p2ΠtL

1 ΠtR
0 sin2 ϕ

f
cos2

ψ

f

+

(
1

2
p2ΠtL

1 ΠtR
1 −

∣∣M t
1

∣∣2) sin
ϕ

f
cos2

ϕ

f
cos2

ψ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

}}]

= α cos2
ϕ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

}
+ β sin2 ϕ

f
cos2

ψ

f

+ γ sin2 ϕ

f
cos2

ϕ

f
cos2

ψ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

}
(4.104)

In Appendix of [47], the author have discussed that the potential (4.104) have two extrema
at ⟨ψ⟩ = 0 and sin(⟨ϕ⟩/f) = 1 . By using

∂Veff
∂ϕ

= 0,

∂Veff
∂ψ

= 0,
→ Veff | = −γ cos2

⟨ϕ⟩
f

cos2
⟨ψ⟩
f

sin2 ⟨ϕ⟩
f

. (4.105)

Therefore, one can choose the vacuum at ⟨ψ⟩ = 0 without loss of genelarity. Due to this choise,
the scalar-gauge boson couplings does not change. The scalar-charged fermion interactions are
modified as

Lmatter
eff ∋M f

1

√
1− ξ

√
ξ sin θf (−i) f̄L

(
1 +

1− 2ξ√
1− ξ

hpol
v
− 2ξ

h2pol
v2

)
fR

+M f
1

√
1− ξ

√
ξ sin θf (−i) f̄L

(
0 + i

√
ξ

1− ξ
ηpol
v

cot θf −
1

2

η2pol
v2

)
fR , (4.106)

In this case, these fermion masses are

mf ≡ (−i)M f
1

√
1− ξ

√
ξ sin θf (f = t, b, τ) (4.107)
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For the neutrino sector,

Lmatter
eff ∋Mν

1

√
1− ξ

√
ξ sin θN ν̄L

(
1 +

1− 2ξ√
1− ξ

hpol
v
− 2ξ

h2pol
v2

)
NR

+Mν
1

√
1− ξ

√
ξ sin θN ν̄L

(
0 + i

√
ξ

1− ξ
ηpol
v

cot θN −
1

2

η2pol
v2

)
NR . (4.108)

We define the dirac neutrino mass as

mD ≡Mν
1

√
1− ξ

√
ξ sin θN . (4.109)

The scalar-self interactions are

hhh :
3m2

h

v

1− 2ξ√
1− ξ

,

hhη : 0,

hηη : −
m2

h(−1 + 2 csc2 θ)− 4m2
η(1− ξ)

2v
√
1− ξ

,

ηηη : 0.

(4.110)

and

hhhh :
m2

h

v2
3− 28(1− ξ)ξ

1− ξ
,

hhhη : 0,

hhηη :
−m2

h(5− 6ξ)(−1 + 2 csc2 θ) + 4m2
η(1− ξ)(1− 2ξ)

2v2(1− ξ)
,

hηηη : 0,

ηηηη : −
4m2

η

v2

[
3m2

h(3− 5 csc2 θ + 2 csc4 θ) + 2m2
η(3− 2 csc2 θ − 4ξ csc2 θ + 3ξ csc4 θ)

2m2
η(1− ξ)(1− 2 cot2 θ)

]
,

(4.111)

When we take a lmit θ → π/2, these values becomes Z2 preserving case.

4.8 Vacuum Structure

The scalar potential without Z2 symmetry is

Vcar = α cos2
ϕ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
× s2

ϕ2

}
+ β sin2 ϕ

f
× h2

ϕ2

+ γ sin2 ϕ

f
cos2

ϕ

f
× h2

ϕ2

{
sin2 θ + cos2 θ tan2 ϕ

f
× s2

ϕ2

}
(4.112)
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and

Vpol = α cos2
ϕ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

}
+ β sin2 ϕ

f
cos2

ψ

f

+ γ sin2 ϕ

f
cos2

ϕ

f
cos2

ψ

f

{
sin2 θ + cos2 θ tan2 ϕ

f
sin2 ψ

f

}
(4.113)

where we replace h3 → h and h5 → s. These curvature at the origin ⟨h⟩ = ⟨s⟩ = ⟨ϕ⟩ = ⟨ψ⟩ = 0
are

∂2Vcar
∂ϕi∂ϕj

=
1

f 2

(
−α + 2β + γ + (α− γ) cos 2θ 0

0 2α cos 2θ

)
, (4.114)

∂2Vpol
∂ϕi∂ϕj

=
1

f 2

(
−α + 2β + γ + (α− γ) cos 2θ 0

0 0

)
. (4.115)

4.9 Consistency Check

In this section, we check a consistency between two basis, polar and cartesian. The authors
of [46] mentioned that when we compute a physical observable, i.e. unpolarized cross sectoin
σ(ηη → W+W−), these basis give us the same results.

4.9.1 ηη → W+W− scattering

Let us consider ηη →W+W− scattering. The relevant diagrams are show in Figure 4.27. This
amplitude is written as

iM =

(
i

s−m2
h + iϵ

κ′hηη(igmW )κhWW + i
g2

2
κηηWW

)[
ϵµ+(p+, λ+)ϵ

ν
+(p−, λ−)

]∗
gµν (4.116)

where the vertex factor κ′hηη has momentum dependence and can be decomposed as

κ′hηη = −iv κhηη + i Ωh

[
2
(
−i pη1

)µ(−i pη2)µ]1v + i Λη

[
2
(
−i pη1

)µ(
+i ph

)
µ

]1
v

(4.117)

with pη1 (or pη2), ph are the four-momenta and we write down κ’s explicitely following sections.

Very high evergy (
√
s≫ m2

h,m
2
η,m

2
W,Z) behaviour at ξ = 0

First of all, we calculate the simplest case,
√
s≫ m2

h,m
2
η,m

2
W,Z and ξ = 0. We expect that no

energy dependence remains. The limiting κ’s are
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Polar Cartesian

κhηη −
m2

h − 4m2
η

2v2
+
m2

h

2v2

Ωh 1 0

Λη 0 0

κhWW 1 1

κηηWW −1 0

We only extract the longitudinal contribution,[
ϵµ+(p+, λ+ = 0)ϵν+(p−, λ− = 0)

]∗
gµν =

1

m2
W

(s
2
−m2

W

)
. (4.118)

Therefore, at the very high energy, the cartesian basis amplitude (4.116)is

iM =

(
i

s−m2
h + iϵ

κ′hηη(igmW )κhWW + i
g2

2
κηηWW

)[
ϵµ+(p+, λ+ = 0)ϵν+(p−, λ− = 0)

]∗
gµν

∼
[
i

s
κ′hηη(igmW )κhWW

(
1 +

m2
h

s

)
+ i

g2

2
κηηWW

]
s

m2
W

. (4.119)

• Cartesian basis amplitude

iMcar =i
κhηηκhWW

m2
W

(igmW ) =
i

m2
W

(
−im

2
h

2v

)
(igmW ) = +i

m2
h

v2
. (4.120)

• Polar basis amplitude
In the centre of mass frame,

2(−ipη1)µ(−ipη2)µ = −s
2
− 2|pη|2 = −s+ 2m2

η . (4.121)

Then,

iMpol =i
g2

2

κηηWW

m2
W

s+ i(igmW )
κ′hηηκhWW

m2
W

(
1 +

m2
h

s

)
=

1

m2
W

(
−i 2m

2
W

v2

)
s+

i

m2
W

(
i
m2

h

2v
− i

2m2
η

v
− i s

v
+ i

2m2
η

v

)(
i 2
m2

W

v

)(
1 +

m2
h

s

)
=− im

2
h

v2
+ i 2

m2
h

v2
= +i

m2
h

v2
. (4.122)

Therefore,

Mcar =Mpol . (4.123)
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Very high evergy (
√
s≫ m2

h,m
2
η,m

2
W,Z) behaviour at ξ ≪ 1

By expanding small ξ, κ’s become

Polar Cartesian

κhηη −
m2

h − 4m2
η

2v2
−
m2

h + 4m2
η

4v2
ξ +O(ξ2) +

m2
h

2v2
−
m2

h + 8m2
η

12v2
ξ +O(ξ2)

Ωh 1− 1

2
ξ +O(ξ2) −ξ

3
+O(ξ2)

Λη 0 +
ξ

3
+O(ξ2)

κhWW

(
1− 1

2
ξ +O(ξ2)

) (
1− 1

2
ξ +O(ξ2)

)

κηηWW −1 −
(
ξ

3
+O(ξ2)

)

Now, κ′hηη is

κ′hηη = −iv κhηη + iΩh
1

v
(−s+ 2m2

η) + iΛη
1

v
s (4.124)

• Cartesian basis amplitude
Then,

iMcar ∼ +i
m2

h

v2
− i2m

2
h + s

v2
ξ (4.125)

• Polar basis amplitude

iMpol ∼ +i
m2

h

v2
− i2m

2
h + s

v2
ξ (4.126)

ηη → W+
L W

−
L above the WW threshold and ξ = 0-1

iM =

(
i

s−m2
h + iϵ

κ′hηη(igmW )κhWW + i
g2

2
κηηWW

)
1

m2
W

(s
2
−m2

W

)
(4.127)

and κ′s are
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Polar Cartesian

κhηη −
m2

h − 4m2
η(1− ξ)

2v2
√
1− ξ

+
m2

h

2v2
−
m2

h + 8m2
η

12v2
ξ +O(ξ2)

Ωh

√
1− ξ

√
1− ξ −

√
ξ

sin−1
√
ξ

Λη 0
sin−1

√
ξ√

ξ
−

√
ξ

sin−1
√
ξ

κhWW

√
1− ξ

√
1− ξ

κηηWW −1 −1 +

√
1− ξ
ξ

sin−1
√
ξ

where explicit form of κhηη of the cartesian basis do not fit, so that we expand for small ξ.
By using these values, we calculate |Mpol,car| numerically. Input parameters are

mh = 125GeV, v = 246GeV, ξ = 0.1,

mW = 80GeV, mη = 100GeV,
√
s = 3000GeV . (4.128)

The result shown in Figure 4.28. This shows that when we calculate an observable, these basis
give us same result.

4.9.2 Unitarity Bound

From this process, we can extract the unitarity bound (almost same case in the MCHM).

a0 =
1

32π

∫ 1

−1

d cos θM(ηη → W+
L W

−
L ) =

1

16π
M(ηη →W+

L W
−
L ) . (4.129)

4.10 Higgs triple coupling
The SM Higgs triple coupling at one-loop level is

λSMhhh =
3m2

h

v

(
1− m4

t

π2v2m2
h

)
. (4.130)

In the composite Higgs models, this equation is modified as

λCHM
hhh =

3m2
h

v

κhhh − m4
t

π2v2m2
h

κ3htt +
m4

η

12π2v2m2
h

(
κ′hηη(ξ ̸= 0)

κ′hηη(ξ = 0)

)3

(←?)

 (4.131)

where κ′hηη is already defined above section,

κ′hηη = −iv κhηη + i Ωh

[
2
(
−i pη1

)µ(−i pη2)µ]1v + i Λη

[
2
(
−i pη1

)µ(
+i ph

)
µ

]1
v
. (4.132)
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When ξ = 0, the coefficients of momentum dependent terms Ωh and Λη are 0 in the cartesian
basis (see Appendix), shown in Figure 4.29. When ξ ≪ 1, coefficients are

Polar, Cartesian

Ωh =

(
1− 1

2
ξ, − ξ

3

)
,

Λh =

(
0, +

ξ

3

)
,

(4.133)

and zero external momentum limit ph → 0 in (4.132) leads that the third term of (4.132) vanish
in the cartesian basis. The result with Ωh = 0 is shown in Figure. 4.30.

However, in order to get consistent result, we must(?) introduce mometum dependent part.
The relevant diagrams are The vertex factors, ∆ηη, Ωh, Ωhh, Λη, Λη and Λhη, are momentum
dependent. When we impose zero external momentum limit, Ωηh, Λη and Λhη vanish. ?????????

4.10.1

Diagram (a’)

iMa′ =

∫ Λcut

0

dDk

(2π)D
−i

(k2 −m2
η)

3

(
κ′hηη

)3
. (4.134)

where

κ′hηη = −ivκhηη + 2i
k2

v
Ωh ,

→
(
κ′hηη

)3
= −i8k

6

v3
Ω3

h + i
12k4

v
Ω2

hκhηη − i 6k2v Ωhκ
2
hηη + i v3κ3hηη . (4.135)

Then,

iMa′ =

∫ Λcut

0

dDk
−i

(k2 −m2
η)

3

(
−i8k

6

v3
Ω3

h + i
12k4

v
Ω2

hκhηη − i 6k2v Ωhκ
2
hηη + i v3κ3hηη

)
.

=(−i)
∫ Λcut

0

dDkE
−i

(k2E +m2
η)

3

(
+i

8k6E
v3

Ω3
h + i

12k4E
v

Ω2
hκhηη + i 6k2Ev Ωhκ

2
hηη + i v3κ3hηη

)
,

=(−i)
∫ Λcut

0

dDkE
1

(k2E +m2
η)

3

(
+
8k6E
v3

Ω3
h +

12k4E
v

Ω2
hκhηη + 6k2Ev Ωhκ

2
hηη + v3κ3hηη

)
,

=

(
−i3m

2
h

v

)
1

12m2
hπ

2v2

[
v6κ3hηη
4m2

η

Λ4
cut(

Λ2
cut +m2

η

)2 − 6v4κ2hηηΩh

{
3Λ4

cut + 2Λ2
cutm

2
η

4
(
Λ2

cut +m2
η

)2 − 1

2
log

(
1 +

Λ2
cut

m2
η

)}

+ 3v2κhηηΩ
2
h

{
2Λ6

cut + 9Λ4
cutm

2
η + 6Λ2

cutm
4
η(

Λcut +m2
η

)2 − 6m2
η log

(
1 +

Λ2
cut

m2
η

)}

+ Ω3
h

{
Λ2

cut

(
Λ2

cut + 2m2
η

) (
Λ4

cut − 6Λ2
cutm

2
η − 6m4

η

)
4
(
Λ2

cut +m2
η

)2 + 3m4
η log

(
1 +

Λ2
cut

m2
η

)}]
(4.136)
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Diagram (b’)

iMb′ =

∫ Λcut

0

dDk
−1

(k2 −m2
η)

2

(
−ivκhηη + 2i

k2

v
Ωh

)(
i
k2

2v2
Ωhh

)
=i

∫ Λcut

0

dDkE
+i

(k2E +m2
η)

2

(
k4

v3
Ω2

h +
k2

2v
κhηηΩh

)
=

(
−i3m

2
h

v

)
1

12m2
hπ

2v2

[
1

4
ΩhΩhh

{
3Λ4

cut − 6Λ2
cutm

2
η −

2Λ6
cut

Λ2
cut +m2

η

+ 6Λ4
cut log

(
1 +

Λ2
cut

m2
η

)}

+
1

2
v2κhηηΩhh

{
Λ2

cut −
Λ4

cut

2(Λ2
cut +m2

η)
2
−m2

η log

(
1 +

Λ2
cut

m2
η

)}]
(4.137)

4.11 Double Higgs production at LHC 14 TeV in SO(6)/SO(5)
Let us consider the double Higgs poduction at LHC with 14 TeV. The parton-level differential
cross section is

dσ̂(gg → hh)

dt̂
=

G2
Fα

2
s

256(2π)3

[
|C∆F∆ + C□F□|2 + |C∆G∆|2

]
(4.138)

where t̂ is the momentum transfer squared and F∆, F□ and G□ are the form factors, defined in
[43]. The total cross section is calculated by

σ(pp→ gg → hh) =

∫ 1

4m2
h/s

dτ
dLgg

dτ
σ̂(ŝ = τs) (4.139)

In the SM, coefficients C∆ and C□ are

CSM
∆ =

3m2
h

ŝ−m2
h

,

CSM
□ =1. (4.140)

In the MCHMs, there coefficients are modified as

CMCHM
∆ =

3m2
h

ŝ−m2
h

κtκhhh +
mt√
2v
chhtt,

CMCHM
□ =κ2t . (4.141)

Moreover, we introduce one-loop contibutions to the hhh coupling. κhhh becomes

κhhh → κhhh −
m4

t

π2v2m2
h

κ3t +
m4

η

12π2v2m2
h

κ3hηη. (4.142)

In this calculation, we set κhηη = 1 since this effect comes from one-loop diagram. The result
is shown in Figure 4.32.
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4.12 Beyond the Minimal model

The breakdown of global symmetry which is larger than SO(5) generates the extended Higgs
sector. For exmaple, the authors in [9] proposed a model whose global symmetry SU(5) is
kroken into SO(5). The Higgs sector contains one triplet, one doublet and one singlet. Previous
work in [48] lists many composite Higgs models with extended Higgs sector.

4.13 Diphoton execess at 750 GeV

We discuss an extended scalar model which explains the recent results of diphoton excess at 750
GeV at LHC Run II experiments. An additional singlet scalar boson with the mass of 750 GeV,
which couples to top quarks via a dimension five operator, is produced via gluon fusion and
decays into two photons via loop contributions of a number of (multiply) charged scalar bosons.
Origin of such a dimension five operator would be, for example, in the context of composite
Higgs models. The excess can be explained without contradicting the data from LHC Run I
and also theoretical consistencies such as perturbative unitarity and charge non-breaking. This
subsection is based on [3].

4.13.1 Introduction

Since the discovery of the Higgs boson at LHC Run I [49], the main target of high energy collider
experiments has turned to detect new direct evidence of physics beyond the standard model
(SM). Recently both ATLAS Collaboration and CMS Collaboration reported a new excess in
the diphoton data at 750 GeV with the width about 45 GeV at LHC Run II [50, 51], which
might be the resonance of a new particle beyond the SM. Many physicists have been trying to
understand the new excess based on various ideas, and quite a few papers have already been
submitted until now for a short time[52, 53]. In a large number of the proposed models, vector-
like fermions are introduced to enhance the diphoton decay of new resonance. Alternatively,
there are models in which new charged scalar fields in the extended scalar sector significantly
contribute to the diphoton decay [53].

In this paper, we would like to discuss a possibility that an extended Higgs sector would
explain this phenomenon in a relatively simple way. Although the Higgs boson was found,
the shape of the Higgs sector remains unknown, and there are many possibilities for extended
scalar sectors. Such extensions of the Higgs sector are often motivated to understand phenomena
which cannot be explained in the SM, such as radiative neutrino mass generation mechanisms,
sources of a scalar dark matter and the cause of strongly first order phase transition and CP
violation required for electroweak baryogenesis. In addition, new paradigms beyond the SM
also require a specific Higgs sector in each model.

We here introduce a simple extension of the SM with an additional real singlet scalar field
S and several (multiply) charged scalar bosons. We can assume that the singlet does not have
a vacuum expectation value (VEV). The singlet couples to top quarks (StLtR), whose coupling
originally comes form a dimension five operator StLΦ̃tR, and also couples to charged scalars via
trilinear scalar couplings with dimensionful parameters. At LHC, the singlet field S can then
be produced via the gluon fusion process. The produced S fields mainly decay into tt but some
do into diphoton. The observed data[50, 51] suggest that the signal at Mγγ ≃ 750 GeV should
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satisfy

ATLAS : σ(pp→ SX → γγX) ≃ 5± 4 fb (95%CL) ,

CMS : σ(pp→ SX → γγX) ≃ 9± 7 fb (95%CL) . (4.143)

We show that by our simple setup the observed signal cross section and the observed total width
ΓS ≃ 45 GeV [50] can be explained without contradicting the data from LHC Run I [54, 55] and
also constraints from theoretical consistencies such as perturbative unitarity [56] and charge
non-breaking vacuum [57].

4.13.2 Model

We consider the following effective Lagrangian for interactions of the singlet field S as

Leff = −yS
Λ

(
QLΦ̃qR

)
−
∑
q

nq∑
i,j

µij
q Sϕ+q

i ϕ−q
j , (4.144)

where Φ is the Higgs doublet field, ϕ±q
i are scalar bosons with the electric charge of ±q, and nq

is the number of q-charged scalar bosons. We can assume that the singlet S does not have a
VEV while the Higgs doublet field Φ does have the VEV ⟨Φ0⟩ = v/

√
2, where v ≃ 246 GeV.

Therefore, only v gives the mass to the quarks and leptons.

The origin of the dimension five operator in Eq. (4.144) would be in the context of composite
Higgs models [58]. For example, in the SO(6)/SO(5) model where the global symmetry SO(6)
is spontaneously broken to SO(5) at the composite scale, there are 5 pseudo Nambu-Goldstone
bosons (pNGBs). They become components of one Higgs doublet and one neutral real scalar
singlet filed in the Higgs sector [59]. This singlet couples to charged fermions as

Lint = imf

√
ξ

1− ξ
cot θf Sf̄LfR , (4.145)

where mf is the mass of the fermion, and ξ is the compositeness parameter, and the mixing
angle cot θf is the Z2 breaking parameter which vanishes at θf = π/2 where the exact Z2

symmetry (S → −S) recovers.
The existence of charged singlet scalars would also be realized in the context of composite

Higgs models. In the composite Higgs models, the number of light scalar degrees of freedom
in the low energy effective theory is determined by the symmetry breaking structure G/H.
A part of the list for various G/H and corresponding extended Higgs sectors is presented in
Ref. [60]. For example, in the (SO(6))2/SO(6) model, where the global symmetry (SO(6))2 is
spontaneously broken to SO(6), it appear 15 pNGBs which are decomposed as one real singlet,
two doublets and two real triplet fields [61]. In such a model, we have the singlet real scalar
field S which couples to both tLtR and a number of (singly) charged scalar bosons.

In the following, however, we do not specify the fundamental model which predicts the
Lagrangian in Eq. (4.144). Instead, we consider models with extended scalar sectors with the
interaction in Eq. (4.144) in a general framework and try to explain the excess at 750 GeV in
the recent LHC data.
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For simplicity, we here consider the case where the trilinear scalar couplings µij
q in Eq. (4.144)

are diagonal and universal, and all charged scalars are degenerate in mass,

µij
q = µδij, (4.146)

mϕ±q
i

= m±, ∀q, (4.147)

so that there are only two coupling parameters y and µ as well as the common mass of charged
scalars m±.

The basic idea of our scenario is the following. We assume that the excess is the result of the
production and decay of S with the mass of 750 GeV. The production cross section pp→ S+X
is dominated by gluon fusion of top-quark loop mediation. The main decay mode of S is tt,
so that the production cross section of σ(pp→ SX) and the total width ΓS are correlated and
controlled by the coupling y. From the observed value of ΓS, the magnitude of y is determined.
On the other hand, the decay rate of S → γγ is determined by the top-loop contribution and
also by the charged-scalar loop effect. If the number of charged scalars is not small, scalar loop
contributions dominate the top-loop effect. In such a case, the decay rate is determined by
the trilinear scalar coupling µ. In the following, we show that the data of the excess can be
explained by tuning these parameters under the constraint from the 8 TeV data.

4.13.3 Numerical Evaluation

The partonic production cross section gg → S is given by

σ̂(gg → S) =
GFα

2
S(
√
ŝ)

288
√
2π

∣∣∣∣34Ff (τt)

∣∣∣∣2 × yv2√
2mfΛ

, (4.148)

where ŝ is the centre-of-mass energy of this subprocess and τt = 4m2
t/ŝ. The hadronic cross

section is evaluated by

σ(pp→ SX) = K

∫ 1

τS=m2
S/s

dτ
dLgg

dτ
× σ̂(gg → S) , (4.149)

where dLgg/dτ is the luminosity function. We here use MSTW2008 LO [44], and the K factor
is taken to be 2.5 in our calculation [62]. When we take Λ = v, we obtain

σ(pp→ S) ≃ 0.3y2 pb . (4.150)

for
√
s = 13 TeV. In Fig. 4.33, the production cross section of pp → S + X is shown at the

leading order as a function of y for
√
s = 13 TeV (red) and 8 TeV (blue).

We next consider the decay branching ratios of the produced S. We here assume that
mS < 2m± so that the charged scalars affect the total width ΓS only via the quantum loop
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contributions in S → γγ. The decay rates of the singlet S are calculated by

Γ(S → tt̄) =
Ncg

2m2
t

32πm2
W

mS|κstt|2
(
1− 4m2

t

m2
S

) 3
2

, (4.151)

Γ(S → γγ) =
α2g2

1024π3

m3
S

m2
W

×
∣∣∣∣κstt43Ft

(
4m2

t

m2
S

)
+ rκs±F0

(
4m2

±

m2
S

)∣∣∣∣2 , (4.152)

Γ(S → Zγ) =
α2m3

S

128π3v2

(
1− m2

Z

m2
S

)3

×

∣∣∣∣∣2κsttJf +∑
i

qig

cW

(
I i3 − s2W qi

) µ
v
JS

∣∣∣∣∣
2

, (4.153)

where r =
∑

q q
2nq, and

κstt =
yv√
2mt

, κs± =
mW

gm2
±
µ . (4.154)

The loop integral functions are defined by [63]

Ft(τ) = −2τ [1 + (1− τ)f(τ)] , (4.155)

F0(τ) = τ(1− τf(τ)), (4.156)

and

f(τ) =


[
sin−1 1√

τ

]2
for τ ≥ 1,

−1
4

[
log
{

1+
√
1−τ

1−
√
1−τ

}
− iπ

]2
, for τ < 1.

(4.157)

Jf is written by AH
1/2 in Ref. [64] as

Jf =
vf

sW cW
AH

1/2 . (4.158)

The loop contribution JS is given in Ref. [65]. Our model can be classified by the parameter r,
and characterized by the parameters of y, µ and m± with mS being set to be 750 GeV.

The signal cross section of pp→ S +X → γγ +X is then given by

σ(pp→ SX → γγX) =

σ(pp→ SX) · Br(S → γγ), (4.159)

where we employ the narrow width approximation, because the ratio ΓS/mS is smaller than
0.1.

Now we survey the parameter region where the data of the excess at 750 GeV is explained
without contradiction with the Run I data for the process pp → S + X → γγ + X at 8
TeV [54, 55];

ATLAS : σ(pp→ SX → γγX) ≃ 1.6± 1.3 fb (95%CL) ,

CMS : σ(pp→ SX → γγX) ≃ 0.9± 0.6 fb (95%CL) . (4.160)
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If the model contains doubly charged scalar bosons, we have to take into account the constraint
on the mass from the LHC data. In particular, if the doubly charged scalars from isospin singlets
(triplets) decay into dilepton, the current lower bound is about 430 GeV (550 GeV) [66]. On
the other hand, if they are of the complex triplet scalar fields, it can mainly decay into diboson
(W±W±) when the VEV for the triplet is larger than 0.1 MeV. In
such a case, the current mass lower limit is about 90 GeV [67], which is much relaxed as
compared to the case of dilepton decays. If we consider nq (> 1) of doubly charged Higgs
bosons, these bounds should become stronger. We here do not specify the isospin of charged
scalar bosons and also their main decay mode for a while, and we come back to this issue later.

In Fig. 4.34, contour plots of the regions satisfying the data from the 13 TeV Run (red) [50]
and those at 8 TeV (grey) [54] are shown (in the 95 % CL) on the y-µ plane for the six models
with r = 1, 10, 16 25, 50, and 65. The region where the width of S is 40 GeV < ΓS < 50
GeV is indicated by blue shaded regions. We also draw the curve of ΓS = 5.3 GeV, the current
resolution for the diphoton system [50]. The universal mass of charged scalars is set to be 400
GeV. In each model, there is the region where all data are satisfied. For smaller r, relatively
large µ is required to satisfy the data, while for relatively large number of r, µ can be lowered
to a few TeV. For instance, for the model with r = 1 where only one singly charged scalar filed
is introduced, the required value of µ is 100-200 TeV to satisfy the data. On the other hand,
for the model with r = 65 which corresponds to the models with (n1, n2) = (65, 0), (45, 5),
(25, 10), (13, 13) etc, the required value of µ is at most a few TeV.

In Fig. 4.35, the similar figures for the results with the mass of the universal charged scalar
mass m± to be 600 GeV are shown with the same fashion. We see that the required values of
µ for each model are larger than the cases with m± = 400 GeV.

4.13.4 Discussion

We here discuss theoretical constraints which limit parameter regions, and then give some
comments on the relation of our model to the new physics phenomena.

First, in order to obtain enough enhancement in the diphoton decay rate of the singlet S,
a larger value of µ is required for a smaller values of r. However, taking a too large value
of µ compared to mS and m± possibly causes dangerous charge breaking minima. For the
case of mS = 750 GeV and m± = 400–600 GeV, the value of µ larger than about 10 TeV is
not favored at all by the similar analysis to the case of large trilinear coupling in the minimal
supersymmetric standard model (MSSM)[68].

Second, the perturbative unitarity bound for scattering processes such as ϕ+qϕ−q → ϕ+qϕ−q

should also be taken into account in the case with a large µ. It is known that in the MSSM,
constraints from perturbative unitarity for the trilinear coupling are similar in strength to
bounds from color and charge breaking minima[69]. The unitarity bound on µ in our model is
also expected to lead to a similar constraint from charge non-breaking vacuum.

Therefore, from these theoretical constraints, the models with a small r and a large m±
are not favored even though there are regions which satisfy the data of the excess. As seen in
Fig. 4.34, for m± = 400 GeV the cases with r = 25, 50 and 65 can be safe from these theoretical
bounds, while for m± = 600 GeV only those with r = 65 can be allowed (see Fig. 4.35).

In order to have a relatively large values of r, introduction of a scalar field with a higher
isospin representation would be helpful. For example, in the model with an isospin septet scalar

field, there are many multiply charged scalar bosons ϕ±5, ϕ±4, ϕ±3, ϕ±2, ϕ± and ϕ
±
, which give
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r = 56. The phenomenology of the septet field is discussed in Ref. [70]. We note that models
with a higher representation scalar field than the septet are not realistic from viewpoint of
perturbative unitarity [71].

In our analysis, we only have considered the models with only one real singlet field S.
However, it would also be possible to consider the cases with more real singlets Si (i = 1, · · ·N).
If they have the common mass and the universal couplings with tLtR and with charged scalars,
then the signal cross section becomes N2 larger than the case with N = 1. In such a case,
the magnitude of the trilinear coupling can be smaller so that the constraint from perturbative
unitarity and charge non-breaking would be milder. In this case, the excess at 750 GeV can be
explained with smaller values of r.

In our scenario, many (multiply) charged scalar fields are introduced. Such introduction of
many scalars can also be seen in the models for quantum generation of tiny neutrino masses
(so called radiative seesaw scenarios), where neutrino masses are deduced from the extended
scalar sectors at one-loop [72, 73], two-loop [74] and three-loop levels [75, 76, 77]. Therefore, the
excess at 750 GeV would be indirect evidence for such radiative seesaw scenarios with S which
couples to tLtR. In addition, introduction of many scalars can cause strongly first order phase
transition at electroweak symmetry breaking [78], which is required for a successful scenario of
electroweak baryogenesis [79].

For mS = 750 GeV and the observed value of ΓS ∼ 45 GeV, the branching ratio of S → γγ
is required to take values between about 0.6 % and about 3.5 % to satisfy all the diphoton data
for all cases of r and m±. The data can be satisfied with similar values of the branching ratio
even if the value of the width is smaller than 45 GeV. The main decay mode of S is always
tt, whose branching ratio is larger than 95 %. Produced number of tt via the S decay is much
smaller than the uncertainty in the data of the tt production cross section at the 8 TeV [80]
and the 13 TeV [81].

In the following, we mention some phenomenological features with speculation. Detailed
study is beyond the scope of this letter. If our scenario is true, the second phenomenological
signature would be the discovery of charged Higgs bosons with the mass to be 400-600 GeV.
In particular, if some of them have double electric charge, the final state would be dilepton
or diboson, depending on their isospin charges and the other parameters. If they decay into
dilepton, the signature is expected to be observed very soon at LHC Run II, otherwise the
model is ruled out. If doubly charged scalars have isospin, the main decay mode can be same
sign diboson. In such a case, the current lower limit is about 90 GeV [67]. In order to detect
the signal around 400-600 GeV, considerable amount of luminosity has to be accumulated.
Finally if the model contains higher order isospin representation scalar fields, their charged
scalar components also enhance the Zγ decay rate by the loop effect, whose branching ratio
can be a few times 1 %. In such a case, the signal of S → Zγ would be discovered in the near
future at LHC Run II.

4.14 Conclusion

We have investigated the minimal composite Higgs model and its variation models. In these
class of models, the Higgs boson appears as the pNGB associated with the breakwdown of
the global symmetry SO(5). The Higgs boson coupling constants are deviated from the SM
predictions depending on the matter representation in the global symmetry. These deviation
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patters of the MCHM variaion models could be diatinguished by the future collider experiemnts.
The MCHM is an analogy of the realistic QCD theory. Moreover, the Higgs bosons can

be identified with the pion, which apeears as the well-known pNGB in Nature. The scatteing
amplitude of ππ → ππ seems to diverge at of order one GeV scale and violate the perturbative
unitarirty. However, the phase shift occurs by a nre resonance and the perturbative unitarity is
recovered. The new renonance is called the rho menson. In the MCHNs, the energy dependence
amplitude for WLWL → WLWl does not disappear. There is no such energy dependence in the
SM. We assume that a new resonance, like the QCD rho meson, appears and the perturbative
unitarity is restored. We can estimate its mass scale by the phase shift imformation beyond
the reach of current collider experiments.

We also investigate double Higgs productions at the LHC and the ILC in order to obtain
constrains on the compositeness parameter ξ. First, we obtain constraints on ξ from the data
of LHC Run-I. Second, we calculate the signal strength of the double Higgs boson cross sections
including the Higgs boson decay modes. At the LHC, the signal strength for all decay modes is
enhanced in the MCHMs. On the other hand, at the ILC, the signal strength of the MCHMs
shows significant energy dependence.

In addition, at the end of 2015, a signal of a new paricle has been found at the LHC. It
appears in the Higgs decay mode of diphoton h→ γγ around 750 GeV. We want to explain this
phenomena in the framework of the composite Higgs models with an extended Higgs sector. A
neutral singlet with the mass 750 GeV and a number ofmultiply charger scalars are introduced.
We propose this simple model setup and could explain the phenomena. The small number of
the charged scalars does not is prefered because of the theoretical constraints. The perturbative
unitarity and charge non-breaking minima gives us contrains on the masses and the number of
charged scalars.
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Figure 4.22: The production cross section for ee→ Zhh→ XXY Y .
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Figure 4.23: The signal strength for ee→ Zhh→ XXY Y .
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Figure 4.24: The production cross section of ee→ ννhh for each models with ξ = 0.1, 0.2.
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Figure 4.25: The total cross sections including the Higgs decay for each models with ξ =
0.1(left column), 0.2(right column).
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Figure 4.26: The signal strength for ee→ ννhh→ ννXXY Y .
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Figure 4.31: hhh diagrams
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Figure 4.33: The hadronic production cross section pp→ S +X as a function of y at the LHC
for the centre-of-mass energy to be 13 TeV (red) and 8 TeV (blue).

Figure 4.34: Contour plots of the signal cross section σ(pp → SX) × Br(S → γγ) [fb] on the
y-µ plane for m± = 400 GeV. The regions which satisfy the 13 TeV data (red) [50] and 8 TeV
data (grey) [54] within the 95 % CL are shown. The regions where the total width of S is in
40 GeV < ΓS < 50 GeV (blue band) and the curve of ΓS = 5.3 GeV (blue dashed), the energy
resolution of the diphoton system, are also indicated. From top-left to bottom-right, the results
are shown in the models wish r = 1, 10, 16, 25, 50 and 65.
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Figure 4.35: Contour plots of the signal cross section σ(pp → SX) × Br(S → γγ) [fb] on the
y-µ plane for m± = 600 GeV. The regions which satisfy the 13 TeV data (red) [50] and 8 TeV
data (grey) [54] within the 95 % CL are shown. The regions where the total width of S is in
40 GeV < ΓS < 50 GeV (blue band) and the curve of ΓS = 5.3 GeV (blue dashed), the energy
resolution of the diphoton system, are also indicated. From top-left to bottom-right, the results
are shown in the models wish r = 1, 10, 16, 25, 50 and 65.



Chapter 5

Summary of the Thesis

We have discussed two scenarios whose Higgs bosons are composed by the fundametal particle;
a scenario based on the supersymmetric QCD and composite Higgs scenario.

In the supersymmetric SU(2)H QCD scenario, the extended Higgs sector composed by the
six fundamental chiral superfields appear at the low-energy effective theory. We introduce
an additional unbroken Z2 symmetry and it ensures the lightest Higgs boson mass could be
satisfied 126 GeV because extra scalar bosons does not get the VEV. The stability of the DM
cadidates is also ensured by the Z2 symmetry. The tiny neutrino masses are generated by the
loop quantum effects in the framework of the radiative seesaw scenario. The extra scalar bosons
which strongly couple to the SM-like Higgs boson enhances the electroweak phase transition
to realize the baryon number asymmetry of the Universe. Therefore, this model could explain
these three phenomenological problems which cannot be explained in the SM, simultaneously.
Fortunately, this scenario could be tested at future coolider experiments because these physics
are related to the TeV scale physics.

In the composite Higgs scenario, we focus on the minimal composite Higgs models and their
variation models. The breakdown of the global symmetry SO(5) into SO(4) leads 4 NGBs
and this corresponds to one Higgs doublet. The Higgs boson couplings deviate from the SM
predictions, which is parametrized by one parameter, the copositeness parameter ξ. Their
deviation patterns depend on the representaions of the SM particles in SO(5). We make a list
these couling deviations. We could distinguish these MCHM variation models at future collider
experiments. In addition, we assume the existence of a new particle which is an analogue of
the rho meson in QCD. We estimate this mass scale by extracting phase shift imformation
beyond the reach of current data. The double Higgs production at the LHC and linear collider
experiments are also investigated. At the LHC, all signal strength including the Higgs boson
decay are always enhanced. At the ILC, the energy dependence of the productino cross sections
show charastaristic behaviour.

We also study the phenomenological application of composite Higgs models to the diphoton
excess 750 GeV at the LHC. By using the framework of the extended composite Higgs models,
this phenomena could be explained.
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Appendix A

Kinematics of ud̄→ W+Z → ℓνℓℓ

We give the explicit kinematics of the decay product, which is sketched in Ref. [29]. The
process considered here isWZ pair production by ud̄ scattering, and they decay purely leptonic:
u(pu)d̄(pd)→ W+(pW )Z(pZ)→ νl(pν)l

+(pl1)l
−(pl2)l

+(pl3). Regarding u and d̄ as massless, they
only appear as left-handed state in this process. Here we assign their momenta as follows:

u : pu =
√
S/2 (1,− sinΘ, 0, cosΘ), (A.1)

d̄ : pd =
√
S/2 (1, sinΘ, 0,− cosΘ), (A.2)

W+ : pW = (EW , 0, 0, pV ), (A.3)

Z : pZ = (EZ , 0, 0,−pV ), (A.4)

νl : pν =
√
E2

W − q2V /2 (1, sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1), (A.5)

l+ : pl1 =
√
E2

W − q2V /2 (1,− sin θ1 cosϕ1,− sin θ1 sinϕ1,− cos θ1), (A.6)

l− : pl2 =
√
E2

Z − q2V /2 (1, sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2), (A.7)

l+ : pl3 =
√
E2

Z − q2V /2 (1,− sin θ2 cosϕ2,− sin θ2 sinϕ2,− cos θ2), (A.8)

where we define z-axis along to the W -boson momentum direction, and Θ is the angle between
p⃗u and p⃗W . The phase space of the final state leptons depends on two polar decay angles (θ1, θ2)
and two azimuthal decay angles (ϕ1, ϕ2) from the production plane defined by n̂ ∼ p⃗u × p⃗W .
Therefore, A± defined in Eq. (4.18) represents the asymmetry between the events that the
charged lepton goes to ”above” or ”below” the production plane.
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Appendix B

Generators and eigenvectors
of Composite Higgs models

In this appendix, we show explicite representations of the SO(5) and SO(6) generators and
their eigenvectors.

B.1 SO(5) generators

The SO(5) generators are defined as

(T aL,R)ij = −
i

2

[
1

2
ϵabc

(
δbi δ

c
j − δbjδci

)
±
(
δai δ

4
j − δaj δ4i

)]
,

T â
ij = −

i√
2

(
δâi δ

5
j − δâj δ5i

)
. (B.1)

where T aL,R (aL, aR = 1, 2, 3) are unbroken SO(4) generators, T â (â = 1, · · · , 4) are broken
generators. They satisfy these commutators,[

T aL , T bL
]
= iϵabc T cL ,

[
T aR , T bR

]
= iϵabc T cR ,

[
T aR , T bL

]
= 0. (B.2)

Above commutators are almost the same in SU(2).

B.1.1 5-representation

The generators in 5 dimensional representation are

T aL,R =
i

2




∓1 0

−1 0
1 0

±1 0
0 0 0 0 0

 ,


1 0
∓1 0

−1 0
±1 0

0 0 0 0 0

 ,


−1 0

1 0
∓1 0

±1 0
0 0 0 0 0


 ,

T â =
i√
2




−1
0
0
0

1 0 0 0 0

 ,


−1
0
0

1 0 0 0

 ,

 −1
0

1 0 0

 ,

 −1
1 0




(B.3)
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The Dirac gamma matrices in 5-dimension, denoted by Γ, is

Γâ =

(
0 σâ

σâ† 0

)
, Γ5 =

(
12×2 0
0 12×2

)
, σâ = {σ⃗,−i1} . (B.4)

The eigenvectors of T 3
L, T

3
R are,

T 3
L :

1√
2


0
0
i
1
0


−1/2

,
1√
2


i
1
0
0
0


−1/2

,
1√
2


0
0
−i
1
0


+1/2

,
1√
2


−i
1
0
0
0


+1/2

,


0
0
0
0
1


0

. (B.5)

T 3
R :

1√
2


0
0
−i
1
0


−1/2

,
1√
2


i
1
0
0
0


−1/2

,
1√
2


0
0
i
1
0


+1/2

,
1√
2


−i
1
0
0
0


+1/2

,


0
0
0
0
1


0

. (B.6)

where subscripts are eigenvalues under SU(2)L or SU(2)R. We redefine eigenvectors as follows

v(−,−) =
1√
2


i
1
0
0
0

 , v(−,+) =
1√
2


0
0
i
1
0

 ,

v(+,−) =
1√
2


0
0
−i
1
0

 , v(+,+) =
1√
2


−i
1
0
0
0

 , v(0,0) =


0
0
0
0
1

 . (B.7)

with ± ≡ ±1/2.

B.1.2 10-representation

The 10-representaion is decomposed under (SU(2)L, SU(2)R), 10 ∼ (3,1)⊕ (1,3)⊕ (2, 2̄). In
this case, eigenvectors are defined as

(3,1) : v(±1,0) =
1√
2
(T 1

L ± iT 2
L), v(0,0) = T 3

L,

(1,3) : v(0,±1) =
1√
2
(T 1

R ± iT 2
R), v(0,0) = T 3

R,

(2,2) : v(−1/2,−1/2) =
1√
2
(T 1̂ − iT 2̂), v(+1/2,+1/2) =

1√
2
(T 1̂ + iT 2̂),

v(−1/2,+1/2) =
1√
2
(T 3̂ − iT 4̂), v(+1/2,−1/2) =

1√
2
(T 3̂ + iT 4̂). (B.8)
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v(±1,0) =
1

2
√
2


∓1 −i 0
−i ±1 0

±1 +i 0
+i ∓1 0
0 0 0 0 0

 , v(0,0) =
1

2


−i 0

+i 0
−i 0

+i 0
0 0 0 0 0

 , (B.9)

v(0,±1) =
1

2
√
2


∓1 +i 0
−i ∓1 0

±1 +i 0
−i ±1 0
0 0 0 0 0

 , v(0,0) =
1

2


−i 0

+i 0
+i 0

−i 0
0 0 0 0 0

 , (B.10)

v(−1/2,−1/2) =
1

2


−i
−1
0
0

+i +1 0 0 0

 , v(+1/2,+1/2) =
1

2


−i
+1
0
0

+i −1 0 0 0

 , (B.11)

v(−1/2,+1/2) =
1

2


0
0
−i
−1

0 0 +i +1 0

 , v(+1/2,−1/2) =
1

2


0
0
−i
+1

0 0 +i −1 0

 . (B.12)
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B.1.3 14-representation

We can also define the 14-representation generators in SO(5) as

(3, 3̄) : T ab
ij =

1√
2
(δai δ

b
j + δaj δ

b
i ), a < b, a, b = 1, · · · , 4

T aa
ij =

1√
2
(δai δ

a
j − δa+1

i δa+1
j ), a = 1, 2, 3

(2, 2̄) : T â
ij =

1√
2
(δai δ

5
j + δaj δ

5
i ), a = 1, · · · , 4

(1, 1̄) : T 0
ij =

1

2
√
5
diag(1, 1, 1, 1,−4). (B.13)

and eigenvectors as

(3, 3̄) :

v(+1,+1) =
1

2
√
2
(2iT 12 + T 11 − T 22), v(1,0) =

1

2
(−T 13 − iT 23 − iT 14 + T 24),

v(+1,−1) =
1

2
√
2
(2iT 34 + T 33), v(1,0) =

1

2
(−T 13 − iT 23 + iT 14 − T 24),

v(0,0) =
1

2
√
2
(−T 11 − T 22 + T 33), v(1,0) =

1

2
(T 13 − iT 23 + iT 14 + T 24),

v(−1,+1) =
1

2
√
2
(−2iT 34 + T 33), v(1,0) =

1

2
(T 13 − iT 23 − iT 14 − T 24),

v(−1,−1) =
1

2
√
2
(−2iT 12 + T 11 − T 22), (B.14)

(2, 2̄) :

v(+1/2,+1/2) =
1√
2
(−T 1̂ − iT 2̂), v(+1/2,−1/2) =

1√
2
(T 3̂ + iT 4̂),

v(−1/2,+1/2) =
1√
2
(T 3̂ − iT 4̂), v(−1/2,−1/2) =

1√
2
(T 1̂ − iT 2̂), (B.15)

(1, 1̄) :

v′(0,0) = T 0 (B.16)
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(3, 3̄)

v(+1,+1) =
1

4


1 2i 0
2i −2 0

1 0
0 0

0 0 0 0 0

 , v(+1,0) =
1

2
√
2


−1 −i 0
−i 1 0

−1 −i 0
−i 1 0
0 0 0 0 0

 , (B.17)

v(+1,−1) =
1

4


0 0

0 0
1 2i 0
2i −1 0

0 0 0 0 0

 , v(+1,0) =
1

2
√
2


−1 +i 0
−i −1 0

−1 −i 0
i −1 0
0 0 0 0 0

 , (B.18)

v(0,0) =
1

4
diag(−1, 0, 2,−1, 0), (B.19)

v(0,−1) =
1

2
√
2


1 i 0
−i 1 0

1 −i 0
i 1 0
0 0 0 0 0

 , v(−1,+1) =
1

4


0 0

0 0
1 −2i 0
−2i −1 0

0 0 0 0 0

 , (B.20)

v(−1,0) =
1

2
√
2


1 −i 0
−i −1 0

1 −i 0
−i −1 0
0 0 0 0 0

 , v(−1,−1) =
1

2
√
2


1 −2i 0
−2i −2 0

1 0
0 0

0 0 0 0 0

 , (B.21)

(2, 2̄)

v(+1/2,+1/2) =
1

2


−1
−i
0
0

−1 −i 0 0 0

 , v(+1/2,−1/2) =
1

2


0
1
i
0

0 0 1 i 0

 , (B.22)

v−1/2,+1/2) =
1

2


0
1
−i
0

0 0 1 −i 0

 , v(+1/2,+1/2) =
1

2


1
−i
0
0

1 −i 0 0 0

 , (B.23)

(1, 1̄)

v′(0,0) =
1

2
√
5
diag(1, 1, 1, 1,−4) (B.24)
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B.1.4 SO(6) generators for SO(6)/SO(5) (Doublet + Singlet)

T â
ij = −

i√
2

(
δâiδ6j − δâjδ6i

)
,

T
aL,R

ij = − i
2

[
1

2
ϵabc

(
δbiδcj − δbjδci

)
±
(
δaiδ4j − δajδ4i

)]
,

Tα
ij = −

i√
2

(
δαiδ5j − δαjδ5i

)
. (B.25)

where T â(â = 1, · · · , 5) are the broken generators of SO(6)/SO(5), Tα(α = 1, · · · , 4) live in
the coset of SO(6)/SO(5) and T aL,R corresponds to SO(4) ∼ SU(2)L × SU(2)R.



Appendix C

Variation models of the MCHMs

As we mentioned in chapter.3, there are many variation models in the MCHMs. They are listed
in [35] except for MCHM14. In this appendix, we show the matter Lagrangian and effective
Higgs potential of 13 MCHM variation models since gauge sector does not change. We does not
introduce new fermions. The SM fermions are only embedded into SO(5) eigenvectors. The
dimensions of representation are 5 (fundamental), 10 (adjoint, anti-symmetric), 14 (symmetric).
They can be decomposed as

555X ∼(222,222)X ⊕ (111,111)X ,

101010X ∼(333,111)X ⊕ (111,333)X ⊕ (222,222)X , (C.1)

141414X ∼(333, 3̄̄3̄3)X ⊕ (222,222)X ⊕ (111,111)X ,

where the X is the appropreate U(1)X charge assignment to reproduce the SM U(1)Y charge.
We note that untrivial coefficients in the effective Higgs potential (e.g. α and β in (C.4))

are written in terms of form factors. We are not interested in details of these coefficients since
we does not discuss the concrete structure at high energy.

C.1 MCHM5

In this model, all third generation SM quarks are embedded into 5-representation. The first,
second generation quarks, and leptons are omitted since their contributions to the Higgs po-
tential is negligible. The quantum charge assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0, 0)−1/3 . (C.2)

The effective matter Lagrangian is

Lmatter
eff =

∑
r=tL,tR,bL,bR

Ψ
(5)

r

[
/pΠr

0 + Σ†/pΠr
1Σ
]
Ψ(5)

r

+Ψ
(5)

tL

[
M t

0 + Σ†M t
1Σ
]
Ψ

(5)
tR

+Ψ
(5)

bL

[
M b

0 + Σ†M b
1Σ
]
Ψ

(5)
bR

+ h.c. . (C.3)

The effective Higgs potential is

Vh ≃ α cos2(h/f) + β cos2(h/f) sin2(h/f) . (C.4)
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C.2 MCHM10

In this model, all third generation SM quarks are embedded into 10-representation. The quan-
tum charge assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.5)

The effective matter Lagrangian is

Lmatter
eff =

∑
r=qL,tR,bR

[
Ψ

(10)

r /pΠr
0Ψ

(10)
r + (ΣΨ

(10)

r )/pΠr
1(Ψ

(10)
r Σ†)

]
+Ψ

(10)

qL
M t

0Ψ
(10)
tR

+ (ΣΨ
(10)

qL
)M t

1(Ψ
(10)
tR

Σ†)

+ Ψ
(10)

qL
M b

0Ψ
(10)
bR

+ (ΣΨ
(10)

qL
)M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.6)

The effective Higgs potential has the same form in (C.4).

C.3 MCHM14

In this model, all third generation SM quarks are embedded into 14-representation. The quan-
tum charge assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.7)

The effective matter Lagrangian is

Lmatter
eff =

∑
r=qL,tR,bR

[
Ψ

(14)

r /pΠr
0Ψ

(14)
r + (ΣΨ

(14)

r )/pΠr
1(Ψ

(14)
r Σ†) + (ΣΨ

(14)

r Σ†)/pΠr
2(ΣΨ

(14)
r Σ†)

]
+Ψ

(14)

qL
M t

0Ψ
(14)
tR

+ (ΣΨ
(14)

qL
)M t

1(Ψ
(14)
tR

Σ†) + (ΣΨ
(14)

qL
Σ†)M t

2(ΣΨ
(14)
tR

Σ†)

+ Ψ
(14)

qL
M b

0Ψ
(14)
bR

+ (ΣΨ
(14)

qL
)M b

1(Ψ
(14)
bR

Σ†) + (ΣΨ
(14)

qL
Σ†)M b

2(ΣΨ
(14)
bR

Σ†) + h.c. . (C.8)

The effective Higgs potential is

Vh ≃ α sin2(h/f) + β sin4(h/f) + γ sin6(h/f) . (C.9)

C.4 MCHM5-1-10

In this model, (QL, tR, bR) are embedded into (5, 1, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.10)
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The effective matter Lagrangian is

Lmatter
eff =Ψ

(5)

qL
/pΠqL

0 Ψ(5)
qL

+ (Ψ
(5)

qL
Σ†)/pΠqL

1 (ΣΨ(5)
qL
)

+ Ψ
(1)

tR
/pΠtR

0 Ψ
(1)
tR

+Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ (Ψ
(5)

qL
Σ†)M t

1Ψ
(1)
tR

+Ψ
(5)

qL
M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.11)

The effective Higgs potential is
Vh ≃ −β sin2(h/f) . (C.12)

When we impose the starionary condition, β must be 0. Then, the electroweak symmetry
breaking does not ocuur since the Higgs potential is always flat. This is not realistic model.

C.5 MCHM5-5-10

In this model, (QL, tR, bR) are embedded into (5, 5, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.13)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(5)

qL
/pΠqL

0 Ψ(5)
qL

+ (Ψ
(5)

qL
Σ†)/pΠqL

1 (ΣΨ(5)
qL
)

+ Ψ
(5)

tR
/pΠtR

0 Ψ
(5)
tR

+ (Ψ
(5)

tR
Σ†)/pΠtR

1 (ΣΨ
(5)
tR
)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ Ψ
(5)

qL
M t

0Ψ
(5)
tR

+ (Ψ
(5)

qL
Σ†)M t

1(ΣΨ
(5)
tR
) + Ψ

(5)

qL
M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.14)

The effective Higgs potential has the same form in (C.4).

C.6 MCHM5-10-10

In this model, (QL, tR, bR) are embedded into (5, 10, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.15)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(5)

qL
/pΠqL

0 Ψ(5)
qL

+ (Ψ
(5)

qL
Σ†)/pΠqL

1 (ΣΨ(5)
qL
)

+ Ψ
(10)

tR
/pΠtR

0 Ψ
(10)
tR

+ (ΣΨ
(10)

tR
)/pΠtR

1 (Ψ
(10)
tR

Σ†)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ Ψ
(5)

qL
M t

1(Ψ
(10)
tR

Σ†) + Ψ
(5)

qL
M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.16)

The effective Higgs potential has the same in Eq. (C.4).
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C.7 MCHM5-14-10

In this model, (QL, tR, bR) are embedded into (5, 14, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.17)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(5)

qL
/pΠqL

0 Ψ(5)
qL

+ (Ψ
(5)

qL
Σ†)/pΠqL

1 (ΣΨ(5)
qL
)

+ Ψ
(14)

tR
/pΠtR

0 Ψ
(14)
tR

+ (ΣΨ
(14)

tR
)/pΠtR

1 (Ψ
(14)
tR

Σ†) + (ΣΨ
(14)

tR
Σ†)/pΠtR

2 (ΣΨ
(14)
tR

Σ†)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ Ψ
(5)

qL
M t

1(Ψ
(14)
tR

Σ†) + (Ψ
(5)

qL
Σ†)M t

2(ΣΨ
(14)
tR

Σ†) + Ψ
(5)

qL
M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.18)

The effective Higgs potential takes the same form as one given in Eq. (C.9).

C.8 MCHM10-5-10

In this model, (QL, tR, bR) are embedded into (10, 5, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.19)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(10)

qL
/pΠqL

0 Ψ(10)
qL

+ (ΣΨ
(10)

qL
)/pΠqL

1 (Ψ(10)
qL

Σ†)

+ Ψ
(5)

tR
/pΠtR

0 Ψ
(5)
tR

+ (Ψ
(5)

tR
Σ†)/pΠtR

1 (ΣΨ
(5)
tR
)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ (ΣΨ
(10)

qL
)M t

1Ψ
(5)
tR

+Ψ
(10)

qL
M b

0Ψ
(10)
bR

+ (ΣΨ
(10)

qL
)M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.20)

The effective Higgs potential has the same form in Eq. (C.4).

C.9 MCHM10-14-10

In this model, (QL, tR, bR) are embedded into (10, 14, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.21)
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The effective matter Lagrangian is

Lmatter
eff =Ψ

(10)

qL
/pΠqL

0 Ψ(10)
qL

+ (ΣΨ
(10)

qL
)/pΠqL

1 (Ψ(10)
qL

Σ†)

+ Ψ
(14)

tR
/pΠtR

0 Ψ
(14)
tR

+ (ΣΨ
(14)

tR
)/pΠtR

1 (Ψ
(14)
tR

Σ†) + (ΣΨ
(14)

tR
Σ†)/pΠtR

2 (ΣΨ
(14)
tR

Σ†)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ (ΣΨ
(10)

qL
)M t

1(Ψ
(14)
tR

Σ†) + (ΣΨ
(10)

qL
)M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.22)

The effective Higgs potential has the same form in Eq. (C.9).

C.10 MCHM14-1-10

In this model, (QL, tR, bR) are embedded into (14, 1, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.23)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(14)

qL
/pΠqL

0 Ψ(14)
qL

+ (ΣΨ
(14)

qL
)/pΠqL

1 (Ψ(14)
qL

Σ†) + (ΣΨ
(14)

qL
Σ†)/pΠqL

2 (ΣΨ(14)
qL

Σ†)

+ Ψ
(1)

tR
/pΠtR

0 Ψ
(1)
tR

+Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ (ΣΨ
(14)

qL
Σ†)M t

2Ψ
(1)
tR

+ (ΣΨ
(14)

qL
)M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.24)

The effective Higgs potential has the same form in Eq. (C.4).

C.11 MCHM14-5-10

In this model, (QL, tR, bR) are embedded into (14, 5, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.25)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(14)

qL
/pΠqL

0 Ψ(14)
qL

+ (ΣΨ
(14)

qL
)/pΠqL

1 (Ψ(14)
qL

Σ†) + (ΣΨ
(14)

qL
Σ†)/pΠqL

2 (ΣΨ(14)
qL

Σ†)

+ Ψ
(5)

tR
/pΠtR

0 Ψ
(5)
tR

+ (Ψ
(5)

tR
Σ†)/pΠtR

1 (ΣΨ
(5)
tR
)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ (ΣΨ
(14)

qL
)M t

1Ψ
(5)
tR

+ (ΣΨ
(14)

qL
Σ†)M t

2(ΣΨ
(5)
tR
) + (ΣΨ

(14)

qL
)M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.26)

The effective Higgs potential has the same form in Eq. (C.9).
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C.12 MCHM14-10-10

In this model, (QL, tR, bR) are embedded into (14, 10, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.27)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(14)

qL
/pΠqL

0 Ψ(14)
qL

+ (ΣΨ
(14)

qL
)/pΠqL

1 (Ψ(14)
qL

Σ†) + (ΣΨ
(14)

qL
Σ†)/pΠqL

2 (ΣΨ(14)
qL

Σ†)

+ Ψ
(10)

tR
/pΠtR

0 Ψ
(10)
tR

+ (ΣΨ
(10)

tR
)/pΠtR

1 (Ψ
(10)
tR

Σ†)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ (ΣΨ
(14)

qL
)M t

1(Ψ
(10)
tR

Σ†) + (ΣΨ
(14)

qL
)M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.28)

The effective Higgs potential has the same form in Eq. (C.9).

C.13 MCHM14-14-10

In this model, (QL, tR, bR) are embedded into (14, 14, 10), respectively. The quantum charge
assignment are

tL : (1/2,−1/2)2/3, bL : (−1/2,−1/2)2/3 ,
tR : (0, 0)2/3, bR : (0,−1)2/3 . (C.29)

The effective matter Lagrangian is

Lmatter
eff =Ψ

(14)

qL
/pΠqL

0 Ψ(14)
qL

+ (ΣΨ
(14)

qL
)/pΠqL

1 (Ψ(14)
qL

Σ†) + (ΣΨ
(14)

qL
Σ†)/pΠqL

2 (ΣΨ(14)
qL

Σ†)

+ Ψ
(14)

tR
/pΠtR

0 Ψ
(14)
tR

+ (ΣΨ
(14)

tR
)/pΠtR

1 (Ψ
(14)
tR

Σ†) + (ΣΨ
(14)

tR
Σ†)/pΠtR

2 (ΣΨ
(14)
tR

Σ†)

+ Ψ
(10)

bR
/pΠbR

0 Ψ
(10)
bR

+ (ΣΨ
(10)

bR
)/pΠbR

1 (Ψ
(10)
bR

Σ†)

+ Ψ
(14)

qL
M t

0Ψ
(14)
tR

+ (ΣΨ
(14)

qL
)M t

1(Ψ
(14)
tR

Σ†) + (ΣΨ
(14)

qL
Σ†)M t

2(ΣΨ
(14)
tR

Σ†)

+ (ΣΨ
(14)

qL
)M b

1(Ψ
(10)
bR

Σ†) + h.c. . (C.30)

The effective Higgs potential has the same form in Eq. (C.9).



Appendix D

Decay Rates and Branching Ratios
of the SM Higgs boson

In this appendix, we show the calculations of the Sm Higgs boson decay width and branching
ratios.

D.1 Input parameters and Notations
Input parameters for numerical calculation are

GF = 1.16637× 10−5 ,

α−1
em = 137.035999166 ,

mZ = 91.1876 , (D.1)

and

mW = 80.93875164,

mh = 125,

ms(1GeV) = 0.1,

mpole
c = 1.275,

mpole
b = 4.87,

mpole
t = 173.2,

mpole
τ = 1.77682,

αs(mZ) = 0.1184,

cos θW = mW/mZ ,

sin θW =
√
1−m2

W/m
2
Z . (D.2)

where all dimensionful parameters are in GeV unit. In the following, we denote quark pole and
running masses as

• the quark pole mass = Mq

• the quark running mass at scale µ = mq(µ)
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D.2 List of corrections
• h→ τ̄ τ

– Electroweak correction [82]

– Higgs-self coupling correction [83]

• h→ c̄c, b̄b

– Electroweak correction [82]

– Higgs-self coupling correction [83]

– QCD corrections : αs(µ)[84], mq(µ)[84] , · · · [85]

• h→ V (∗)V (∗)

– Vector boson decay : three- and four-body decay [86]

– Electroweak correction [86]

– Higgs-self coupling correction [83]

– Interference effect : h→W+W−/ZZ → ℓ+νℓ−ν (Neglected)

• h→ gg

– QCD virtual correction [87] and [88]

– Electroweak correction [89]

• h→ γγ

– QCD virtual correction [88]

– EW virtual correction [89]

• h→ Zγ

– QCD virtual correction [90] and [91] (Neglected)

The interference effect to h → V V becomes important when the Higgs boson mass is close to
the vector boson mass threshold, mh ∼ 2mV . We neglect its effect because the SM Higgs boson
mass is 125 GeV. The QCD corrections to h→ Zγ is very small about ∼ 0.1%. We then omit
it.
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D.3 Running of Strong coupling constant and Quark

masses : RunDec [84]

D.3.1 Strong coupling constant

The strong coupling constant up to four-loop is evaluated by

µ2 d

dµ2

α
(Nf )
s (µ)

π
= −

3∑
i=0

β
(Nf )
i

(
α
(Nf )
s (µ)

π

)i+2

, (D.3)

where Nf is the active flavour number, µ is the scale and

β0 =
1

4

[
11− 2

3
Nf

]
,

β1 =
1

16

[
102− 38

3
Nf

]
,

β2 =
1

64

[
2857

2
− 5033

18
Nf +

325

54
N2

f

]
,

β3 =
1

256

[
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
Nf +

(
50065

162
+

6472

81
ζ3

)
N2

f +
1093

729
N3

f

]
,

(D.4)

with ζi is the Riemann’s zeta function, ζ2 = π2/6, ζ3 ≃ 1.20206. By solving (D.3) iteratively,
we obtain

α
(Nf )
s (µ)

π
=

1

β0L
− 1

(β0L)2
β1
β0

logL+
1

(β0L)3

[
β2
1

β2
0

(
log2 L− logL− 1

)
+
β2
β0

]
+

1

(β0L)4

[
β3
1

β3
0

(
− log3 L+

5

2
log2 L+ 2 logL− 1

2

)
− 3

β1β2
β2
0

logL+
β3
2β0

]
(D.5)

with L = log µ2/Λ2. Λ, called the asymptotic scale parameter, is determined by α
(Nf )
s (µ =

mZ) . For example, by using a certain root-finding method, it can be easily obtained as

mZ = 91.1876 GeV, α
(Nf )
s (mZ) = 0.1184 and Nf = 5 (except for the top quark)

NLO NNLO NNNLO NNNNLO

Λ [MeV] 89.91 231.35 213.078 213.069

These results are in complete agreement with RunDec .

<<RunDec.m

LamImpl[asmZ/.NumDef,Mz/.NumDef,5,1]

0.0899122

LamImpl[asmZ/.NumDef,Mz/.NumDef,5,2]

0.231353
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LamImpl[asmZ/.NumDef,Mz/.NumDef,5,3]

0.213078

LamImpl[asmZ/.NumDef,Mz/.NumDef,5,4]

0.213069

These results are in GeV unit.

D.3.2 Flavour threshold corrections to strong coupling constant

Next, we introduce flacvour threshold corrections. As I mentioned, contributions from the
particles whose masses are lighter than the charm quark can be negligible, since I concentrate
on mh =100-200 GeV. Therefore, I only calculate these corrections at µ = mpole

b , mpole
t .

At the threshold, we demand

• αs(µ = mZ) = 0.1184 is fixed.

• αs(µ =Mb and Mt) is continuous.

The relationship of the strong coupling constant between the effective and the full theory is

α
(Nf−1)
s (µ) = ζ2gα

(Nf )
s (µ) . (D.6)

⋆ µ =Mb

We already know the running behavior of α(Nf=5)(µ). The running of α(4)(µ < Mb) is calculated
by

α(4)
s (µ) =

(
ζOS
g (µ,Mb)

)2
α(5)
s (µ) (D.7)

where ζOS
g (µ,Mb) is the threshold correction at µ =Mb ;

(
ζOS
g (µ,Mb)

)2
= 1 +

α
(5)
s (µ)

π

(
−1

6
log

µ2

M2
b

)
+

(
α
(5)
s (µ)

π

)2(
− 7

24
− 19

24
log

µ2

M2
b

+
1

36
log2

µ2

M2
b

)

+

(
α
(5)
s (µ)

π

)3 [
− 58933

124416
− 2

3
ζ2

(
1 +

1

3
log 2

)
− 80507

27648
ζ3 −

8521

1728
log

µ2

M2
b

− 131

576
log2

µ2

M2
b

− 1

216
log3

µ2

M2
b

+ 4

(
2479

31104
+
ζ2
9
+

409

1728
log

µ2

M2
b

)]
. (D.8)

In order to connect continuously at µ =Mb, we must consider a compensating constant, δζαs
b :

δζαs
b ≡

(
ζOS
g (Mb,Mb)

)2
α(5)
s (Mb)− α(5)

s (Mb) (D.9)

Then, below µ =Mb, α
(4)
s (µ) is rewritten as the function of α

(5)
s (µ)

α(4)
s (µ) ≡

(
ζOS
g (µ,Mb)

)2
α(5)
s (µ)− δζαs

b (D.10)
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⋆ µ =Mt

Following same procedure, one can easily obtain a result of α
(6)
s (µ > Mt) .

1(
ζOS
g (µ,Mt)

)2α(5)
s (µ) = α(6)

s (µ) (D.11)

where ζOS
g (µ,Mt) is the threshold correction at µ =Mt ;

1(
ζOS
g (µ,Mt)

)2 = 1 +
α
(5)
s (µ)

π

(
1

6
log

µ2

M2
t

)
+

(
α
(5)
s (µ)

π

)2(
7

24
+

19

24
log

µ2

M2
t

+
1

36
log2

µ2

M2
t

)

+

(
α
(5)
s (µ)

π

)3 [
58933

124416
+

2

3
ζ2

(
1 +

1

3
log 2

)
+

80507

27648
ζ3 +

8941

1728
log

µ2

M2
t

+
511

576
log2

µ2

M2
t

+
1

216
log3

µ2

M2
t

+ 5

(
− 2479

31104
− ζ2

9
− 409

1728
log

µ2

M2
t

)]
. (D.12)

In order to connect continuously at µ =Mb, we must consider a compensating constant, δζαs
t :

δζαs
t ≡

1(
ζOS
g (µ,Mt)

)2α(5)
s (Mt)− α(5)

s (Mt) . (D.13)

Then, above µ =Mt, α
(6)
s (µ) is rewritten as the function of α

(5)
s (µ)

α(6)
s (µ) ≡ 1(

ζOS
g (µ,Mt)

)2α(5)
s (µ)− δζαs

t . (D.14)

In the following, I omit the superscript (Nf ). The running behaviours are shown in Figure D.1.
In RunDec, the authors numerically calculate the differential equation, (D.3) . The difference
is shown in

D.3.3 Qurak running mass : RunDec

The running quark mass at the scale µ is given by

mq(µ)

mq(µ0)
=

c(αs(µ)/π,Nf )

c(αs(µ0)/π,Nf )
(D.15)

with

c(x,Nf ) = xγ0/β0

{
1 +

(
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− β1γ0
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0
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1

2

[(
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β0
− β1γ0

β2
0
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− β1γ1
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0
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β2
1γ0
β3
0

− β2γ0
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0
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x2

+

[
1

6

(
γ1
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− β1γ0

β2
0

)3
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1

2

(
γ1
β0
− β1γ0

β2
0

)(
γ2
β0
− β1γ1

β2
0

+
β2
1γ0
β3
0

− β2γ0
β2
0

)

+
1

3

(
γ3
β0
− β1γ2

β2
0

+
β2
1γ1
β3
0

− β2γ1
β2
0

− β3
1γ0
β4
0

+ 2
β1β2γ0
β3
0

− β3γ0
β2
0

)]
x3

}
, (D.16)
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Figure D.1: The scale dependence of the strong coupling constant : αs(µ). (NLO, NNLO,
NNNLO, NNNNLO) = (cyan, black, green, red)
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. (D.17)

with ζ4 ≃ 1.08232, ζ5 ≃ 1.03693.
Eqaution (D.15) says that if we know the mass at µ0, mq(µ0), we can calculate the mass mq(µ)
at the arbitrary scale µ. We evaluate mq(µ0) as mq(Mq) by

mq(Mq)

Mq

= 1 +
αs(Mq)

π

[
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3
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+

(
αs(Mq)

π
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4

3

Nl∑
i

∆

(
Mi

Mq

)]

+

(
αs(Mq)

π

)3 [
z(3)m (Mq)

]
(D.18)
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Four-Loop
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Figure D.2: The scale dependence of the strong coupling constant : αs(µ). (NLO, NNLO,
NNNLO, NNNNLO) = (cyan, black, green, red)

where Mi are the light flavour masses, a function ∆ defined in [92] is approximately written as

∆(x) =
π2

8
− 0.597x+ 0.230x3 (D.19)

and

z(3)m (M) = −9478333
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. (D.20)

with a4 = Li4(1/2)(see Appendix) . Then, running masses of bottom quark and charm quark
(top quark is too heavy) are evaluated as

mb,c(µ) = mb,c(Mb,c)
c(αs(µ)/π,Nf )

c(αs(Mb,c)/π,Nf )
. (D.21)

The threshold corrections to running quark masses are also shown in RunDec [84] .
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• mb at µ =Mt

The threshold correction is only introduce at µ = Mt since I focus on mh =100-200GeV. The
relationship is given by

m
(6)
b (µ) =

1

ζOS
m (µ,Mt)

m
(5)
b (µ) . (D.22)

m
(5)
b (µ) is expressed as

m
(5)
b (µ) = mb(Mb)

c(αs(µ)/π, 5)

c(αs(Mb)/π, 5)
, µ =Mb-Mt , (D.23)

and
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M2
t

)]
.

(D.24)

with nl is the light flavour number, nl = 5 , and

B4 = 16Li4

(
1

2

)
− 13

2
ζ4 − 4ζ2 log

2 2 +
2

3
log4 2 . (D.25)

A compensating factor is also introduced, δζmb
Mt

.

δζmb
Mt

=
1

ζOS
m (Mt,Mt)

m
(5)
b (Mt)−m(5)

b (Mt) . (D.26)

Threfore, m
(6)
b (µ > Mt) is

m
(6)
b (µ) =

1

ζOS
m (µ,Mt)

m
(5)
b (µ)− δζmb

Mt
. (D.27)

• mc at µ =Mb

Following the same procedure,

m(5)
c (µ) =

1

ζOS
m (µ,Mb)

m(4)
c (µ) . (D.28)

m
(4)
c (µ) is expressed as

m(4)
c (µ) = mc(Mc)

c(αs(µ)/π, 4)

c(αs(Mc)/π, 4)
, µ =Mc-Mb , (D.29)
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and

1

ζOS
m (µ,Mb)

= 1 +

(
αs(µ)

π

)2(
− 89

432
+

5

36
ln

µ2

M2
b

− 1

12
ln2 µ2

M2
b

)
+

(
αs(µ)

π

)3 [
−1871

2916

+
407

864
ζ3 −

5

4
ζ4 +

1

36
B4 +

(
− 299

2592
+

5

6
ζ3

)
ln

µ2

M2
b

− 299

432
ln2 µ2

M2
b

− 35

216
ln3 µ2

M2
b

+ nl

(
− 1327

11664
+

2

27
ζ3 +

53

432
ln

µ2

M2
b

+
1

108
ln3 µ2

M2
b

)]
.

(D.30)

with nl = 4 . The compensating factor is also introduced, δζmc
Mb

.

δζmc
Mb

=
1

ζOS
m (Mb,Mb)

m(4)
c (Mb)−m(4)

c (Mb) . (D.31)

Threfore, m
(5)
c (Mt > µ > Mb) is

m(5)
c (µ) =

1

ζOS
m (µ,Mb)

m(4)
c (µ)− δζmc

Mb
. (D.32)

• mc at µ =Mt

m(6)
c (µ) =

1

ζOS
m (µ,Mt)

m(5)
c (µ) . (D.33)

m
(5)
c (µ) is expressed as

m(5)
c (µ) =

1

ζOS
m (µ,Mt)

m(4)
c (µ)− δζmc

Mb
, µ =Mb-Mt (D.34)

1

ζOS
m (µ,Mt)

= 1 +

(
αs(µ)

π

)2(
− 89

432
+

5

36
ln

µ2

M2
t

− 1

12
ln2 µ2

M2
t

)
+

(
αs(µ)

π

)3 [
−1871

2916

+
407

864
ζ3 −

5

4
ζ4 +

1

36
B4 +

(
− 299

2592
+

5

6
ζ3

)
ln

µ2

M2
t

− 299

432
ln2 µ2

M2
t

− 35

216
ln3 µ2

M2
t

+ nl

(
− 1327

11664
+

2

27
ζ3 +

53

432
ln

µ2

M2
t

+
1

108
ln3 µ2

M2
t

)]
.

(D.35)

with nl = 5 . The compensating factor is also introduced, δζmc
Mt

.

δζmc
Mt

=
1

ζOS
m (Mt,Mt)

m(5)
c (Mt)−m(5)

c (Mt) . (D.36)

Threfore, m
(6)
c (µ > Mt) is

m(6)
c (µ) =

1

ζOS
m (µ,Mt)

m(5)
c (µ)− δζmc

Mt
. (D.37)
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D.4 Decay Rates of the SM Higgs boson

D.4.1 Leading order formula of h→ f̄f

The SM Higgs boson decay rate into fermion pairs with no corrections are

Γtree(h→ ff̄) = NC
GFmh

4
√
2π

M2
f

(
1−

4M2
f

m2
h

)3/2

, (D.38)

where the colour factor NC is 1 for leptons and 3 for quarks.

D.4.2 Higgs-self coupling correction to h→ f̄f

The Higgs-self coupling correction is introduced as [83],

Γ(h→ ff̄) =
Zh

Zw

Γtree(h→ ff̄) (D.39)

with

Zh

Zw

=
1 + awλ̂+ bwλ̂

2

1 + ahλ̂+ bhλ̂2
, λ̂ =

λ

16π2
, λ =

GFm
2
h√

2
(D.40)

and

aw = 1,

bw =
3

2
+ 2ζ2 − 6γE − 3π

√
3 + 12Cl2(π/3)

√
3. (D.41)

ah = −12 + 2π
√
3,

bh =
291

2
− 96ζ(2) + 90ζ3 − 6γE − 48πCl2(π/3) + 116π

√
3− 216Cl2(π/3)

√
3− 162K5 (D.42)

where γE is the Euler’s gamma, Cl2 is Clausen’s function and K5 is evaluated in [93],

Cl2(π/3) ≃ 1.01494

K5 ≃ 0.923632, (D.43)

and their analytic forms are

Cl2(z) =
i

2
[Li2(exp(−iz))− Li2(exp(+iz))] (D.44)

K5 =

∫ 1

0

dx

∫ 1

0

dy
1

xy
log

{
1 +

bxby
2

[
1 + ax + ay −

√
(1 + ax + ay)2 − 4axay

]}
(D.45)

az =
1− z
z

, bz =
1

2

(
1−

√
1 +

4z

1− z

)
(D.46)

where Li2 is the di-logarithmic function or the Spence’s function, see Appendix. Its maginitude
at mh = 125 GeV is

Zh

Zw

≃ 1.00171 . (D.47)
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QCD corrections to h→ q̄q

For the case of h→ q̄q, (D.38) is modified as

Γ(h→ qq̄) =NC
GFmh

4
√
2π

m2
q(mh)

{
1−

4m2
q(mh)

m2
h

}3/2 [
1 + ∆QCD(mh) + ∆t(mh) + ∆mix(mh)

]
.

(D.48)

These corrections can be seen [94], [95], [96], [97] and see also references therein ;

∆QCD =

(
αS(mh)

π

)[
17

3

]
+

(
αS(mh)

π

)2 [
10801

141
− 19

12
π2 − 39

2
ζ3 +

(
−65

24
+

1

18
π2 +

2

3
ζ3

)
Nf

]
+

(
αS(mh)

π

)3
[
6163613

5184
− 3535

72
π2 − 109735

216
ζ3 +

815

12
ζ5

+

(
−46147

486
+

277

72
π2 +

262

9
ζ3 −

5

6
ζ4 −

25

9
ζ5

)
Nf

+

(
15511

11664
− 11

162
π2 − 1

3
ζ3

)
N2

f

]

+

(
αS(mh)

π

)4
[
39.34− 220.9Nf + 9.685N2

f − 0.0205N3
f

]
= 5.6667as + 29.147a2s + 41.758a3s − 825.7a4s . (Nf = 5 and as = αS/π) (D.49)

∆t(mh) =

(
αS(mh)

π

)2 [
3.111− 0.667 log

m2
h

M2
t

+
m2

b(mh)

m2
h

{
−10 + 4 log

m2
h

M2
t

+
4

3
log

[
m2

b(mh)

m2
h

]}]
+

(
αS(mh)

π

)3 [
50.474− 8.167 log

m2
h

M2
t

− 1.278 log2
m2

h

M2
t

]
+

(
αS(mh)

π

)2
m2

h

M2
t

[
0.241− 0.070 log

m2
h

M2
t

]
+

(
GFm

2
t

8π2
√
2

)[
1− 4.913

(
αS(mh)

π

)
+

{
−72.117− 20.945 log

m2
h

M2
t

}(
αS(mh)

π

)2
]
,

(D.50)

∆mix(mh) =

(
0.472− 3.336

m2
b(mh)

m2
h

)
αem(mh)

π
− 1.455

(
αem(mh)

π

)2

+ 1.301
αem(mh)αS(mh)

π2
.

(D.51)

µ = 125 GeV LO NLO N2LO N3LO N4LO

∆QCD 1 0.203819 0.0377072 0.00194306 -0.00138192
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µ = 125 GeV bottom charm

∆t 0.00968457 0.00969446
∆mix 0.00119462 0.00119717

D.4.3 EW corrections to h→ f̄f

The electroweak corrections to h→ f̄f [82] is given by

ΓEW(h→ f̄f) = Γtree(h→ f̄f)× (1 + δEW)

= Γtree(h→ f̄f)× (1−∆r + 2Re(∆TW )) (D.52)

These terms can be found in [82]. Its magnitude is shown in Figure D.3.
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Figure D.3: The electroweak corrections to h→ bb̄ and h→ τ τ̄ as a function of mh.

µ = 125 GeV bottom charm tau mu

∆EW -0.0121212 0.015023 0.0154297 0.015437

D.4.4 Leading order formulae of h→ V V

The decay rate into vector bosons (V = W,Z) is

Γtree(h→ V V ) = δ
g2

128π

m3
h

m2
V

√
1− xV

(
1− xV +

3

4
x2V

)
(D.53)

where xV = 4m2
V /m

2
h and δ = 1 for Z boson, 2 for W boson. The above equation is only valid

above the V V threshold, mh > 2mV .

D.4.5 Higgs-self coupling correction to h→ V V

The Higgs-self coupling correction is

Γ(h→ V V ) = Γtree(h→ V V )× (1 + δhV V ) (D.54)

with

δhV V = λ′

(
19

8
+

5π2

24
− 3
√
3π

4

)
+ λ′2 × 0.97103, λ′ =

GFm
2
h

2π2
√
2

(D.55)
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D.4.6 Off-shell vector boson decay to 4 massless fermions

Below the V V thresholds, virtual gauge boson decay modes become important. The decay
width into massless fermion pairs is given by [98]

Γ(h→ V ∗V ∗) =
1

π2

∫ m2
h

0

dq21
mV ΓV

(q21 −m2
V ) +m2

V Γ
2
V

∫ (mh−q1)2

0

dq22
mV ΓV

(q22 −m2
V ) +m2

V Γ
2
V

ΓV
0 (q

2
1, q

2
2,m

2
h)

(D.56)

where q21, q
2
2 are virtual gauge boson masses, ΓV and mV are their total decay width and masses,

and ΓV
0 is

ΓV
0 (q

2
1, q

2
2,m

2
h) = δV

GFm
3
h

16
√
2π

√
λ(q21, q

2
2,m

2
h)

[
λ(q21, q

2
2,m

2
h) +

12q21q
2
2

m4
h

]
(D.57)

with

λ(x, y, z) =
(
1− x

z
− y

z

)2
− 4

xy

z2
, (D.58)

and

δW = 2,

δZ = 1. (D.59)

D.4.7 Electroweak corrections to h→ 4f

The electroweak corrections and top mass effect are calculated in [86]. The exact evaluation
formulae are too complicated because the 5-point one loop function is required. We here use
the improved Bron formulae. It can be found in (6.1) of [86].

D.4.8 Leading order formula of h→ gg

The dominant contribution is the top quark loop effect. I take into account bottom effect for
numerical calculation. The leading order decay width is

Γ(h→ gg)|LO =
α2
sg

2m3
h

128π3m2
W

∣∣∣∣∣∑
i=t,b

τi [1 + (1− τi)f(τi)]

∣∣∣∣∣
2

(D.60)

where τi = 4m2
i /m

2
h and

f(τ) =


[
sin−1

(√
1/τ
)]2

, τ ≥ 1

−1
4

[
log
(

1+
√
1−τ

1−
√
1−τ

)
− iπ

]2
, τ < 1.

(D.61)

The QCD corrections to this process are calculated in [87]. The above equation is rewritten as

Γ(h→ gg) = Γ(h→ gg)|LO
[
1 + E(τQ)

αS(mh)

π

]
(D.62)



114APPENDIX D. DECAY RATES AND BRANCHING RATIOSOF THE SMHIGGS BOSON

with

E(τQ) =
95

4
− 7

6
Nf +

33− 2Nf

6
log

µ2

m2
h

+∆E. (D.63)

µ is the renormalization scale which is taken to be mh.

The NLO QCD correction to h→ gg is riginally calculated in [87]. However, the authors in
[88] pointed out that the formulae contains some typos. And they show the explicit formulae
of this correction as functions of the harmonic polylogarithmic functions, defined in [99].

The EW correction is also calculated in [100] as functions of the generalized harmonic
polylogarithmic functions.

D.4.9 Leading order formula of h→ γγ

The dominant contributions comes from WW and tt̄ loop effects. We take into account bottom
and charm quark and tau lepton for numerical calculation.

Γ(h→ γγ) =
α2g2

1024π3

m3
h

m2
W

∣∣∣∣∣ ∑
i=t,b,W

Ncie
2
iFi

∣∣∣∣∣
2

(D.64)

where ei is the electric charge in units of e and

F1 = 2 + 3τ + 3τ(2− τ)f(τ), (D.65)

F1/2 = −2τ [1 + (1− τ)f(τ)], (D.66)

where subscripts mean particle spin, f is already defined in h→ gg .

D.4.10 Two-Loop : EW and QCD corrections to h→ γγ and h→ gg

These corrections are calculated in [101] in terms of the Harmonic polylogarithmic funstions.

The QCD and EW corrections are found in [99].

D.4.11 Leading order formula of h→ Zγ

This channel is dominantly originated from the WW and tt loop effects. We take into account
bottom and charm quark and tau lepton effects for numerical calculation.

Γ(h→ Zγ) =
1

32π

∣∣∣∣ αg

4πmW

(AW + AF )

∣∣∣∣2m3
h

(
1− m2

Z

m2
h

)3

, (D.67)

AW = − cot θW

{
4(3− tan2 θW )I2(τW , λW )

+

[(
1 +

2

τW

)
tan2 θW −

(
5 +

2

τW

)]
I1(τW , λW )

}
, (D.68)

AF =
∑
f=t,b

Nc

−2ef (T 3
f − 2ef sin

2 θW )

sin θW cos θW
[I1(τf , λf )− I2(τf , λf )] (D.69)
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where vaiables τf , λf , τW , λW are

τf =
4m2

f

m2
h

, λf =
4m2

f

m2
Z

, τW =
4m2

W

m2
h

, λW =
4m2

W

m2
Z

, (D.70)

and functions I1, I2 are

I1(a, b) =
ab

2(a− b)
+

a2b2

2(a− b)2
[f(a)− f(b)] + a2b

(a− b)2
[g(a)− g(b)] , (D.71)

I2(a, b) = −
ab

2(a− b)
[f(a)− f(b)] , (D.72)

g(τ) =


√
1− τ

[
sin−1

(√
1/τ
)]2

, τ ≥ 1

1
2

√
τ − 1

[
log
(

1+
√
1−τ

1−
√
1−τ

)
− iπ

]
, τ < 1.

(D.73)

D.5 Scalar boson couplings in SO(6)/SO(5)
The Higgs- and singlet-coupling constants are defined as follow.

Leff =
1

2
(∂µh)

2

(
1 + 2∆h

h

v
+∆hh

h2

v2
+∆ηη

η2

v2
+ · · ·

)
+

1

2
(∂µη)

2

(
1 + 2Ωh

h

v
+ Ωhh

h2

v2
+ Ωηη

η2

v2
+ · · ·

)
+ (∂µh)(∂

µη)

(
Λη
η

v
+ Λhη

ηh

v2
+ · · ·

)
+

[
m2

WW
+
µ W

−µ +
m2

Z

2
ZµZ

µ

](
1 + 2κhWW

h

v
+ κhhWW

h2

v2
+ κηηWW

η2

v2
+ · · ·

)
−mfψ

f

Lψ
f
R

(
1 + κhff

h

v
+ κhhff

h2

v2
+ κηff

η

v
+ κηηff

η2

v2
+ · · ·

)
− Veff(h, η)|car,pol , (D.74)

with

Veff(h, η)|car = α cos2
ϕ

f
+ β sin2 ϕ

f
× h2

ϕ2
+ γ sin2 ϕ

f
cos2

ϕ

f
× h2

ϕ2
, (D.75)

Veff(h, η)|pol = α×Θ(θ, ϕ, ψ) cos2
ϕ

f
+ β sin2 ϕ

f
cos2

ψ

f
+ γ ×Θ(θ, ϕ, ψ) sin2 ϕ

f
cos2

ϕ

f
cos2

ψ

f
.

(D.76)

The scalar-self coupling constants are defined by

∂nVeff
∂ϕ1 · · · ∂ϕn

≡ λϕ1···ϕn × κϕ1···ϕn . (D.77)

where κ is a dimensionless parameter. Therefore, scalar triple coulings are

∂3Veff
∂h∂h∂h

=
3m2

h

v
κhhh,

∂3Veff
∂h∂η∂η

= v κhηη, the others are 0. (D.78)
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and quadruple couplings are

∂3Veff
∂h∂h∂h∂h

=
3m2

h

v2
κhhhh,

∂3Veff
∂h∂h∂η∂η

= κhhηη,
∂3Veff

∂η∂η∂η∂η
= κηηηη, the others are 0.

(D.79)

eq.1 κhηη =
m2

h

v2

[
−
√

(1− ξ)ξ − 2(1− ξ) sin−1
√
ξ

2(1− ξ)
√
ξ

]
+

2m2
η

v2

[√
1− ξ −

√
ξ

sin−1
√
ξ

]

eq.2 κhhηη =
m2

h

v2

[
−
(9− 10ξ)

√
ξ sin−1

√
ξ − 4ξ

√
1− ξ − 6

√
1− ξ(1− 2ξ)

(
sin−1

√
ξ
)2

2(1− ξ)
√
ξ sin−1

√
ξ

]

+
2m2

η

v2

[
1− 2ξ +

3ξ − 4
√

(1− ξ)ξ sin−1
√
ξ

(sin−1
√
ξ)2

]

eq.3 κηηηη =
3m2

h

v2

−sin−1
√
ξ
(√

(1− ξ)ξ − (1− ξ) sin−1
√
ξ
)

(1− ξ)ξ


+

12m2
η

v2

[
−1 +

√
1− ξ
ξ

sin−1
√
ξ

]
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Polar Cartesian

∆h 0 0
∆hh 0 0

∆ηη 0 −1 + ξ

(sin−1
√
ξ)2

Ωh

√
1− ξ

√
1− ξ −

√
ξ

sin−1
√
ξ

Ωhh 1− 2ξ 1− 2ξ +
3ξ

(sin−1
√
ξ)2
−

4
√

(1− ξ)ξ
sin−1

√
ξ

Ωηη 0 −2 +

√
1− ξ
ξ

sin−1
√
ξ +

(sin−1
√
ξ)2

ξ

Λη 0
sin−1

√
ξ√

ξ
−

√
ξ

sin−1
√
ξ

Λhη 0 3− ξ

(sin−1
√
ξ)2

κhWW

√
1− ξ

√
1− ξ

κhhWW 1− 2ξ 1− 2ξ

κηηWW −1 −1 +

√
1− ξ
ξ

sin−1
√
ξ

κhff
1− 2ξ√
1− ξ

1− 2ξ√
1− ξ

κhhff −2ξ −2ξ

κηηff −1

2
−1

2

(
1− (1− 2ξ) sin−1

√
ξ√

(1− ξ)ξ

)
κhhh

1− 2ξ√
1− ξ

1− 2ξ√
1− ξ

κhηη −
m2

h − 4m2
η(1− ξ)

2v2
√
1− ξ

m2
h

2v2
−
m2

h + 8m2
η

12v2
ξ +O(ξ2) (see eq.1)

κhhhh
1− 28

3
(1− ξ)ξ

1− ξ
1− 28

3
(1− ξ)ξ

1− ξ

κhhηη −
m2

h(5− 6ξ)− 4m2
η(1− ξ)(1− 2ξ)

2v2(1− ξ)
m2

h

2v2
−

17m2
h + 4m2

η

6v2
ξ +O(ξ2) (see eq.2)

κηηηη −
4m2

η

v2
−
m2

h + 4m2
η

v2
ξ +O(ξ2) (see eq.3)

Table D.1: Couplings to scalar bosons. Red cells are not in agreement with [46] .
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ξ ≪ 1 Polar Cartesian

∆h 0 0
∆hh 0 0

∆ηη 0 −ξ
3

Ωh 1− 1

2
ξ −ξ

3

Ωhh 1− 2ξ −ξ
3

Ωηη 0
2ξ2

45

Λη 0
ξ

3

Λhη 0 2 +
ξ

3

κhWW 1− 1

2
ξ 1− 1

2
ξ

κhhWW 1− 2ξ 1− 2ξ

κηηWW −1 −ξ
3

κhff 1− 3

2
ξ 1− 3

2
ξ

κhhff −2ξ −2ξ

κηηff −1

2
−2

3
ξ

κhhh 1− 3

2
ξ 1− 3

2
ξ

κhηη −
m2

h − 4m2
η

2v2

(
1 +

m2
h + 4m2

η

2m2
h − 8m2

η

ξ

)
m2

h

2v2
−
m2

h + 8m2
η

12v2
ξ

κhhhh 1− 25

3
ξ 1− 25

3
ξ

κhhηη −
5m2

h − 4m2
η

2v2

(
1−

m2
h − 8m2

η

5m2
h − 4m2

η

ξ

)
m2

h

2v2
−

17m2
h + 4m2

η

6v2
ξ

κηηηη −
4m2

η

v2
−
m2

h + 4m2
η

v2
ξ

Table D.2: Couplings to scalar bosons for small ξ. Red cells are not in agreement with [46] .
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